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Abstract: Microbial-driven N turnover is important in regulating N fertilizer use efficiency through
the secretion of metabolites like glycolipids. Currently, our understanding of the potential of gly-
colipids to partially reduce N fertilizer use and the effects of glycolipids on crop yield and N use
efficiency is still limited. Here, a three-year in situ field experiment was conducted with seven treat-
ments: no fertilization (CK); chemical N, phosphorus and potassium (NPK); NPK plus glycolipids
(N+PKT); and PK plus glycolipids with 10% (0.9 N+PKT), 20% (0.8 N+PKT), 30% (0.7 N+PKT),
and 100% (PKT) N reduction. Compared with NPK, glycolipids with 0–20% N reduction did not
significantly reduce maize yields, and also increased N uptake by 6.26–11.07%, but no significant
changes in grain or straw N uptake. The N resorption efficiency under 0.9 N+PKT was significantly
greater than that under NPK, while the apparent utilization rates of N fertilizer and partial factor
productivity of N under 0.9 N+PKT were significantly greater than those under NPK. Although
0.9 N+PKT led to additional labor and input costs, compared with NPK, it had a greater net economic
benefit. Our study demonstrates the potential for using glycolipids in agroecosystem management
and provides theoretical support for optimizing fertilization strategies.

Keywords: glycolipids; nitrogen reduction; maize yield; net economic benefits; nitrogen fertilizer
use efficiency

1. Introduction

Chemical nitrogen (N) fertilizer application has received considerable attention due to
its irreplaceable functions in regulating soil fertility, crop growth and agriculture sustain-
ability [1,2]. Over the past 50 years, N fertilizer has been extensively utilized as the primary
source of reactive N for agricultural production to meet the food demands of a growing
population [3–5]. To date, it has been reported that global N consumption has exceeded
110 million tons per year, and N consumption is continuing to increase [6]. However,
some studies indicate that the plant N fertilizer use efficiency under field conditions is
generally less than 35% [7], and abundant N is emitted to the atmosphere or leached into
groundwater, resulting in environmental pollution leading to soil acidification, greenhouse
effects, groundwater pollution, and other agroecosystem disruptions [8]. Therefore, the
systematic application of N fertilizer has become an urgent research topic worldwide.

Soil microorganisms, as important agents of SOM (soil organic matter) formation
and decomposition, are pivotal managers of global elemental cycling and balance [9,10].
Microorganisms can contribute to soil N cycling through biological N fixation, regulation
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of community functions, and the decomposition of exogenous materials and have been
extensively studied during the past two decades [11,12]. Recent studies have further re-
vealed that microbial metabolites may regulate plant health and enhance soil fertility [13].
Metabolic exchanges are ubiquitous in natural microbial communities [14]. It is well known
that the metabolites of microorganisms are widely used in food processing, drug improve-
ment, cosmetic development, and other fields. In soil, Kost et al. (2023) suggested that
metabolic exchanges of microorganisms can alter the dynamic interplay between synergis-
tic and antagonistic interactions, shaping the structure and functions of a given microbial
community in soil. Some scholars have shown that the metabolites of actinomycetes can
promote crop growth and enhance crop resistance [15]. In addition, Saleem et al. (2019)
indicated that microorganisms can secrete nitrogenous compounds in response to soil nutri-
ent stress, which helps to maintain community stability [16]. Thus, soil multifunctionality
is achieved, at least in part, through microbial metabolites.

Biological approaches are playing increasingly prominent roles in sustainable agricul-
tural development [17]. Glycolipids are metabolites secreted by soil bacteria belonging to
Pseudomonas and are composed of trehalolipid, rhamnolipid, sophorolipod, and manno-
sylerythritol lipid; these metabolites have been shown to be biodegradable and be acid-
and alkali-resistant and have antimicrobial properties with good biocompatibility, which
showed that the application of bioglycolipid in soil does not cause severe disturbance to soil
animals and microorganisms [18–20]. They have a wide range of potential applications in
various fields, such as food, pharmaceuticals, environmental remediation, petroleum, and
agriculture [21–23]. Glycolipids can serve as a cementing substance to promote the forma-
tion of macroaggregates and as an energy source to be absorbed by roots to promote crop
growth [24]. Additionally, glycolipids have been shown to effectively mitigate greenhouse
gas emissions [25]. Notably, the application of glycolipids increased the soil ammonium and
nitrate N contents, as well as the glutaminase synthetase activity, in cabbage related to N up-
take [26,27]. The use of glycolipids in agricultural production is primarily as biosurfactant.
Glycolipids are a type of biosurfactant that has been extensively researched [28]. Compared
to chemically synthesized surfactants, biosurfactants (glycolipids) have the advantages
of high efficiency and environmental friendliness, in addition to reducing surface tension
and stabilizing emulsions [28,29]. Previous studies have demonstrated that glycolipids
can be added to foliar fertilizers as a biosurfactant. The hydrophobic groups are adsorbed
on the surface of the waxy layer by dispersion force, while hydrophilic groups reach into
the fertilizer solution to form a directional adsorption film that replaces the hydrophobic
waxy layer [30,31]. This property improves the wetting conditions of foliar fertilizers in the
waxy layer and facilitates the use efficiency of fertilizers. However, there is still a lack of
understanding regarding the potential of microbial metabolites to substitute for N fertilizer
application, improve N fertilizer utilization efficiency, and promote plant growth.

The Northeast Plains of China are the primary areas for grain production in the
country, accounting for more than 20% of the annual grain crops [32]. However, the
fertility of Mollisols in the Northeast China Plains is decreasing due to frequent cultivation
and excessive fertilizer inputs [33]. In this study, a three-year in situ field experiment
was conducted to determine the optimal N fertilizer application rate with glycolipids
amendment. In this study, we aimed to explain the effects of N fertilizer reduction with
glycolipids application on crop yield and N fertilizer use efficiency, as well as the potential of
biogglycolipid application in agroecosystems in the Northeast China Plains. Our hypothesis
is that the application of glycolipids and a moderate reduction in N fertilizer can enhance
crop yields and N fertilizer use efficiency, leading to increased net economic benefits.

2. Results
2.1. Soil Fertility

Basic soil properties were significantly affected by different fertilization practices
(Figure 1 and Table S2). In particular, basic soil properties were significantly affected by
different fertilization practices. In terms of the basic soil properties, the different treatments



Plants 2024, 13, 1222 3 of 13

altered N turnover in the soil (Figure 1). The NPK treatment had the highest SOM content,
which was significantly greater than that of the other treatments (p < 0.05, except for
N+PKT). The SOM content under the 0–20% N reduction treatments was greater than that
under the 0.7 N+PKT, PKT, and CK treatments (p < 0.05). For soil total N, the highest
total N content was observed in the NPK treatment, which was significantly greater than
that in the 0.8 N+PKT, 0.7 N+PKT, and PKT treatments (p < 0.05). Additionally, the
total N content under the 0–20% N reduction treatments was greater than that under the
0.7 N+PKT and PKT treatments (p < 0.05). The lowest total N content was detected in the
PKT treatment group.
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Figure 1. Soil organic matter (a), total nitrogen (b), ammonium nitrogen (c), and nitrate nitrogen (d)
after 3-year different fertilization. The results show means ± standard deviations (n = 3). Different
lowercase letters after values indicate a significant difference under different treatments, p < 0.05.

The soil N fraction changed after N fertilizer reduction and glycolipids application
(Figure 1c,d). Overall, the soil ammonium N and nitrate N contents were higher with gly-
colipids application and 0–20% N reduction treatments than in CK (p < 0.05). Furthermore,
N fertilizer input was the key factor in regulating the soil nitrate N content (Figure 1d).
The soil nitrate N content was greater in the N addition treatments than in the CK and
PKT treatments (p < 0.05). Specifically, the soil ammonium N content in the NPK treatment
was greater than that in the PKT treatment. Additionally, the soil nitrate N content was
greater in the 0–20% N reduction treatment group than in the 0.7 N+PKT treatment group
(p < 0.05).

The different fertilization practices also affected other soil properties (Table S2). Soil
available potassium and pH did not change significantly after 3 years of continuous
application of the different fertilization regimes. Soil pH ranged from 7.49 to 7.72, but
there was no significant difference between different treatments. Among them, the highest
soil pH value was seen in CK, and the lowest was observed in the 0.8N+PKT treatment.
However, the soil available phosphorus content was significantly greater in the 0.9 N+PKT
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treatment than in the CK and PKT treatments (p < 0.05). The soil C:N ratio was significantly
greater under the N+PKT and 0.9 N+PKT treatments than under the CK treatment (p < 0.05)
and significantly lower than that under the 0.7 N+PKT treatment (p < 0.05). In summary, the
use of glycolipids along with a 0–20% reduction in N is a reasonable fertilization strategy
for maintaining the fertility of Mollisols.

2.2. Plant Growth and Maize Yield

Ear row number, kernel number, ear length, spike-stalk width, and thousand-kernel
weight were selected to evaluate the growth of maize under different fertilization regimes
(Table S3). The number of ear rows decreased with decreasing N application. Compared
with the CK and PKT treatments, the number of ear rows significantly increased in the
N+PKT and 0.9 N+PKT treatments (p < 0.05). The highest kernel number was found in
the 0.7 N + PK treatment, while the lowest was observed in the CN and PKT treatments.
N fertilizer is the key factor in increasing kernel number. Compared to the treatments
with different levels of N input, the kernel number significantly decreased in the no-N
input treatments (CK and PKT) (p < 0.05). Compared with those in the CK treatment,
the ear length in the NPK, N+PKT, and 0.7 N+PKT treatments significantly increased
(p < 0.05). The spike-stalk width in the 0.9 N+PKT treatment was greater than that in the CN,
0.7 N+PKT, and PKT treatments (p < 0.05). The thousand-kernel weight, which ranged
from 269.08 g (CK) to 355.00 g (N+PKT), is a pivotal factor in assessing seed quality and
crop yield. Compared to those in the CK and PKT treatments, the thousand-kernel weight
significantly increased in the 0–30% N reduction treatments (p < 0.05).

Crop yield is a comprehensive reflection of soil fertility and plant physiological traits
under different fertilization regimes and is dependent on N input levels (Figure 2). There
were no significant differences in crop yield among the NPK, N+PKT, 0.9 N+PKT, and
0.8 N+PKT treatments; the yields in these treatments were significantly greater than those
of the other treatments (p < 0.05). Furthermore, the maize yield under the 0.7 N+PKT
treatment was significantly greater than that under the CK treatment (p < 0.05). In summary,
glycolipids can improve soil fertility, promote plant growth, and increase crop yields when
N fertilizer application is reduced by 10%. This is the recommended fertilization regime
for Mollisols.
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2.3. N Fertilizer Use Efficiency

The different fertilization treatments altered the N fertilizer use efficiency of the plants
(Figures 3 and 4). Figure 3a,b illustrate the differences in the N uptake amount in grain
and straw, respectively. The results indicate that the greatest N uptake in both the grain
and straw was observed in the NPK treatment, while the lowest N uptake was observed
in the PKT treatment. The N uptake in both the grain and straw under the NPK, N+PKT,
0.9 N+PKT, and 0.8 N+PKT treatments was significantly greater than that under the PKT
and CK treatments (p < 0.05). Furthermore, changes in the amount of nitrogen taken up
resulted in differences in nitrogen recovery efficiency (NRE) (Figure 3c,d). Compared
with that in the NPK treatment, the grain NRE in the N+PKT and 0.9 N+PKT treatments
significantly increased (p < 0.05), while it significantly decreased in the 0.7 N+PKT treat-
ment (p < 0.05). The straw NRE was significantly greater in the N+PKT, 0.9 N+PKT, and
0.8 N+PKT treatments than in the NPK and 0.7 N+PKT treatments (p < 0.05).
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AURN and PFPN are also key indicators of N fertilizer use efficiency and were
influenced by the different fertilization regimes (Figure 4). As shown in Figure 4a, AURN
ranged from 18.17% for the 0.7 N+PKT treatment to 30.09% for the N+PKT treatment.
AURN was significantly greater in the N+PKT and 0.9 N+PKT treatments than in the
NPK and 0.7 N+PKT treatments (p < 0.05). There was no significant difference in AURN
between the N+PKT and 0.9 N+PKT treatments. As shown in Figure 4b, PFPN ranged
from 69.47% for the 0.7 N+PKT treatment to 76.72% for the N+PKT treatment. The PFPN
was significantly greater under the N+PKT, 0.9 N+PKT, and 0.8 N+PKT treatments than
under the NPK and 0.7 N+PKT treatments (p < 0.05). In addition, compared with that in
the NPK treatment, the PFPN in the 0.7 N+PKT treatment significantly decreased (p < 0.05).
Therefore, the use of glycolipids along with a 0–20% reduction in N may increase the N
fertilizer use efficiency of plants.
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2.4. The Links between N Fertilizer Input, Soil Basic Property, and N Fertilizer Use Efficiency

Figure 5 shows the close associations between N fertilizer input, basic soil properties,
and N fertilizer use efficiency. The results indicated that the N fertilizer input level was
positively correlated with crop yield (p < 0.05), AURN (p < 0.05), and grain NRE (p < 0.01).
Moreover, the nitrate N content was positively correlated with crop yield (p < 0.05) and
AURN (p < 0.05). Moreover, the total N content and grain NRE were significantly positively
correlated (p < 0.05).
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2.5. Net Economic Benefit

As shown in Table 1, among all the calculated specific economic returns (mainly
maize output value) and expenses (fertilizer and management in-field costs), these val-
ues dominated the total net economic value, and glycolipids application along with a
0–20% N fertilizer reduction provided an additional 1584.02–252.24 ¥/ha/yr of N to the
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traditional fertilization regime (NPK). Compared with the NPK treatment, the N + PK,
0.9 N + PK, and 0.8 N + PK treatments improved the NEB by 8.28% (1584.02 ¥/ha/yr),
7.80% (1492.32 ¥/ha/yr), and 1.32% (252.34 ¥/ha/yr), respectively. However, 0.7 N+PKT
decreased the NEB by 4.75% (908.21 ¥/ha/yr). Furthermore, compared with the NPK treat-
ment, the lowest NEB was observed under the PKT and CK treatments, reaching values of
−25.52% (−4882.38 ¥/ha/yr) and −27.22% (−5207.81 ¥/ha/yr), respectively. Hence, the
0.9 N+PKT treatment offered a win–win strategy for reducing N fertilizer application and
increasing farmer profits.

Table 1. The economic value of income and expenses after 3-year different fertilization.

Treatment Maize Yields
(kg/ha)

Maize Output
Value (¥/ha/yr)

Fertilizer Cost
(¥/ha/yr)

Management
Cost (¥/ha/yr)

Net Income
(¥/ha/yr)

Rate of Change
Compared with

NPK Treatment (%)

CK 7727.35 17,772.91 0.00 3850.00 13,922.91 −27.22
NPK 11,205.38 25,005.72 2025.00 3850.00 19,130.72 ——

N+PKT 11,577.06 26,627.24 2062.50 3850.00 20,714.74 8.28
0.9 N+PKT 11,501.32 26,453.04 1980.00 3850.00 20,623.04 7.80
0.8 N+PKT 10,960.01 25,208.02 1974.96 3850.00 19,383.06 1.32
0.7 N+PKT 9656.26 24,126.06 2053.54 3850.00 18,222.51 −4.75

PKT 8312.32 19,118.34 1020.00 3850.00 14,248.34 −25.52

3. Discussion
3.1. Responses of Soil Fertility and Plant Growth to the Addition of N Fertilizer and Glycolipids

In addition to factors such as sunlight, temperature, precipitation, soil texture, and
geographical location, appropriate fertilization is one of the most important factors for
determining the physiological traits and yield of plants [34]. Fertilizer regimes should be
carefully managed to avoid negative impacts on the environment. Fertilization provides
essential C sources and nutrients such as C, N, P, and K for crop growth. Furthermore, it
enhances soil fertility, mediates greenhouse gas emissions, and increases crop yields [8].
Appropriate fertilization measures are crucial for achieving sustainable agricultural devel-
opment [35]. SOM is the key to soil fertility [34]. This study revealed that both conventional
fertilization and glycolipids application combined with a 0–20% N fertilizer reduction could
result in the maintenance of a high SOM content. Generally, exogenous organic material
input is a prerequisite for SOM accumulation [36]. According to a Duan et al. (2021) study,
N fertilizer input is an important factor in SOM accumulation in the Northeast Plains [13].
Regular N fertilizer input promoted the soil microbial capacity to degrade straw and thus
accelerated SOM formation. However, a 50% lower N fertilizer input weakens the ability
of microbes to degrade straw, leading to SOM loss. This result pointed out that compared
with 50% N fertilizer reduction, more N input was beneficial to stimulate microbial function
and promoted soil fertility. And in the present study, glycolipids addition may mitigate the
effects of N fertilizer reduction on SOM content [13]. The results indicate that under the
premise of adding glycolipids, appropriate reduction of N fertilizer input had no significant
effect on SOM content. A previous study also suggested that glycolipids, which act as
organic cementing substances, could promote the formation of macroaggregates, which
provide physical protection for SOM and promote SOM accumulation [24].

Soil total and mineral N content were identified as key indicators of N supply capacity
following a reduction in N fertilization [37–39]. The results indicated that compared with
conventional fertilization, glycolipids application with a 0–20% nitrogen reduction can
allow for the maintenance of the soil N content. The increase in soil total and mineral N
is dependent on the amount of N fertilizer applied. However, reducing the amount of N
fertilizer can stimulate the functions of N-fixing microorganisms and promote N-fixing
efficiency [40]. Wang et al. (2012) demonstrated that the inclusion of rhamnolipid, the
main component of glycolipids, can facilitate the transformation of soil organic N into
ammonia N [27]. Additionally, Gong et al. (2017) reported that the addition of rhamnolipid
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can increase the population of cellulose-degrading and nitrogen-fixing microorganisms,
leading to an increase in soil N accumulation [41].

Adequate nutrient supply capacity is a prerequisite for crop growth [42]. In this study,
the number of ear rows, kernels, ear length, spike-stalk width and thousand-kernel weight
were used to assess crop growth performance. The results showed that the 0.9 N+PKT
treatment improved maize physiological traits, indicating that crop growth requirements
were still met with a 10% reduction in N. Previous studies have shown that rhamnolipid (the
main component of glycolipids) can promote crop yields by promoting crop root growth
and facilitating rapid plant access to soil nutrients [43]. In addition, the soil C:N ratio is
an important indicator of soil health [44]. In this study, the C:N ratio was significantly
greater under the N+PKT and 0.9 N+PKT treatments than under the CK treatment and
lower than that under the 0.7 N+PKT treatment. This suggests that the C:N ratio needs to
be within a reasonable range, which is consistent with previous research [44]. A reasonable
C:N ratio has been reported to stimulate microbial functions, promote straw degradation,
prevent pathogen infection, and enhance soil fertility, ultimately contributing to greater crop
yields [45–48]. Therefore, 0.9 N+PKT is a beneficial fertilization measure for the sustainable
development of agriculture on the Northeast China Plains and for the improvement of
farmer benefits.

3.2. The Effect of Glycolipids Addition and N Fertilizer Reduction on the N Fertilizer Use
Efficiency of Plants

The combination of glycolipids application and N fertilizer reduction not only com-
pensated for the negative effects of N fertilizer deficiencies on soil fertility, crop growth,
and yield but also improved N fertilizer efficiency in plants. This study revealed that the
N+PKT and 0.9 N+PKT treatments significantly increased the maize NRE, AURN, and
PFPN compared to those under no fertilization. Our results suggest the potential functions
of glycolipids in promoting the N fertilizer use efficiency of plants. Previous studies have
shown that the addition of glycolipids increases the uptake of essential plant micronutri-
ents, such as Fe2+, Mn2+, Cu2+, and Zn2+, in soybeans, which promotes crop growth and
yield [49]. In addition, studies have shown that the application of glycolipids can increase
soil N-cycling enzyme activity and increase plant free amino acid content, which implies
that more mineral N is stored in the soil to promote crop growth [50]. Furthermore, the use
of glycolipids has been shown to increase plant root biomass, thereby enhancing the ability
of crops to obtain N from the soil [46].

Glycolipids can form chelates with some of the ions in the soil [51]. By taking ad-
vantage of the fact that glycolipids can easily enter the cells, they can transport other
substances, such as nutrients, and make them more easily utilized by plant cells [52]. In
addition, glycolipids themselves can also act as a nutrients source for the plant root, thus
promoting plants growth [29]. Moreover, as biosurfactant, glycolipids can improve the
activity of β-glucosidase and cellulase, promote the degradation of straw, and provide
energy and nutrition for crops [31]. Therefore, glycolipids also have great potential in soil
fertility improvement.

N fertilizer input is crucial for regulating N use efficiency in plants. The results of this
study revealed close associations of the N fertilization rate and nitrate N content with N
fertilizer use efficiency (Figure 5). Nitrate N rather than ammonium N is the predominant
form of N present in dryland soils [53]. A recent study indicated that nitrate signaling
promotes plant growth by upregulating gibberellin biosynthesis and destabilizing DELLA
proteins [54], which explained the internal mechanism by which nitrate N promotes plant
growth; our findings also verified these results (Figure 5). Generally, glycolipids affect
plant N fertilizer utilization in two ways: (i) by improving soil N-cycling enzyme activity
to provide more available N for crop growth and (ii) by promoting root growth to increase
nutrient absorption capacity. In addition, the application of 0.9 N+PKT has been found to
increase net economic benefits by reducing fertilizer expenses and increasing crop yields.
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Under the premise of maintaining soil fertility, crop growth, and yield, the NEB of
farmers is an important factor to consider for modified fertilization strategies. In this
study, based on local prices, the 0.9 N+PKT treatment increased expenses associated with
glycolipids input by 37.5 ¥/ha/yr but reduced expenses for nitrogen fertilizer input by
82.5 ¥/ha/yr. As a result, the income from maize increased by 1447.32 ¥/ha/yr compared
to that from conventional fertilization, resulting in an NEB of 1492.32 ¥/ha/yr. The addition
of glycolipids can be a reliable strategy for maintaining soil fertility and productivity in
Mollisols on the Northeast China Plains, with a 10% reduction in N fertilizer input.

4. Materials and Methods
4.1. Site Description and Sampling

A field experiment was established in 2021 in Wenchun (44◦59′61′′ N, 129◦59′18′′ E),
Mudanjiang city, Heilongjiang Province, Northeast China Plains, which is an important
grain-producing area. This region has a typical temperate continental monsoon climate
with an average annual temperature of 5.0 ◦C and a mean annual precipitation of 579.7 mm.
The soil is classified as a meadow soil according to US Soil Taxonomy (USST). The cropping
system consisted of a continuous maize (Zea mays L.) monoculture.

The following seven treatments were applied for 3 years: (1) no fertilization (CK);
(2) regular chemical fertilization (NPK, 84.00 kg N/ha, 40.17 kg P/ha, 62.23 kg K/ha);
(3) regular chemical fertilization with glycolipids (N+PKT, 84 kg N/ha, 40.17 kg P/ha,
62.23 kg K/ha, 0.75 kg/ha of glycolipids); (4) regular P, K, and 10% N reduction with
glycolipids (0.9 N+PKT, 75.60 kg N/ha, 40.17 kg P/ha, 62.23 kg K/ha with 0.75 kg/ha
of glycolipids); and (5) regular P, K, and 20% N reduction with glycolipids (0.8 N+PKT,
67.20 kg N/ha, 40.17 kg P/ha, 62.23 kg K/ha with 0.75 kg/ha of glycolipids); (6) regular
P, K, and 30% N reduction with glycolipids (0.7 N+PKT, 58.80 kg N/ha, 40.17 kg P/ha,
62.23 kg K/ha with 0.75 kg/ha of glycolipids); (7) regular P, K, with glycolipids (PKT,
40.17 kg P/ha, 62.23 kg K/ha with 0.75 kg/ha of glycolipids). Generally, N was applied by
urea (N 16%) and diammonium phosphate (N 18%); P and K were applied by diammonium
phosphate (P2O5 46%) and potassium chloride (K2O 60%). Glycolipids are the compounds
products that are composed of rhamnolipid (main component, account for about 70%),
trehalolipid, sophorolipod, and mannosylerythritol lipid (account for about 30%). All of
these components were collected through microbial secretion (such as Pseudomonasaerugi-
nosa). Glycolipids are freeze-dried to form a white powder product, which is dissolved in
water and evenly sprayed on the soil. In this study, glycolipids (0.75 kg/ha) were applied
to evaluate the potential of N fertilizer reduction, plant growth, and yield. It was noted
that straw return was carried out in all the above treatments, and all other management
practices were consistent among the treatments during the experiment.

Soils were sampled after the maize harvest in October 2023. A completely randomized
block design consisting of 7 treatments with 3 replicates was adopted in this study. Each
field plot was 0.65 m × 9 m. We collected 9 soil cores (5 cm diameter) from the top 20 cm
of bulk soil in each plot. Each soil sample consisted of a mixture of subsamples randomly
collected from 9 different positions in the same plot. In total, 21 soil samples were collected
from 7 treatments with 3 replicates. The soils were sieved through a 2 mm mesh, mineral
particles was carefully removed, and then the soils were homogenized and stored in an
incubator at 4 ◦C in a 40% moisture environment.

The plants were sampled during the maize harvest in October 2023. We randomly
collected 3 plants (including straw and grain) as replicates from each field plot, and
3 replicates were collected for each treatment. In total, 21 straw/biomass samples were
collected from 7 treatments with 3 replicates. Subsequently, the straw and grain of the
plants were carefully separated for further analysis.

4.2. Soil Basic Chemical Properties and Plant Physiological Traits

Soil pH was measured at a soil/water ratio of 1:2.5 (weight/weight). Air-dried soil
and 25 mL of deionized water were shaken together for 1 min, settling was allowed to occur
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for 30 min, and the soil pH was determined using an electrode. Soil organic carbon (SOC)
was measured by titrimetry after soil oxidation with a mixture of H2SO4 and K2Cr2O7.
Total N was determined using the Kjeldahl method; total and available P were determined
using molybdenum blue colorimetric methods; total K and available K were determined
using flame photometry; and SOM was determined by titrimetry after soil oxidation with
a mixture of H2SO4 and K2Cr2O7. Soil ammonium and nitrate N were determined by a
Kelvin nitrogen determination instrument. All of these methods have been described in Lu
(2000) [55]. The basic soil chemical properties before the different fertilization treatments
were applied are shown in Table S1.

The number of ear rows and kernels was measured by visual counting; ear length and
spike-stalk width were measured by a graduated ruler; and thousand-kernel weight was
measured by a quantitative counting plate and centesimal balance. The total N of straw
and grain was determined using the Kjeldahl method.

4.3. N Fertility Use Efficiency Evaluation and Calculation of Net Economic Benefits

N resorption efficiency (NRE) [56], apparent utilization rate of N fertilizer (AURN), [57]
and partial factor productivity of N (PFPN) [58] were calculated to evaluate the N fertility
use efficiency of plant.

NRE (%) = (Napplied − Nno-apply)/Ninput × 100; (1)

where Napplied and Napplied are the N uptake amount under N application conditions (kg)
and the N uptake amount without N application (kg), respectively. Ninput is the N fertilizer
input amount (kg).

AURN (%) = Napplied/Ninput × 100; (2)

where Napplied and Ninput are the N uptake amount under N application conditions (kg)
and the N fertilizer input amount (kg), respectively.

PNPF (kg/kg) = Crop yieldapplied/Ninput; (3)

where Crop yieldapplied and Ninput are crop yields under N application conditions (kg) and
N fertilizer input amounts (kg), respectively.

The net economic benefit (NEB) was calculated to assess the utilization potential of
glycolipids.

NEB (¥/ha/yr) = Vincome − Vexpenses (4)

where Vincome is the maize output value and Vexpenses includes the expenses of fertilizer
and management cost in fields.

4.4. Statistical Analysis

The soil and plant properties were subjected to the chi-squared test for independence
of variance analysis. Significant differences were determined by one-way analysis of
variance (ANOVA) based on the post hoc Tukey test at the 5% level. Prior to ANOVA,
normality and homogeneity of variances were tested by the Kolmogorov–Smirnov test
and Levene’s test, respectively. If the normality condition was not met, log or square-root
transformation was performed. One-way ANOVA was carried out in SPSS 21.0 (SPSS Inc.,
Chicago, IL, USA). The heatmap was performed using the function “heatmap.2” in the R
package “ggplots”.

5. Conclusions

After 3 consecutive years of glycolipids application and reduced N fertilization, we
observed changes in soil fertility, crop physiological traits, yield, and N fertilizer use
efficiency. The 0.8 N+PKT treatment was found to maintain soil fertility (SOM and N
fraction), while the 0.9 N+PKT treatment promoted plant growth and crop yields compared
to the NPK treatment. In addition, the N fertilizer input level and nitrate N content were
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the main factors regulating the N fertilizer use efficiency of plants. Compared with the
NPK treatment, the 0.9 N+PKT and 0.8 N+PKT treatments increased the NRE, AURN, and
PFPN of plants by promoting plant root growth and maintaining adequate soil labile N
content. It is also worth noting that the application of glycolipids along with a 10% N
fertilizer reduction resulted in a high NEB for local farmers. Therefore, the 0.9 N+PKT
treatment not only improved soil fertility, plant physiological traits, and crop yield but also
efficiently reduced excessive N fertilizer use, improved N fertilizer use efficiency, provided
considerable economic benefits for farmers, and is a win–win strategy in the Northeast
China Plains.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants13091222/s1, Table S1: The initial and treated basic soil
chemical properties under different fertilization treatments during experiment periods. Table S2: Soil
basic properties after 3-year different fertilization. Table S3: Maize physiological traits after 3-year
different fertilization.
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