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Abstract: Leaf mass per area (LMA) is a key structural parameter that reflects the functional traits of
leaves and plays a vital role in simulating the material and energy cycles of plant ecosystems. In this
study, vertical whorl-by-whorl sampling of LMA was conducted in a young Larix principis-rupprechtii
plantation during the growing season at the Saihanba Forest Farm. The vertical and seasonal
variations in LMA were analysed. Subsequently, a predictive model of LMA was constructed. The
results revealed that the LMA varied significantly between different crown whorls and growing
periods. In the vertical direction of the crown, the LMA decreased with increasing crown depth, but
the range of LMA values from the tree top to the bottom was, on average, 30.4 g/m2, which was
approximately 2.5 times greater in the fully expanded phase than in the early leaf-expanding phase.
During different growing periods, the LMA exhibited an allometric growth trend that increased
during the leaf-expanding phase and then tended to stabilize. However, the range of LMA values
throughout the growing period was, on average, 40.4 g/m2. Among the univariate models, the
leaf dry matter content (LDMC) performed well (adjusted determination coefficient (Ra

2) = 0.45,
root mean square error (RMSE) = 13.48 g/m2) in estimating the LMA. The correlation between
LMA and LDMC significantly differed at different growth stages and at different vertical crown
whorls. The dynamic predictive model of LMA constructed with the relative depth in the crown
(RDINC) and date of the year (DOY) as independent variables was reliable in both the assessments
(Ra

2 = 0.68, RMSE = 10.25 g/m2) and the validation (absolute mean error (MAE) = 8.05 g/m2, fit index
(FI) = 0.682). Dynamic simulations of crown LMA provide a basis for elucidating the mechanism of
crown development and laying the foundation for the construction of an ecological process model.

Keywords: Larix principis-rupprechtii; leaf mass per area; leaf dry matter content; crown whorl; leaf
growth phase; predictive models

1. Introduction

The leaf economics spectrum (LES) is a set of interconnected and synergistic functional
traits that quantitatively represent a range of steadily shifting plant resource trade-off
strategies [1,2]. At the heart of this complex and multifaceted trait network lies leaf mass
per area (LMA) [3]. LMA is the ratio of dry leaf mass to the corresponding leaf area
and is a combination of various leaf anatomical characteristics [4]. It is widely used to
estimate leaf area indices [5,6] and simulate canopy photosynthesis [7,8]. LMA values
vary among different tree species, different environmental conditions, and different leaf
developmental stages. Thus, accurate and swift measurements of LMA and its dynamic
changes are highly important for understanding the growth processes of trees, simulating
canopy photosynthesis, and estimating forest productivity.

The crown is the primary organ responsible for photosynthesis in trees. Its intricate
three-dimensional structure of branches and leaves affects the local microenvironment of
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the crown, resulting in spatial differences in leaf functional traits in different areas of the
crown [9–11]. Studies have shown that the LMA of crowns in various forest types tends to
increase from the bottom to the top of the crown [12–14]. This increasing pattern of LMA
is usually associated with the light gradient through the crown and the water potential
gradient from the root to the crown [15–18]. In addition to the vertical variation in the
crown, LMA also varies significantly across the different developmental stages of trees.
Nouvellon et al. [19] reported that LMA changes drastically over different months, which
was also confirmed by Rossatto’s research [20] on savanna grassland tree species and forest
tree species in central Brazil. This variation in LMA can be attributed to differences in
temperature, precipitation, and solar radiation among the different periods.

The alteration of LMA typically depends on the leaf dry matter content (LDMC).
Plants can acclimatize to diverse circumstances through varied dry matter investments.
Consequently, the correlation between traits is strongly associated with the resources and
environment in which plants are located. Previous studies have demonstrated that there
is a significant correlation between LMA and LDMC, and the association is significantly
disparate under diverse environmental conditions [21,22]. For trees with a conspicuous
canopy structure, the gradient discrepancy of the canopy microenvironment in the ver-
tical direction [23] will cause a shift in the correlation between different canopy depths.
Zhang [24] studied the vertical changes in the LMA and LDMC of Pinus yunnanensis with
canopy height. The results showed that different LMA and LDMC values exhibited distinct
changes with canopy height. Tian et al. [25] reached the same conclusion. Additionally,
alterations in the temperature, precipitation, and solar radiation of plants during different
growing seasons will make the environment in which leaves are situated highly hetero-
geneous. This will lead to different changes in LMA and LDMC with canopy height at
different growth stages.

Due to the limitations of leaf area measurement technology [26], it is very difficult to
measure LMA. Currently, LMA is measured by retaining some leaves of the analysed tree
and establishing a single tree leaf biomass model based on the leaf biomass of the analysed
tree and its diameter at breast height [27], or by directly calculating LMA from the measured
total leaf area and leaf dry mass. However, for coniferous plants, these methods require
considerable manpower and material resources [28,29] because of their three-dimensional
structure and large number of leaves. To address this issue, an increasing number of
researchers are estimating LMA by establishing regression models between LMA and plant
traits, leaf morphology, or environmental conditions, such as leaf length, leaf width [30,31],
branch height [32,33], and LDMC [34–36]. As the correlation between LMA and the vertical
direction of a tree crown is significant, variables related to vertical height, such as branch
height, depth into the crown, and relative depth into the crown, are often used as the main
fitting factors. LDMC is also a common fitting factor, and many studies have discussed
the relationship between these two parameters. Typical linear models or nonlinear models
are used to fit LMA based on LDMC [37]. Peng’s research [38] showed that the LMA
of Chinese fir can be estimated by the LDMC and that the model meets the estimation
requirements. Therefore, it is important to establish a simple and accurate LMA prediction
model for the purpose of simplifying canopy models. Determining LDMC and RDINC
is simpler than determining LMA, and both methods meet the estimation requirements
of LMA. However, previous studies have taken only leaf samples at one particular point
in time or at a specific canopy position. It is yet to be determined whether different leaf
development stages and depths of the canopy have an effect on LMA prediction models.
A few studies have examined which vertical factor or LDMC can most accurately predict
LMA. Furthermore, whether leaf development time can be used as a single factor to predict
LMA has not been tested.

Larix principis-rupprechtii, one of the most widely planted trees in North China, is
characterized by strong light tolerance, rapid growth, and longevity and is a valuable
native species. This study aimed to clarify the variation patterns of the LMA of needles
in different vertical layers and at various leaf development stages and to reveal the main
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factors influencing the LMA. Finally, the best prediction model of LMA for L. principis-
rupprechtii plantations was established, which can be used to simulate crown photosynthesis
and estimate regional primary productivity.

2. Results
2.1. Correlations between LMA and DOY and between RDINC and LDMC

It was evident from the results (Figure 1) that there was a significant negative cor-
relation between LMA and RDINC, with a correlation coefficient of −0.614. However,
LMA had a significant positive correlation with LDMC (r = 0.697). LMA had no significant
correlation with DOY but showed a unimodal trend with increasing DOY.
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Figure 1. Scatter plot and cor plot. LMA is the leaf mass per area, DOY is the duration of the year,
RDINC is the relative depth into the crown, and LDMC is the leaf dry matter content. The solid black
lines are trendlines of polynomial equations.

2.2. Variation in LMA at Different Crown Depths and Leaf Development Stages

The results of a two-factor ANOVA (Table 1) revealed that the LMA of L. principis-
rupprechtii significantly differed among leaf development stages and crown layers, and
the interaction between the two factors had a significant effect on the LMA. There were
significant differences between the upper, middle, and lower layers of the crown at different
stages of leaf development (Figure 2). At the start of leaf development, the LMA decreased
from the upper crown (66.68 g·m−2) to the lower crown (38.31 g·m−2). At the middle
stage of leaf development, the LMA ranged from 92.38 g·m−2 at the top of the crown to
46.80 g·m−2 at the bottom of the crown. At the end of leaf development, the LMA decreased
from 68.24 g·m−2 at the top of the crown to 47.17 g·m−2 at the bottom of the crown.

Table 1. Two-way ANOVA of the LMA of L. principis-rupprechtii.

Variables
Statistics

df F Sig.

Intercept 1 1203.943 <0.001
Leaf growth phase 5 15.929 <0.001
Crown layer 2 57.877 <0.001
Leaf growth phase × Crown layer 10 10.645 <0.001
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Figure 2. Vertical patterns of leaf mass per area at different leaf growth phases. LMA is the leaf mass
per area, UC is the upper crown, MC is the middle crown, and LC is the lower crown.

2.3. Correlation Analysis Results

There was a significant positive correlation between LMA and LDMC across different
crown layers and leaf growth phases (Figure 3). The slopes decreased from the upper crown
to the lower crown (Figure 3a), and the slopes decreased from the early growth phase to
the late growth phase (Figure 3b). On average, the correlations between LMA and LDMC
were greater when grouped by leaf growth phase than when grouped by crown layer.
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Figure 3. Regression analysis of standard spindles: (a) Relationships between leaf mass per area and
leaf dry matter concentration in the lower crown (LC), middle crown (MC), and upper crown (UC);
(b) Relationships between leaf mass per area and leaf dry matter concentration in the early growth
phase (EG), middle growth phase (MG), and late growth phase (LG).
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2.4. Model Fitting and Validation Results

Table 2 illustrates the goodness-of-fit results of the 7 basic models that were established
with RDINC (Model 1~4), DOY (Model 5), and LDMC (Model 6~7). The models that were
established based on DOY and LDMC showed better fitting performance than those that
were established based on RDINC, with a high modified determination coefficient (Ra

2),
low root mean square error (RMSE), and Akaike information criterion (AIC). Model 7
showed the best goodness-of-fit, with the highest Ra

2 value (0.447) and lowest RMSE value
(9.38 g·m−2).

Table 2. The goodness-of-fit results of different basic models.

No. Model Form Ra
2 RMSE AIC

Model 1 LMA = −38.47 × RDINC + 87.60 0.297 15.194 6452.82
Model 2 LMA = 90.53 × exp(−0.58 × RDINC) 0.302 15.143 6447.61
Model 3 LMA = 27.98 × RDINC2 − 68.36 × RDINC + 93.72 0.304 15.116 6446.85
Model 4 LMA = 55.33 × RDINC−0.24 0.299 15.171 6450.54
Model 5 LMA = −22.92 + 2.62 × (DOY − 120) + 0.02 × (DOY − 120)2 0.403 14.002 6327.61
Model 6 LMA = 156.76 × LDMC + 15.56 0.443 13.524 6271.50
Model 7 LMA = 157.82 × LDMC0.76 0.447 13.479 6266.29

The method of reparameterization was used to establish bivariate models based on the
basic models (Table 2), resulting in Model 8~Model 13 (Table 3). The results showed that
the fitting performances of the bivariate models were better than those of the univariate
models (Table 2). Model 13 was the only model with an Ra

2 greater than 0.6 and an RMSE
lower than 11 g·m−2. The validation result of Model 13 also performed best, with the
lowest MAE (MAE = 8.05) and the highest IF (0.682). The MEs of Model 8~Model 13 were
all negative, indicating that those models were slightly overestimated.

Table 3. Results of model fitting and validation.

No. Model From
Goodness-of-Fit Validation

Ra
2 RMSE AIC ME MAE IF

Model 8 LMA = (−1.32 × (DOY−120) + 258.30) × LDMC + 0.31 ×
(DOY − 120) − 7.52 0.470 13.16 4682.5 −0.092 10.753 0.474

Model 9 LMA = (−62.38 × RDINC + 150.84) × LDMC + 27.67 0.507 12.69 4638.0 −0.106 10.176 0.514
Model 10 LMA = (−41.15 × RDINC + 150.95) × LDMC0.59 0.515 12.59 4629.0 −0.099 10.040 0.523

Model 11 LMA = (0.0003 × (DOY − 120)3 − 0.114 × (DOY − 120)2 +
11.38 × (DOY − 120) − 217.1) × LDMC + 32.28

0.598 11.46 4522.8 −0.236 9.353 0.615

Model 12 LMA = (−0.0215 × (DOY − 120)2 + 3.256 × (DOY − 120) +
20.264) × LDMC0.574 0.593 11.54 4528.3 −0.205 9.318 0.611

Model 13 LMA = (−37.08 × RDINC − 0.44) + (0.003 × RDINC + 2.524)
× (DOY − 120) − 0.016 × (DOY − 120)2 0.678 10.25 4390.5 −0.154 8.050 0.682

Note: LMA represents leaf mass per area, RDINC represents relative depth into the crown, DOY represents date
of year, and LDMC represents the leaf dry matter content.

3. Discussion
3.1. Temporal and Spatial Variation in LMA

Our results showed that LMA decreased gradually with increasing RDINC. Studies by
Marshall and Monserud [32], Burgess and Dawson [33], Zhou et al. [34], and Tian et al. [25]
on the vertical variation in crown LMA in Pinus monticola, Sequoiadendron giganteum, Betula
platyphylla, and Platycladus orientalis have shown that crown structure is the most direct and
active interface between plants and their external environment. Complex crown structures
usually exhibit different microenvironmental conditions, such as light, temperature, and
water vapour deficit pressure [8]. The upper leaves of the crown, which are exposed to
strong light radiation and other conditions (e.g., temperature, wind speed, and humidity),
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increase dry matter input to produce more protective tissues to resist the external environ-
ment [39,40]. Additionally, the upward movement of water from roots to crowns inevitably
leads to a decrease in the upper water potential [41]. Under water stress conditions, leaves
increase investment in vascular tissues and promote water transport to compensate for the
impact of lower leaf water potential, resulting in an increase in LMA [42,43]. Conversely,
leaves face strong neighbourhood interference and fierce competition for light resources at
the bottom of the crown, resulting in a lower LMA with a large and thin morphology.

During the leaf-spreading process, LMA showed a unimodal relationship with DOY
(Figure 1) due to an increase in mesophyll cell numbers, inclusions, and cell wall thickness,
as well as the maturation of mechanical tissue [15]. May and June are the periods of leaf
spread and early leaf growth, and leaves spread quickly to enhance light-capturing abilities,
resulting in a lower LMA. During this period, leaves grow rapidly with the division and
expansion of leaf cells, which is consistent with the results of Meinzer et al. [44]. LMA sig-
nificantly increased in the middle growth phase, particularly in the upper crown (Figure 2),
which was similar to the finding that the LMA of leaves developing outside the tree crown
was significantly greater than that of leaves developing inside the crown [21,45] because of
light induction. In addition, plants increase leaf thickness to improve leaf photosynthesis
and stress resistance, which leads to an increase in the accumulation of nonstructural
carbohydrates in cells [46] and consequently an increase in the LMA. Subsequently, the
leaves enter the senescence stage, nutrients are translocated to the branches, the leaves lose
water, and the LMA decreases [47]. Using time-integrated irradiance (PPFDINT), Colbe
et al. [48] elucidated the seasonal increase in LMA in sugar maple leaves and demonstrated
that the leaves are a long-term adaptation to light, with both seasonal accumulation and
light intensity having significant impacts on LMA.

3.2. Changes in the Correlations between LMA and LDMC in Various Crown Layers (CLs) and
Leaf Growth Phases (LGPs)

LMA and LDMC are interdependent leaf features. The distinct LMA and LDMC
distributions revealed two plant resource allocation strategies, namely, accelerated expan-
sion of the light absorption capacity and efficient storage of materials for leaf structure
formation [49,50]. Leaf LMA and LDMC not only vary in a wide range of environments
but also respond to different situations caused by alterations in crown depth or the leaf
growth phase [51,52]. Our study revealed that there was a positive correlation between
LMA and LDMC, but the patterns of their correlations differed among different CLs and
LGPs (Figure 3). The increase rate of LMA with LDMC decreased from the upper crown
layer to the lower crown layer (Figure 3a), implying that plants allocate more dry matter to
the highest region of the crown for the same unit of fresh foliage area [53]. Leaves in the
upper crown exposed to intense light may face an environment with increased investment
in water transportation and relatively less availability of water [54]. Thus, leaves increase
dry matter input and vascular tissue investment to improve their competitiveness and
survival [13]. A denser cell structure and narrower air space could accelerate the exchange
rate of leaf water, nutrients, etc., thus optimizing photosynthetic income and resulting in a
greater LDMC. On the other hand, the light in the lower crown was weak, and the leaves
should adapt to weak light and relatively low dry matter input, resulting in a larger leaf
area [55]. This was in line with the research results of Tobias et al. [56].

As the development process of leaves increased, the slopes of the relationships between
LMA and LDMC decreased (Figure 3b). The lowest LMA (31.25 g/m2) and LDMC (0.10 g)
were observed in the early leaf growth phase (May–June). During this period, leaves tended
to allocate less LMA and lower LDMC to enhance the capacity for capturing light, which
was beneficial for competition [53]. During the middle leaf growth phase (July–August),
the leaves had the highest values of LDMC (0.60 g) and LMA (133.33 g/m2). During this
period, the leaves were fully mature, displaying the strongest photosynthetic activity and
dry matter production capability [14,57]. This finding was consistent with the research of
Liu et al. [58], who showed that the crown of Larix olgensis had the greatest photosynthetic
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capacity in July and August. During the late leaf growth phase, the photosynthetic ability
and carbon assimilation rate decrease to a certain extent with low temperatures and nutrient
depletion, leading to decreases in LDMC and LMA [19,59].

3.3. Optimal Model Selection

The vertical indices of crowns are the most commonly used leaf functional indica-
tors [12,32]. Previous studies have shown that linear, power, and exponential models,
which were constructed based on RDINC, achieved good fitting performance. However,
Peng et al. [38] demonstrated that the model using LDMC as a separate element performed
well, which was consistent with our results (Table 2). The Ra

2 values for Models 6 and
7 exceeded 0.44, and the RMSEs were lower than 14.0 g·m−2. Fewer previous studies
have considered the influence of different leaf growth phases, especially the early and
later leaf growth phases, on the accuracy of the model. Coble et al. [60] demonstrated
that disregarding seasonal factors would cause a biassed estimation of LMA. Bivariate
modelling improved the goodness-of-fit (Table 3). After reparameterization, the accuracy
of Model 8~Model 13 significantly improved, and the Ra

2 value increased by more than
0.2 compared to that of the univariate model. Model 13 was chosen as the optimal model
with the highest Ra

2 (0.678) and lowest RMSE (10.25 g/m2). Interestingly, LDMC, which
had the highest correlation with LMA, was not included in the optimal model (Model 13).
Fortunately, model 13 had the ability to dynamically predict the DOY.

4. Materials and Methods
4.1. Site Description

The study site was located at the Saihanba Forest Farm, Hebei Province, northern
China (42◦02′~42◦36′ N, 116◦51′~117◦39′ E), at an altitude of 1010~1939.9 m. The main soil
type is sand. The climate type is a typical temperate continental monsoon climate, with an
annual average temperature of −1.3 ◦C, an extreme minimum temperature of −43.3 ◦C, an
extreme maximum temperature of 33.4 ◦C, an annual average snow cover of 7 months, an
annual average precipitation of 460 mm, an average annual frost-free period of 64 days, and
an annual average windy day of 53 days. The main tree species are L. principis-rupprechtii,
Picea asperata, Betula platyphylla, P. sylvestris var. Mongolica sylvestris, etc. The forest coverage
rate was 82%, and the total forest stock was 5.025 million m3.

4.2. Sample Selection

In this research, five sample plots (20 m × 30 m) were established within a 17-year-old,
pure L. principis-rupprechtii plantation in the same habitat as the Saihanba Forest Farm.
All trees with a diameter at breast height (DBH) larger than 5 cm in the sample plot were
measured, and factors such as DBH, tree height (H), crown width (CW), and relative
coordinates (X,Y) were included. Subsequently, five sample trees with a DBH similar to the
quadratic mean diameter (Dg), representing the average state of each sample plot, were
chosen. The basic information about the sample plots and sample trees is displayed in
Table 4.

Table 4. The attributes of the sample plots and the sample trees were outlined.

Sample Plots Sample Trees

Plot
Number

Age
(Year)

Quadratic Mean
Diameter (cm)

Mean Tree
Height (m)

Stand
Density

(Trees·hm−2)
Tree Number

Diameter at
Breast

Height (cm)

Tree Height
(m)

P1 17 12.0 11.95 2489 I 11.2 10.5
P2 15 10.0 9.95 2461 II 11.0 11.3
P3 16 13.5 13.80 2383 III 11.7 10.8
P4 16 12.7 12.81 2112 IV 11.2 11.5
P5 17 11.9 12.98 2049 V 11.9 10.9

Note: P1~P5 represent sample plot 1 to sample plot 5.
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4.3. Measurement of LMA

For a single tree, the crown was divided into various whorls by the whorls of branches
from top to bottom. In each group, 3–4 healthy clusters were chosen as samples. The
relative depth into the crown (the ratio of depth into the crown to crown length, RDINC)
of every sample cluster was recorded, and then the samples were immediately removed
and taken back to the laboratory for scanning and weighed immediately to determine fresh
weight (WF). The scanned needle samples were dried to a constant weight of 85 ◦C and
weighed (WD). The images were analysed using image analysis software (Image-Pro Plus
6.0, Media Cybernetics, Inc., Bethesda, MD, USA), resulting in a projected leaf area (LA,
m2). The LMA and LDMC of each cluster of needle samples were then calculated. The data
were collected every half month during the growing phases (approximately from 1 June to
15 September) in 2017. The basic statistics were listed in Table 5.

Table 5. The attributes of LMA and LDMC.

Layer Growth
Phase

LMA(g/m2) LDMC(g)
Mean S.D. Max. Min. Mean S.D. Max. Min.

UC
EG 74.07 16.98 108.84 39.88 0.334 0.072 0.526 0.175
MG 87.62 16.49 133.33 49.39 0.419 0.066 0.596 0.312
LG 60.52 14.86 84.00 40.00 0.332 0.038 0.430 0.260

MC
EG 63.23 16.72 94.86 31.37 0.291 0.070 0.511 0.141
MG 70.65 10.33 105.04 48.28 0.343 0.056 0.538 0.233
LG 56.86 11.78 78.70 36.86 0.317 0.032 0.460 0.263

LC
EG 52.83 14.23 78.08 31.25 0.288 0.085 0.527 0.100
MG 59.44 7.48 84.29 44.70 0.293 0.044 0.542 0.204
LG 46.55 10.15 61.03 32.10 0.304 0.024 0.353 0.263

Pooled 67.75 18.12 133.33 31.25 0.333 0.077 0.596 0.099

Note: UC, MC, and LC represent the upper, middle, and lower canopies, respectively, while EG, MG, and LG
represent the early growth phase (1 June 1–15 July), middle growth phase (16 July–31 August), and late growth
phase (1 September–defoliation), respectively. The same applies below.

The LMA and LDMC of each cluster of needle samples were calculated as follows:

LMAi,j = WDi,j/LAi,j (1)

LDMCi,j = WFi,j/WDi,j (2)

where i represents the sample whorls, j represents the date of the measurement, WD
represents the dry weight, and WF represents the fresh weight.

4.4. Model Descriptions
4.4.1. Basic Model Selection

Based on previous research and the scatter plot distribution and correlation between
LMA and LDMC, as well as the spatial position and leaf growth phase (LGP) obtained in
this study, a basic model was established with RDINC, date of year (DOY), and LDMC as
independent variables (see Table 6).

4.4.2. Discrete Analysis and Reparameterization

According to prior research, the relationships between LMA and LDMC, leaf spatial
position, and leaf growth phase are evident. Thus, to improve the accuracy of the model, it
is necessary to further discretize the LMA data for feature analysis. Models 1–4 simulated
the LMA in 9 groups, with intervals of 0.1, based on RDINC. Model 5 simulated the LMA
in 6 groups, with groupings of 150, 165, 180, 195, 210, and 225, based on the DOY. Models
6–7 simulated the LMA on RDINC and DOY. Then, reparameterization was conducted
in Models 1–7, according to the correlations between the parameters and RDINC and
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DOY, to form 6 new models with multiple independent variables (RDINC, DOY, and
LDMC). Finally, the optimal LMA model for L. principis-rupprechtii was selected based on
its goodness-of-fit (Equations (3)–(5)) and validation performance (Equations (6)–(8)). The
LMA prediction model was then established through parameterization.

Table 6. Model forms.

No. Model Form Parameter

Model 1 LMA = a0 × RDINC + a1 a0,a1
Model 2 LMA = b0 × exp(b1 × RDINC) b0,b1
Model 3 LMA = c0 × RDINC2 + c1 × RDINC + c2 c0,c1,c2
Model 4 LMA = d0 × RDINCd1 d0,d1
Model 5 LMA = e0 × (DOY − 120)2 + e1 × (DOY − 120) + e2 e0,e1,e2
Model 6 LMA = f0 × LDMC + f1 f0,f1
Model 7 LMA = g0 × exp(g1 × LDMC) g0,g1

Note: LMA represents leaf mass per area, RDINC represents relative depth into the crown, and DOY represents
date of year. Leaves started to germinate when DOY = 120; thus, DOY−120 represents the initial development
time of the leaves.

4.4.3. Model Assessment and Validation

When fitting the model, 75% of the data were randomly chosen for model fitting, and
25% were used for model validation (Table 7). The indicators chosen to assess the model’s
goodness-of-fit are the adjusted determination coefficient (Ra

2), root mean square error
(RMSE), and Akaike information criterion (AIC). The indicators for validation are the mean
error (ME), absolute mean error (MAE), and fit index (FI). The formulas for computing
each index are as follows:

R2
a = 1 −

(
1 − R2

)( n − 1
n − p

)
a = 1, where R2 = 1 − ∑n

i = 1(yi − ŷi)
2

∑n
i = 1(yi − yi)

2 (3)

RMSE =

√
∑n

i = 1 (yi − ŷi)
2

n − p
(4)

AIC = nIn((yi − ŷi)
2)− nIn(n) + 2p (5)

ME = ∑n
i = 1

(
yi − ŷi

n

)
(6)

MAE = ∑n
i = 1

∣∣∣∣yi − ŷi
n

∣∣∣∣ (7)

FI = 1 − ∑n
i = 1(yi − ŷi)

2

∑n
i = 1(yi − yi)

2 (8)

where yi is the observed value, yi is the average of the observed values, ŷi is the predicted
value, n is the number of samples, and p is the number of parameters.

Table 7. Statistical summary of fitting data and validation data.

Variables
Fitting Data (No. = 585) Validation Data (No. = 194)

Max. Min. S.D. Mean Max. Min. S.D. Mean

LMA 133.33 31.25 18.08 67.69 127.53 31.50 18.30 67.93
DOY 240 150 26.88 199.15 240 150 26.57 199.25

LDMC 0.58 0.10 0.08 0.33 0.60 0.10 0.08 0.33
RDINC 0.99 0.08 0.26 0.52 0.96 0.09 0.25 0.51

Note: LMA represents leaf mass per area, RDINC represents relative depth into the crown, DOY represents date
of year, and LDMC represents the leaf dry matter content. Max. is the maximum value, Min. is the minimum
value, S.D. is the standard deviation, and Mean is the mean value.
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4.5. Data Analysis

A two-factor ANOVA was used to examine whether the LMA of L. principis-rupprechtii
significantly differed between different trees and different ring whorls at various growth
and developmental stages. Furthermore, Pearson correlation coefficients among LMA,
LDMC, RDINC, and DOY were computed, and the correlations between LMA and other
factors were analysed. The LMA and LDMC of different canopies and different growth
periods were fitted by standardized principal axis analysis. Tests were conducted to
determine whether there was a significant difference in slope among the different groups
and to ascertain whether different canopy depths and growth periods had a significant
influence on the correlation between LMA and LDMC.

Microsoft Excel 2010 was used to collate the data of the study; descriptive statistical
analysis was performed using SPSS 24; model fitting was completed by the nls package in
R 4.0.5; standardized principal axis analysis was completed by the smatr package in R 4.0.5;
and diagrams were drawn with the ggplot2 package in R 4.0.5 and Origin 2019.

5. Conclusions

Tree leaves (such as L. principis-rupprechtii) can adapt to complex crown structures
by altering their own morphological characteristics, which results in significant spatial
heterogeneity within the tree crown. In addition, the morphological characteristics of
leaves from different crown layers exhibited different seasonal patterns (such as LMA and
LDMC). The LMA prediction model using the reparameterization method (Model 13) had
the best fitting performance (R2 = 0.68, RMSE = 10.25 g/m2), and the best validation result
was obtained (MAE = 8.05 g/m2, FI = 0.682). Furthermore, Model 13 exhibited dynamic
predictions that benefited from the incorporation of DOY. The LMA prediction model
provides convenience for the rectification of physiological ecological models and provides
a reference for branch pruning that considers leaf functional traits.
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