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Abstract: The estimation of crop evapotranspiration (ETc) is crucial for irrigation water management,
especially in arid regions. This can be particularly relevant in the Po Valley (Italy), where arable lands
suffer from drought damages on an annual basis, causing drastic crop yield losses. This study presents
a novel approach for vegetation-based estimation of crop evapotranspiration (ETc) for maize. Three
years of high-resolution multispectral satellite (Sentinel-2)-based Normalized Difference Vegetation
Index (NDVI), Normalized Difference Water Index (NDWI), Normalized Difference Red Edge Index
(NDRE), and Leaf Area Index (LAI) time series data were used to derive crop coefficients of maize in
nine plots at the Acqua Campus experimental farm of Irrigation Consortium for the Emilia Romagna
Canal (CER), Italy. Since certain vegetation indices (VIs) (such as NDVI) have an exponential nature
compared to the other indices, both linear and power regression models were evaluated to estimate
the crop coefficient (Kc). In the context of linear regression, the correlations between Food and
Agriculture Organization (FAO)-based Kc and NDWI, NDRE, NDVI, and LAI-based Kc were 0.833,
0.870, 0.886, and 0.771, respectively. Strong correlation values in the case of power regression (NDWI:
0.876, NDRE: 0.872, NDVI: 0.888, LAI: 0.746) indicated an alternative approach to provide crop
coefficients for the vegetation period. The VI-based ETc values were calculated using reference
evapotranspiration (ET0) and VI-based Kc. The weather station data of CER were used to calculate
ET0 based on Penman-Monteith estimation. Out of the Vis, NDWI and NDVI-based ETc performed
the best both in the cases of linear (NDWI RMSE: 0.43 ± 0.12; NDVI RMSE: 0.43 ± 0.095) and power
(NDWI RMSE: 0.44 ± 0.116; NDVI RMSE: 0.44 ± 0.103) approaches. The findings affirm the efficacy
of the developed methodology in accurately assessing the evapotranspiration rate. Consequently, it
offers a more refined temporal estimation of water requirements for maize cultivation in the region.

Keywords: Sentinel-2; vegetation index-based Kc; vegetation index-based crop evapotranspiration;
maize water demand

1. Introduction

The ongoing trends in climate change are exerting profound implications on various
facets of human society, particularly impacting agriculture, and the global food supply [1].
Improving agricultural water use efficiency and crop water productivity are the pillars
of attaining higher agricultural production. Consequently, the optimal consumption of
limited water resources is becoming of primary importance for the public sector, especially
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in South Europe [2]. This is particularly true in the Mediterranean region, where multiple
stakeholders (agriculture, household, industry) compete for increasingly scarce water
resources [3]. This is especially true in agricultural regions (e.g., northern Italy, Emilia
Romagna), with water-intensive (maize, tomato) agricultural production. Changes in
temperature, rainfall patterns, atmospheric carbon dioxide (CO2), and the frequency and
intensity of extreme weather events all have a substantial influence on agricultural yields,
leading to rising food insecurity [4]. Proper water management in agriculture is a key factor
in agricultural production.

Due to the high spatiotemporal and temporal variability of meteorological parameters
and vegetation as well as other environmental factors, such as soil conditions or the depth
of the water table, planning optimal distribution of irrigation water is a very complex
task [5]. Such highly heterogeneous environments can be surveyed as detailed as possible
resulting in a large variety of data. Meanwhile, data-intensive modern artificial intelligence,
pattern recognition, and neural networks may contribute to more efficient planning and
assessment of irrigation water distribution [6]. On the other hand, the proper estimation
of evapotranspiration (ETc) is a key parameter in the estimation of crop water demand
for irrigation planning, design, and efficient irrigation water management of irrigation
schemes [7,8]. One of the most commonly used methods for ETc estimation is the crop
coefficient approach, which can be calculated based on reference evapotranspiration (ET0)
and crop coefficient (Kc) [9]. The Kc changes throughout the growing season and reflects
the proportion of the ground cover of the vegetation [10]. Several approaches can be used to
measure and/or estimate crop evapotranspiration (ETc), such as eddy covariance, soil water
balance approach, Bowen ratio energy balance system, pan evaporation, and weighting
lysimeters [11]. However, these methods as well as ETc-based soil water balance models
are expensive, hard to automate, and only provide point-based measurements. Hence, the
application of these models encounters challenges when extended to expansive regions
due to the spatial and temporal heterogeneity of input data. This is particularly notable
as local conditions, including soil hydraulic parameters, interactions with groundwater,
and variations in plant growth, pose intricate considerations that are not easily accounted
for [12].

To tackle such challenges, remote sensing (RS) offers low-cost labor-saving, and time-
saving approaches for assessing the spatial and temporal patterns of vegetation at different
scales [13,14]. Satellite-based global estimates of evapotranspiration are available like
MOD16 (MODIS Global Evapotranspiration) with 1 km spatial resolution including both
ET0, ETc estimates [15] or ECOsystem Spaceborne Thermal Radiometer Experiment on the
Space Station (ECOSTRESS) with 70 m spatial resolution [16]. The combination of different
satellite data sources enables state-of-the-art and very sophisticated assessment methods.
Traditionally, optical and thermal cameras (i.e., Surface Energy Balance Algorithm for Land
(SEBAL) [17], Two Source Energy Balance (TSEB) [18], Surface Energy Balance System
(SEBS) [19], Mapping Evapotranspiration at High Resolution with Internalized Calibration
(METRIC) [20], and the Simplified Surface Energy Balance (SSEB) [21] and others) that are
coupled with synthetic aperture radars can provide a variety of near real-time snapshots
of the environment, which can contribute to modern agricultural methods [22–24]. Earth
observation (EO) approaches offer accurate data for precision agriculture applications and
end-users (i.e., farmers, landowners, and decision-makers). High-resolution multispectral
images may be used to schedule irrigation depending on crop demands in near real-
time [25,26]. Despite substantial research on ET crop estimates for water management
using EO data, the poor geographical and temporal resolution of the sensors has hindered
their usefulness and technical transfer [27]. However, precision irrigation requires high-
resolution estimates of crop evapotranspiration and irrigation water requirements at the
field level. There are several other hydrological models which use ETc as an input parameter
as well [28]. Using biomass-based daily estimation of Kc over the vegetation period fosters
a more reliable estimation of evapotranspiration contributing to the calculation of a more
accurate water balance [29,30].



Plants 2024, 13, 1212 3 of 20

In the crop coefficient approach, Kc is typically taken from the Food and Agricultural
Organization, FAO [31], which does not capture the spatial and temporal variability in
estimating crop evapotranspiration. However, proper detection of crop growth affects the
estimates of evapotranspiration fluxes and irrigation needs. Nowadays, high-resolution
satellite datasets (10 m of spatial resolution) such as Sentinel-2 are easy and free to access
online, therefore the spatial and temporal variability in the Kc can be easily derived from
VIs considering actual biomass, crop growth conditions, and stages [32]. The Sentinel-
2 A/B was used in this study, with five days of returning time. Free satellite imagery,
high-resolution, innovative spectrum capabilities, a 290 km swath width, and frequent
return durations are boosting operational and commercial uses of EO data for precision
agriculture applications and research initiatives [33,34]. The recent Sentinel-2 mission from
the European Space Agency (ESA), as part of the Copernicus program [35], has signifi-
cantly enhanced regular monitoring of agricultural parameters, like Normalized Difference
Vegetation Index (NDVI), Normalized Difference Red Edge Index (NDRE), Normalized
Difference Water Index (NDWI) and Leaf Area Index (LAI) [36–38]. NDVI is a widely
used VI and could provide important information for crop modeling research [39]. NDVI
time series are applied to estimate crop growth under different climatic conditions [40].
The NDVI data has been used to monitor crop conditions in irrigation management [41]
and estimate crop yield under different agroecological conditions [42–44]. The spatial
and temporal variability in Kc can also be easily derived from NDVI because actual crop
growth conditions and stages influence the temporal changes in NDVI values [32]. The
NDRE uses the reflectance from red edge bands to estimate plant health [45]. The NDRE
responds to plant health, biomass, and photosynthetic activity. It is, therefore, appropriate
for plant health and productivity monitoring [46,47]. The NDWI is a commonly used VI to
determine the difference between water and vegetation cover, using the differences in the
visible and near-infrared wavelength ranges [48]. It is used to delineate, measure, and track
the size and the spatial extent of change in water bodies [49] as well as to assess the effect
of soil moisture or drought stress on plants [50]. The monitoring of LAI distribution and
variation is essential for tracking and detecting vegetation vitality and growth [51]. LAI
value may also be determined from RS data by empirical relationships between canopy
reflectance and VI regardless of time or costs [52].

This research evaluates the use of RS-based indices in ETc calculation for the region of
Emilia Romagna, Italy. There is an IT Irrigation Advisory Service for Farm Water Manage-
ment services (IRRIFRAME) which utilizes a water balance model that aims at supporting
crop irrigation management on a field scale and results in seasonal water savings of about
120 million m3 in Italy [53]. The IRRIFRAME provides evapotranspiration data under stan-
dard conditions [54], calculating reference evapotranspiration data (ET0) by the Hargreaves
formula with a 6.25 km2 geographical grid. This study aimed to develop an advanced
RS-based crop coefficient (Kc) and crop evapotranspiration (ETc) estimation method to sup-
port the preciseness of the calculation of the potential maize water consumption with 10 m
spatial resolution. Sentinel-2-derived remotely sensed indices (i.e., NDVI, NDWI, NDRE,
and LAI) were integrated with climatic data to define (i) the lengths of the phenological
phases, (ii) biomass-based crop coefficient and (iii) to calculate and evaluate more accurate
RS-based crop evapotranspiration. Due to the 5-day revisit time of Sentinel-2 satellites,
the results contribute to the timely calculation of crop evapotranspiration. Results could
also contribute to further improvement in spatial resolution (10 m) of the water balance
calculations at maize fields.

2. Materials and Methods
2.1. Study Site

Field trials were carried out by the Irrigation Consortium for the Emilia Romagna
Canal (CER) at the experimental farm Acqua Campus, covering 12.5 hectares of area that
can be divided into approximately 25 fields. The fields are located in the plain of the
Po River, in the province of Bologna, near the village of Mezzolara di Budrio (44◦34′ N,
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11◦32′ E). Various crops are cultivated on the farm (both perennial and annual). Crop
rotation in the experimental fields is characterized by annual crops, such as winter wheat,
soya, maize, onion, and processing tomato.

The farm’s soil is typical of the plain of the Po River and has a high content of silt, clay,
and fine sand. The soil in the area can be described as clay/clayey loam. It belongs to the
Italian soil group “Suoli SECCHIA franco argillosi”, which can be classified as “Oxyaquic
Haplustepts” (fine loamy, mixed, superactive, and mesic according to Soil Taxonomy).
These soils are calcareous and moderately alkaline; they have a texture of clay loam in the
superficial layers and loam deeper in the profile. Soil layers are affected by multiple floods
of the nearby Idice River. The soil within the farm is heterogeneous, and its hydraulic
characteristics vary from field to field and layer to layer, with a slight gradient from east
to west. The mean values for the soil parameters are specified in Table 1. An extended,
shallow groundwater table usually is present at a depth ranging from −0.6 to −1.8 m.
During winter and at the beginning of the growing season, the capillary rise could be
significant in terms of replenishing the evapotranspiration of crops.

Table 1. Summary of mean values for the soil parameters.

Parameter Unit Mean

Sand % 32
Silt % 50
Clay % 18
pH - 8.27
CaCO3 total % 13.5
CaCO3 active % 3.1
N total % 0.06
K exchangeable meq/100 g 0.34
P (Olsen) meq/100 g 5.49
CEC meq/100 g 21.6

For the experimental farm, the water is supplied from the CER canal system, and
its quality is regularly checked during the irrigation season [55]. CER’s irrigation water
characteristics (long-term mean) are freely available online [56].

The farm has a fully operational weather station equipped with a rain gauge, anemome-
ter, phreatimeter, and pan evaporimeter.

The climate of the site can be defined as sub-humid, with a mean annual temperature
of 13.7 ◦C and a mean annual rainfall of 771 mm. The year 2018 of the field trials was
characterized by severe drought. According to the estimates based on CER analyses, 2018
was the second harshest year in the study area, with a cumulative precipitation mostly
below 200 mm in all areas which represents a deviation of 50% from the reference climate
(period 1961–2018). These conditions contributed significantly to maize production and
yield values. In 2019 and 2020, the temperature was above the regional average with
occasional heatwaves; however, the precipitation exceeded 200 mm in the vegetation
period of maize. For this study, three experimental fields were cultivated with maize on
the Acqua Campus farm as shown in Figure 1. According to the CER data, the crop yield
varied between 16.5 and 16.7 t/ha in 2018, 13.8 and 16.2 t/ha in 2019, and 18.8 and 19.9 t/ha
in 2020, respectively.



Plants 2024, 13, 1212 5 of 20Plants 2024, 13, x FOR PEER REVIEW 5 of 21 
 

 

 

Figure 1. Experimental fields on the Acqua Campus farm. 

2.2. Study Framework and Data 

In this study, data from three maize fields in three years (2018, 2019, 2020) were used 

to set an advanced RS-based crop evapotranspiration estimation method to support a 

more accurate calculation of the water consumption of maize. The daily meteorological 

data (minimum and maximum air temperature, relative humidity, radiation, and wind 

speed) were used to estimate ET0 using the Penman-Monteith method. The crop coefficient 

was defined by developing linear and power regression equations between the NDVI, 

NDWI, NDRE LAI, and FAO Kc for the maize crop. Then VI-based Kc was used to calculate 

ETc, and the performances of the index-based crop evapotranspiration were compared to 

ETc derived by FAO Kc. 

The analysis was conducted using a diverse set of datasets, incorporating Sentinel-2 

satellite-derived NDVI, NDWI, NDRE, and LAI datasets, each possessing a high spatial 

resolution of 10 m. The LAI was calculated from the Sentinel-2 data using the methodol-

ogy developed in the S2ToolBox within SNAP 5.0. S2ToolBox is an essential component 

of the SNAP 5.0 software and was specifically developed for LAI retrieval. The methodol-

ogy uses the approach of an Artificial Neural Network (ANN) to derive these parameters 

from instantaneous observations of Sentinel-2. By utilizing a pre-trained neural network, 

the necessary biophysical variables are rapidly retrieved for each pixel within the selected 

Sentinel-2 image. The training database is generated using a Radiative Transfer Model 

(RTM) [57]. 

These datasets were acquired through the VULTUS API (https://api.vul-

tus.se/graphql (accessed on 15. 02. 2021)). The temporal resolution of the indices was set 

at five days, aligning with the satellite’s revisit time. A comprehensive dataset, comprising 

28 Vegetation Indices (VI) images and associated data, was annually collected, spanning 

from sowing to harvest. Only data free from cloud cover were considered for this study. 

This resulted in a final dataset of 996 observations. To ensure temporal coherence in the 

data, a Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) approach was em-

ployed, resulting in a smoothed daily curve for indices throughout the vegetation period. 

While Acqua Campus of CER provided the weather data (daily minimum and maximum 

temperature, wind speed, relative humidity, and solar radiation) using an in situ weather 

station, as well as the Biologische Bundesanstalt, Bundessortenamt and CHemical indus-

try (BBCH) [58] and LAI datasets (local observations). The weather data were used for 

calculating ET0, whilst BBCH and LAI were used to define the lengths of the phenological 

stages. Crop phenophases were assessed qualitatively by biweekly survey and sampling 

of maize plants in the field. The BBCH scale is used to identify the lengths of phenological 

development stages of plants [59]. LAI measurement was carried out to assess the length 

of phenological stages through direct methods, which involves the removal of plants in 
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2.2. Study Framework and Data

In this study, data from three maize fields in three years (2018, 2019, 2020) were used
to set an advanced RS-based crop evapotranspiration estimation method to support a more
accurate calculation of the water consumption of maize. The daily meteorological data
(minimum and maximum air temperature, relative humidity, radiation, and wind speed)
were used to estimate ET0 using the Penman-Monteith method. The crop coefficient was
defined by developing linear and power regression equations between the NDVI, NDWI,
NDRE LAI, and FAO Kc for the maize crop. Then VI-based Kc was used to calculate ETc,
and the performances of the index-based crop evapotranspiration were compared to ETc
derived by FAO Kc.

The analysis was conducted using a diverse set of datasets, incorporating Sentinel-2
satellite-derived NDVI, NDWI, NDRE, and LAI datasets, each possessing a high spatial
resolution of 10 m. The LAI was calculated from the Sentinel-2 data using the methodology
developed in the S2ToolBox within SNAP 5.0. S2ToolBox is an essential component of the
SNAP 5.0 software and was specifically developed for LAI retrieval. The methodology
uses the approach of an Artificial Neural Network (ANN) to derive these parameters from
instantaneous observations of Sentinel-2. By utilizing a pre-trained neural network, the
necessary biophysical variables are rapidly retrieved for each pixel within the selected
Sentinel-2 image. The training database is generated using a Radiative Transfer Model
(RTM) [57].

These datasets were acquired through the VULTUS API (https://api.vultus.se/graphql
(accessed on 15 February 2021)). The temporal resolution of the indices was set at five days,
aligning with the satellite’s revisit time. A comprehensive dataset, comprising 28 Vegetation
Indices (VI) images and associated data, was annually collected, spanning from sowing to
harvest. Only data free from cloud cover were considered for this study. This resulted in a
final dataset of 996 observations. To ensure temporal coherence in the data, a Piecewise
Cubic Hermite Interpolating Polynomial (PCHIP) approach was employed, resulting in a
smoothed daily curve for indices throughout the vegetation period. While Acqua Campus
of CER provided the weather data (daily minimum and maximum temperature, wind
speed, relative humidity, and solar radiation) using an in situ weather station, as well
as the Biologische Bundesanstalt, Bundessortenamt and CHemical industry (BBCH) [58]
and LAI datasets (local observations). The weather data were used for calculating ET0,
whilst BBCH and LAI were used to define the lengths of the phenological stages. Crop
phenophases were assessed qualitatively by biweekly survey and sampling of maize plants
in the field. The BBCH scale is used to identify the lengths of phenological development
stages of plants [59]. LAI measurement was carried out to assess the length of phenological
stages through direct methods, which involves the removal of plants in the field on certain

https://api.vultus.se/graphql
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test areas and measuring their area in the laboratory. More details for LAI measurements
are described by Nagy et al. [60].

2.3. VI-Based ETc Calculations

The crop evapotranspiration ETc was calculated using the following equation
(ETc = ET0 × Kc). ET0 was defined by temperature, relative air humidity, solar radia-
tion, wind speed, and air pressure according to the FAO Penman-Monteith equation [10]
(Equation (1)).

ET0 =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

where:

• ET0: reference crop evapotranspiration (mm day−1),
• Rn: net radiation at the crop surface (MJ m−2 day−1),
• G: soil heat flux density (MJ m−2 day−1),
• T: mean daily air temperature at 2 m height (◦C),
• u2: wind speed at 2 m height (m s−1),
• es: saturation vapor pressure (kPa),
• ea: actual vapor pressure (kPa),
• es − ea: saturation vapor pressure deficit (kPa),
• ∆: slope vapor pressure curve (kPa ◦C−1),
• γ: psychrometric constant (kPa ◦C−1).

Based on the BBCH and LAI, the lengths of the phenological stages were calculated
for the three assessed years (Table 2). In general, the sowing time was in late March or
early April, the harvesting was in September. The initial stage starts on the day of sowing
and continues until about 10% of the soil cover is reached. The early root growth of maize
makes it particularly sensitive to drought stress. In the early stages, evaporation is mainly
in the form of soil evaporation and the leaf area is small. The mid-season is characterized by
rapid growth of maize, from 10% soil cover to actual full soil cover. As the plant grows and
covers a larger area of soil, transpiration gradually takes over as the primary mechanism,
while evaporation becomes more limited, increasing water use. Water demand is highest in
the mid-season stage due to high transpiration, increased biomass production, and grain
formation, and Kc reaches its maximum value. In the late season stage, transpiration-related
water demand may decrease, but at this stage, drought stress can still have a significant
negative impact on productivity [61–63].

Table 2. The lengths of the phenological stages.

Year Stage Period, T [Days] Kc Range, [–]

2018

Initial 3 April 2018–28 May 2018 0.4–0.8
Crop development 29 May 2018–29 June 2018 0.8–1.2

Mid-season 30 June 2018–4 August 2018 1.2–0.9
Late-season 21 July 2018–21 September 2018 0.9–0.6

2019

Initial 20 March 2019–20 May 2019 0.4–0.8
Crop development 21 May 2019–8 June 2019 0.8–1.2

Mid-season 9 June 2019–25 July 2019 1.2–0.9
Late-season 14 July 2019–14 September 2019 0.9–0.6

2020

Initial 25 March 2020–11 May 2020 0.4–0.8
Crop development 12 May 2020–1 June 2020 0.8–1.2

Mid-season 2 June 2020–26 July 2020 1.2–0.9
Late-season 13 July 2020–7 September 2020 0.9–0.6

Since the determination method of Kc presented in the FAO-56 document shows
a trapezoid development, and the crop coefficient is defined as a constant throughout
the initial and mid-stage, it does not reflect the natural continuous process of canopy
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development [32]. This approach is referred to as “original” in this study. Therefore, in this
study, the trapezoid character of the FAO Kc was smoothed to have continuously varying
characteristics by the application of two technical approaches curve with continuously
varying values to be closer to natural crop development. One of the approaches was to
cut 10 days around the breakpoints and the spline algorithm was implemented to estimate
missing values. The solution is called “curved” in this study. The other approach was the
so-called “MidPoint”, where only the middle stage plateau was determined by its middle
point and the length of the plateau phase.

To analyze the relationship between the FAO-56-based (“original”, “MidPoint”,
“curved”) Kc values and the four Sentinel-2 derived indices (NDVI, NDRE, NDWI, and
LAI), Pearson Product-Moment correlation was applied. Based on the results, FAO-56-
based Kc was selected, which had the highest correlation with the Vis. Then linear and
power regression models were developed based on VI data. Since certain Vis (such as
NDVI) have proved to be an exponential nature compared to the other indices, both linear
and power regression models were evaluated [61,64–66]. The use of standard linear or
power regression models with standard estimation techniques is subject to several condi-
tions regarding the explanatory (x) (which were the Vis) and output (y) variables (which
were the Kc values) and their relationship.

Using the Vis-based estimated Kc and FAO-56 Kc, standard ETc was calculated for all
parcels for each year, resulting in biomass-derived evapotranspiration for the vegetation
period of the maize fields. To evaluate the VI-based estimation ETc models, the following
statistical indicators were selected: adjusted R2 (R2

adj) (Equation (2)), Root Mean Square
Error (RMSE) (Equation (3)), Normalized Root Mean Square Error (NRMSE) (Equation (4)),
Mean Bias Errors (MBE) (Equation (5)) and Mean Absolute Error (MAE) (Equation (6)).
RMSE is the sample standard deviation of the differences between predicted and actual
values and NRMSE is useful to reflect the relative error between the modeled and measured
soil moisture. The MBE was used to assess over or underestimation of VI-based ETc. The
MAE evaluates the mean magnitude of the errors in predictions without considering their
sign. The reason behind employing RMSE is its ability to measure accuracy to compare
predicting errors of varying models for a particular dataset and not between datasets. The
study used adjusted R2 because it provides a measure of how well the predicted values are
replicated by the model based on the variability from the actual values. All the parameters
are defined as follows: ETci

A is the evapotranspiration based on theoretical Kc values, ETci
P

is the simulated evapotranspiration based on the spectral index derived and simulated Kc
values ETc− is the mean value, n is the total number of data points and k is the number of
variables in the model.

Adjusted R2:

R2
adj = 1 −


(

1 − ∑(ETci
p−ETci

A)
2

∑(ETci
p−ETc−)

2

)
(n − 1)

n − k − 1

 (2)

Root Mean Square Error:

RMSE =

√√√√ 1
N

N

∑
i=1

(
ETci

p − ETci
A

)2
(3)

Normalized Root Mean Square Error:

NRMSE = 100 ×

√
1
N ∑N

i=1

(
ETci

p − ETci
A

)2

ETc−
(4)
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Mean Bias Error:

MBE =
1
n

n

∑
i=1

(
ETci

p − ETci
A

)
(5)

Mean Absolute Error:

MAE =
1
N

N

∑
i=1

∣∣∣(ETci
p − ETci

A

)∣∣∣ (6)

3. Results and Discussion
3.1. Trends of NDWI, NDRE, NDVI, and LAI Values for the Different Growth Stages of Maize

The mean NDWI, NDRE, NDVI, and LAI values over the three years (2018–2020) for
the different growth stages are presented in Figure 2. The NDWI is a commonly used
index for monitoring vegetation water content. In the initial stage (days 80–140), the NDWI
started with negative values, with a mean value of −0.05. Other authors shown that NDWI
values for maize were low in the initial stage because the vegetation is still in its early
stages of development and has not yet fully developed its leaf canopy [48,67]. As the plants
grew and their leaf canopy expanded, the NDWI values began to increase steadily from
0.012 (day 120) in the crop development stage, reaching its maximum (0.374) on day 174 at
the mid-season stage (days 141–224). These results are consistent with a study by Zhou
et al. [68], which underscored the importance of vegetation monitoring by showing how
effectively NDWI could capture the variability in canopy leaf abundance during specific
phases. The amount of water stored in the plants decreases by a mean value of 0.0071 in
the late season (days 225–249) due to the decreasing values.
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The trends and distribution of NDRE values are similar to NDWI values. The mean
NDRE values during the initial phase (days 80–140) were relatively low, at 0.2. This suggests
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that the leaves had little moisture content and that vegetation had not yet reached its full
potential. In the crop development stage (days 141–179), the NDRE increased steadily as
the vegetation grew, reaching a maximum on day 174 (0.82). During the mid-season (days
180–224), the mean NDRE values were similar to those around 0.76 at the crop development
stage, similar to Liu et al. [69], who found, among other things, that the NDRE index has the
highest correlation with canopy nitrogen concentration in summer maize. In the late-season
stage (days 225–240), NDRE values showed a decreasing trend due to the gradual depletion
of crop moisture.

In the initial phase (days 80–140), the mean NDVI values were low, with a mean
value of 0.21. According to Lima et al. [70], NDVI values were low in the early part of
the phenological cycle because of the higher radiation absorption in the near-infrared
band during this period. In the crop development (days 141–179), NDVI values gradually
increased and reached a maximum on day 174 (0.34). In the mid-season stage, values ranged
from 0.56 to 0.67 until day 224 (late season). Reyes-González et al. [32] and Mebrie et al. [71]
suggest that the crop coefficient varies constantly during the growing season and cannot
remain constant throughout the mid-stage. In the late stage, the NDVI values showed a
decreasing trend. Several studies have been conducted to investigate NDVI at different
growth stages. Wang et al. [72] found similar values at different stages. The initial NDVI
value of 0–0.2 increased with plant development up to 0.3–0.6, reaching a maximum of
0.7–0.8. Hatfield and Prueger [64] and Ji et al. [73] also divided the maize growing season
into four growth phases and calculated phenological information metrics for each growth
phase based on NDVI time series, while other authors have divided the growth phase into
three, six, or even ten stages [74–76].

The trends and distribution of LAI values were similar to the previous indices. At the
initial stage (days 80–140), the mean LAI values were low, around 0.5, as the vegetation
was not fully developed, and the number of leaves was low. This statement aligns with
the findings of Towers et al. [77], which supports the observation that at the initial stage,
the mean LAI values were low due to underdeveloped vegetation and a low leaf count. In
the crop development stage, the values increased as already described above and reached
a maximum on day 174 (3.26). In the mid-season stage (days 180–224), the vegetation
maintains a mean LAI value of around 2.7. The trend of data aligns with the findings of
Zhang et al. [78] which supports the observation that LAI values follow an upward trend
during the crop development stage and maintain a mean value during the mid-season stage
in maize canopies. The LAI values also show a downward trend as leaf area decreases,
like the other spectral indices. Similar trends in LAI values have been reported by several
authors [79–81].

Overall, the trends and distributions of NDWI, NDRE, NDVI, and LAI values were sim-
ilar, and the data followed well the vegetation development and environmental conditions.

3.2. Deriving VI-Based Crop Coefficient for the Vegetation Period of Maize

The lowest Kc values were observed during the initial stage (0.4) based on FAO-56. In
the case of the “curved” dataset, it typically starts to gradually increase from this initial
value about 10 days earlier compared to the “original” and “MidPoint” values. However,
the “original” Kc values peak much earlier at the value of 1.2 in the crop development
stage (days 166–170) than the other two datasets. Following the “original” Kc values, the
“curved” dataset reaches its maximum (1.2) approximately 10 days later, followed by the
“MidPoint” dataset after 7–10 days. As illustrated in Figure 3, this plateau phase represents
approximately a 50-day period in the original Kc values, a 26-day period in the “curved”
dataset for 2018 and 2019, and a 35-day period in 2020. In the case of the “MidPoint”
dataset, this phase lasted for about only 8–9 days.
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Figure 3. FAO-56-based (“original”, “MidPoint”, “curved”) Kc values for the years (2018–2020).

There was a significant correlation between FAO-56-based Kc values and VIs, thus
proper regression models were capable of describing the real crop evapotranspiration based
on the evaluated vegetation index in this study (Table 3). The correlation between Vis
and FAO-56-based Kc smoothed by the “MidPoint” method was found to be the highest,
therefore “MidPoint” Kc was selected to use for setting regression models between the VIs
and FAO-56 Kc. The correlation matrix indicates that LAI was less effective in reproducing
the temporal pattern of the theoretical curves, while NDWI and NDVI seem to be the most
effective in predicting Etc.

Table 3. Correlation coefficients between estimated Kc curves.

FAO-56
n Original Curved MidPoint

Spectral indices

NDWI 132 0.941 0.914 0.952
NDRE 132 0.934 0.888 0.939
NDVI 132 0.942 0.901 0.952
LAI 132 0.894 0.853 0.889

Both linear and power regression models were set based on “MidPoint” Kc and the
mean NDWI, NDRE, NDVI, and LAI values (Figure 4). The linear correlation between
mean NDWI values and FAO crop coefficient of maize (R2) was 0.83, indicating a strong
positive correlation between the two variables. The R2 value of the power trend line was
even higher (0.88). However, we could only fit this to the positive integers, which cover
the period from day 129 to day 234 of the year, while the total growth stage was from day
84 to day 249. The relationship between NDRE and FAO Kc indicates a strong positive
correlation for both linear and power fitting. The values were almost identical, R2 being
0.8858 in the former and 0.8856 in the latter case.

The correlation between NDVI and FAO data for maize has been investigated in
several studies. In this study, for the NDVI, almost the same can be stated as for the
NDRE index, as the R2 values were almost the same for both linear and power trend lines
(R2 = 0.886 and 0.8875) and show a strong correlation between NDVI and FAO Kc. The
relationship between the NDVI and the crop coefficient (Kc) for maize has been extensively
studied. A strong linear association between the NDVI and FAO crop coefficient values was
also discovered by Costa et al. [82]; the former’s value was 0.86, while the latter was 0.79.
Reyes-González et al. [66] discovered that the NDVI and Kc FAO-56 had an even greater
coefficient of determination of 0.97. Javed et al. [83] also reported that crop coefficients
are highly correlated with satellite-derived NDVI values, suggesting a direct proportional
relationship between the maize crop coefficient (FAO-56) and NDVI. Costa et al. [82]
revealed a significant correlation between NDVI and the Kc values reported in the FAO-56
report with R2 = 0.794, an indication that there is a high correlation within these parameters.
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Singh and Irmak [31] formulated a linear regression model to determine the correlation
between NDVI and ET0-based Kc. The results showed that the coefficient of variation for
both NDVI and Kc was lower for maize, soybeans, sorghum, and alfalfa at midseason
compared to the early growing season as well as the late growth stage.
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(n = 132), NDRE (n = 132), NDVI (n = 132), and LAI (n = 132) values of maize.

The lowest R2 was detected in the case of LAI between the index and the crop coeffi-
cient. The value for linear regression was 0.7712, whereas R2 in power fitting was slightly
lower at 0.7455. According to Kang et al. [84], the Kc exhibited a rapid increase as the LAI
approached 3 (linear R2 = 0.9522), maintaining elevated values when LAI exceeded 2.5
(linear R2 = 0.7612). The study by Jia and Wang [85] revealed a significant exponential rela-
tionship between LAI and crop coefficient Kc (R2 = 0.7055) under water deficit conditions,
indicating the influence of vegetation indices on Kc, and the impact of water stress on this
relationship.

Figure 5 illustrates the comparison between the FAO crop coefficient and crop coeffi-
cients estimated by linear and power functions for the growth stages. In the case of NDWI,
in the initial stage (days 80–140), the linear calibrated Kc values were higher than the FAO
Kc data, except on day 84, when the linear Kc was 0.379 and the FAO Kc was 0.4. The
power-calibrated Kc data, as can be seen in Figure 5, could only be examined from day 129
onwards. In this short initial period (days 129–140), the power-calibrated Kc values and
the FAO Kc values were almost the same. In the crop development stage (days 141–179),
the power and linear calibrated Kc values were very similar (with a mean value of 0.99 in
this stage) and had values higher than the FAO Kc (mean value of 0.94). In the mid-season
stage (days 180–224), both FAO Kc and VI calibrated Kc values were above 1. Linear and
power-calibrated values were again similar. The maximum crop coefficient value for the
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FAO data was on the 194th day (1.2), while for the power and linear calibrated data it
was on the 174th day, 1.18 in the former case and 1.22 in the latter case. In the late season
(days 225–250), values were again below 1, and similar to the mid-season, FAO Kc values
were higher for both power and linear calibrated values. For the NDRE index, the linear and
power-calibrated Kc values were almost equal in all stages. The FAO Kc data showed higher
values than the calibrated data between days 91 and 115 of the initial stage (days 80–140),
but for the remaining days of the initial stage and the whole crop development stage (days
141–179), the calibrated data were generally higher than the FAO Kc data. While in the
initial stage, the mean of the calibrated data was 0.46 (for both power and linear), the FAO
Kc was 0.41. The maximum values of power and linear calibrated Kc’s were also the highest
on the 174th day, 1.166 and 1.18, respectively. In the crop development stage, the mean
of the calibrated Kc values for power and linear were 1.01 and 1.03, respectively, while
the FAO Kc was 0.94. FAO Kc values were on average higher in the mid-season (days
180–224) and at the late season (days 225–250) stages, except for days 208–212 and 217–225,
when linear calibrated Kc values were higher than both power calibrated and FAO Kc data.
While the power and linear calibrated crop coefficient was 1.6–1.7 in mid-season and 0.7
in late season (for both power and linear). In the case of the crop coefficient values of the
NDVI index, the linear and power-calibrated Kc values matched even better than in the
case of the NDRE. The trend of the values was also similar to the trend already presented
for the NDRE index, so the obtained Kc values from the power and linear fittings in the
initial (days 80–140) and crop development (days 141–179) stages (0.44 and 0.45 in the
initial stage, and 1.04 and 1.05 in the crop development stage) were higher than the FAO
Kc mean values (0.4 in the initial stage and then 0.94 in the crop development stage). In
the mid-season (days 180–224) and late-season stages (days 225–250), the FAO Kc values
were higher (1.14 and then 0.82 with a mean value) than the power and linear calibrated
Kc values. The maximum values of the power and linear calibrated Kc’s for the NDVI were
also highest on day 174, 1.207, and 1.224, respectively. For LAI, the calibrated values, on
average the linear calibrated Kc values (mean value of 0.55), were higher in the initial phase
(days 80–140). However, the highest value at this stage was produced by power-calibrated
Kc values with 0.774 on day 129. This trend continued in the crop development phase (days
141–179), the mean value of the FAO Kc’s was 0.94, while the calibrated Kc values exceeded
1. The maximum crop coefficient values for the power and linear calibrated data were 1.19
in the former case and 1.29 in the latter case. If the mean values were taken into account,
the mean of the FAO Kc values were higher (1.13 and 0.82) in the mid-season (180–224th
day) and late-season stages (225–250th day). Among the calibrated crop coefficients, in
the mid-season, the linear calibrated values were higher (with a mean value of 1.12, while
the power was 1.08), while in the mid-season the power calibrated Kc values were slightly
higher (0.65—with a mean value of 0.64).
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Figure 5. Comparison of FAO-56 crop coefficient, and linear and power-calibrated crop coefficient of
maize with NDWI, NDRE, NDVI, and LAI indices.

3.3. Estimated Crop Evapotranspiration of Maize along the Growth Stages

The estimation of crop evapotranspiration for maize at different growth stages is a
critical aspect of agricultural water management (Table 4). The minimum NDWI-based
crop evaporation was on day 80 for both the power (1.34 mm/day ± 0.102) and lin-
ear (1.37 mm/day ± 0.049) calibrated data, while the maximum value for power was
on day 185 (6.45 mm/day ± 0.367) and for the linear calibrated ETc data on day 170
(6.51 mm/day ± 0.434).

For NDRE, the minimum values were on day 95, which is still in the initial stage,
with power at 1.36 mm/day ± 0.355 and linear calibrated ETc at 1.29 mm/day ± 0.293.
The maximum ETc values were similar to the NDWI-based ETc, i.e., the power-calibrated
ETc had its highest value at mid-season (6.76 mm/day ± 0.337 on day 185), while the
linear calibrated ETc had its highest value towards the end of the crop development stage
(6.4 ± 0.838 on day 170).

The evolution of NDVI-based Kc values was very similar to NDRE-based Kc values.
The minimum value was on day 95, 1.31 mm/day ± 0.366 for the power calibration and
1.22 mm/day ± 0.286 for the linear calibration, and the maximum was on day 185 for the
power calibrated Kc values (6.53 mm/day ± 0.331) and on day 170 for the linear calibrated
values (6.46 mm/day ± 0.669).

The power-calibrated LAI-based Kc was lowest on day 80 (1.32 mm/day ± 0.015)
and highest on day 185 (5.83 mm/day ± 0.492). In contrast, the linear calibrated Kc
values had a minimum on day 95 (1.27 mm/day ± 0.293) and a maximum on day 170
(5.93 mm/day ± 0.322).

In general, the vegetation index-based crop coefficient values were lowest in the initial
stage, while the highest values were towards the end of the crop development stage (for
linear calibrated, etc.) and in the mid-season stage (for power-calibrated ETc).
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Table 4. Vegetation index (NDWI, NDRE, NDVI, LAI)-based estimation of crop evapotranspiration
(ETc) (mm/day).

Day of Year 80 95 110 125 140 155 170 185 200 215 230 245

NDWI
power 1.34 ±

0.102
1.54 ±
0.534

2.01 ±
0.276

1.87 ±
0.242

2.46 ±
0.284

4.1 ±
0.646

5.88 ±
0.49

6.45 ±
0.367

6.32 ±
0.594

5.85 ±
0.545

4.7 ±
0.507

3.4 ±
0.704

linear 1.37 ±
0.049

1.48 ±
0.428

1.97 ±
0.334

2.09 ±
0.408

2.6 ±
0.581

4.19 ±
0.958

6.51 ±
0.434

6.22 ±
0.572

6.12 ±
0.294

5.9 ±
0.453

4.54 ±
0.691

3.23 ±
1.229

NDRE
power 1.37 ±

0.041
1.36 ±
0.355

1.86 ±
0.1

1.72 ±
0.148

2.32 ±
0.221

4.13 ±
0.957

6.11 ±
0.557

6.76 ±
0.337

6.62 ±
0.34

6.11 ±
0.572

4.78 ±
0.223

3.31 ±
0.43

linear 1.38 ±
0.07

1.29 ±
0.293

1.9 ±
0.302

1.89 ±
0.353

2.53 ±
0.365

4.54 ±
1.187

6.4 ±
0.838

5.92 ±
0.46

6.09 ±
0.248

5.93 ±
0.522

4.92 ±
0.409

3.23 ±
0.802

NDVI
power 1.32 ±

0.024
1.31 ±
0.366

1.78 ±
0.211

1.65 ±
0.249

2.23 ±
0.223

3.98 ±
0.941

5.89 ±
0.502

6.53 ±
0.331

6.4 ±
0.375

5.92 ±
0.538

4.57 ±
0.208

3.14 ±
0.431

linear 1.36 ±
0.051

1.22 ±
0.286

1.82 ±
0.265

1.84 ±
0.364

2.42 ±
0.217

4.43 ±
1.162

6.46 ±
0.669

5.79 ±
0.72

5.92 ±
0.309

5.8 ±
0.438

4.64 ±
0.46

2.98 ±
0.735

LAI
power 1.32 ±

0.015
1.38 ±
0.332

1.83 ±
0.252

1.71 ±
0.323

2.22 ±
0.131

3.73 ±
0.912

5.31 ±
0.313

5.83 ±
0.492

5.74 ±
0.554

5.31 ±
0.45

4.17 ±
0.357

2.99 ±
0.302

linear 1.34 ±
0.036

1.27 ±
0.293

1.87 ±
0.23

2.14 ±
0.283

2.26 ±
0.281

3.77 ±
1.427

5.93 ±
0.322

5.7 ±
0.618

5.92 ±
0.536

5.2 ±
0.686

3.66 ±
0.392

2.57 ±
0.368

3.4. Evaluation of Vegetation Indices (NDWI, NDRE, NDVI, and LAI) Based on ETc Compared to
FAO-56 Kc

Based on the adjusted R-squared, the values closest to 1 were observed for the NDWI,
NDRE, and NDVI indices, indicating that these models were able to explain a larger
proportion of the variability in the data (Figure 6). For these three indices, the power
regression model exceeded the linear regression model in general by a small margin. The
LAI index had the lowest adjusted R-squared value, suggesting that the models could
not fully account for the variability in the data. For LAI, the power regression model
outperformed the linear regression model by a small margin; nonetheless, both models’
predictions displayed very significant variability, indicating that the models are less accurate
in predicting LAI compared to NDWI, NDRE, or NDVI.
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LAI) and that estimated with FAO-56 Kc.

According to the RMSE, the NDWI, NDRE, and NDVI indices exhibit similar RMSE
values across both regression models (ranging between 0.43 and 0.45 mm/day), indi-
cating comparable performance for predicting these values (Figure 7). The LAI index
demonstrated the highest RMSE values for both regression models. However, the linear
regression model (0.5 mm/day) appears to provide a slight advantage compared to the
power regression model (0.53 mm/day).
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NDVI, and LAI) and that estimated with FAO-56 Kc.

The results for NRMSE were similar to those for the statistical indices described so
far (Figure 7). For the NDRE index, the NRMSE values were relatively close, with the
linear regression model achieving slightly lower values compared to the power regression
model (11.36%). This indicates that both models perform similarly in predicting NDRE
values. The values for the NDVI index also showed a mixed pattern. The linear regression
model achieves relatively lower mean NRMSE values (11.56%) compared to the power
regression model (11.48%), suggesting a small advantage for the linear regression model
in predicting NDVI values. The LAI index exhibited the highest NRMSE values for both
regression models.

For MAE, the lowest values were observed for NDVI (0.32 and 0.33), but NDWI and
NDRE values were also close to this (0.34 and 0.35) (Figure 8). The standard deviation of the
values ranged from 0.08 to 0.11. Overall, the NDWI, NDRE, and NDVI indices exhibited
similar MAE values across both regression models, indicating comparable performance
for predicting these values. The LAI index demonstrates the highest MAE values, for
both regression models, with the power regression model achieving a mean value of
0.40 mm/day and the linear regression model achieving a mean value of 0.37 mm/day.

In the case of MBE (Figure 8), the estimates of the linear regression model show mean
smaller deviations from the actual values than the estimates of the power regression model.
This was particularly the case for NDWI and LAI, where the mean NDWI for the power
regression model was −0.04 mm and −0.005 mm for the linear model, while for LAI it was
−0.042 mm and −0.003 mm. The NDRE and NDVI indices were closer to 0 for both the
power and linear regression models.
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4. Conclusions

In the Mediterranean, water competition among different stakeholders becomes more
intense and affects agricultural production, especially in areas of high-intensive use like
northern Italy. Changes in temperature patterns, rainfall, and extreme weather events
affect agricultural outputs and make it difficult to plan optimal distribution of water and
could lead to food insecurity. Effective water management becomes critical to addressing
these challenges. For solving these issues, modern technological approaches such as RS
provide effective solutions. In this study, researchers have created an innovative RS-based
approach for calculating crop coefficients and evapotranspiration based on a case study site
in Emilia Romagna, Italy. Through the use of remotely sensed indices coupled with climatic
data, the accuracy in estimating crop evapotranspiration was substantially increased for
maize fields.

The comparative study of NDVI, NDWI, NDRE, and LAI values in different stages of
maize growth helps understand the changes that occur during vegetation development
under changing environmental conditions. In addition, the relationship between these
indices and Kc reveals their suitability in predicting crop evapotranspiration. The observed
strong positive correlations between NDVI, NDWI, NDRE, and LAI values with FAO Kc
indicate the possibility of using RS data to obtain reasonable estimates for crop water
requirements. Regression models of NDVI, NDWI, and NDRE exhibit slightly different
predictive performances in determining Kc values with power regression generally being
superior to linear regressions. The most significant correlations are found for NDVI and
NDWI, indicating their strength in predicting Kc values in maize. Nevertheless, there are
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lower correlation values for LAI which indicates that the predictive accuracy of this index
is less than other indices.

Generally, NDWI, NDRE, and NDVI-based ETc estimations outperform consistently
compared to LAI with power regression providing better results. In the end, it can be
concluded that VI (NDWI, NDRE, NDVI, and LAI)-based crop evapotranspiration ETc are
indicating different performances in predicting water requirements for crops compared
to FAO-56 Kc-based ETc. NDWI, NDRE, and NDVI have good explanatory power with
relatively accurate predictions for both models of regression while the LAI index shows
some limitations in its accuracy. The power regression model usually slightly exceeds the
linear regression model, NDWI, NDRE, and NDVI have better predictive accuracy than LAI.
These results emphasize the importance of vegetation indices, especially NDWI and NDVI
as promising approaches to estimate crop water requirements with further improvements
required for LAI-based predictions.

In conclusion, the analysis shows that NDWI and NDVI indices are effective in moni-
toring maize growth stages and estimating crop evapotranspiration. Using RS data and
regression modeling techniques provides appropriate tools for the improvement of agricul-
tural water management practices to achieve higher crop productivity. More research and
improvement of these methodologies can lead to more accurate and consistent strategies
for crop water management in agricultural systems.
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