
Citation: Sugumar, T.; Shen, G.; Smith,

J.; Zhang, H. Creating

Climate-Resilient Crops by Increasing

Drought, Heat, and Salt Tolerance.

Plants 2024, 13, 1238. https://doi.org/

10.3390/plants13091238

Received: 17 March 2024

Revised: 19 April 2024

Accepted: 22 April 2024

Published: 29 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Review

Creating Climate-Resilient Crops by Increasing Drought, Heat,
and Salt Tolerance
Tharanya Sugumar 1, Guoxin Shen 2, Jennifer Smith 1 and Hong Zhang 1,*

1 Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; tsugumar@ttu.edu (T.S.);
jennifer.r.smith@ttu.edu (J.S.)

2 Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; guoxinshen@gmail.com
* Correspondence: hong.zhang@ttu.edu

Abstract: Over the years, the changes in the agriculture industry have been inevitable, considering
the need to feed the growing population. As the world population continues to grow, food security
has become challenged. Resources such as arable land and freshwater have become scarce due to
quick urbanization in developing countries and anthropologic activities; expanding agricultural
production areas is not an option. Environmental and climatic factors such as drought, heat, and
salt stresses pose serious threats to food production worldwide. Therefore, the need to utilize the
remaining arable land and water effectively and efficiently and to maximize the yield to support the
increasing food demand has become crucial. It is essential to develop climate-resilient crops that will
outperform traditional crops under any abiotic stress conditions such as heat, drought, and salt, as
well as these stresses in any combinations. This review provides a glimpse of how plant breeding in
agriculture has evolved to overcome the harsh environmental conditions and what the future would
be like.
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1. Negative Effects of Abiotic Stresses

Impacts of drought stress: Drought is one of the major hazards in the world affecting
agricultural production. A recent report from the Intergovernmental Panel on Climate
Change (IPCC) states with high confidence that global warming will lead to more territories
becoming affected by agricultural and ecological drought, resulting from insufficient soil
moisture that could be intensified by evapotranspiration increase [1]. National Centers for
Environmental Information [2] reported that low soil moisture and groundwater levels
affect agricultural lands worldwide to a greater extent. It also indicated that drought has
caused severe yield loss, leading to increased food prices over the world.

Drought can be classified into four types: meteorological drought caused by less
magnitude of precipitation for an extended period of time, agricultural drought referring to
the impacts on vegetation when a soil moisture deficit along with high evapotranspiration
affects crop yield, hydrological drought that occurs when there is a water deficit in sur-
face or subsurface water reservoirs following meteorological drought, and socio-economic
drought that arises when supply cannot meet the demands of economic goods due to the
water deficit [3]. The effect of drought stress on plants depends on the severity, duration,
and the growth stage of crops at which it occurs. The water deficit typically causes changes
in plant morphology such as root length, plant height, total biomass, root/shoot ratio,
and photosynthetic pigment content [4]. Leaf rolling, leaf abscission, and yellowing are
symptoms observed under severe drought stress. Imbalance between the net photosyn-
thesis and reactive oxygen species (ROS) production due to reduced CO2 intake under
drought stress results in oxidative damage. Malondialdehyde (MDA), the indicator of
lipid peroxidation, increases significantly, indicating the membrane degradation by ROS
produced under drought stress [5].
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When plants were treated with restricted watering, a significant delay in flowering
time was observed among the landraces of common bean [6]. Also, pod number and seed-
by-pod reduction caused a significant yield reduction by 50% compared with that of the
control treatment. The percentage of yield reduction showed a negative correlation with the
percent of relative leaf area expansion, which suggests that, in indeterminate landraces, the
resource allocation to pod is higher than to the leaves, improving the yield under drought
stress [6]. In rice, flowering is found to be more vulnerable to drought stress, which results
in a significant reduction of 23–24% in grain yield and increased spikelet sterility in two
cultivars [7]. Chalkiness and chalky kernels were increased by more than 50%, which is
caused by the lower accumulation of photosynthates [7]. Drought stress in cultivated cotton
varieties resulted in a significant reduction of boll number per plant, and fiber quality was
decreased with the increase in micronaire and short fiber percentage [8].

Impacts of salt stress: Freshwater availability is becoming scarce due to intensive
global freshwater consumption for agriculture, industry, households, public services, and
the increased salinity level of surface water in the arid and semiarid regions of the world.
Over the past century, the water withdrawal rate exceeded the global population growth
rate by more than 1.7 times, where nearly 70% is used only for agriculture. Out of the total
precipitation received on earth, only 39% is converted to renewable freshwater resources
such as rivers, lakes, and groundwater aquifers. Thus, the overconsumption of water will
lead to water scarcity in more than 80% of crop lands in the future [9]. Saltwater intrusion
into aquifers due to climate change is a major concern for the salinity increase, which
poses a threat to agricultural production by limiting moisture availability to plants [10]. In
addition, the water usage has caused coastal land depletion, which has led to a rise in sea
levels along with salinity increase in aquifers. Nearly 1.5 million ha of arable land is lost
per year due to increased sodicity and salinity, which in turn has reduced the total land
availability by 26 million ha [11].

Soil salinity is generally measured by the electrical conductivity of a saturated soil
paste extract (ECe) that assesses the ability of a solution to conduct electricity, which in
turn provides an estimation of the concentration of soluble salts in the soil. Cations, such
as sodium (Na+), potassium (K+), magnesium (Mg2+), and calcium (Ca2+), and anions
such as chloride (Cl−), nitrate (NO3

−), and sulfate (SO4
2−) are found in the salts that are

commonly present in water and soil solutions. Soils with an ECe of ≥2 dS m−1 (at 25 ◦C)
are traditionally considered to be saline soils [12–14]. Changes in the weather pattern
such as precipitation and temperatures, sea water intrusion, weathering of rocks, and
anthropogenic activities such as incorrect agricultural practices like irrational irrigation
and the overuse of fertilizer applications cause the salinity of soil to increase.

Crop tolerance to different soil salinity levels differs depending on the maximum
threshold value at which the yield tends to decrease or above which the yield will decrease.
Salinity has negative impacts on crop germination and yield, causing morphological,
physiological, and biochemical impairments [15]. Leaf wilting, yellowing, curling, and
leaves falling are common symptoms observed under salt stress. Depending on the severity
scale of 1 to 6, the maximum score for leaf damage in the seedling stage was obtained
24 days after 300 mM of NaCl concentration treatment [16]. Photosynthetic parameters
such as chlorophyll (Chl) a, b, and total content, and photosynthetic rate are reduced and
MDA content increases, which are all signs of salt stress [16]. Morphological parameters
including plant height, stem and root length, and number of branches and leaves also
have a negative relationship with increasing salt concentration [17]. Like other abiotic
stresses, flowering and grain-filling stages are more sensitive to salt stress, which directly
affects crop yield. Parameters such as flowering time, maturation period, and plant height
are reduced significantly in plants grown under high saline conditions [18]. Salt stress in
cotton imposes similar negative effects on seed germination and seedling development,
biomass, ion homeostasis, and antioxidant activity in susceptible varieties [19,20]. Even
though cotton is considered as a salt-tolerant crop with a threshold value of 7.7 dS m−1
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next to barley, cotton’s growth, boll development, yield, and fiber quality are all reduced
by salinity stress [8,21].

Impacts of heat stress: According to the recent IPCC report [1], the global temperature
is expected to increase by, or by more than, 1.5 ◦C from 2021 to 2040. This will greatly affect
food production worldwide, as the yield of the four major food crops, wheat, rice, maize,
and soybean, will be reduced by 6.0%, 3.2%, 7.4%, and 3.1%, respectively [22]. The yield
of cotton will be reduced by 10–17% per degree Celsius increasing [23]. Extreme heat will
severely affect crop production, as plants are sensitive to changes in temperature during all
the stages of their lifetime. From seed germination to seed setting, all stages are sensitive
at various degrees. An elevated temperature of 30–35 ◦C has been shown to significantly
reduce the germination rate of most wheat genotypes [24]. Temperatures above 33 ◦C
will cause a yield reduction in rice [25] and affect the seed viability and germination
potential during the vegetative stages [26], because heat stress affects three main factors of
germination: soil moistures, enzyme activities, and production of hormones. Germination
occurs when the outer seed coat breaks open by absorbing water and then the embryo grows
by protruding the radical out. Moisture should be sufficient for the seed to imbibe water
and trigger germination by softening the seed coat. Hot temperature causes evaporation
and reduces the moisture content available for the seed. Enzyme activity is important in the
metabolism of starch, proteins, sugar, and lipids, mobilization of nutrients in endosperm,
and cell wall breakage of endosperm and seed coat by hydrolytic enzymes [27]. When
the temperature increases beyond the threshold level, these enzymes become inactive,
affecting the germination process. Viability loss and lower enzyme activities were observed
in wheat when the seeds were pretreated at 50 ◦C [28]. Phytohormones such as abscisic
acid (ABA) and gibberellic acid (GA) are involved in the regulation of seed germination,
where ABA promotes seed dormancy, whereas GA promotes seed germination [29]. Heat
stress decreases GA concentration and increases ABA concentration, thus delaying seed
germination [30].

At the reproductive stage, heat stress causes detrimental effects to plants and their
offsprings. Prolonged heat stress imposed on soybean plants resulted in stunted growth of
the fruits, leading to a prolonged reproductive period [31]. It was reported that the seeds
obtained from rice plants that were exposed to heat stress during grain filling showed
significantly less germination and a lower germination rate compared with the control
plants [32], indicating that heat stress can cause epigenetic changes that affect seed germi-
nation. Heat stress at anthesis and grain-filling stages reduces the seed setting percentage
and photosynthetic rate significantly by affecting the thylakoid membrane integrity, and
this is likely due to the effect of heat stress on membrane lipid composition by reducing
the desaturase enzyme activities [33,34]. The ROS produced under heat stress also con-
tributes to the damages to membrane lipids by peroxidation [35]. Heat stress can also
cause abnormalities in flower morphology, reduced pollen viability and pollen tube growth,
poor fertilization, reduced spikelet, and grain number, leading to reduced yield. A recent
study in Arabidopsis showed that heat stress has a negative effect on male meiocyte when
temperature is increased to 34 ◦C by leading to irregular spindle structures, defects in
chromosomal recombination, and prolonged pachytene/diakinesis phases, which are the
probable reason for reduced seed setting [36]. However, the degree of heat stress resistance
in plants differs depending on the genotype, the adaptive mechanism they possess, such
as morphological modifications, differential gene expression, signaling mechanisms, and
physio-chemical changes [37,38].

Impacts of multiple stresses: In nature, abiotic stresses rarely come along; instead,
they come in various combinations or with other stresses such as cold, high light intensity,
UV light, and ozone among others. For example, drought with high temperatures, drought
with salinity, or all three stresses tend to come together in arid and semiarid regions in the
world. The impacts on plants by individual stresses are drastically different from those by
multiple stresses, and the effects of different abiotic stresses on plants can be synergistic
or antagonistic, which usually lead to much bigger damages to plants [39–43]. Elevated
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CO2 was shown to increase photosynthesis tolerance to heat damage and reduce ROS
accumulation [44,45]. Similar effects on photosynthesis and water-use efficiency (WUE)
were observed when both heat and drought stress were combined with elevated CO2 at
the anthesis stage of tolerant and heat-sensitive genotypes, but they were not useful in
compensating the yield losses [46]. In a drought-tolerant barley variety, combined drought
and salt stresses at the anthesis stage reduced spike length and catalase enzyme activity
while the individual stresses alone did not have any effect [47].

2. The Mechanisms of Abiotic Stress Tolerance in Plants

Plants have evolved stress tolerance mechanisms by which they can adjust themselves
to survive under stressful conditions in nature [48,49]. These adjustments are crucial to
plants, which integrate complex pathways at morphological, physiological, molecular, and
biochemical levels. Under drought stress conditions, roots undergo major changes in their
growth and architecture including length, density, radius, and degree of lignification as
they are the primary sensors of water scarcity and need to penetrate to lower levels of
soil to reach water. Leaves are modified to reduce the transpiration rate and maximize
the available water resource. Thick cuticle, high P/S ratio (palisade tissue/spongy tissue)
with a thick palisade layer leading to a high rate of photosynthesis and less energy spent
to transport CO2 between stomata and chloroplast and low specific leaf area, the ratio of
leaf area to dry weight, with the adaptive ability of plants in resource scarce environments
are considered to be indicators of drought tolerance [50,51]. The development of trichomes
and the ratio of trichome to stomata are positively correlated to water deficiency [52]. Heat-
and drought-tolerant plants share common features in leaf anatomy such as narrow and
thickened leaf surface, resistance to shrinking upon desiccation, lower specific leaf area
with a less permeable cuticle or protective boundaries like cuticle, high P/S ratio, and
deeper root system [53–55].

Proline, which acts as an osmotic stabilizer and radical scavenger that helps to reduce
the osmotic potential caused by water deficit and protect membranes and proteins from
free radicals, was found to increase significantly under the water deficit condition [56,57].
The accumulation of soluble leaf carbohydrates such as sucrose, fructose, and glucose were
found to increase significantly with drought stress, which could be the result of increased
starch degradation by amylases. They act as energy sources under reduced photosynthesis,
adjust osmotic potential, and act as signaling molecules in stress signaling pathways [58,59].
Mannitol, a sugar alcohol in leaves, also increases substantially in response to drought
stress, and it acts as an osmo-protectant of macromolecules against hyperosmolality [5,58].

Salt-tolerant plants exhibit thickened or succulent leaves, a waxy outer layer, exten-
sively suberized apoplastic barriers in roots, and seeds with a rigid seed coat maintaining
dormancy in unfavorable conditions [60–63]. Seeds obtained from the mother plant grown
on saline conditions (e.g., 200 mM NaCl) showed significantly higher seed viability, and
their morphological parameters such as plant height, stem diameter, total branch length,
and reproductive parameters such as flowering branch length, flowering branch ratio,
and seed production are better than those seeds whose mother plants were grown under
normal conditions [19]. This suggests that the fitness of the progenies can be affected by
introducing salinity stress on the mother plants.

A recent study conducted in water dropwort claims that Chl a and b contents, total Chl
content, and carotenoids increase with the increasing NaCl concentration, supporting pre-
vious studies in leafy vegetables such as amaranth, sugarbeet, cabbage, and lettuce [17,64].
This suggests that increased levels of chlorophyll and carotenoids in plants under saline
conditions might increase the antioxidation capacity in plants, which leads to reduced
oxidative damage caused by salt stress. The soluble protein content increase induced by
salt stress plays a key role in osmoregulation, by acting as nitrogen reserves [65]. Stress
response protein like osmotin and osmotin-like proteins (OLP) were found to be increased
under salt stress, which induced proline synthesis and reduced the cell damage by ROS [66].
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Brassinolide, a type of phytohormone, is also involved in alleviating salt injury to plants by
increasing proline content, antioxidant activity, and maintaining ion homeostasis [67].

Plants also maintain their turgor pressure under salt stress by actively pumping solutes
into plant cells, thus increasing the solute potential. A proton electrochemical gradient
is created by mainly three proton pumps in plant cells to facilitate the active transport of
solutes, namely plasma membrane ATPase (PM ATPase), vacuolar H+-ATPase (V-ATPase),
and the vacuolar H+-pyrophosphatase (H+-PPase/V-Ppase). PM ATPase extrudes H+

from the cytoplasm of plant cells across the plasma membrane into the extracellular space,
thus providing the driving force for the uptake of ions and nutrients such as nitrates and
sulfates across the plasma membrane. V-ATPase and V-Ppase acidify the intracellular
compartments including vacuolar lumen and the electrochemical gradient created by these
pumps is eventually utilized by the proton-coupled antiporters to accumulate ions such as
Ca2+ and Na+. Regardless of the term V-ATPase, these proton pumps are associated with
membranes of many secretory organelles such as endoplasmic reticulum (ER), Golgi, coated
vesicles, provacuoles, vacuoles, and even the plasma membrane [68]. The V-Ppase pump
transports protons from cytosol across the vacuolar membrane actively at the expense of
inorganic pyrophosphate (PPi) generated from the biosynthesis of macromolecules such as
DNA, RNA, protein, and cellulose. There are two types of V-Ppases in plant cells: type I,
the primary V-Ppase that accounts for 10% of the vacuolar membrane proteins, and it
requires K+ for its optimal enzyme activity and synchronized with the H+-ATPase activity
on the vacuolar membrane; type II, the secondary V-Ppase that accounts for less than 0.3%
of type I in the total membrane fractions, and this proton pump does not require K+ and is
predominantly localized on the Golgi membrane [69,70].

Antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), cata-
lase (CAT), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR),
glutathione reductase (GR), and dehydroascorbate reductase (DHAR) are the front-line
fighters in the antioxidation defense system that protect cellular components from oxidative
damages under drought, salt, and other stressful conditions [71]. The antioxidant activities
are found to be higher in heat-tolerant varieties and more effective in providing protection
at the initial stages of heat stress and under long-term heat stress [72]. In a study conducted
in Primula minima, a perennial alpine plant, under combined heat and drought stresses,
CAT and glucose-6-phosphate dehydrogenase activities were found to be twofold higher
than that under heat stress alone [73].

A light-inducible protein-encoding gene (CPRF-2) and chlorophyll a/b binding protein-
encoding gene (CAB) were found to be differentially upregulated among drought-tolerant
barley genotypes, resulting in less chlorophyll reduction and yield loss [74]. Terminal
heat stress tolerance in wheat is attributed to the stay-green trait that involves a multi-
protein complex, and the genotypes characterized as stay green showed higher Chl content,
thousand kernel weight, grain yield, and decreased canopy temperature compared with
other genotypes under control and heat stress conditions [75].

The maximum net photosynthetic rate of heat-tolerant varieties seems to provide
thermal adaptation to plants, which enhances their competitive ability over sensitive
plants, as the photosystem (PS) II activity is enhanced by the upregulated expression
of the Orange gene (OR) under heat stress [76]. The Or gene encodes an enzyme that
regulates phytoene synthase, a rate-limiting enzyme in carotenogenesis. In algae, the Or
gene along with PsbP1/2, that encodes the oxygen-evolving enhancer protein 2 of PS II, were
upregulated under heat stress and OR was found to interact with the PsbP1 protein, leading
to an increased electron transport rate and photosynthetic efficiency, which enhances the
thermotolerance [76].

However, there are natural variants of OR proteins with a single amino acid change
that could regulate chromoplast number and carotenoid accumulation in plants [77,78].
Even though the OR protein is highly conserved in all plants, one single nucleotide polymor-
phism converts the 108th amino acid residue Arg into His, resulting in higher carotenoid
accumulation compared with the wild-type OR proteins. Site-directed mutagenesis of
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AtORArg into AtORHis mimics melon’s his variant allele, suggesting that this variant might
have acquired an additional function and therefore induces chromoplast formation [79].
It has also been reported that the variant protein interacts with ARC3, a plastid division
factor protein, by competing with another protein PARC6, thus regulating the chromoplast
number [80].

3. Creating Climate-Resilient Crops

Over the last 30 years, many genes have drawn the attention of genetic engineers
to create transgenic crops that can cope with varying degrees of abiotic stresses and to
increase crop yield to the maximum possible under unfavorable conditions. These candi-
date genes and the gene products are largely classified into two groups: the first group
directly involves or has a function in the stress response, such as channel proteins, antioxi-
dant enzymes, chaperone proteins, and osmolytes etc.; the second group regulates stress
signaling transduction and expression of the first group of genes, such as transcription
factors, signaling molecules, and enzymes in phospholipid metabolism [81]. Currently,
various techniques such as sequencing normalized cDNA libraries [82], transcriptome and
metabolomic analysis [83–85], and computational approaches [86] are being utilized to
identify the potential genes that could improve plant performance under environmental
stress conditions.

4. Regulation of Gene Expression to Improve Abiotic Stress Tolerance

Nuclear factor Ys (NF-Ys) are transcription factors that bind to the CCAAT box in the
promoter regions of their target genes and they form a heterotrimeric complex with three
subunits, namely, NF-YA, NF-YB, and NF-YC, which are conserved in all eukaryotes [84].
Recently, many NF-Ys playing key roles in abiotic stress tolerance have been discovered.
One such transcription factor, NF-YB1, was overexpressed in Arabidopsis, constitutively
driven by the cauliflower mosaic virus 35S promoter (35S), and it confers increased drought
tolerance by enhancing water retention potential and increasing photosynthetic rate [87].
When an orthologous transcription factor in maize (ZmNF-B2) was overexpressed, similar
results were obtained, with increased yield under field conditions [87]. However, the
molecular mechanism behind the increased stress tolerance by NF-Ys remains unclear.

SIZ1 (SAP and MIZ1 domain-containing ligase 1) is a SUMO E3 ligase that plays a key
role in the SUMOylation process in eukaryotes [88]. SUMOylation is a post-translational
modification of proteins such as transcriptional factors and chromatin remodeling enzymes,
by which a small ubiquitin-like modifier molecule (SUMO) is attached through an en-
zyme cascade, which helps regulating their activities such as stabilities or sub-cellular
localizations [88]. In a recent study, Huang et al. (2023) [89] showed that SUMOylation
of the NF-Y complex mediated by SIZ1 is involved in plant thermotolerance. In the
SUMOylation process of NF-Y complex, SIZ1 initially interacts with NF-YC10, which then
recruits other subunits like NF-YB3 via the SUMO interaction motif (SIM) and NF-YA2
to form a trimer complex for the transcriptional regulation of stress-responsive genes like
HSFA3. HSFA3 was shown to be involved in heat stress memory by inducing heat stress
memory-related genes directly or via chromatin modifications in Arabidopsis [90]. Trans-
genic N. benthaminana leaves overexpressing NF-YC10 displayed increased survival rates
of seedlings under heat stress compared with the nf-yc10 mutant, while the nf-yb3 mutant
with mutation in the SIM domain showed reduced association with NF-YC10. Since SIZ1
appears to be involved in all major physiological functions including stress tolerance and
NF-YC10 in thermotolerance and photoperiod controlling, the interaction between SIZ1
and different transcriptional factors could be a strategy to improve abiotic stress tolerance.

In another study by Zhao et al. (2022) [85], transgenic wheat plants overexpressing
TaNF-YA7-5B, a gene encoding the nuclear factor Y subunit A, were found to have enhanced
tolerance to polyethylene glycol (PEG)-induced water deficit. A heterotrimer complex was
formed via protein–protein interactions among TaNF-YA7-5B, TaNF-YB2, and TaNF-YC7,
which modulates expression of drought-responsive genes. Transgenic Arabidopsis plants
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overexpressing CsNF-YC6, a gene from the tea plant Camellia sinensis, showed increased
seedling germination and root length when exposed to exogenous ABA, indicating a
possible role of NF-YC in the ABA-mediated stress response pathway [91].

MYB30, a transcriptional factor regulating salt stress response in Arabidopsis, is
SUMOylated by SIZ1 under salt stress [92]. When the SUMOylation site in MYB is mu-
tated via the K283R substitution, an oxidative stress symptom (i.e., ROS accumulation)
was evident and the mybK283R mutant displayed a sensitive phenotype to salt stress. The
cap-binding complex (CBC) is involved in adding 7-methylguanosine (7 mG) cap to the
5′ end of mRNA transcript, which helps transporting mRNA through the nuclear pore,
thereby affecting gene-specific effects such as RNA processing and translation [93]. CBC
is made up of a small subunit Cbp20 and a larger subunit Cbp80 encoded by CBP20
(cap-binding protein 20) and CBP80, respectively. The CBC genes are found to be involved in
ABA signaling and mutations in the CBC genes led to ABA hypersensitivity and increased
drought tolerance [94]. A barley mutant, hvcbp20.ab, developed by chemical mutagen-
esis in CBP20 was shown to perform better than wild-type plants under water deficit
conditions [95]. Similarly, transgenic potato plants with CBP80, silenced via an artificial
miRNA (amiR80), showed improved drought tolerance with morphological adaptations
such as increased trichome density and twofold higher stomatal density on the abaxial
surface, and compact cuticle with no visible microchannels [96].

5. Regulation of Post-Translational Modification of Proteins and Enzymes to Improve
Abiotic Stress Tolerance

In addition to the roles of SIZ1 in the transcriptional regulation of many genes in stress
response pathways, SIZ1 was also shown to be involved in regulating plant growth and
developmental processes including cell division and elongation [97], spikelet fertility [98],
organ regeneration [99], flowering timing [100], hormonal signaling [101], and heavy metal
tolerance [102] via DNA replication, mitosis, DNA repair, nucleo-cytoplasmic transport,
and protein stability and interactions [103]. Out of the eight isoforms of SUMO proteins
reported in Arabidopsis, SUMO1, 2, 3, and 5 are likely expressed [104]. The non-covalent
interaction of SUMO proteins to their target proteins specifically via the SIM sequence is
favored by phosphorylated residues near the hydrophobic core of SIM [104].

The Arabidopsis siz1-3 mutants were shown to be hypersensitive to drought with
reduced biomass and survival rate, and reduced SUMO protein conjugate levels were
detected after drought exposure [105]. This is attributed to the role of SIZ1 in drought
response by regulating drought-inducible key genes such as MYC2, ANNAT4, KIN1, and
COI3 [105]. Proteomic analysis of SIZ1-overexpressing plants also confirmed that the
SUMOylation targets are mostly confined to biotic and abiotic stress responses including
drought, heat, salt, immune, and defense response, which makes SIZ1 the suitable candidate
for manipulation in stress-resistant crops [106]. Proving this, SIZ1-overexpressing tomato
plants remained green with increased chlorophyll content and fresh weight compared with
wild-type plants under high heat treatment [107]. When SIZ1 is mutated in the background
of sos3-1 (a gene encoding a calcium binding protein, salt overly sensitive3 (SOS3), it
suppressed the Na+ hypersensitivity by decreasing Na+ uptake and accumulation while
increasing phosphate accumulation. Salicylic acid (SA) level was increased in siz-1 mutants,
and it was proposed that SA and phosphate homeostasis could regulate salt tolerance
independently [108]. It was proposed that SIZ1 negatively affects stomatal closure and
drought tolerance via SA accumulation, which poses a question on the interactive nature of
SIZ1 under multiple stresses [109].

6. Maintaining Ion Homeostasis to Improve Abiotic Stress Tolerance

In Arabidopsis thaliana, AVP1 encodes the type I V-PPase and AVP2/AVPL1 encodes
the type II V-PPase that shares 35% similarity in amino acid sequence with AVP1 [110].
There are at least 26 genes that encode the vacuolar H+-ATPase that is a multi-subunit
complex [111]. In principle, enhancing the expression of either of these proton pumps
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should result in the increased sequestration of solutes into the vacuole, as the proton chemi-
cal gradient established by these two proton pumps drives the sequestration of solutes into
vacuole, thereby increasing salt tolerance. Since vacuole is the largest organelle that consti-
tutes 40–90% of the total volume of plant cells, it is responsible for maintaining cell turgor
pressure and plant rigidity. Theoretically, increased accumulation of the solutes inside the
vacuole will provide plant cells with increased salt tolerance. Gaxiola et al. (2001) [112]
demonstrated that by overexpressing AVP1 in transgenic Arabidopsis would make trans-
genics plant drought and salt tolerant, which allowed transgenic plants to withstand
150 mM NaCl treatment for 10 days without any stress symptoms, while wild-type plants
were all dead. Overexpression of AVP1 increased the sequestration of cations into the
vacuole such as Na+ (20 and 40% higher) and K+ (39 and 26% higher). The research by
Gaxiola et al. (2001) [112] encouraged further studies on AVP1 overexpression in various
plants; all subsequent studies confirmed that overexpression of AVP1 could substantially
improve drought and salt tolerance in transgenic plants [113–117].

7. Maintaining High Photosynthesis and High Antioxidation Capacity to Improve
Abiotic Stress Tolerance

Photosynthesis, being the primary limiting factor of yield and biomass production in
plants, is controlled by complex mechanisms [118], among which the key enzyme of the
CO2 assimilation pathway, ribulose-1,5-bisphosphate carboxylase/oxygenase, or Rubisco,
is regulated by Rubisco activase (RCA). Rubisco, upon binding to RCA, undergoes confor-
mational changes in structure, thus removing the sugar phosphate derivative inhibitors
that are tightly bound to both active (carbamylated) and inactive (decarbamylated) sites of
Rubisco [119,120]. Even though Rubisco is a thermostable enzyme that could remain active
up to 50 ◦C, the heat labile nature of RCA leads to the inactivation of Rubisco, thereby RCA
becomes the limiting factor in the assimilation of CO2. RCA exists in two forms in most
plants, a short (RCA1) and a long (RCA2) isoform, which could be coded by a single gene or
separate genes [121] with varying degrees of thermostability. It was found that some plants
have thermostable RCA in nature, and this has been explored and is being used widely in
genetic engineering. RCA in wild-type rice Oryza australiensis [122] and RCA1 β isoform in
wheat [123] are such examples. Some studies with overexpression of the RCA gene alone
did not result in a significant increase in the photosynthetic rate [124], while other studies
showed that co-overexpression of a RCA gene with a small subunit gene of Rubisco (RBCS)
led to a better result in assimilation of CO2 under heat stress conditions [125].

Dehydrin (dehydration protein) has received much attention in abiotic stress tolerance
in recent years. As a part of the defensive mechanism, organelles such as chloroplast,
mitochondria, and peroxisomes produce ROS, which act as stress-responsive signaling
molecules. However, excessive accumulation of ROS can lead to cell toxicity and eventually
cell death [71]. Therefore, the antioxidant enzymes and proteins that scavenge ROS play
a major role in cellular detoxification. Dehydrin belongs to a class of late-embryogenesis
abundant (LEA) proteins, and it could serve as a ROS scavenger and a protector of the an-
tioxidant enzymes. Genes encoding dehydrin proteins SbDhn1 and SbDhn2 from sorghum
were overexpressed in tobacco plants, and the transgenic tobacco plants displayed higher
capacity in scavenging ROS and showed enhanced activities of antioxidant enzymes such
as SOD, APX, and POX [126]. The DHN gene was found to be expressed at higher levels
in drought-tolerant varieties [127] and under oxidative stress conditions [128], further
supporting the role of the dehydrin protein in abiotic stress conditions. In addition, it was
found that DHN (i.e., COR 410) is also involved in leaf rolling response under osmotic stress
and is regulated by ABA to ensure better acclimatation under abiotic stress conditions [128].

8. Co-Overexpression of Two or More Genes to Improve Crop Tolerance to
Abiotic Stresses

Although much progress has been made in identifying genes that play important roles
in conferring abiotic stress tolerance over the last 30 years, almost none of these genes
have been successfully utilized to improve crop yield in field conditions. The failure in
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translating successful results from laboratory experiments into real gains in crop yield is
likely due to the following two reasons: one, the increased tolerance by overexpressing
those “stress tolerance” genes is still not powerful enough to overcome the real stress
that transgenic plants encounter in the field; two, the stresses that transgenic plants face
are too complex that transgenic plants could not handle them, as abiotic stresses usually
come in combinations [39,48]. For example, heat stress tends to lead to drought stress in
arid and semiarid regions, as heat stress increases transpiration, leading plants to lose
water faster; the application of fertilizers in arid and semiarid regions often results in soil
salinization, leading to combined drought and salt stress conditions [49,129]. In addition,
soil composition, wind-caused mechanical stress, and biotical factors such as bacterial and
fungal populations in soil all contribute to the failures that we could not duplicate the
successful results from laboratory experiments in field conditions.

If one can substantially increase tolerance to single stress in transgenic plants, then
it might increase crop yield under single-stress conditions. Currently, by overexpress-
ing a single gene to increase salt tolerance, the maximal salt tolerance is approximately
100 mM to 150 mM NaCl in transgenic plants; however, if co-overexpressing two or
three genes, it is possible to further increase salt tolerance. Gaxiola et al. (2002) [130]
proposed that co-overexpression of AVP1 and AtNHX1 would further increase salt toler-
ance, as AVP1 provides the proton motive force that energizes the activity of the Na+/H+

antiporter (i.e., AtNHX1). Indeed, when AVP1 and AtNHX1 were co-overexpressed in
cotton, the salt tolerance level was increased to 250 mM NaCl [116]. However, when SOS1,
SOS2, and SOS3 were co-overexpressed in various combinations in Arabidopsis, includ-
ing co-overexpression of these three genes, they failed to further increase salt tolerance
in transgenic Arabidopsis plants [131], indicating that co-overexpression of genes in the
same pathway or in the same tolerance mechanism might not be effective in generating
higher salt tolerance. In contrast, in co-overexpressing genes that function in synergism
or in different tolerance mechanisms, it is possible to obtain higher salt tolerance. Be-
cause AtNHX1 on vacuolar membrane mediates salt tolerance via Na+ sequestration into
vacuole [130], while SOS1, the Na+/H+ antiporter on plasma membrane, mediates salt
tolerance via Na+ exclusion [132], then co-overexpression of AtNHX1 and SOS1 should
further increase salt tolerance in transgenic plants. Indeed, Pehilvan et al. (2016) [133]
demonstrated that AtNHX1/SOS1-co-overexpressing Arabidopsis plants could tolerate a
salinity level up to 250 mM NaCl, which was far better than AtNHX1-overexpressing and
SOS1-overexpressing Arabidopsis plants under saline conditions. Recently, Balasubrama-
niam et al. (2022) [134] showed that the salt tolerance level could be increased to 300 mM
NaCl by co-overexpressing AVP1, PP2A-C5, and AtCLCc in Arabidopsis, which further
validated the idea that co-overexpression of well-chosen salt-tolerant genes would further
increase salt tolerance. In this study, the increased expression of AVP1 provides more pro-
tons that energize secondary antiporters on vacuolar membrane such as AtNHX1, AtCLCa
(NO3

−/H+ antiporter), and AtCLCc (Cl-/H+ antiporter), and the increased expression of
PP2A-C5 further activates AtCLCa and AtCLCc, because AtCLCa and AtCLCc are likely
the substrates of PP2A-C5 [135], thus the increased Na+ sequestration into vacuoles might
explain how the highest salt tolerance is achieved (Figure 1).

To increase tolerance to multiple stresses, it is necessary to introduce several genes
that function synergistically or mediate stress tolerance via different mechanisms. Over
the last 10 years, a few studies were undertaken to simultaneously increase tolerance to
heat, drought, and salt stresses, and the results from these studies appear promising. For
example, co-overexpression of AVP1 and OsSIZ1 in Arabidopsis greatly increased tolerance
to single stress of drought, heat, and salinity or in any combinations of these stresses [113],
which leads to a significant increase in seed yield than wild-type, AVP1-overexpressing, and
OsSIZ1-overexpressing plants under several abiotic stress conditions. When these genes
were introduced into cotton, it was found that AVP1/OsSIZ1-co-overexpressing cotton
plants produced significantly higher fiber yields than wild-type, AVP1-overexpressing,
and OsSIZ1-overexpressing cotton plants under drought, heat, and salt stress conditions
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in the laboratory as well as in field conditions [136]. Sun et al. (2018) [117] demonstrated
that co-overexpression of AVP1 and PP2A-C5 in Arabidopsis leads to significantly in-
creased seed yield under combined drought, heat, and salt stress conditions. Subsequently,
Cai (2022) [137] showed that AVP1/PP2A-C5-co-overexpressing cotton outperformed wild-
type cotton under drought and salt stresses in laboratory conditions and produced a higher
fiber yield in field conditions. Wijewardane et al. (2020, 2021) [120,138] proved that a
heat-tolerant RCA from a desert shrub could be used to improve heat tolerance in trans-
genic plants, which prompted us to create drought-, heat-, and salt-tolerant cotton by
co-overexpressing AVP1 and RCA. Subsequently, we demonstrated that AVP1/RCA-co-
overexpressing cotton plants produced the highest fiber yield than wild-type and AVP1-
overexpressing cotton plants under single as well as multiple stress conditions in the
laboratory. In field conditions, AVP1/RCA co-overexpressing cotton plants produced a
fiber yield that was at least 66% higher than WT cotton plants from two years of field trial
experiments [139]. Based on these experiments, we believe that by improving crop’s abiotic
stress tolerance it is possible to increase crop yield in the near future. A few candidate
genes that could be used to substantially increase crop’s tolerance to multiple stresses are
provided in Figure 1.
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Figure 1. Several candidate genes that could be used to further increase crop tolerance to multiple
abiotic stresses when co-overexpressed. Genes such as AVP1, CLCa, CLCc, SOS1, NHX1, and PP2A-C5
that are involved in maintaining ion homeostasis can increase salt tolerance when overexpressed.
Overexpression of AVP1 also increases drought tolerance as it stimulates auxin polar transport,
leading to larger root system in transgenic plants. RCA encodes a heat-stable Rubisco activase
(RCA) and it can increase photosynthesis’ heat tolerance when overexpressed in transgenic plants.
The SUMO E3 ligase SIZ1 regulates activities of many transcriptional factors and enzymes that are
involved in abiotic stress response; when SIZ1 is overexpressed in transgenic plants, it leads to
increased tolerance to drought, heat, and salt stresses. The CBC gene encodes a cap-binding complex
(CBC) that is involved in ABA signaling and drought tolerance. The nuclear factor Y gene (NF-Y)
regulates heat and drought stress-responsive genes by increasing their transcriptional activities. This
figure was created with BioRender.com.
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9. Use of New Technologies to Improve Crop Stress Tolerance

Gene editing technology: A revolutionary technology in plant breeding towards
abiotic stress tolerance was the development of genome editing tools such as the clustered
regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9
(Cas9) technique that accelerated the process of developing tolerant crops [140,141]. The
concerns about introducing foreign genes into plants are eliminated in this technique as it
precisely edits the target gene at nucleotide level without any transgene intervention [142].
Knockout mutants of diverse genes involved in abiotic stress response created by the
CRISPR technique resulted in enhanced tolerance in a range of species such as rice [143],
tomato [144], tobacco [145], soybean [146], and wheat [147]. To ensure the gene stability in
the modified plants, a lipofection-mediated delivery into protoplasts [148] was developed
along with other approaches such as Agrobacterium-mediated transformation [149] and
particle bombardment [150]. The modified version of the CRISPR editing, called prime
editing, is becoming popular in gene therapy and crop breeding as it precisely alters the
target site without the need for donor DNA. Due to these advancements and being not
labeled as GMOs, gene editing has greater potential in making the products reach the
market quicker than other approaches.

Artificial intelligence technology: With the recent advancement in artificial intelli-
gence (AI) technology, genetic algorithm-based hybrid models have been introduced to pre-
dict the stress tolerance index in plants, which will help assess the genotype, taking account
of crop production, management strategies, and the prevailing climatic conditions [151].
Given that the crop–stress relationship is dynamic in nature, the AI tools can effectively
use morphological and anatomical parameters, especially the root features, to evaluate
the tolerance of different genotypes [152]. Deep learning algorithms can be employed in
recognizing genes that are differentially expressed under control and stressed conditions by
analyzing both temporal and non-temporal data precisely [153]. The advancement allows
multispectral sensors and imaging technologies to contribute to modelling AI algorithms,
which allows for the non-destructive phenotyping of beneficial traits. For example, relative
reflectance indices of combined wavelengths calculated by analyzing each pixel of hyper-
spectral images of leaves provides accurate quantitative analysis of various stresses [154].
Another sophisticated technique of biosensing miRNA concentrations and digitizing into
the degree of stress response was introduced recently, which will reduce most of the labora-
tory works in the future [155]. This is undoubtedly a great innovation in the abiotic stress
research in recent years.

Use of miRNAs: Micro RNAs (miRNAs) are the potential mediators of stress tolerance
in plants as they regulate the expression of key genes involved in stress responsive networks.
They are 21–23 nt in length and engage in the silencing of the target mRNA expression
via post-transcriptional regulation or by mRNA decay [156]. In recent years, several
miRNAs have been identified using high throughput sequencing methods, which helped
the studying of their role in abiotic stress tolerance (Table 1).

Table 1. List of miRNAs involved in salt, drought, and heat tolerance in plants.

miRNA Plant Species Target Abiotic Stress
Tolerance Effect Reference

miR396g-5p Paeonia ostii
Assumed to be signal

transducer and activator of
transcriptional factor (STAT)

Drought - [157]

miR396c Oryza sativa Growth regulating
factors (GRF) Salinity

Overexpression resulted in
reduced growth and

root length
[158]

miR396-b Pitaya
(Hylocereus polyrhizus) GRF Salinity

miR396-b was upregulated
under salt treatment, thus

decreasing GRF
gene expression

[159]
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Table 1. Cont.

miRNA Plant Species Target Abiotic Stress
Tolerance Effect Reference

miR169 Tomato and
Arabidopsis thaliana NF-YA Heat

Heat shock factors (HSF)
induce the expression of

miR169 that downregulates
At-NF-YA2/ sly-NF-YA9/10

[160]

miR396a-5p Tobacco
GRF-7 regulated

osmotic-responsive
gene expression

Salt and drought

Overexpression of miR396a-5p
leads to enhanced leaf RWC,

root biomass, antioxidant
activity, and survival rate

[161]

miR393 Barley ABA pathway (NCED1,
NCED2, and NCED3) Drought

Overexpression increased
stomatal density and reduced

guard cell length
[162]

miR160 Arabidopsis thaliana Auxin response transcription
factors (ARF) Heat - [163]

miR408 Wheat
(Triticum aestivum)

Genes involved in Pi
accumulation, signal

transduction, microtubule
organization, and biochemical
synthesis (TaCP, TaMP, TaBCP,

TaFP, TaKRP, and TaAMP)

Salt

Overexpression of TaemiR408
resulted in enhanced growth,
biomass, and P accumulation

under Pi starvation and
salt stress

[164]

miR165/166 Arabidopsis thaliana HSFA1 via PHABULOSA
(PHB) Heat - [165]

miR1861h Oryza sativa

Putative targets include retro
transposons, mRNAs

encoding transcription
factors, methyltransferase,

and functional proteins

salt
Overexpression of miR1861h
resulted in better phenotype

under salt conditions
[166]

10. Using New Management Strategies and Cultivating Methods to Improve Abiotic
Stress Tolerance

Exogenous applications: An economic and eco-friendly strategy to make plants
resilient to abiotic stresses could be through management practices such as the exogenous
applications of phytohormones or growth regulators, seed priming/treatment, or the
addition of soil amendments that can alleviate stress impacts. These practices are gaining
interest recently due to concerns regarding unlimited use of fertilizers driven by greed for
yield increase and their detrimental effects on the environment. For example, ascorbic acid,
a metabolite with versatile roles in abiotic stress tolerance, is being referred to as the switch
in designing stress-tolerant crops. It has multi-functional properties such as serving as a co-
factor for enzymes involved in ABA and GA synthesis, a reducing agent for ROS with high
redox potential, inducing SA, JA, and ethylene in pathogen defense, regulating nutrient
uptake, and has many positive effects in plant growth and development [167]. Therefore,
either the exogenous application of ascorbic acid or enhancing ascorbic acid biosynthesis
can alleviate the detrimental effects of abiotic stresses. A virus-induced gene silencing
targeted on GhIMP10D, a gene encoding the myo-inositol phosphatase that is involved
in ascorbic acid synthesis, led to increased sensitivity to alkaline stress in cotton [168],
indicating a positive role of ascorbic acid in alkaline stress tolerance. Exogenous application
of ascorbic acid was shown to be effective in alleviating the negative effects of heat stress, as
in conserving the leaf turgor pressure, decreasing the accumulation of ROS, and increasing
nutrient absorption [169,170].

The relative expression of heat shock protein genes was found to be low in ascorbic
acid-treated plants, confirming the significant role of ascorbic acid alone in heat stress
resistance [171]. The positive effects of ascorbic acid on yield under drought stress as an
individual application or in combination with other growth mediators such as proline [172],
tocopherol [173], benzyl aminopurine (BAP), moringa leaf extract [174], and chitosan [175]
were also reported.
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Another chemical extensively used externally on plants is melatonin that is ubiquitously
present in plants and animals and has pleiotropic effects on plants. As a metabolite synthesized
from tryptophan, melatonin acts as an antioxidant in ROS defense, regulates cross talk between
other phytohormones and ROS, and mediates many developmental processes including
germination, circadian rhythm, fruit ripening, and in abiotic stress tolerance. In a recent study,
the transcriptomic analysis of common bean plants treated with 100 µM melatonin showed an
increased synthesis and metabolism of tryptophan that is involved in flavonoid metabolism,
and alleviated the salt stress by affecting the cell wall-related gene expression [176]. Similarly,
the antioxidant property of melatonin in conferring salt tolerance was reported in many plants
such as fenugreek [177], eggplant [178], wheat [179], mustard [180], maize [181], legumes [182],
and drought stress in quinoa [183], and basil [184].

Soil amendments: Biochar is a modified version of the very old ancient techniques of
using carbon black material or charcoal as soil amendments to improve the physio-chemical
properties of the soil, thus providing beneficial properties such as water and nutrient retention,
reducing the necessity of adding fertilizer, preventing nutrients from leaching, and making
the plants more enriched under unfavorable stress conditions, eventually increasing crop
yield [185]. Modern biochar, which is inspired from the carbon black material, is formed
through a process called pyrolysis, in which biomass rich in carbon is heated to high tem-
peratures with limited oxygen. With the increase in the pyrolysis temperature to 600 ◦C,
porosity, ash content, buffering capacity, and the sorption ability of the biochar were found to
be increased and suggested to be the better choice for neutralizing the soil salinity [186]. The
surface area and the pore size of the biochar particle is positively correlated with the sorption
ability and the population of soil microorganisms inhabiting it [187]. When biochar application
is combined with other management practices, the mitigation of abiotic stress effects was
efficient. For example, combined osmopriming with CaCl2 and biochar amendment resulted
in enhanced antioxidant activity and better translocation of carbon reserves at germination and
seedling stages, causing increased biomass production in cowpea under salt stress [188]. An
application of 3% nano biochar was shown to enhance multiple growth parameters including
shoot length, biomass, and relative leaf height under saline conditions by means of increasing
photosynthetic pigment content, antioxidant activity, and notably increasing net assimilation
rate by 40% and 86% under salinity and drought stress, respectively [189]. Analysis of how
biochar induced drought tolerance revealed that by increasing the available and exchangeable
K+ concentration in the soil, the accumulation of K+ in the root sap increases. K+, being an
essential nutrient required for the survival of the plant and an osmolyte at the early stages of
drought stress, is supplied by the biochar [190].

Seed priming/soaking: Seed priming is a sustainable and cost-effective technique
practiced commonly to increase the seed vigor and germination rate in crop cultivation.
It can be done by soaking the seeds in inorganic salt solution (halopriming), water (hy-
dropriming), polyethylene glycol-like osmotic solutions (osmo priming), beneficial mi-
croorganisms (biopriming), treating with high or low temperatures, and hormonal priming
with phytohormones [191]. In addition to these, chemical priming is also performed where
different compounds are added to the seeds to enhance growth, development, and the
stress tolerance of plants (Table 2).

Table 2. List of seed priming methods and amendments used in conferring abiotic stress tolerance in plants.

Plant Amendment Abiotic Stress Effect Concentration Reference

Haplophyte spp. Melatonin Salinity Improved germination
and growth 5 and 100 µM MT [192]

Rice NaCl, CaCl2, KCl,
KNO3, and H2O2

Salinity Increased survival rate

100 mM NaCl,
2.2% CaCl2, 2.2% KCl,

2.2% KNO3, and 50 mM
H2O2 for 48-h

[193]

Sunflower H2S Salinity
Maintained ion

homeostasis and reduced
oxidative damage

0.5 mM [194]
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Table 2. Cont.

Plant Amendment Abiotic Stress Effect Concentration Reference

Chenopodium quinoa CaCl2 Salinity
Improved germination and

growth, biomass
production, and chilling

[195]

Wheat K2SiO3 Salinity
Improved seed

germination,
seedling length

1.5 mM [196]

Soybean
(Glycine max L.) Jasmonic acid Salinity

Increased net
photosynthetic rate, total
chlorophyll content and
stomatal conductance

60 µM [197]

Wheat CaCl2 Drought
Improved leaf area, water

content in leaf tissue,
and yield

1.5% [198]

11. Concluding Remarks

Considering the global food crisis, the need to increase food production has become
critical and climate change-caused weather extremes such as drought, heat, and salinity
stresses impose additional threats to food security. Finding a solution for these unpre-
dictable and inevitable stress conditions will be the top priority as they become detrimental
to plant growth and development. In order to be vigilant about the combined or simultane-
ous occurrence of these stresses in nature and the complexity of genes, proteins, and their
modifications in the adaptive traits against drought, heat, and salt stresses, more studies
need to be done in order to decipher the dynamic roles of the network components in plant
stress response and tolerance. Better and more efficient ways to deliver transgenes to crop
plants such as plant artificial chromosome will be needed in order to deliver more than four
or five genes to crop plants. The management strategies need to be more precise in terms of
optimization according to environmental changes and sustainability for long-term effective-
ness. The emerging AI technology, along with transgenic and gene editing approaches, and
new management strategies can be integrated to create climate resilient crops (Figure 2).
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