
Citation: Saad, M.M.; Sobhy, D.; Saad,

A.A. Veritas: Layer-2 Scaling Solution

for Decentralized Oracles on

Ethereum Blockchain with Reputation

and Real-Time Considerations. J. Sens.

Actuator Netw. 2024, 13, 21.

https://doi.org/10.3390/

jsan13020021

Academic Editor: Lei Shu

Received: 31 December 2023

Revised: 14 February 2024

Accepted: 20 February 2024

Published: 7 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of 

Actuator Networks
Sensor and

Article

Veritas: Layer-2 Scaling Solution for Decentralized Oracles
on Ethereum Blockchain with Reputation
and Real-Time Considerations
Moustafa Mowaffak Saad, Dalia Sobhy and Amani A. Saad *

Computer Engineering Department, Arab Academy of Science and Technology and Maritime Transport,
Alexandria 3650111, Egypt; mmowaffak@gmail.com (M.M.S.); dalia.sobhi@aast.edu (D.S.)
* Correspondence: amani.saad@aast.edu

Abstract: Blockchainsand smart contracts are pivotal in transforming interactions between systems
and individuals, offering secure, immutable, and transparent trust-building mechanisms without
central oversight. However, Smart Contracts face limitations due to their reliance on blockchain-
contained data, a gap addressed by ’Oracles’. These bridges to external data sources introduce the
’Oracle problem’, where maintaining blockchain-like security and transparency becomes vital to pre-
vent data integrity issues. This paper presents Veritas, a novel decentralized oracle system leveraging
a layer-2 scaling solution, enhancing smart contracts’ efficiency and security on Ethereum blockchains.
The proposed architecture, explored through simulation and experimental analyses, significantly
reduces operational costs while maintaining robust security protocols. An innovative node selection
process is also introduced to minimize the risk of malicious data entry, thereby reinforcing network
security. Veritas offers a solution to the Oracle problem by aligning with blockchain principles of secu-
rity and transparency, and demonstrates advancements in reducing operational costs and bolstering
network integrity. While the study provides a promising direction, it also highlights potential areas
for further exploration in blockchain technology and oracle system optimization.

Keywords: blockchain; oracle; gas; Ethereum; sidechain

1. Introduction

Layer-2 scaling solutions are a way to make the Ethereum network more scalable,
faster and cheaper [1]. They are a way to mitigate the effects of a ‘main net’ congestion
when too many transactions are processed simultaneously [2]. The maximum throughput
of ‘Ethereum’ at the moment is around 15 tx/s [3], putting it well below Visa’s network,
for example, which can handle upwards of 2000 tx/s. This solution has not been used
before to try and mitigate the ‘Oracle problem’. When a smart contract is executed, it is
limited by the data available to it on the blockchain. In this case, the blockchain is treated as
a black box, separated from the outside world, and that is by design to achieve the desired
level of security, transparency, and reliability. This limits the applications available for
smart contracts to only financial-related applications, but the potential is much greater.

This is solved by augmenting the blockchain with an ‘Oracle’ [4,5], essentially a
bridge between the blockchain and the outside world. This oracle can fetch data into the
blockchain or pass data from the blockchain to an outside consumer. Oracles are classified
using many classification points, but we focus on the ‘centralized’ vs. ‘decentralized’ point
of comparison [6,7]. Centralized Oracles are inherently insecure because they are a single
point of failure. This contradicts the notion of a blockchain, which aims to eliminate central
authorities and Single Points Of Failure (SPOF). If the Oracle is compromised, the whole
blockchain is compromised; that is why it is called the ‘Oracle problem’. Some solutions
have been introduced to address this, some centralized and some decentralized, each
with tradeoffs and compromises [8]. Layer-2-based solutions have not been seen before in

J. Sens. Actuator Netw. 2024, 13, 21. https://doi.org/10.3390/jsan13020021 https://www.mdpi.com/journal/jsan

https://doi.org/10.3390/jsan13020021
https://doi.org/10.3390/jsan13020021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jsan
https://www.mdpi.com
https://doi.org/10.3390/jsan13020021
https://www.mdpi.com/journal/jsan
https://www.mdpi.com/article/10.3390/jsan13020021?type=check_update&version=1


J. Sens. Actuator Netw. 2024, 13, 21 2 of 27

decentralized Oracle design. In this context, we aim to propose a novel approach that can
be a viable, scalable, and effective solution to the problem.

To that end, we propose Veritas, a layer-2-based decentralized oracle for Ethereum-
based smart contracts. With Veritas, the Oracle nodes are part of a sidechain network based
on the same consensus rules as Ethereum (proof of stake as of 2022) [9,10]; this achieves
a high level of security and transparency desired for decentralized Oracle systems. All
jobs and activities performed by the nodes are orchestrated by a central smart contract
living on the Veritas sidechain; this includes processing jobs, assigning jobs, receiving and
aggregating results, and penalizing dishonest Oracle nodes.

This paper therefore attempts to answer the following research questions:

• RQ1: How can we fetch external information using decentralized oracles that do not
compromise security but are also efficient concerning gas usage? We propose a novel
cost-effective method for sourcing data from a distributed network by having the Oracle
nodes themselves as part of a side chain, which reduces the cost of fetching data to the
main chain because all data fetching and aggregation is conducted and sent back in a
single transaction.

• RQ2: Can we fetch external data into the Ethereum network for real-time applications
without paying very high gas prices? We propose a protocol whereby real-time jobs
specify parameters when requesting jobs that only send real-time data points after
crossing predetermined thresholds. This significantly reduces transaction costs for
real-time monitoring jobs for the blockchain.

• RQ3: Can we improve upon node selection and onboarding to combat malicious
behavior? We propose an enhanced onboarding protocol that requires nodes to stake
and provides a measure of security against possible Sybil attacks by making the
creation of malicious nodes costly. Node selection provides measures to ensure we
achieve load balancing, reputation consideration, and a degree of randomness.

The remainder of this paper is structured as follows. Section 2 discusses the necessary
background to understand the proposed method. Section 3 briefly summarises the relevant
literature and motivates this paper’s contribution. Section 4 describes the proposed system
architecture. Section 5 presents the experimental evaluation and results of our approach.
Section 6 further discusses the method and potential threats to validity. The paper concludes
and provides future work in Section 7.

2. Background

In this section, we introduce the background to blockchains, Ethereum, smart contracts,
and the need for oracles. We also take a look at existing solutions to the problem and
examine their trade-offs.

2.1. Blockchain

Blockchain is a peer-to-peer network with a distributed ledger hosted on every node
in the network [11,12]. Nodes are anonymous but can transact with each other in a trustless
manner without the requirement of a central authority to guarantee honest operation
between participants [8]. Blockchain was introduced as an integral part of a peer-to-peer
cash system (Bitcoin). However, it has evolved into a more mature technology that can
address more than just financial applications [13,14]. Transactions are packed into blocks
that are added to the distributed ledger and propagated to the rest of the network. There is
a necessary consensus mechanism to ensure that all parties agree on the current version
of the distributed ledger [15,16]. Bitcoin uses a consensus method called POW (Proof of
Work) [17], where after a node validates a transaction and wishes to add it to a block, it has
to solve a cryptographic problem that requires a lot of computation. Solving this problem
indicates that the node has performed the necessary work to validate this block and is
rewarded for the effort (power consumed and time) put into validating the transaction
and block. The reward is a cryptocurrency known as Bitcoin [15], and this process of
solving the cryptographic puzzle and validating it is known as mining. As mentioned,



J. Sens. Actuator Netw. 2024, 13, 21 3 of 27

blockchains have evolved since their inception, and transactions now involve more than
just the transfer of cryptocurrency between parties; they can now involve code execution,
hence the name (smart contracts [18,19]), which is discussed in Section 2.2.1 where we
explain how Ethereum and smart contracts operate.

Blockchains provide a high degree of security [8] since the interaction and transactions
between parties are validated, packed into blocks, cryptographically linked to previous
blocks, and appended to an immutable distributed ledger. They do not require a central
actor to guarantee honest operation. Participants are anonymous and interact with the
blockchain through private and public key pairs and wallets to store currency.

2.2. Ethereum and Smart Contracts
2.2.1. Ethereum

Ethereum is a decentralized and open-source blockchain with the added functionality
of executing and maintaining smart contracts [20,21]. It is among the other blockchains
that support smart contract functionality, but it is the most popular one in use today with
a market cap of more than 400 billion dollars [22]. The main currency for transacting
and receiving rewards is called ether. Like the Bitcoin blockchain, Ethereum’s consensus
algorithm was, until recently, based on the POW algorithm, where participating nodes
had to solve cryptographic puzzles to earn a block reward. Many criticisms have since
come to light regarding the POW’s high-power requirements and slow operation. Another
consensus system, POS (Proof Of Stake) [9,23], has been introduced and used by many other
blockchains, including Ethereum. POS works by asking nodes who wish to participate in
the validation process to ‘stake’ a certain amount of an asset (in this case, ether), after which
a node is chosen randomly from a pool of nodes to verify and validate transactions and
add them to the distributed ledger. Ethereum’s key innovation is that it started to view
transactions not just as the transfer of currency and the change in account balances, but also
as the change in the ‘stake’ of state machines. This is achieved through the functionality of
smart contracts (which is discussed in Section 2.2.2).

Every participant in the network has a pair of keys (private and public) from which an
address is generated. This address is the only way to define an account or a node on the
Ethereum network. They transact with their associated address whenever a participant
wishes to transact with another participant. The private key guarantees access to the wallet
associated with that account.

2.2.2. Smart Contracts

Smart contracts are pieces of code that live on the Ethereum blockchain [18,19]. Each
smart contract has its address and is deployed to the blockchain-distributed ledger through
a special kind of transaction. Once a contract is deployed, it is immutable and cannot be
changed. The only way to change a contract is to build the capability to do so and assign
specific account addresses the authority to do so. A decentralized, authority-free contract
does not lend special privileges to particular accounts. Smart contracts are written in an
object-oriented language called ‘Solidity’ among other languages for other platforms [24].
An externally owned account (EOA) may be called a smart contract, i.e., a wallet address
or another smart contract.

A smart contract is formed by creating a transaction similar to the one that transfers
currency. However, instead, the target is the address of the smart contract, and in a field
called ‘data’ in the transaction, the function name required to be executed is added along
with the required parameters. This transaction and method calling cause the smart contract
function to ‘run’ as a normal program would on a computer. In contrast, smart contracts
run on EVMs, or ‘Ethereum Virtual Machines’ [22,25].

2.2.3. EVMs and Gas

The EVM is a quasi-Turing-complete state machine [22]. It is ‘quasi’ because execution
is limited to the amount of gas allocated, as explained in Section 2.2.4. So, when a party



J. Sens. Actuator Netw. 2024, 13, 21 4 of 27

initiates a transaction (a call to a smart contract method), an initial state lives on all nodes in
the network (the current consensus on the ledger). When propagated through the network,
the transaction causes the nodes to run that method locally on the EVM and produce a
state change that should be consistent across all nodes. In that sense, one can think of
the combination of the Ethereum blockchain and the EVM as a worldwide, decentralized
computer, where each node executes the code, and all nodes can come to a consensus
about what the state should look like after the execution process. The problem with
this arrangement is the known ‘halting problem’ [26], where a dishonest actor can create
a malicious transaction and take advantage of faulty logic on the contract to execute a
function indefinitely, one that never halts. Hence, the concept of ‘gas’ is introduced.

2.2.4. Gas and Fees

Gas is a concept introduced to the Ethereum ecosystem to prevent the halting problem
and quantitatively estimate the work performed to execute a particular transaction to
reward miners [21,27]. It refers to the unit that measures the computational effort required
to execute specific operations on the Ethereum Virtual Machine network.

Transactions that execute on a node’s (or client’s) machine require computational
resources; each executed instruction consumes a fixed and predefined amount of ‘gas’.
Therefore, a transaction initiator must pay an amount named CostTransaction, composed
of the GasAmount required multiplied by a GasPrice, specified by the transaction initiator,
as mentioned in Equation (1).

CostTransaction = GasAmount ∗ GasPrice (1)

When a transaction executes on an EVM, each instruction deducts the corresponding
GasAmount required for that operation. If the transaction is complete and the allocated gas
is not exhausted, the remaining amount is refunded to the initiator, and the used gas fees
are paid to the miner. We suppose that gas is entirely exhausted before the transaction
execution is completed. In that case, the state is reverted as if the transaction never took
place and the miners are awarded the fee they earned from the computation they performed.
When a transaction is propagated on the network for miners to execute, validate and add
to the blockchain, they can choose which transactions to add or execute, and most of
the time they execute those with higher fees to earn higher rewards. That means that
the higher the gasPrice set by the initiator, the faster their transaction is included in the
next block. When many transactions are validated on the network, gas prices increase.
Therefore, transactionFee rises substantially as initiators compete for validator resources to
include their transactions in the upcoming blocks [22,25,27].

The GasLimitblock refers to the maximum number of gas units allowed to fit in a single
block (Equation (2)). So if the gas limit for an Ethereum-based network is x, then the sum
of all gas used to execute the transactions grouped into the block must be less than or
equal to x. GasLimitblock refers to the maximum amount of gas allowed for the execution
of all transactions within a block on the blockchain. Gastransi resembles the gas required
for an individual transaction, where (i) is the transaction index ranging from 1 to n. n
represents the total number of transactions to be added to the block. Each transaction has
an associated gas cost Gastransi .

GasLimitblock ≥
n

∑
i=1

Gastransi (2)

The concepts behind EVM and gas are crucial for our proposed method (Section 4),
as the rules governing the Ethereum blockchain are the same as those that govern the
Veritas sidechain since it is based on Ethereum.

2.3. Web3

Web3 refers to the next generation of the Internet, which uses blockchain technology to
create a decentralized and trustless ecosystem [28,29]. Unlike traditional web applications,



J. Sens. Actuator Netw. 2024, 13, 21 5 of 27

which rely on central authorities for data storage and processing, Web3 aims to empower
users with more control over their data and interactions. It enables peer-to-peer trans-
actions, smart contracts, and decentralized applications (dApps) on public blockchains,
fostering transparency, security, and privacy [30,31]. With Web3, users can directly interact
with blockchain networks, manage their digital assets, and participate in decentralized
governance. It can potentially revolutionize various industries, including finance, supply
chain, healthcare, and more, providing a framework for the building of decentralized
applications that are resistant to censorship, immutable, and verifiable by design [32].

2.4. Oracles and ‘The Oracle Problem’

As previously mentioned in Section 2.1, the blockchain is a collection of blocks contain-
ing cryptographically chained transactions [4,7]. The only available data are those which
are inherently available in the blockchain state, and we are only able to process information
that exists in that state. This is a crucial property of any blockchain, by extension including
the Ethereum blockchain. Blockchains are referred to as ‘Siloed’ in the sense that they are
isolated from the outside world because the transactions in a block represent a mutation in
only the existing internal state. In the case of Bitcoin, the transactions represent a change in
the state of Bitcoin holdings every account has by registering the transfer of Bitcoin from
one account to another. In the case of Ethereum, the transactions represent a change in the
state of the EVM. It is ‘intrinsically deterministic’ because EVMs on different nodes must
execute the same code with the same input and come up with the same conclusion, which
modifies the blockchain state. That means there cannot be any source of ‘randomness’,
which becomes very important as we state our design. To realize the full potential of
smart contracts and for them to be used for real-world applications, they need to be able to
interact with the outside world. They must consume, produce, and process data outside
the blockchain [18].

Since the only way to introduce entropy and extrinsic data into the blockchain is
through the data payload in smart contract function calls, the only actors who can do so are
transaction initiators, who are anonymous and cannot be trusted. Oracles mitigate this issue
by attempting to provide a near-trustless way to relay data between a blockchain network
and the real world (off-chain world) [8]. This enables the noticeable potential to enforce
contractual relationships based on real-life data. Without the capability to interact with
and process data from outside sources like sensors, API-ingestible data and countless other
sources, decentralized applications on the Ethereum blockchain and any decentralized
Web3 platform are extremely limited in capabilities, having only to rely on information and
state available on the blockchain only.

However, the introduction of extrinsic data introduces a significant risk to the security
and consensus model intrinsic to the design of the blockchain system [8,30]. The incoming
data can be corrupted, manipulated, or tampered with and cause faulty execution of our
smart contracts, which defines the ‘Oracle problem’, where, however secure a system is,
corrupt input data always results in corrupt output (garbage in, garbage out). This is the
Oracle problem: How can we ensure a secure and trustless bridge between the blockchain
and the outside world? We summarize the classification of the Oracles in Table 1, inspired
by [4], highlighting the characteristics of different oracles.



J. Sens. Actuator Netw. 2024, 13, 21 6 of 27

Table 1. Classification of Oracles by Data flow and Operating Paradigm.

Variants

Data Flow
Inbound: Oracles function
only as a source of external
data to the blockchain

Outbound: Oracles function as only
an output bridge, taking data from
the blockchain and relaying them to
off-chain services

Inbound–Outbound:
Oracles function as a
two-way bridge of data
between the blockchain
and the outside world.

Operation Paradigm

Request–Response: Oracles
receive requests from clients
and fetch the data and return
them as requested

Immediate–Read: The oracle acts as a
lookup service, whereby it is
queried and provides an
instantaneous response

Publish–Subscribe:
Oracles allow consumers
subscription to their data
output/input and push
data whenever available.

3. Related Work

Attempts have been made to address the oracle problem by proposing various oracle
designs that cater to different use cases, and we demonstrate some of them in this paper.
We classify the literature into two types, centralized and decentralized.

3.1. Centralized

Provable (previously known as Oraclize) [33]: has been operational since 2015 as a
safe way to fetch data from external Web APIs. Its main objective is to ensure verifiable
and auditable off-chain data availability. It fetches data from these sources and stores
them using authenticity proofs in a decentralized storage system like IPFS or SWARM.
The model used by Provable is based on Trusted Execution Environments (TEEs) [34] and
auditable virtual machines to build authenticity proofs. The major drawback of Provable is
that it uses a centralized trust model representing a single point of failure.

TownCrier [35]: is similar to Provable, utilizes the concept of TEEs, and, namely, uses
Intel’s SGX (Software Guard Extensions) enclaves [36]. The main idea is that a central
server houses the logic for receiving requests and fetching data inside a secure enclave
designed to be completely isolated from the operating system or other applications that can
interfere with the logic housed in this enclave. It provides attestations, authenticity proofs,
and guarantees of integrity and confidentiality using private–public key pairs. Again,
like its predecessor, the main drawback is the single-point-of-failure model, where trust
is centralized.

Augur [37]: provides a low-cost oracle platform for prediction markets for online
trading. It leverages the community’s power to make informed decisions, where users on
the platform who have reputation tokens can choose the outcomes of the prediction markets
by staking their tokens on the actual observed outcome, and they receive settlement fees
from the market based on their choices. Augur operates by opening up markets in four
stages: (1) creating a market, (2) trading, (3) reporting, and (4) settling. In the first phase
(creating a market), everyone on the platform is allowed to set an event and its time and
select a designated reporter. However, that single reporter does not have the full power
to determine the outcome, and the community has the ability to interfere with disputing
the reporting and coming up with a different resolution. In the second stage (trading),
Augur’s trading contracts maintain an ordered book of every prediction market. In the
third stage (reporting), reporting begins, and the oracle determines the actual outcome of
the event. This reporting stage comprises seven stages and includes multiple rounds for
possible disputes. Reporters who staked on the wrong outcome are penalized, and the final
settlement happens in the fourth and final stage of the oracle phases (settling). The main
concern with AUGUR is that it relies on crowd wisdom, which is not a reliable source of
truth and is vulnerable to manipulation.



J. Sens. Actuator Netw. 2024, 13, 21 7 of 27

3.2. Decentralized

DECO (DECentralized Oracles) [38]: The protocol is designed to provide decentralized
Oracle services for smart contracts on blockchain platforms. It aims to address trust and
security issues in Oracle systems by leveraging trusted data sources, verifiable computa-
tion, reputation systems, and decentralized governance. DECO focuses on ensuring data
integrity, offering a framework for secure and reliable data retrieval by smart contracts.
By incorporating techniques like zero-knowledge proofs and reputation-based assessments,
DECO aims to provide a decentralized Oracle solution that enhances the trustworthiness
and security of external data integration in blockchain applications.

However, DECO has certain limitations that should be considered. One potential
challenge is the reliance on trusted data sources, which may introduce a degree of central-
ization and contradict the goal of full decentralization. Establishing and maintaining trust
in these entities can be a complex and ongoing process. Additionally, DECO’s practical
implementation and scalability may require further exploration and validation. As with
any novel protocol, DECO’s real-world performance and adoption need to be assessed to
understand its effectiveness and viability in different use cases. These factors highlight
areas for further research and development to optimize the effectiveness of the protocol
and overcome potential limitations.

ASTRAEA [39]: A decentralized oracle takes advantage of human intelligence through
a voting-based game to ensure the security of external data on the blockchain. It is a
general-purpose oracle that runs on a public ledger and can be utilized on other platforms
with similar smart contract characteristics. The system has three roles: submitters, voters,
and certifiers, each with different levels of risk and reward. Submitters pay fees to submit
Boolean propositions to the system, while voters and certifiers play a low-risk/low-reward
and high-risk/high-reward game, respectively. The system has desirable properties, in-
cluding a Nash equilibrium in which all players play honestly and a low probability that
an adversary manipulates the voting outcome. However, some cons of the system include
the possibility of collusion among voters and certifiers and the need for a large number of
participants to ensure the security of the system.

dAPI (decentralized API) [40]: is a safe and economical way to provide smart con-
tracts with a traditional API service in a decentralized manner. The goal of API3 is to
create, administer and commercialize dAPIs on a scale [41]. In particular, API3 aims for
decentralized APIs (dAPIs) by enabling first-party data providers to supply data directly
to blockchain networks without middlemen. It creates a more trust-minimized setup by
eliminating the need for third-party Oracle nodes. The consequence is that it places trust in
API providers to supply accurate data, which could be a potential point of failure.

Chainlink [42]: is a widely recognized oracle network that provides decentralized
oracle services for smart contracts on various blockchain platforms. It offers robust features
to address the challenges associated with securely and reliably accessing external data.
Chainlink’s key features include a large network of oracle nodes operated by independent
node operators, data authentication mechanisms, multiple aggregation methods, and rep-
utation systems. Chainlink operates using a combination of on-chain smart contracts for
aggregation and node selection and off-chain oracle nodes that retrieve the data and return
them to the Chainlink contract, where they are aggregated and returned to the requesting
contract. The reputation of Oracle nodes is evaluated and reported to an on-chain smart
contract for transparency.

Nodes are chosen through a combination of bidding systems, where user-operated
nodes bid on submitted jobs, and a combination of bidding fees and reputation determines
the winning node. A smart contract on the blockchain performs this selection, and the
committal of nodes provides a penalty fee that is returned after successfully completing
the tasks. Nodes fulfill the task by fetching the data and submitting their responses to the
network by calling the Chainlink contract. Results are verified using various cryptographic
and authentication methods and returned to the user. An obvious problem with the
Chainlink system is the cost of submitting the results to the blockchain, where each node



J. Sens. Actuator Netw. 2024, 13, 21 8 of 27

needs to call back the function to submit its results. When consumers request multiple data
points from multiple sources, costs can add up. Also, no centralized ledger binds to the
off-chain nodes, and their actions are not recorded.

4. System Design and Architecture
4.1. Overview and Design Philosophy

Veritas is a decentralized input oracle that mainly operates using the request–response
paradigm and attempts to provide data securely from hardware and software data sources.
The best security can be achieved by having decentralized nodes fetch data from multiple
sources and then aggregate these results to guarantee the best outcome without any chance
of a single point of failure or tampering that could skew the result by relying on only
one source.

The ‘Veritas’ oracle network is a separate blockchain serving as a sidechain that is
interoperable with Ethereum and uses the same exact consensus mechanism that Ethereum
uses, meaning that the security protocols that enable robust and trustless operation on the
main (layer-1) chain also apply to the side chain since it is a blockchain in its own right.
A side chain operating in conjunction with a main chain is what is known as a layer-2 chain,
as it represents a second layer in processing transactions. As mentioned in Section 2.2,
Ethereum has recently undergone a transition to POS, which greatly improves efficiency
and speed. Veritas is also POS-based, as POS guarantees faster transaction approval instead
of the computationally intensive work required to approve a block using POW, and it is
also better in terms of efficiency and power requirements. Each node in this side chain is
a fully participating blockchain node with a node client communicating with it. Figure 1
illustrates the architecture and design of the system.

Figure 1. Veritas system Architecture.

The scope of this paper does not discuss the consensus mechanism of POS that we use
in the Veritas network, as we assume it operates the same way as Ethereum does, where
nodes that wish to verify transactions should stake a certain amount and are randomly
selected to verify transactions as previously discussed.

The reasons behind selecting a side chain as the basis for the architecture are as follows:

1. A blockchain provides transparency as all requests to and from nodes are appended to
the distributed ledgers for all parties to audit and verify instead of relying on off-chain
nodes to fetch and aggregate results.



J. Sens. Actuator Netw. 2024, 13, 21 9 of 27

2. A side chain that operates outside the main chain (layer-2) achieves better scalability
and throughput as the reduced number of nodes operating and the employment of a
POS consensus guarantee more efficient operation.

3. A side chain also guarantees lower gas fees as the number of transactions is signif-
icantly lesser than in a congested main net. There is less contention for network
resources to approve, verify, and append transactions to the ledger.

4. A blockchain allows the enforcement of node staking using the blockchain token
‘VERT’, which is discussed in further sections and is integral to the operation of the
Oracle network.

5. Using a smart contract at the heart of that blockchain guarantees that all operational as-
pects are logged, verified, and secure, and the contract itself cannot be tampered with.

This is in contrast to other decentralized Oracle systems that aggregate either com-
pletely off-chain, which introduces security and trust concerns, or aggregate on the main
chain itself (Ethereum, in this case), which is highly secure but extremely costly. Having a
layer-2 blockchain (side chain) offers the possibility to have the best of both worlds: efficient
costs and robust security.

4.2. Proposed System Architecture: ‘Veritas’

The Veritas Oracle blockchain network consists of three main parts: an Ethereum bridge,
the Veritas blockchain with the smart contract (VeSC), and Oracle nodes.

4.2.1. The Ethereum Bridge

Blockchain bridges connect different blockchain networks to facilitate the transfer
of assets or tokens, making blockchain interoperability more attainable. Bridges can be
centralized, where a single node between two different networks relays transactions and
assets between various networks, or they can be decentralized, where a group of nodes
serves as the pathway between the networks and achieves a higher degree of security and
transparency. The operation of the bridge itself is not within the scope of this paper, but for
our design and operation, we assume it is a decentralized bridge. Through the bridge,
requests are relayed from the main net and served by the Veritas oracle nodes, and the
result is relayed back.

4.2.2. Smart Contract (VeSC)

The VeSC (short for Veritas Smart Contract) serves as the heart and brain of the Oracle
network. It is a fully fledged smart contract containing all necessary functions to enroll
oracles, accept and validate incoming jobs, assign jobs to nodes, aggregate results, relay
them back to the requester, and punish bad actors. When the network starts, the first
node publishes this contract, which acts as the orchestrator of operations for the network
moving forward.

4.2.3. Oracle Node

Oracle nodes operating in the Veritas Oracle network are full blockchain nodes with
clients running together. These nodes have a local copy of the entire ledger; they can
validate transactions, issue transactions, implement Ethereum’s node specifications, and ex-
pose a JSON-RPC. The only functionality missing from the Oracle nodes is deploying smart
contracts. Nodes implementing the Ethereum specification expose a JSON-RPC interface, al-
lowing for external software (or clients) to connect to them and perform various operations
and functions like issuing transactions, interacting with smart contracts, and enabling the
web3 or the DApp ecosystem. A node in the Veritas network has an on-chain component
(the full node) and an off-chain component (the client) that communicates with the on-chain
component through the JSON-RPC interface exposed by the entire node. The client receives
communications from the blockchain through transaction receipts (events) and can talk to
the blockchain by issuing transactions through the entire node it is connected to. The node
and client form what we call ‘the Oracle node’ throughout this paper.



J. Sens. Actuator Netw. 2024, 13, 21 10 of 27

4.3. System Operations
4.3.1. Initiating Job Requests

When a client smart contract on the Ethereum main net requires external data, it
creates a transaction and sends it to the VeSC through the Ethereum bridge. There are
two types of jobs that Veritas can serve: API Request jobs and Real-Time (RT) jobs.

Each requires some basic attributes necessary for either of them, like (but not limited
to) the following:

• minNoOracles[integer],
• maxNoOracles[integer] >= minNoOracles,
• sources[arrayo f urlstring],

Where minNoOracles field denotes the minimum number of oracles required to re-
spond for a result to be valid, and maxNoOracles is the maximum number of oracles
required to be assigned the job. The desired number the client wishes to have is the result
aggregated from an sources array is a list of URL strings from which the client wishes to
fetch the data.

Data APIs sometimes have keys or authentication mechanisms that need to be added
to the request, but since they are sensitive and cannot be exposed, they need to be encrypted.
We do not discuss them in the scope of this paper and assume the URL strings are sufficient
in themselves to obtain the necessary data.

The design aims to minimize the number of calls to the main net as much as possible
because each call involving the main net incurs a significant amount of gas (as previously
discussed). To that end, we decided on a scheme to avoid multiple round-trip calls to
estimate the fee: the consumed (client requesting data) submits a job by calling the VeSC,
and an estimate id calculated accordingly. The fees are standardized according to the
network load and posted in a public setting (a website). The cost is a function of the
number of requested oracle nodes (max and min) and the number of URLs requested,
where the total number of external calls is denoted by NCall as seen in Equation (11). NOracle
is the total number of oracles who make an external call and provide an answer, and NSource
is the total number of sources queried for the results.

NCall = NOracle ∗ NSource (3)

The client provides the necessary funds to perform the job with the job request,
nullifying the need for a round trip to estimate gas fees. After the VeSC receives the job
request, it is validated, and on success, it is added to the job queue assigned to nodes.
After they respond, the results are aggregated and sent back to the requesting client by
issuing a transaction to a callback function that the client provides in their smart contract.

Clients pay only for the number of responses that are collected from nodes. While a
client pays for the maximum number specified in the request, if a subset of that number
actually replies, they are refunded for the amount that does not reply, ensuring a fair
balance of services vs. cost.

4.3.2. Node Enrollment

One of the most problematic issues with decentralized networks is ‘Sybil attacks’.
Sybil attacks are when participants in a network masquerade as different identities but
are controlled by a single entity. A situation such as this can cause significant problems
with the decentralized consensus mechanisms used in blockchains, be they using POS or
POW, because, with enough nodes in the network, they can game the fetched results or
even tamper with transaction validation. The solution is to make the participation of nodes
in the data-fetching process expensive.

Therefore, the design of the system demands that before a node is permitted to join the
pool of nodes that are assigned jobs, they stake an amount of the Veritas token ‘VERT’. This
amount is unrelated to whether the full node itself is staked and validating transactions on
the Veritas blockchain; this is a separate stake sent to the VeSC and stored on the contract for



J. Sens. Actuator Netw. 2024, 13, 21 11 of 27

the node’s participation in the Oracle network activities. This staked amount is collateral
against any possible fraudulent behavior, where bad actors are penalized by claiming that
part of their staked assets will never be returned.

This incentivizes good behavior and encourages nodes to act in good faith and accom-
plish their assigned jobs without any interference or gaming of results.

When enrolling, nodes are encouraged to provide additional KYN (Know your node)
data. This may include data like passport or national identity numbers and images to
confirm identity. These data are not stored on the blockchain for security purposes but on a
separate Interplanetary File System (IPFS). Obliging nodes reduces their stake requirements,
contributing to a more transparent operational paradigm for nodes that choose not to
operate anonymously. Verifying the provided information on nodes is outside the scope of
this paper but can be accomplished by contacting third parties and verifying the sanity of
the data.

The longer a node operates honestly in the network, the more significant its reward
becomes over time. However, unlike other decentralized oracle systems, they are not more
likely to be picked to fulfill a job because of the length of time they are enrolled in the
network. The only factor affecting their higher probability is their reputation, as discussed
in further sections.

4.3.3. Node Selection

Node selection is a critical design aspect of our system, and a challenging one. In order
to ‘level the playing field’ and not compromise on security, instead of bidding proto-
cols (like those introduced in Chainlink [42]), the choice here is based on a multitude of
factors, namely outlined below.

Random Seed

As discussed before, achieving randomness is very difficult in a blockchain context
because all data are available to all participating nodes in the ledger. There cannot be
a random function that executes differently on every participating node, resulting in an
incoherent state; therefore, the Ethereum network does not define an inherent way to
generate a random number. However, we can rely on a pseudo-random number, which is
the latest transaction hash and is unpredictable for participating nodes.

Node Reputation (Based on Historical Performance)

Node Reputation refers to a score maintained on the VeSC that denotes the rating of a
node. It is based on its historical performance. A node’s initial score (out of 10) is 10. Every
time a node is assigned a job, and its results are included in the final result, it maintains
that score. If a node fails to report a result that is acceptable and included in the final result,
it loses 0.5 points. It regains 0.5 points after achieving two successful jobs where the result
is accepted in the average result. The nodes are classified into ’Integrity pools’ as depicted
in Table 2. Any node below a score of five is automatically removed from the node pool,
and whatever stake is left is refunded.

Table 2. Node Integrity scores in Integrity pools.

Reputation Integrity Score

High 8 ≤ Integrity Score ≤ 10

Medium 6 ≤ Integrity Score < 8

Low 5 ≤ Integrity Score < 6

Load Balancing

Nodes must have a fair chance of having an equal opportunity to be assigned jobs,
so the design does not favor long-living nodes in the pool to prevent potential gaming of
the results by nodes assigned many jobs. This makes it difficult for nodes on the network



J. Sens. Actuator Netw. 2024, 13, 21 12 of 27

to use this advantage for a long time to collectively manipulate the results, assuming that
they attempt a Sybil attack. This aims to eliminate any advantage the old nodes may
have. The fact that they may be more likely to be chosen because they have been on the
network for longer constitutes security risk. Therefore, an algorithm was designed for all of
these required properties. This algorithm is known as the Veritas Selection Algorithm (VSA).
The following explains VSA for choosing nodes to complete a given job.

Reputation Factor

There are some necessary steps to compute the reputation factor as follows:

1. The client specifies the number of nodes required for a job.
2. A client can select one node for a simple decentralized job.
3. The base case for a decentralized job requires two oracles.
4. In the case of one Oracle, a high-integrity node is assigned.
5. In the case of two Oracles, a high-integrity and a medium-integrity oracle is assigned.
6. In the case of three Oracles, an additional low-integrity Oracle is assigned.
7. The client needs to pay an extra fee if they choose to have lower-reputation nodes

replaced with higher-reputation ones.
8. For each successive oracle, a high one is added, then a medium one, and then a low

one unless otherwise specified by the client.

Randomness and Load Balancing Factors

The algorithm applied to each reputation pool to achieve sufficient randomness and
load balancing is explained in Algorithm 1.

Algorithm 1 tries to achieve load balancing and introduce a randomness element
so that, over time, all nodes achieve equilibrium in the number of assigned jobs. This
algorithm can be summarized as follows:

1. Offer A, which is the indexed array of nodes where A[i] is the number of jobs that
were assigned to the node at index i.

2. Offer NOracle, which is the length of the array and the total number of nodes available
in the pool.

3. Calculate M, where M represents the target number of jobs that all nodes in the pool
should have at least been assigned as shown in Equation (4).

M = ⌈ 1
NOracle

NOracle−1

∑
i=0

A[i]⌉ (4)

Also, save value Sj mentioned in Equation (5) as this value is used to recalculate
the median as jobs are assigned without having to reiterate over the array and
exhaust resources.

Sj =
NOracle−1

∑
i=0

A[i] (5)

4. For an incoming job, fetch the last number in the TX hash of last transaction T.
5. Calculate R as shown in Equation (6).

R = T mod NOracle (6)

6. Check whether A[R] satisfies the ‘assignment criteria’, where the criteria should be
that the node has been assigned jobs < M

7. If the node has been assigned several jobs less than the median, it is assigned the job,
and A[R] is incremented.

8. If not, check whether R is even or odd; if it is even, then start iterating from i = R
to i = 0 in search of a node that fulfills the criteria. If R is odd, iterate from i = R to
i = NOracle − 1.



J. Sens. Actuator Netw. 2024, 13, 21 13 of 27

9. If a node is found that satisfies the criteria, it is assigned the job. If the loop is
concluded before a node is found, that means all nodes have been assigned at least
the median amount of jobs, and the job can then be assigned to the node at j = R,
and the index is incremented.

10. M is recalculated by substituting the previously computed Sj, where

M =
Sj+1

NOracle
(7)

Algorithm 1 Choose Oracle Node

Require: Indexed array A of Oracle nodes, where A[i] is the total number of jobs performed
by Oracle at index i.

Ensure: Index of chosen Oracle node to perform a given job

Obtain T, where T is the last number from the previous TX hash
Calculate R, where R is the result of T mod NOracle, where NOracle is the number of oracle
nodes in array A
Calculate M, where M is the median number of jobs performed by oracles in the pool

calculated by M =

⌈
∑

NOracle−1
i=0 A[i]

NOracle

⌉
Save the value for ∑NOracle−1

i=0 A[i] as Sj that represents the total sum of jobs
if A[R] < M then

A[R]← A[R] + 1
return R

end if
if R is even then

for j = R to 0 do
if A[j] < M then

A[j]← A[j] + 1
return j

end if
end for
A[R]← A[R] + 1
return R ▷ If loop finished and did not find a suitable oracle

else
for j = R to NOracle − 1 do

if A[j] < M then
A[j]← A[j] + 1
return j

end if
end for
A[R]← A[R] + 1
return R ▷ If loop finished and did not find a suitable oracle

end if
Re-evaluate M =

Sj+1
NOracle

4.3.4. Request Fulfillment for API Jobs

Figure 2 illustrates the API job lifecycle, which starts with the client initiation job
request to VeSC. After the job’s validation, oracles are selected according to Algorithm 1,
and then an event is emitted with the chosen oracle addresses and the job details. The Oracle
clients attached to the on-chain counterparts pick up those events by listening in on those
emitted events, and chosen oracles check the job for the URL(s) in the job details and fetch
the data accordingly.



J. Sens. Actuator Netw. 2024, 13, 21 14 of 27

Figure 2. API Job lifecycle sequence diagram.

A method of dishonest behavior among such decentralized systems is ‘freeloading’,
whereby oracles can copy each other’s answers. We combat this by forcing nodes to send
their results in two steps:

• Step 1: Committing to a result, where nodes send a hashed result that hashes the
result with their node address on the blockchain and a random number generated
off-chain. This result is sent and stored on the blockchain.

• Step 2: Revealing the result by sending it along with the random number previously
used for hashing. The smart contract then takes this result, hashes it using the incoming
random number and the node address, and compares it to the already saved hash.
If they match, the node is not copied or forged; otherwise, it is penalized.

This is known as a ‘commit–reveal’ scheme and is used in other decentralized data-
fetching mechanisms to combat freeloading. The data are then cross-checked and aggre-
gated to reveal a final result. The scope of this paper does not include improvements or
analysis to truth-finding mechanisms or algorithms to detect outliers. Veritas currently
proposes to use simple aggregation and standard deviation to pinpoint outliers and pe-
nalize nodes that provide such results. A minimum number of nodes (as specified by the
job parameters) must respond with results to fulfill the job. Nodes that do not respond are
penalized. The response is then sent to the requesting contract on the main network via the
Ethereum bridge.

The gas cost for fetching data in the API-request mode using Veritas, Veritas Gas
Cost (VeGCAPIReq) can be deduced from Equation (8). Ethereum Transaction Gas Cost
(EthGasCostTrans) is the gas cost required to perform a transaction back to the Ethereum
network to ship the aggregated data back to the Ethereum main net. Node Transaction Gas
(GasNodeTrans) is the gas required while submitting one data point from an oracle node to
the VeSC and NRes is the total number of responses from the nodes to the VeSC. Finally,



J. Sens. Actuator Netw. 2024, 13, 21 15 of 27

the CostVGas is the Veritas gas cost, which, as previously discussed, is substantially lower
than EthGasCostTrans since Veritas is a smaller side chain.

VeGCAPIReq = EthGasCostTrans + CostVGas(GasNodeTrans ∗ NRes) (8)

4.3.5. Request Fulfilment for Real-Time Jobs

A common kind of a data-fetching job requires a continuous stream of real-time data.
An example would be currency exchange data like the price of ETH/USD or USD/EUR,
or it could be for fetching IoT data from sensors or weather data from publicly exposed
APIs. Applications that demand this data streaming mode vary, but maintaining secure and
auditable real-time data remains essential. This can be for medical, logistics, military, or any
information-sensitive domain where the integrity of the data is paramount. However, these
kinds of jobs could be costly due to the continuous transactions to supply data to the main
blockchains, where each transaction requires a substantial cost associated with it, so we
devised a method (Figure 3) for making the process more efficient as follows:

1. A client (consumer) requests a real-time job for N nodes from a data source(s).
2. They specify a ‘deviation’ amount Dev, that is, the % where if the new aggregated

data point value deviates from the last reported data point value, it is reported back
to the client. Otherwise, if the deviation is below that value, the data point is not
reported back.

3. A boolean flag R, where if true, the nodes report every data point they fetch regardless
of the deviation back to the VeSC, and after aggregation on the VeSC, the VeSC
determines whether the aggregated data point deviated more than the value Dev and
decides whether or not to send the data point back to the main Ethereum network.

4. Duration of job D, which denotes how long the job should run for.
5. Frequency F, which denotes how often nodes should check the external sources

for data.
6. Optional Heartbeat duration H, which denotes the maximum time between each data

point (regardless of the deviation) and ensures that nodes are still alive and serving
the request properly.

Figure 3. Real-time Job lifecycle sequence diagram.

The total number of calls made back to the main Ethereum network with valid data
points can be modeled using Equation (9). F is the frequency of polling for data from exter-



J. Sens. Actuator Netw. 2024, 13, 21 16 of 27

nal sources in requests per second (req/s). V denotes the percentage of valid aggregated
data points that deviated from the configured value (expressed as a decimal). D is the
duration of the job in seconds.

NReq = 1 + F ∗V ∗ D (9)

After that, the total gas cost for a real-time job on Veritas (VeGCRTReq) is calculated
using Equation (10).

VeGCRTReq = EthGasCostTrans ∗ (1 + F ∗V ∗ D) + CostVGas ∗ (GasNodeTrans ∗ NRes) (10)

The number of nodes is irrelevant since the data are aggregated from the NOracle nodes
and reported back to the main net only when the aggregated value exceeds the deviation
configured for the job.

It should be noted that if flag R is false, it is up to the individual node to determine
whether the data point that was fetched deviated from deviation amount Dev and then
sent back to the VeSC. In the case of R, this was true, which provides extra transparency
where all data points fetched are reported to the side chain, and the process of aggregation
and determination is transparent. This implies extra costs, as each node has to initiate a
call every time it polls for new data. Another point that can be configured, which we do
discuss in detail here, is whether each node should aggregate data fetched from multiple
sources off the side chain or on the side chain. Aggregating on the side chain means that
each node initiates

NCalltoVeSC = NSource (11)

5. Experimental Evaluation

This section discusses our evaluation of the network design proposed in Section 4
and how it compares to ‘Chainlink’ [42]. We chose ‘Chainlink’ because it is the industry
standard for decentralized oracles for Web3 application development. As mentioned above,
our design relies on the premise that our network is a side chain. This blockchain operates
with the same consensus rules as Ethereum, where nodes validate transactions on the public
ledger. To that end, we simulated the sidechain locally using Ganache [43]. This simulation
tool can create an entire blockchain network with any number of simulated nodes with
desired public and private addresses. The simulation for Veritas is mainly a POC to verify
our proposed design of harnessing the concept of layer-2 blockchains (sidechains) and
employing it to serve the crucial function of providing the mainstream blockchains with
data in a cheap, decentralized, secure, and transparent manner.

With the lack of decentralized Oracle peer-reviewed academic research and imple-
mented POCs with comparisons to Chainlink, we have no specific metrics to compare the
performance of Veritas against, especially since we are not considering the block mining
time or efficient gas consumption. We are contributing a more efficient and scalable design
for fetching data into mainstream blockchains. That is why we also roughly simulated
the Chainlink operator node and data fetching functionality to assert our understand-
ing of Chainlink operation in light of the absence of academic papers on the details of
its operation.

5.1. Experimental Setup

Next, we discuss the Veritas and Chainlink setup. All experiments were implemented
on a Macbook Pro 2018 with a 2.2 GHz 6-core Intel Core i7 with 16 GB of RAM.

5.1.1. Veritas Setup

In order to validate the Veritas design, we implemented a complete smart contract
(VeSC) to run on a local blockchain that simulates the sidechain concerning Figure 4 using
the truffle development suite to develop the contract using the Solidity programming lan-
guage, the industry-standard language to write smart contracts to be run on the Ethereum



J. Sens. Actuator Netw. 2024, 13, 21 17 of 27

network and executed on blockchain nodes’ EVMs. We run a local blockchain through
Ganache with n nodes. The smart contract was deployed on the sidechain using the address
of the first local node. A front-end webpage triggered the sending of an incoming job to
the sidechain using the address of the second local node. We also used a node.js script that
simulates a single Oracle node and allocates an address from the available local sidechain
nodes. We also used another node.js script that instantiated n− 2 nodes by running the
script above n− 2 times while allocating different ports and a different blockchain node
address. Finally, an express.js server ran locally to simulate a data source that provided
mock data through an API call.

Figure 4. Veritas Experimental Setup.

There were some necessary assumptions to perform the simulation. First, nodes had en-
rolled and deposited the required cryptocurrency tokens (VERT). In addition, the Ethereum
bridge exists, and the job call arriveed through that bridge, simulated through a call from
an existing node on the blockchain. We also assumed that the blockchain automatically
mines and approves the transactions and submits blocks directly to the blockchain and
that block verification and transaction appending are outside the scope of this simulation.
Ganache automatically handled this. Finally, sending the result back through the bridge
was outside the scope of this simulation.

5.1.2. Chainlink Setup

We set up a local Chainlink operator node to compare gas consumption results. An op-
erator node is an Oracle node whose users can set it locally on their machine and start
serving jobs. We aim to validate our understanding of how Chainlink operates when
serving requests from the blockchain.

This setup also uses Ganache, but in this instance, it simulates the Ethereum blockchain.
For a request to be served by Chainlink, a consumer (client requesting data) includes a
Chainlink library in their code and initiates a request to fetch some data from a URL. This
initiates a call to another smart contract, the smart contract of the Oracle node assigned
to the job. Every oracle has its smart contract deployed to the Ethereum network that
is contacted when the bidding process ends and the address/node is assigned the job.
We run a local blockchain through Ganache with n nodes. Along that, a smart contract,
Consumer.sol, is deployed on the local blockchain simulating the smart contract by the
consumer requesting the data from an oracle. We use Docker and Kubernetes [44] to
orchestrate a number of containers running as follows:



J. Sens. Actuator Netw. 2024, 13, 21 18 of 27

• The Nginx server to host the oracle operator interface webpage;
• The Chainlink off-chain component that is allocated an address from the Ganache network;
• A PostgreSQL database to save the fetched results (optional).

Additionally, we have a node.js script that triggers the request by using Truffle CLI and
finally another node.js script that monitors the transactions by picking up on the emitted
events. For the Chainlink simulation, we assume that the bidding process is concluded and
that the node to serve the request is chosen. We also assume that the simulation considers a
simple request to serve data from a single node from two different URLs. Finally, we assume
that the simulation considers Ganache a simulator of the main Ethereum blockchain.

5.2. Experimental Results

In this section, we present two experiments: Experiment 1 for simulating the API
Request job (Section 5.2.1) and Experiment 2 for simulating the real-time job (Section 5.2.2).

5.2.1. Experiment 1: Simulation of API Request Job

For the Veritas simulation, we deploy the VeSC contract on the blockchain. We then
request a job (simple API fetching job from 3 nodes and 2 data sources). The VeSC validates
the job, selects the nodes from the pool, and then emits an event containing the addresses
of the selected nodes for fulfilling the job along with job parameters.

All nodes receive the event through the JSON-RPC interface, and those nodes that
find their address in the job assignment start performing the data-fetching operation on the
mock server. Nodes then retrieve the data and perform the ’commit’ phase, where they
hash the plain text result with their address and a random seed and send it to the smart
contract (VeSC), which then stores the hashed result. The nodes then send the revealed
result along with the random seed used. Afterward, the VeSC takes the revealed plain text
result, hashes it with the node’s address and random seed, and matches that with the stored
result. If it is the same, then the node has indeed committed a result and not freeloaded
from other nodes, and the result is considered in the aggregation. Finally, once all (or the
minimum number of nodes for the job) nodes answer, the VeSC aggregates the result.

For Chainlink simulation, through script req-eth-price.js, we trigger a call to the
Consumer.sol smart contract that simulates a consumer attempting to fetch data from
Chainlink. The contract has already defined the oracle to serve the request, and it calls the
Chainlink library to package a job request, which emits an event with the job parameters.
Moreover, the node picks up the event, fetches the data from the URL, and then calls back
the smart contract using a predefined callback function in the job.

We then repeat the experiment for an increasing number of nodes and compare the
overall gas consumption between Veritas and Chainlink.

Results for Experiment 1: Simulation of API Request Jobs Using a Single Oracle Node

This experiment aims to determine the gas consumption for an API request job using
a single Oracle node in Veritas and to compare it with Chainlink. As shown in Table ??,
gas consumption is directly related to how the smart contract is written and implemented
and reflects the amount of computation that the execution of the target function requires.
To this end, we present a comparison in the amount of gas consumed as a basis for the next
section, where we can estimate the cost savings for fetching data using Veritas.

The gas consumed reported in these findings represents the computation required to
perform the operations listed. Each operation performed on an EVM requires an amount of
gas (as described in Section 2.2.4). Gas price differs, as explained later in the discussion
and interpretation of the results. It should be noted that the Chainlink simulation we
achieved is bare bones. It does not simulate the commit–reveal process or consider the
node selection, both of which consume additional gas. The cost difference between Veritas
and Chainlink could be demonstrated through Figure 5. The cost of fetching a single data



J. Sens. Actuator Netw. 2024, 13, 21 19 of 27

point using Veritas can be seen in Equation (8), while for Chainlink, it can be determined
by Equation (12).

ChainlinkGCAPIReq = EthGasCostTrans ∗ NRes (12)

Table 3. Comparison between Veritas and Chainlink with regard to gas cost of operations. We note
that N/A for Chainlink denotes that we did not replicate the commit phase as we have no information
on how Chainlink performs this operation.

Veritas Chainlink

Operations Executed
on VeSC Gas Consumed Operations Performed in

Consumer.sol 3 Gas Consumed

Submit a Job

1. Validate Request
2. Select Nodes
3. Create Job request
4. Emit event

489,148 1. Create Job request
2. Emit event 139,529

Oracle response with
a commit Save the hashed result 44,562 N/A N/A

Oracle response with
plain text

1. Hash the incoming result with
random seed and address
2. Verify the hash equals saved hash
3. Aggregate the results and emitting
a ‘completed’ event if a minimum
number of nodes respond

83,336 1. Save result
2. Emit ‘completed’ event 54,423

Figure 5. Veritas and Chainlink Gas Cost for API Request–Response Job.

It can be demonstrated through Figure 5 and Equations (8) and (12) that the cost is
substantially lower for Veritas given that the high gas price for transactions to Ethereum
(GasTrans) is constant, while for Chainlink it is multiplied by the number of responses from
the nodes (NRes). This cost efficiency, as expected, increases with the number of nodes
providing results, as is the case for a decentralized Oracle system. This is because Chainlink
performs the aggregation of different nodes on the Ethereum chain itself.

5.2.2. Experiment 2: Simulation of Real-Time Jobs

Simulation of real-time jobs is very similar to that of API Request Jobs because they
use the same setup and configuration. The difference is how the responses are sent from the
Oracle nodes and how frequently we send the result back to the main Ethereum network.
In this experiment, we assume that the parameters for the job request data are shown
in Table 4.



J. Sens. Actuator Netw. 2024, 13, 21 20 of 27

Table 4. The parameters of job requests.

Parameter Value

Number of nodes NOracle 3

Deviation Dev 5%

Frequency F 1 min

Duration D 15 min

Boolean flag R false

As we present in Table 4, we assume that each node fetches data from 1 external
source, and we assume that the value changes by 5% (regardless of higher or lower) every
3 min. Every 3 min, we obtain a valid data point from the node, which is then aggregated
on the VeSC, where it determines whether it exceeds threshold Dev and sends back to the
Ethereum main net should the aggregated value exceed Dev. Finally, we consider that
value V represents the percentage of valid data points to be sent back for the duration
of job D.

In this scenario, we received 15 responses from our oracle nodes (each of the three
nodes sent data back to VeSC 5 times, once every 3 min), and each transaction to send data
from the node to VeSC cost 64,453 gas units. This is because the data deviated once every
3 min by 5%; the rest of the time, the data were assumed to be the same or deviating by
lesser threshold Dev.

When the contract receives the three responses, they are aggregated and sent back
to the requesting contract on the Ethereum main net if the aggregated amount deviates
by more than Dev from the last data point. The total number of requests to the Ethereum
main net for Veritas can be determined by Equation (9) and the total cost can be determined
by Equation (10). In comparison to Chainlink, which aggregates responses on the main
Ethereum chain, the number of requests returned assuming the same parameters would be
computed using Equation (12).

NReqChainlink = F ∗ D ∗ NOracle (13)

The total gas cost for Chainlink can be calculated using Equation (14).

ChainlinkGC = EthGasCostTrans ∗ F ∗ D ∗ NOracle (14)

As can be seen by comparing Equation (9) to Equation (13), for Veritas, the number of
requests depends on V, which limits the number of transactions sent back to the Ethereum
main net. Moreover, aggregation is performed on the Veritas side chain, meaning that
the number of requests is not dependent on the number of nodes. In contrast, Chainlink
aggregates on the Ethereum blockchain, meaning that every node’s data point is sent back
to Ethereum through a separate transaction, substantially increasing cost.

5.2.3. Experiment 3: Veritas Node Selection Validation

We performed two experiments to validate our choice of node selection algorithm.
Both experiments were implemented using a simple node.js script to model the algorithms.
Next, we present the following experiments.

Validation of Removal of Bidding Process from Node Selection

An experiment is conducted to validate that the bidding process performed by Chain-
link potentially jeopardizes the selection of nodes because it may offer malicious nodes an
advantage to underbid the competition. For this experiment, we have a node.js script that
simulates several nodes, and the script runs two scenarios:

1. Scenario 1: representing Chainlink’s bidding where we simulate the bidding per-
formed by assuming that 20% of the nodes are malicious and that half of those nodes



J. Sens. Actuator Netw. 2024, 13, 21 21 of 27

are prepared to severely underbid to increase the chances of them being chosen to
accomplish a job. Then, we randomly choose three nodes from the pool. We re-
peat this operation 100 times and check how many malicious nodes are selected in
each iteration.

2. Scenario 2: representing Vertias’s approach is given the same parameters as Scenario
1 (20% malicious nodes), but we ignore the bidding process and randomly choose
the nodes from the pool. We repeat this operation 100 times and check how many
malicious nodes are selected in each iteration.

We repeat each scenario 10 times and record the results that are shown in Figure 6.

Figure 6. Simulation to demonstrate the effect of allowing nodes to bid for jobs as is performed in
Chainlink vs. random selection in Veritas

As can be seen, the bidding process allows for malicious nodes to underbid and increases
the likelihood that they are selected to perform jobs, resulting in questionable information.
On the contrary, the likelihood is lower for Veritas, where there is no such process.

Validation of Node Selection Prioritizing Load Balancing and Randomized Selection

An experiment is conducted to validate our choice of load balancing and randomize
the selection for every reputation pool. In this experiment, we demonstrate the operation of
the node selection algorithm mentioned in Section 4.3.3. This experiment has four variants:

• Variant 1: An initial pool of 15 nodes with 0 previously assigned jobs; 500 incoming
jobs are simulated and nodes are chosen.

• Variant 2: An initial pool of 15 nodes with a random number of jobs previously
assigned; 500 new incoming jobs are simulated and nodes are chosen.
As can be seen from the variants in Figures 7 and 8, the distribution of jobs using
the load balancing technique employed for the Veritas system is flat compared to the
random assignment technique.

• Variant 3: An initial pool of 15 nodes is simulated with 0 previously assigned jobs and
500 incoming jobs, and an additional new node joins the pool every 12 jobs.

• Variant 4: An initial pool of 15 nodes is simulated with a random number of previously
assigned jobs and 500 new incoming jobs, and an additional new node joins the pool
for every 12 jobs.



J. Sens. Actuator Netw. 2024, 13, 21 22 of 27

Figure 7. Node Selection Algorithm—Variant 1.

Figure 8. Node Selection Algorithm—Variant 2.

As can be seen from the variants in Figures 9 and 10, the Veritas selection algorithm
considers new joining nodes and assigns them jobs to make sure there is no huge gap in job
distribution and offer recent nodes a chance to gain reputation and not cause a monopoly
for older nodes in the system.

Figure 9. Node Selection Algorithm—Variant 3.



J. Sens. Actuator Netw. 2024, 13, 21 23 of 27

Figure 10. Node Selection Algorithm—Variant 4.

6. Discussion and Threats to Validity
6.1. Reflection on Experimental Results for Veritas and Chainlink Siimulations

As demonstrated in Section 5, our Veritas simulation answers RQ1 by having a
sidechain that aggregates results transparently and sends a single result back to the
Ethereum main net. Now, according to the Chainlink white paper [42], it mentions ‘commit-
reveal schemes’ when nodes submit requests; that means that we can safely assume that
if the Chainlink simulation has this functionality, submitting a result would consume at
least as much gas as the Veritas design. Also, aggregation, as per Chainlink [42], is per-
formed on-chain, on the Ethereum chain, that is, meaning that all nodes involved in a data
fetching job would have to send their data to the Ethereum main chain independently to be
aggregated on a Chainlink smart contract there.

As per Equations (10)–(14), we answer RQ2, where it demonstrates the advantage
Veritas has in terms of efficiency fulfilling real-time data fetching jobs. This is because
the aggregation from the nodes on the side chain has a gas cost substantially lesser than
that of the gas cost on Ethereum [45]. In addition, the number of data points sent back to
the Ethereum main net is substantially lesser since the number of requests in the case of
Veritas is multiplied by factor V which is a subset of the data points that deviate more than
threshold Dev, thereby greatly reducing the cost of the job.

In addition, since the gas price on a blockchain network is directly correlated to the
number of nodes on the network and network congestion, for any sidechain or Layer-
2 blockchain, the gas price is lower than that on an Ethereum main net and, therefore,
transaction fees is lower. Estimating gas fees is outside the scope of this paper. However,
for reference, the transaction fee on Polygon (Layer-2) for making a simple transfer of the
USDT cryptocurrency versus the transaction fee on Ethereum on 4 December 2023 is USD
0.006 vs. USD 2.73, respectively. This is a 455x difference in transaction fees [45].

This price fluctuates violently on both networks according to the number of operating
nodes, ongoing transactions, and network congestion. At times, the transaction fees on
the Ethereum network can be lesser than on the Polygon network, but this happens rarely
and is often due to ICOs or, more recently, the deployment of a Dapp game on the Polygon
network that consumes so many resources and fees skyrocket.

Security and Verifiability Advantage

Chainlink [42] mentioned that they plan, in the medium and long terms, to adopt a
new design for a decentralized oracle system that aggregates off-chain. We do not know
whether this is currently implemented and deployed or not, but it is safe to say that this
proposal solves the previous problem since there will also be only one call to the Ethereum
blockchain, but jeopardizes the advantage it had where the aggregation of the results was
previously visible on the Ethereum blockchain and verifiable since the aggregation was
performed through a Chainlink particular aggregation smart contract.

Veritas’s advantage here is that it is a side chain, which means that every interaction
between the oracle nodes and the VeSC that orchestrates the assignment of jobs and the



J. Sens. Actuator Netw. 2024, 13, 21 24 of 27

collection of responses is transparent and verifiable in the side chain public ledger; a clear
advantage over off-chain aggregation, even if off-chain was a more straightforward design.
To this end, the Oracle problem cannot be solved by processing data outside a blockchain
since it provides the proven and tested consensus mechanism to verify each interaction
with the public ledger.

6.2. Node Selection

In Section 5.2.3, we present the results of the two experiments we conducted in an
attempt to show that Chainlink’s method for selecting nodes based on bidding and then
randomly selecting and considering only reputation presented two challenges:

1. Possible selection of malicious nodes due to the incentive to underbid in the bidding
process for a node to be selected.

2. The absence of load balancing leads to long-standing nodes being assigned more
jobs over time, jeopardizing the integrity of the selection process since those nodes
statistically have a greater chance of being assigned.

We believe, through the experimental evaluation and result analysis performed, that
we also resolved RQ3 addressing the issue of the method proposed by Veritas increasing the
security aspects of the Oracle system by making sure that nodes do not have any input in
the selection to accomplish jobs, except by reputation, since underbidding could undermine
the protocol for selecting nodes and thereby compromising the data input into the system.

6.3. Threats to Validity

We realize that there exist several threats to the validity of our proposed model, and in
this section, we present them along with proposed solutions where possible.

1. Scalability issues due to node selection and possible congestion: Realizing that any
Layer-2-based solution aims to provide scalability to a Layer-1 blockchain network, we
also note that with an increasing number of nodes throughout the network, possible
congestion could jeopardize the gas price of the side chain, gas consumed to select a
node, and also the time required to serve a request due to the potential longer duration
it could take to select a node.

2. Absence of timers and triggers: Any smart contract on a blockchain is triggered by
an interaction from an externally owned account (EOA), as mentioned earlier. In our
design, the VeSC aggregates responses from nodes, and when a minimum number of
nodes have at least responded, the result is aggregated and sent back to the requesting
smart contract. However, there are scenarios where a node might not respond and
the minimum quorum may not be reached. In such cases, a trigger is needed to alert
the smart contract to halt the request and not wait any longer, possibly refunding
the requested contract. Additionally, there can be cases where a node responds,
but network issues, such as dropped packets or unstable connections, can hinder the
arrival of responses in a timely manner. The question arises: How long should the
contract wait? In the current blockchain and smart contract development, there is
no possibility of executing smart contract functions autonomously using an internal
timer; there needs to be an external actor.

3. Lack of optimization to the smart contract VeSC. Currently, the gas units consumed
to perform the required operation is high due to the computation and storage re-
quirements of handling incoming jobs, maintaining node information and assigning
tasks to nodes. This needs to be further optimized to minimize gas consumption and
facilitate better operational costs. Otherwise, the cost gains could diminish as nodes
scale up.

7. Conclusions and Future Work

In this paper, we contribute a new approach to solving the ‘Oracle problem’, which
represents a significant challenge in the wide-scale adoption of blockchains in real-world



J. Sens. Actuator Netw. 2024, 13, 21 25 of 27

applications. We build on previous accomplishments in this space and attempt to resolve
issues regarding very high transaction costs and obstacles that prevent blockchain applica-
tions from employing real-time data monitoring without compromising the security and
integrity of the blockchain. We accomplish this by designing a distributed Oracle network
that is itself a sidechain, connected to significant blockchains (in our case, Ethereum) via
network bridges, and having the sidechain serve job requests securely and cost effectively.

We show that this approach is cost-effective and secure; it can validate our proposed
model via a simulation using simulated blockchains. We attempt to compare our findings
against those of one of the leading oracles in the space, Chainlink. We demonstrate that our
proposed model tackles the cost problem much more efficiently and prove that our method
for node selection provides better results in preventing malicious nodes from joining the
network and thereby risking the network’s security by introducing malicious data.

In the future, we plan to build upon our proposal by exploring the threats to validity
we raised and attempting to resolve them. We mainly want to explore scalability issues
with our design and analyze the effect of growing side chains on serving requested jobs.
We also want to address the issues of external triggers and timers, which could be a
bottleneck and potentially break the distributed nature of the Oracle system because they
may introduce single points of failure. Other issues regarding synchronizing response times
and accounting for network issues must be explored, experimented with, and analyzed.

In addition, we would like to apply the Veritas oracle system to serve a Web3 applica-
tion that sources data from sensors and various IoT devices to demonstrate the validity and
efficiency of the decentralized Oracle system and prove its capability to provide continuous
and secure data streams and make IoT-Web3 applications a reality.

Author Contributions: Conceptualization, M.M.S.; methodology, M.M.S.; software, M.M.S.; resource,
D.S.; investigation, M.M.S. and D.S.; validation, M.M.S., D.S. and A.A.S.; writing—original draft
preparation, M.M.S.; writing—review and editing, M.M.S., D.S. and A.A.S.; supervision, D.S. and
A.A.S.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Hafid, A.; Hafid, A.S.; Samih, M. Scaling blockchains: A comprehensive survey. IEEE Access 2020, 8, 125244–125262. [CrossRef]
2. Zhang, W.; Anand, T. Layer 2 and Ethereum 2. In Blockchain and Ethereum Smart Contract Solution Development: Dapp Programming

with Solidity; Springer: Berlin/Heidelberg, Germany, 2022; pp. 341–378.
3. Sivaraman, V.; Venkatakrishnan, S.B.; Ruan, K.; Negi, P.; Yang, L.; Mittal, R.; Fanti, G.; Alizadeh, M. High throughput

cryptocurrency routing in payment channel networks. In Proceedings of the 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), Santa Clara, CA, USA, 25–27 February 2020; pp. 777–796.

4. Beniiche, A. A Study of Blockchain Oracles. arXiv 2020, arXiv:2004.07140. http://arxiv.org/abs/2004.07140.
5. Caldarelli, G. Overview of blockchain oracle research. Future Internet 2022, 14, 175. [CrossRef]
6. Basile, D.; Goretti, V.; Di Ciccio, C.; Kirrane, S. Enhancing blockchain-based processes with decentralized oracles. In International

Conference on Business Process Management, Proceedings of the Business Process Management: Blockchain and Robotic Process Automation
Forum, Rome, Italy, 6–10 September 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 102–118.

7. Ezzat, S.K.; Saleh, Y.N.; Abdel-Hamid, A.A. Blockchain oracles: State-of-the-art and research directions. IEEE Access 2022,
10, 67551–67572. [CrossRef]

8. Al-Breiki, H.; Rehman, M.H.U.; Salah, K.; Svetinovic, D. Trustworthy blockchain oracles: Review, comparison, and open research
challenges. IEEE Access 2020, 8, 85675–85685. [CrossRef]

9. Sriman, B.; Ganesh Kumar, S.; Shamili, P. Blockchain technology: Consensus protocol proof of work and proof of stake. In
Intelligent Computing and Applications: Proceedings of ICICA 2019; Springer: Berlin/Heidelberg, Germany, 2021; pp. 395–406.

10. Kapengut, E.; Mizrach, B. An event study of the ethereum transition to proof-of-stake. Commodities 2023, 2, 6. [CrossRef]
11. Nofer, M.; Gomber, P.; Hinz, O.; Schiereck, D. Blockchain. Bus. Inf. Syst. Eng. 2017, 59, 183–187. [CrossRef]
12. Monrat, A.A.; Schelén, O.; Andersson, K. A survey of blockchain from the perspectives of applications, challenges, and

opportunities. IEEE Access 2019, 7, 117134–117151. [CrossRef]
13. Extance, A. Bitcoin and beyond. Nature 2015, 526, 21. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.3007251
http://arxiv.org/abs/2004.07140
http://dx.doi.org/10.3390/fi14060175
http://dx.doi.org/10.1109/ACCESS.2022.3184726
http://dx.doi.org/10.1109/ACCESS.2020.2992698
http://dx.doi.org/10.3390/commodities2020006
http://dx.doi.org/10.1007/s12599-017-0467-3
http://dx.doi.org/10.1109/ACCESS.2019.2936094
http://dx.doi.org/10.1038/526021a


J. Sens. Actuator Netw. 2024, 13, 21 26 of 27

14. Zaghloul, E.; Li, T.; Mutka, M.W.; Ren, J. Bitcoin and blockchain: Security and privacy. IEEE Internet Things J. 2020, 7,
10288–10313. [CrossRef]

15. Anceaume, E.; Ludinard, R.; Potop-Butucaru, M.; Tronel, F. Bitcoin a distributed shared register. In Proceedings of the
Stabilization, Safety, and Security of Distributed Systems: 19th International Symposium, SSS 2017, Boston, MA, USA,
5–8 November 2017; Proceedings 19; pp. 456–468.

16. Burkhardt, D.; Werling, M.; Lasi, H. Distributed ledger. In Proceedings of the 2018 IEEE International Conference on Engineering,
Technology and Innovation (ICE/ITMC), Stuttgart, Germany, 17–20 June 2018; pp. 1–9.

17. Gervais, A.; Karame, G.O.; Wüst, K.; Glykantzis, V.; Ritzdorf, H.; Capkun, S. On the security and performance of proof of work
blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
24–28 October 2016; pp. 3–16.

18. Zheng, Z.; Xie, S.; Dai, H.N.; Chen, W.; Chen, X.; Weng, J.; Imran, M. An overview on smart contracts: Challenges, advances and
platforms. Future Gener. Comput. Syst. 2020, 105, 475–491. [CrossRef]

19. Kemmoe, V.Y.; Stone, W.; Kim, J.; Kim, D.; Son, J. Recent advances in smart contracts: A technical overview and state of the art.
IEEE Access 2020, 8, 117782–117801. [CrossRef]

20. Vujičić, D.; Jagodić, D.; Rand̄ić, S. Blockchain technology, bitcoin, and Ethereum: A brief overview. In Proceedings of the 2018
17th International Symposium Infoteh-Jahorina (Infoteh), East Sarajevo, Bosnia and Herzegovina, 21–23 March 2018; pp. 1–6.

21. Wang, Z.; Jin, H.; Dai, W.; Choo, K.K.R.; Zou, D. Ethereum smart contract security research: Survey and future research
opportunities. Front. Comput. Sci. 2021, 15, 152802. [CrossRef]

22. Zhang, W.; Anand, T. Ethereum architecture and overview. In Blockchain and Ethereum Smart Contract Solution Development: Dapp
Programming with Solidity; Springer: Berlin/Heidelberg, Germany, 2022; pp. 209–244.

23. Yan, S. Analysis on blockchain consensus mechanism based on Proof of Work and Proof of Stake. In Proceedings of the 2022
International Conference on Data Analytics, Computing and Artificial Intelligence (ICDACAI), Zakopane, Poland, 15–16 August
2022; pp. 464–467.

24. Dannen, C. Introducing Ethereum and Solidity; Springer: Berlin/Heidelberg, Germany, 2017; Volume 1.
25. Tikhomirov, S. Ethereum: State of knowledge and research perspectives. In Foundations and Practice of Security, Proceedings of the

10th International Symposium, FPS 2017, Nancy, France, 23–25 October 2017; Revised Selected Papers 10; Springer: Berlin/Heidelberg,
Germany, 2018; pp. 206–221.

26. Zheng, G.; Gao, L.; Huang, L.; Guan, J. Ethereum Smart Contract Development in Solidity; Springer: Berlin/Heidelberg, Germany, 2021.
27. Pierro, G.A.; Rocha, H. The influence factors on ethereum transaction fees. In Proceedings of the 2019 IEEE/ACM 2nd

International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB), Montreal, QC, Canada, 27 May
2019; pp. 24–31.

28. Ray, P.P. Web3: A comprehensive review on background, technologies, applications, zero-trust architectures, challenges and
future directions. Internet Things-Cyber-Phys. Syst. 2023, 3, 213–248. [CrossRef]

29. Liu, W.; Cao, B.; Peng, M. Web3 Technologies: Challenges and Opportunities. IEEE Netw. 2023 . [CrossRef]
30. Cao, L. Decentralized ai: Edge intelligence and smart blockchain, metaverse, web3, and desci. IEEE Intell. Syst. 2022, 37,

6–19. [CrossRef]
31. Ding, W.; Hou, J.; Li, J.; Guo, C.; Qin, J.; Kozma, R.; Wang, F.Y. DeSci based on Web3 and DAO: A comprehensive overview and

reference model. IEEE Trans. Comput. Soc. Syst. 2022, 9, 1563–1573. [CrossRef]
32. Sheridan, D.; Harris, J.; Wear, F.; Cowell, J., Jr.; Wong, E.; Yazdinejad, A. Web3 challenges and opportunities for the market. arXiv

2022, arXiv:2209.02446.
33. Provable White Paper. Available online: https://api-new.whitepaper.io/documents/pdf?id=Sk89Yopev (accessed on

30 December 2023).
34. Jauernig, P.; Sadeghi, A.R.; Stapf, E. Trusted execution environments: Properties, applications, and challenges. IEEE Secur. Priv.

2020, 18, 56–60. [CrossRef]
35. Zhang, F.; Cecchetti, E.; Croman, K.; Juels, A.; Shi, E. Town crier: An authenticated data feed for smart contracts. In Proceedings

of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016;
pp. 270–282.

36. McKeen, F.; Alexandrovich, I.; Anati, I.; Caspi, D.; Johnson, S.; Leslie-Hurd, R.; Rozas, C. Intel® software guard extensions (intel®

sgx) support for dynamic memory management inside an enclave. In Proceedings of the Hardware and Architectural Support for
Security and Privacy 2016, Seoul, Republic of Korea, 18 June 2016; pp. 1–9.

37. Peterson, J.; Krug, J. Augur: A decentralized, open-source platform for prediction markets. arXiv 2015, arXiv:1501.01042.
38. Zhang, F.; Maram, D.; Malvai, H.; Goldfeder, S.; Juels, A. Deco: Liberating web data using decentralized oracles for tls. In

Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual, 9–13 November 2020;
pp. 1919–1938.

39. Adler, J.; Berryhill, R.; Veneris, A.; Poulos, Z.; Veira, N.; Kastania, A. Astraea: A decentralized blockchain oracle. In Proceedings
of the 2018 IEEE International Conference on Internet of Things (IThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada,
30 July–3 August 2018; pp. 1145–1152.

http://dx.doi.org/10.1109/JIOT.2020.3004273
http://dx.doi.org/10.1016/j.future.2019.12.019
http://dx.doi.org/10.1109/ACCESS.2020.3005020
http://dx.doi.org/10.1007/s11704-020-9284-9
http://dx.doi.org/10.1016/j.iotcps.2023.05.003
http://dx.doi.org/10.1109/MNET.2023.3321546
http://dx.doi.org/10.1109/MIS.2022.3181504
http://dx.doi.org/10.1109/TCSS.2022.3204745
https://api-new.whitepaper.io/documents/pdf?id=Sk89Yopev
http://dx.doi.org/10.1109/MSEC.2019.2947124


J. Sens. Actuator Netw. 2024, 13, 21 27 of 27

40. Benligiray, B.; Milic, S.; Vänttinen, H. Decentralized apis for web 3.0. In API3 Foundation Whitepaper; 2020. Available online:
https://api.semanticscholar.org/CorpusID:265430507 (accessed on 14 February 2024).

41. Pasdar, A.; Lee, Y.C.; Dong, Z. Connect API with blockchain: A survey on blockchain oracle implementation. ACM Comput. Surv.
2023, 55, 1–39. [CrossRef]

42. Breidenbach, L.; Cachin, C.; Chan, B.; Coventry, A.; Ellis, S.; Juels, A.; Koushanfar, F.; Miller, A.; Magauran, B.; Moroz, D.; et al.
Chainlink 2.0: Next steps in the evolution of decentralized oracle networks. Chain. Labs 2021, 1, 1–136.

43. Ganache|Overview—Truffle Suite—Trufflesuite.com. Available online: https://trufflesuite.com/docs/ganache/ (accessed on
29 December 2023).

44. Shah, J.; Dubaria, D. Building modern clouds: Using docker, kubernetes & Google cloud platform. In Proceedings of the 2019
IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019;
pp. 0184–0189.

45. Available online: https://etherscan.io/ (accessed on 30 December 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://api.semanticscholar.org/CorpusID:265430507
http://dx.doi.org/10.1145/3567582
https://trufflesuite.com/docs/ganache/
https://etherscan.io/

	Introduction
	Background
	Blockchain
	Ethereum and Smart Contracts
	Ethereum
	Smart Contracts
	EVMs and Gas
	Gas and Fees

	Web3
	Oracles and `The Oracle Problem'

	Related Work
	Centralized
	Decentralized

	System Design and Architecture
	Overview and Design Philosophy
	Proposed System Architecture: `Veritas'
	The Ethereum Bridge
	Smart Contract (VeSC)
	Oracle Node

	System Operations
	Initiating Job Requests
	Node Enrollment
	Node Selection
	Request Fulfillment for API Jobs
	Request Fulfilment for Real-Time Jobs


	Experimental Evaluation
	Experimental Setup
	Veritas Setup
	Chainlink Setup

	Experimental Results
	Experiment 1: Simulation of API Request Job
	Experiment 2: Simulation of Real-Time Jobs
	Experiment 3: Veritas Node Selection Validation


	Discussion and Threats to Validity
	Reflection on Experimental Results for Veritas and Chainlink Siimulations
	Node Selection
	Threats to Validity

	Conclusions and Future Work
	References

