
Citation: Hendriks, J.; Azarm, M.;

Dumond, P. Structured Data Ontology

for AI in Industrial Asset Condition

Monitoring. J. Sens. Actuator Netw.

2024, 13, 23. https://doi.org/

10.3390/jsan13020023

Academic Editors: Fabrizio De Vita

and Giovanni Cicceri

Received: 17 January 2024

Revised: 2 March 2024

Accepted: 20 March 2024

Published: 26 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of 

Actuator Networks
Sensor and

Article

Structured Data Ontology for AI in Industrial Asset
Condition Monitoring
Jacob Hendriks 1 , Mana Azarm 2 and Patrick Dumond 1,*

1 Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
jhend076@uottawa.ca

2 Business Analytics and Information Systems, University of San Fransisco, San Fransisco, CA 94117, USA;
mazarm@usfca.edu

* Correspondence: pdumond@uottawa.ca

Abstract: This paper proposes an ontology for prognostics and health management (PHM) appli-
cations involving sensor networks monitoring industrial machinery. Deep learning methods show
promise for the development of autonomous PHM systems but require vast quantities of structured
and representative data to realize their potential. PHM systems involve unique and specialized
data characterized by time and context, and thus benefit from tailored data management systems.
Furthermore, the use of dissimilar standards and practices with respect to database structure and
data organization is a hinderance to interoperability. To address this, this paper presents a robust,
structured data ontology and schema that is designed to accommodate a wide breadth of PHM
applications. The inclusion of contextual and temporal data increases its value for developing and
deploying enhanced ML-driven PHM systems. Challenges around balancing the competing priorities
of structure and flexibility are discussed. The proposed schema provides the benefits of a relational
schema with some provisions for noSQL-like flexibility in areas where PMH applications demand it.
The selection of a database engine for implementation is also discussed, and the proposed ontology
is demonstrated using a Postgres database. An instance of the database was loaded with large auto-
generated fictitious data via multiple Python scripts. CRUD (create, read, update, delete) operations
are demonstrated with several queries that answer common PHM questions.

Keywords: condition monitoring; prognostics and health management; database; ontology; applied
data engineering

1. Introduction

Prognostics and health management (PHM), as well as machine condition monitoring
(CM), are industrial maintenance paradigms that involve analyzing signals from sensors
on machinery for signs that maintenance is or will be needed [1]. Many types of signals
are used in PHM, including vibrations, acoustical emissions, temperature, current draw,
rotational speed, and many others. Collection and analysis of signals allows users to
schedule maintenance interventions for optimal productivity, while preventing unexpected
downtime or accidents. Industrial sectors for which operational interruptions are costly
may benefit the most from CM systems. These sectors include power generation (e.g., wind
turbines), advanced manufacturing, and transportation. The implementation of large-scale
CM might require the installation of many sensors, gateways, or aggregation devices, data
storage, and some level of automated analysis and alert issuing. With the advent of internet
of things (IoT) technology, large-scale cloud network CM is becoming much more common.
A generic example of such a sensor network with remote data storage is illustrated in
Figure 1.
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Several factors determine the volume of raw data that can be generated in a CM
system, including the size of raw data from individual measurements, the frequency at
which measurements are taken, the number of sensors installed on a component, and the
number of components being monitored. Additional factors can increase the heterogeneity
and complexity of the information being stored. These include different types of machines,
components, and types of sensors involved in the application. Detailed consideration of the
organization of the information and the development of an ontology is thus warranted. On-
tology involves the formal representation of the entities defined in a domain [2]. There are
various ontology development methodologies and notations. Lunat and Guha [3] proposed
a process to create an ontology that describes shared knowledge through the steps they
took to develop their CYC ontology in the AI domain. Their process includes: (1) manual
extraction of shared terms and a simple diagram for representing them; (2) computer-aided
representations; and (3) device-level extraction and representations.

Conventional relational (table-oriented) and non-relational (NoSQL) databases (DBs)
have both been used for live metric monitoring applications, as will be discussed in
Section 2. Non-relational databases, such as key-value and document-oriented databases,
are generally preferred for their support of heterogeneous datatypes, as they can be useful
in evolving applications. Relational databases are preferred because of their inherent
enforcement of data uniformity and intuitive structure.

Specialized relational and non-relational databases have been developed to meet the
needs of IoT systems and other live metric-monitoring applications (such as web traffic
monitoring). A time series database (TSDB) is optimized for time-stamped data, often
measurements or metrics [4]. These can be optimized around the assumptions that certain
time aggregation queries might be run frequently, that data from similar time periods might
be queried together frequently, and/or other assumptions around the data’s temporal
nature. A summary of popular open-source TSDBs is given in Section 4.

Machine learning (ML) approaches are increasingly popular for condition monitoring
applications [5,6], and these can benefit from TSDBs that are specifically designed for this
use. For one, the success of ML algorithms is strongly dependent on the amount of quality,
labeled data available. While current IoT CM systems tend to only keep processed frequency
representations, different ML approaches tend to use a variety of input representations
obtained by transforming or extracting features from raw measurements. So, to maximize
flexibility, it would be beneficial to retain raw measurements. A TSDB can accommodate
this by retaining historical data, as well as by hosting data from many sensors on related
machinery. However, a problem that often occurs with raw health measurement practices
is class imbalance (i.e., significantly more healthy data are collected than faulty data) and
insufficient properly labeled health status labels (e.g., faults). Therefore, the TSDB also helps
enforce the storage of contextual information to form the basis of regression or classification
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labels. The ability to efficiently filter data and select the most appropriate measurements
for training and validation is key.

Several studies that are presented in Section 2 lean towards the general acceptance of
non-relational TSDBs for PHM and similar applications. This preference typically stems
from the flexibility of NoSQL databases (as they do not necessitate a predefined schema),
their capability to handle diverse data, and the ease with which they can be scaled and
distributed across various data centers. It is essential, however, to note that this does not
diminish the value of relational databases in such applications.

A well-structured approach is needed to support data collection, labelling, and overall
management on a larger scale, as well as to enhance the further development of ML in
PHM and industrial asset CM. This paper offers the following contributions:

• It describes a flexible ontology suitable for managing machine health data in context;
• It reduces the need for data wrangling or pre-processing, streamlining data operations;
• It provides a standardized data approach that supports larger scale data collection to

advance ML for PHM and CM;
• It provides an example implementation of the ontology in PostgreSQL with sample

data and queries.

In fact, this paper proposes a relational database schema that can cater to numerous
use cases and be readily adapted for additional scenarios. The relational database model,
with its consistency and structured nature, can be advantageous, particularly when data
are being prepared for deep learning algorithms, where uniformity of data can speed up
data cleaning and preparation. The scaling of the database engine, a pivotal aspect in the
evolution of deep learning in PHM, is a challenge that modern relational databases can
adequately address.

The remainder of this paper is organized as follows: Section 2 provides a summary and
review of the relevant literature. The proposed schema and the design principles behind it
are detailed in Section 3. Section 4 discusses the database engine selection process and gives
a rationale for this paper’s use of PostgreSQL in the sample implementation presented in
Section 5. A discussion of outcomes and conclusions are given in Sections 6 and 7, respectively.

2. Previous Work

Wang et al. give a concise and informative discussion of the physical processes and
control systems involved in industrial settings [7]. The hardware–software system they
propose is one of many that could provide the means of implementing this paper’s data
ontology or one like it.

Mehmood et al. discuss modeling the temporal aspects of data in MongoDB and
provide a good discussion of the data storage paradigms and considerations one should
undertake when designing data infrastructure [8]. They also compare different strategies
to utilize document-oriented storage for time series data. One approach is to create a
new document for each timestamp. A nested-document approach is also described with
per-hour documents containing per-second sub-documents. Document nesting is one of
several practices that can significantly increase query and read time.

Several TSDB comparisons have been published, most using generic narrow-table
measurement schemas. Jensen et al. analyzed and classified time series management
systems in academic publications up until late 2016 [9]. They discussed the trend of general
datastores being repurposed for time series and advocated for the development of more
specialized solutions. Meng et al. presented an integrated sensing, communication, storage,
and alerting system for monitoring vibrational anomalies at construction sites [10]. They
used a MySQL table to store raw data, processed data, and the results of analyses. They
also partitioned the database by automatically creating a new table daily. If characteristics
of the measurement data were revised, such as measurement duration or data type, a new
table fitting the revised data structure was generated.

Incipini et al. compared the performance of three different database management systems
for a light monitoring application [11]. They recommended a schemaless database be chosen
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for IoT applications since they can accommodate heterogeneous data well, and IoT tends
to be dynamic, where the types of measurements taken may change over time. Their test
results indicated that MongoDB was the best choice among those tested, which also included
CouchDB and MariaDB. Villalobos et al. proposed a three-level hierarchical architecture
for data retention, where the most recent raw data are stored on solid state drives, and are
transferred in a reduced and cleaned form to hard disk drives in the second and third layer
after one month and one year, respectively [12]. A novel time series reduction method was
used for the third layer, extending the storage period on limited disk space. They tested
and compared different types of databases to achieve this: a TSDB (InfluxDB), wide-column
store (Cassandra), document store (MongoDB), and graph store (Neo4J). Temperature data
from a manufacturing facility were used in testing. They found that the TSDB significantly
outperformed the storage use and query execution time of other databases.

Zehara and Yfantidou performed various benchmark tests between InfluxDB, SQL
Server, Cassandra, Elasticsearch, and OpenTSDB databases [13]. They found that InfluxDB
outperformed all other databases tested in terms of disk size, query performance, and
write performance.

Petre et al. compared InfluxDB, Graphite, Round Robin Database Tool (RRDTool),
Prometheus, OpenTSDB, and TimescaleDB using a multi-attribute maturity model [14].
The inputs to their model did not include any performance data, but instead combined
several quantitative and qualitative measures such as the number of lines of code, the ratio
of open to closed bugs, and support for standard query languages, among others.

Recently, Yang et al. [15] developed a general data ontology for representing industrial
production workflows by describing data using a model of manpower, machine, material,
method, and measurement. The authors cited the need for greater interoperability of data
models as motivation for their work. While their ontology does accommodate aspects of
measurement, its broad focus on the whole industrial workflow means that specific aspects
useful for predictive maintenance, and ML-driven PHM in particular, are not described
in detail. Ramonell et al. [16] also recently developed a knowledge graph-based data
integration system for digital twin asset management. Graph networks efficiently store
data about related entities and can offer more flexibility than strictly relational databases.
However, this can also lead to a greater need for data cleaning and structuring to prepare
data for use in developing and applying ML models. Bakken and Soylu [17] developed a
query engine for databases having static aspects of assets represented in a graph network,
while dynamic aspects (such as measurements) are stored in a generic TSDB. This offers
some computational advantages, but challenges remain related to data structuring and
preparation for ML.

Other sectors involving high-dimensional multi-time series data have similar require-
ments for TSDBs and can provide additional insights. For monitoring human health via
bodily signals, Simanjuntak and Surantha propose an architecture having a relational
database and a message queue telemetry protocol (MQTT). Additionally, Shen et al. [18]
identified issues of scaling TSDBs for IT infrastructure monitoring, especially as they may
have very high numbers of metrics. To address this, they propose a novel TSDB platform,
which scales as well as integrates ML features.

3. Outline of Proposed Schema

An entity relation diagram (ERD) of the proposed schema is given in Figure 2. The
design principles and considerations that culminated in the schema took into account
the complex, multi-faceted nature of data in PHM. Recognizing the diverse needs and
objectives of potential users, the schema emphasizes flexibility and adaptability, offering a
structure that can accommodate different types of sensor data, a variety of metrics, and
an array of contextual information. Flexibility is derived from the incorporation of semi-
structured attributes within a structured relational schema. Specifically, this occurs in the
tables wherein key-value records are stored (measurement_tags and machine_tags), as
well as the metrics table. These key-value pairs offer flexibility as they can be adapted for
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various PHM applications (i.e., different kinds of industrial operations), while still lending
overall structure to the data.
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A priority of the schema is to enable a robust yet flexible framework that can manage
some variability with respect to the particularities of the institution, machinery, sensors,
and data involved, while still enforcing a useful structure. With an understanding that raw
data and derived metrics each have their unique roles in the PHM landscape, the schema
allows for the storage, retrieval, and utilization of both.

An important feature that differentiates the schema from those discussed in Section 2
is its ability to extract and retain meaningful features from raw data for classical machine
learning methods while still retaining raw data for potential future use, promoting research
diversity and innovation. This design decision acknowledges that in the realm of PHM, the
ability to revisit raw data for reanalysis and reapplication is highly valuable. Further, the
schema was designed with the understanding that measurements, machine components,
and sensor data do not exist in isolation but rather within a rich web of context and
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relationships. This schema addresses this by providing a way to add tags to measurements,
to link sensors to multiple components, and to classify machines into broader categories.

Anticipating the practical need for managing multi-user access and privacy considera-
tions, the schema incorporates features to gate data access, facilitating the development of a
privacy mechanism, and to group users at the institutional level, allowing for broader data
management and sharing strategies. In sum, the schema seeks to strike a balance between
structure and flexibility, between data specificity and broad classification, and between
current use and future potential, aiming to provide a data management tool for varied
PHM applications. The following are descriptions of each table appearing in the ERD, with
some example uses.

3.1. Measurements

This entity contains central metadata for a measurement: the sensor from which it
originated, the time it was recorded, and the type of measurement it is. Here, “type” refers
to generic kinds commonly used in PHM, such as temperature, vibration, current, etc.

3.2. Raw_Data

The raw signal data from sensors. Features can be extracted (as “metrics”) for use in
feature engineering PHM methods, as well as direct use in deep ML methods. Retaining
raw data is useful for researchers since different transformations and features can be
applied to test different PHM methods. If features were extracted and raw data discarded,
it would not be possible to obtain new or different features later. For flexibility, and to
support different kinds of sensors with one raw data table, data are stored in the JavaScript
object notation (JSON) format. For ease of use and data cleaning, it would be essential to
standardize the formatting of such JSON objects. A vibration measurement from a uniaxial
accelerometer can be represented as a 1D array of floating-point numbers where the length
depends on the accelerometer’s sampling frequency and the duration of the recording.
These arrays can become rather large, making raw data potentially the largest table in
terms of disk use. An advantage of placing raw data in a separate table is the possibility
of housing it on slower more economical storage. Another possibility is to delete older
raw data records from which some useful metrics have already been extracted, perhaps
conditional on other raw data from the same component in a similar time period being
retained. The proposed schema allows for various optimizations in this area.

3.3. Metrics

Here, metrics are defined as atomic (single-value) indicators computed from raw data.
Some metrics are commonly used as features for classical ML methods (e.g., kurtosis, peak
frequency, root mean square, etc.). Certain users may wish to extract and track different
metrics based on the type of equipment being monitored or the methods of analysis used.
Hence, metrics are stored as key-value pairs associated with individual measurement
records. This allows for flexibility in the number of and kinds of metrics extracted from the
raw data. In implementation, it would be possible to either automatically extract metrics
and add them to the DB upon measurement ingestion, or to retroactively define a metric
and add metric rows for existing/historical measurements.

3.4. Measurement_Tags

Measurement tags are key-value attributes used to sort and categorize measurements
beyond what is already imposed by the schema. For example, if the operational status
of a machine is known at the time of measurement, this could be stored as a tag for that
measurement. Furthermore, if human maintenance professionals know the health state of
components being monitored during certain measurements, these measurements can be
tagged for future reference, and provided as ground truths for ML training. Lastly, tags can
store the condition states predicted by machine learning algorithms. Given the different
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purposes of measurement tags, it would be important to enforce standard use of keys
and values.

3.5. Events

Events entities can also have various purposes. They are intended to be used to store
temporal contextual information that is not strictly related to an individual measurement, and
thus not suitable as a measurement tag. The foreign key used in an event entity may relate it
to a sensor, component, or machine. The external_id_type attribute indicates which type of
foreign key is used. This also indicates the scope of the event. For example, an event with a
description “replaced” related to a component implies that early subsequent data from any
sensor monitoring of that component can be considered as describing a healthy condition.

3.6. Sensors

One or several sensors may be installed to monitor one or many components. The
nature of complex machinery is such that recorded signals rarely carry information about
only one component. Thus, it would be beneficial to relate each sensor to all components
that its signal may carry information about.

3.7. Sensor_Models

Information about a sensor must be known to interpret the data gathered from it. If
many similar sensors are expected to contribute data to the DB, storing generic information
about the sensor model in a dedicated table may reduce redundancy. Additional attributes
may be added, as required, for specific sensors involved in the application. For example,
a valuable attribute in vibration-based PHM is sample frequency. If one expects different
instances of the same sensor model to operate with different sample frequencies, it would
be advisable to add a sensor configuration table.

3.8. Components

Each component entity reflects a real part subject to PHM. It may be or have been
monitored by one or several sensors. The component_type attribute identifies it as one
of a certain general type of component (e.g., bearing, gear, shaft, etc.). In the interest
of simplicity and ease of data cleaning, it may be preferrable to avoid applying highly
granular typing. However, if some applications require additional information to be linked
to certain component records, a component_tags key-value table (in keeping with the
style used elsewhere in this schema) may be used. Other attributes of components relate
to the installation of a given component, including a name, an installation date, and a
replacement date. If the component is currently in service, a none type may be applied to
the replaced_date attribute.

3.9. Machines

A machine entity corresponds to a real machine containing at least one component
subject to PHM. Attributes of machines are used to identify and describe it in terms that are
relevant for PHM. Additional attributes may be useful for a broader maintenance tracking
and scheduling application. Since different machines may require different numbers of
and kinds of attributes, for example to sort or group various machines, machines may be
related to machine_tag entities.

3.10. Machine_Tags

For users with many machines, it might be useful to classify them into further groups,
such as production lines, floors, and facilities. To allow flexibility in this, further clas-
sification of machines is stored as machine tags, key-value pairs applied to individual
machines. For modeling data and keeping tags homogeneous, it will also be useful to apply
standardized machine type tags to machines (e.g., pump, gearbox, generator, etc.).
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3.11. Gateways

A gateway entity corresponds to a device connected to sensors that transmits their
signals to the database. Gateway information may not be required in training PHM
ML models, but storing information about them is important for the maintenance and
administration of the physical network of devices associated with the data it generates.

3.12. Users

Large applications are also probably multi-user. Access to the data in the DB may
be gated by an API that only grants users access to their own data or data shared with
them. This allows for the development of a privacy mechanism. It also allows for easy
implementation of queries involving data associated with an individual user.

3.13. Institutions

Institutions are modeled as groups of users, with one user designated as the institution
administrator. An example use of the institution entity is, through an API, shared access to
data for users of the same institution.

The OWL representation of the PHM ontology is provided in Appendix C.

4. Selecting a Database Engine

The schema is a framework describing the structure of the data to be stored. A database
engine must be chosen to implement the schema and begin to use it. Two kinds of database
engines predominate: relational, such as SQL, and non-relational, or NoSQL. While the
schema has been presented as an entity relation diagram, it is possible to implement
relational schemas in document-oriented database engines. PostgreSQL and MongoDB
are popular relational and non-relational database engines. Both are general purpose
database engines suitable for many data storage applications, including time series data.
Specialized TSDBs can also be built on relational or non-relational paradigms. InfluxDB
and TimescaleDB are examples of each. Some of the most common technical considerations
made when selecting a database engine include flexibility, scalability, and performance.

Flexibility, in this case, typically refers to the ability of the database to support heteroge-
neous data types and changing requirements around the structure of data to be stored [19].
NoSQL or schemaless databases support a wide variety of datatypes and allow for new
datatypes and structures to be introduced as an application evolves. For example, in a PHM
application, it may not be immediately clear which features from the raw signal will be most
useful in performing prognosis. Schemas in relational databases must be defined upon
creation and can be more difficult to alter. The proposed schema demonstrates how some
uncertainty can be accommodated in a static schema, for example, through the limited use
of key-value column pairs in selected tables. Several tables involve key-value column pairs
that can be populated with new keys over time. Additionally, using the JSON file format
for storing raw measurements allows for different sensor data types to be packaged for the
same column. The drawback to this is a requirement for data cleaning and standardized
notation of the raw data being stored.

Scalability is an important selection criterion since PHM applications generate large
amounts of data over time. To support larger volumes and velocities of data, databases
can be vertically and horizontally scaled. Vertical scaling refers to adding capacity such
as storage, processing power, and memory to a server node. Horizontal scaling refers
to the creation of additional server nodes to jointly support the database [20]. Generally
speaking, both relational and non-relational databases can be vertically scaled, but the silo
architecture of relational databases limit their ability to be scaled horizontally [20].

The speed of data ingestion and query execution are key measures of performance [21].
Speed requirements vary by application. For PHM, it may be necessary to graph historical
metric values in a real-time interactive dashboard, for example, using a web tool such as
Grafana. The speed with which data can be interacted with and searched can strongly drive
usability. Retention of performance as scale grows is an important consideration. It can
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be difficult to predict the exact trajectory of an application, so the ability to dynamically
allocate additional resources to a DB is valuable.

In addition to the technical considerations of flexibility, scalability, and performance,
there are also practical considerations to be made around ease of use, community support,
and enforcement of data standardization and integrity. With respect to ease of use, it is
preferable to select a database engine that is intuitive, has robust documentation, a wide
base of users, and established use cases and examples. Lastly, it is advantageous to choose
a database engine that allows policing of the schema, which will improve data integrity and
reduce the burden of data cleaning in downstream processes. To some extent, relational
database engines inherently enforce data consistency as incomplete or incorrectly typed
records cannot be ingested. Complex data integrity protocols can be built around relational
and schemaless databases through other means, such as by requiring interactions with
the database to be carried out through an application programming interface (API) that is
designed to check the data for consistency.

For the sample implementation that follows, PostgreSQL is chosen as the database
engine for implementing the schema. PostgreSQL offers a balance between structure, with
its rigid schema and flexibility, and with its support for JSON datatypes. PostgreSQL
supports hardware improvements for vertical scaling and can be horizontally scaled, for
example, by sharding and partitioning, through extensions such as Postgres-XL. PostgreSQL
can also offer high performance with query optimization and indexing.

5. Sample Implementation

Code for the sample implementation is available here: https://github.com/JacobHendriks/
sensors_ts_public (accessed on 19 March 2024) [22]. The code was written to create the database,
generate fictitious data, and query the database at intervals as the amount of data stored in the
DB increased. The query execution time was measured at intervals. Measuring the execution
time for queries while the database grows in terms of the number of entries and relations
allows for examination of query performance versus scale. Certain parameters that dictate
cardinality are prescribed in the benchmark code. Parameters, their descriptions, and default
values are listed in the appendix. Varying these parameters changes the number of many-to-
one relationships in the DB, which can impact query performance. The following results are
given for the default values only; interested researchers are invited to clone the repo and run
experiments with different parameters of their choosing to test conditions relevant to them.

The hardware used for this demonstration was a laptop computer (Dell XPS 17 9700,
equipped with an i7-10750H CPU and 16 GB of RAM), rather than a cloud service as would
be used in a real application. This was chosen for simplicity and to demonstrate a simple
setup process that may be used for other proof-of-concept work.

In this implementation, some tables are populated with generated data at initialization
and remain fixed in size while other tables grow in records with each interval. Tables that
grow throughout the test include metrics, measurements, and raw_data. This reflects one
of the aspects of how PHM applications scale; data velocity for these measurement-related
tables is proportional to the number of active sensors in the network and the frequency with
which measurements are taken. For simplicity, tests discussed in this paper involve a fixed
number of sensors (864) and simulate the passage of time by adding rows to time-oriented
tables with advancing timestamps. The parameters determining the final number of sensors
are given in Table A1 of Appendix A.

Each of the figures below show the performance in terms of execution time for one
query. The left side shows the total time for the query to return a response, as timed
in the calling Python function. For all queries, growth in total execution time increases
non-linearly. Growth is expected, since the same queries return more rows as more data
are added to the DB. The left side shows the total execution time divided by the number of
rows affected by the query. Different queries display different trends in this regard. Queries
used in this paper are described in Appendix B.

https://github.com/JacobHendriks/sensors_ts_public
https://github.com/JacobHendriks/sensors_ts_public
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Figure 3 illustrates the results of a query conducted on raw data associated with a
specific machine, demonstrating a direct application of the proposed schema. This query
necessitates multiple join operations as the raw data are connected to machines through
measurements, sensors, and components. The left side of the plot shows the total execution
time of the query, and the right side of the plot shows the total execution time divided
by the number of rows affected by the query. As simulated time advances, the query
retrieves an expanding number of raw data entities. At first, the total execution time for
the query exhibits an approximately linear growth, but as the number of rows affected
increases, the growth becomes nonlinear. This nonlinear pattern is likely a result of the host
machine’s memory handling capabilities, indicating that the exact behavior is dependent on
the computer hardware used. Notably, even with this nonlinear growth in total execution
time, the query time per affected row remains relatively fast.
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Figure 4 presents an alternative query on the raw data, this time employing conditions
linked to related metrics as a selection filter. This approach aligns with practical scenarios
where interest lies primarily in specific data subsets that conform to predetermined criteria.
Much like the findings in Figure 3, the trends identified in the execution of this query share
similar characteristics.
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Figure 5 shows the results for a query on metrics involving six joins and four conditions.
The conditions are related to the type of metric, time of the measurement (there being a
measurement tag of a certain value), and the machine name. This query represents a use
case where the user might seek specific metrics of interest for a particular machine within a
certain timeframe, perhaps triggered by a specified event or condition, effectively allowing for
a nuanced and tailored analysis of machine performance over time. The results show that the
total time and time per row returned grows non-linearly as the number of records stored in
the DB grows. This demonstrates a potential limitation of the demonstrated implementation.

J. Sens. Actuator Netw. 2024, 13, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 4. Query execution time (left) and time/row affected (right) versus number of measurement 
records in the database for query 1: reading all raw data for a given component conditional on re-
lated metric values. 

Figure 5 shows the results for a query on metrics involving six joins and four condi-
tions. The conditions are related to the type of metric, time of the measurement (there 
being a measurement tag of a certain value), and the machine name. This query represents 
a use case where the user might seek specific metrics of interest for a particular machine 
within a certain timeframe, perhaps triggered by a specified event or condition, effectively 
allowing for a nuanced and tailored analysis of machine performance over time. The re-
sults show that the total time and time per row returned grows non-linearly as the number 
of records stored in the DB grows. This demonstrates a potential limitation of the demon-
strated implementation. 

 
Figure 5. Query execution time (left) and time/row affected (right) versus number of measurement 
records in the database for query 2: read metrics for a given machine, conditional on time of day 
and measurement tag value. 

Figure 6 shows results for inserting measurement tags conditional on the user related 
to the sensor that produced the measurement and the time of the measurement. The abil-
ity of users to sort and label their data by applying tags to filtered subsets of data is an 
important feature of the schema. The execution time per row affected remains 
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records in the database for query 2: read metrics for a given machine, conditional on time of day and
measurement tag value.

Figure 6 shows results for inserting measurement tags conditional on the user related to
the sensor that produced the measurement and the time of the measurement. The ability of
users to sort and label their data by applying tags to filtered subsets of data is an important
feature of the schema. The execution time per row affected remains approximately constant
initially and increases after around 2 M measurement records. Over time, the volume of
measurements (and corresponding tags) will naturally grow, especially as more sensors are
deployed or more machines are brought under monitoring. This could represent a potential
scalability concern in scenarios where frequent, user-specific tagging of a rapidly growing
number of measurements may be a key requirement.
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Figure 7 shows results for a deletion query. Raw_data entities are deleted, conditional
on the identity of the user associated with them. Also involving several join operations, this
query might be used to clear data from outgoing or inactive users. This query resulted in the
quickest execution times and follows a piecewise, linear trend. Discontinuities might have
been caused by background processes running on the host machine impacting resource
allocation. These background processes may have impacted other queries as well but have
a more pronounced impact on faster queries.
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6. Discussion

The proposed ontology for ML-driven PHM applications involving sensor networks
monitoring various industrial machines is a significant contribution to the field. In this
discussion, the effectiveness and potential benefits of the proposed ontology are evaluated.

The proposed ontology offers a structured framework for organizing and representing
data in PHM applications. By defining entities such as measurements, raw data, metrics,
measurement tags, events, sensors, sensor models, components, machines, and gateways,
the ontology provides an interconnected view of the data ecosystem used in PHM. This
allows for a unified perspective on data structure, reducing the barrier to data and model
sharing among the PHM community.

One of the strengths of the proposed ontology is its extensibility and adaptability to
different use cases. It accommodates various types of measurements, including temper-
ature, vibration, current draw, and more. The inclusion of raw data and metrics enables
researchers and practitioners to leverage different data representations and feature engi-
neering techniques for both traditional ML methods and deep learning algorithms. This
is crucial, as different ML approaches may require diverse input representations derived
from raw measurements.

Furthermore, the ontology reflects the importance of contextual information and
temporal aspects of data in PHM. The inclusion of measurement tags and events allows
for the annotation of measurements with additional information (e.g., operational status,
health state, or predicted condition states). This contextual information becomes valuable
for training and validating ML models, as well as for tracking and analyzing the health of
machinery over time.

The proposed ontology also addresses the challenges of storage and database selec-
tion for ML-driven PHM. By acknowledging the advantages and considerations of both
relational and non-relational databases, the benefits of relational databases for efficient
data retrieval in ML and artificial intelligence (AI) applications are emphasized. By im-
plementing the proposed ontology on a PostgreSQL database and loading it with large
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auto-generated fictitious data, the feasibility and practicality of the ontology in real-world
scenarios is demonstrated. The performance evaluation and measurement of CRUD op-
erations provide insights into the efficiency and effectiveness of the ontology in handling
common condition monitoring questions.

7. Conclusions

This paper proposes an ontology for PHM applications in industrial asset condition
monitoring, with a focus on the data requirements and database selection for ML-driven
PHM. The importance of large, organized repositories of real-world data to facilitate the
continued improvement of ML-driven PHM is emphasized. Furthermore, this paper
addresses the need for a unified perspective on data structure to reduce barriers to data
and model sharing within the community.

This paper challenges the common wisdom of using non-relational databases (NoSQL)
for PHM applications, advocating for the use of relational databases due to their data
uniformity and intuitive structure, as well as the efficiency of retrieving data for ML and
AI purposes using SQL scripting. At the same time, the proposed ontology incorporates
the best of NoSQL data management systems (i.e., flexibility).

The proposed schema and ontology provide a framework for organizing the data
related to sensors, measurements, raw data, metrics, events, sensor models, components,
machines, and gateways. The relationships between these entities are provided and the
flexibility and scalability of the schema to accommodate different use cases and applications
are highlighted.

Overall, this paper underscores the underlying data foundation required for ML
and AI in PHM applications and emphasizes the need for better structured repositories.
The proposed ontology and schema provide a valuable foundation for researchers and
practitioners working in the field of PHM, enabling better data management, model sharing,
and advancements in ML-driven prognostics and health management.

While the proposed ontology offers a solid foundation for organizing data in ML-
driven PHM applications, there are a few aspects that could be explored further. For
instance, in this paper the scalability and distributed nature of data storage in large-scale
cloud network CM scenarios are not addressed. Future research could investigate how the
proposed ontology can be extended to support distributed data storage and processing in
IoT environments. Additionally, future work will benchmark the developed PostgreSQL im-
plementation against common noSQL engines in the literature. To demonstrate the schema,
this paper presented an implementation in PostgreSQL. This has some weaknesses, and
future work may investigate alternative implementations, including other TSDBs. Lastly,
to aide in the proper use of the schema and to facilitate interoperability, the development
of an API to provide efficient and permissible data transactions should be considered.
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Appendix A. Parameters of Fictional Data Influencing Cardonality

Table A1. Summary of experimental parameters fixed at test initialization.

# Name Description Default Value

1 num_institutions Number of unique institutions 6

2 num_sensor_models Number of unique sensor models 3

3 machine_tags_per_machine Number of tags related to each machine 2

4 users_per_institution Number of users related to each institution 4

5 gateways_per_user Number of gateways related to each user 3

6 machines_per_gateway Number of machines related to each gateway 3

7 components_per_machine Number of components related to each machine 2

8 sensors_per_component Number of sensors related to each component 2

9 metrics_per_measurement Number of metrics related to each measurement 3

Appendix B. SQL Queries Used to Evaluate Execution Times

Query 0

Find all raw data and timestamps related to machine X, sort by most recent.
SELECT mc.machine_name

, m.mtime
, r.mdata
, s.sensor_id

FROM raw_data r

JOIN measurements m ON r.measurement_id = m.measurement_id
JOIN sensors s ON s.sensor_id = m.sensor_id
JOIN components c ON c.component_id = s.component_id
JOIN machines mc ON mc.machine_id = c.machine_id

AND mc.machine_name = ‘Lucas”s gearbox’
Query 1

Find raw data with time stamps related to component X if the related metric Y was
over a certain value.

SELECT c.component_name

, m.mtime
, r.mdata

FROM raw_data r

JOIN measurements m ON m.measurement_id = r.measurement_id
JOIN metrics mt ON mt.measurement_id = m.measurement_id

AND metric_name = ‘rms’
AND metric_value >= 0.975

JOIN sensors s ON s.sensor_id = m.sensor_id
JOIN components c ON c.component_id = s.component_id

AND c.component_name = ‘input shaft’
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Query 2
Find metric X related to machine Y if the measurement timestamp is close to noon and

the measurement has tag “running”.
SELECT mc.machine_name

, m.mtime
, mt.metric_name
, mt.metric_value

FROM raw_data r

JOIN measurements m ON m.measurement_id = r.measurement_id
AND m.mtime::time between ‘11:58’ and ‘12:07’

JOIN measurement_tags mtg ON mtg.measurement_id = m.measurement_id
AND mtg.mtag_value = ‘faulty’

JOIN metrics mt ON mt.measurement_id = m.measurement_id
AND metric_name = ‘rms’

JOIN sensors s ON s.sensor_id = m.sensor_id
JOIN components c ON c.component_id = s.component_id
JOIN machines mc ON mc.machine_id = c.machine_id

AND mc.machine_name = ‘Lucas”s gearbox’
Query 3

Create rows in measurement tag table with key X, value Y, and machine ID Z, for all
machines owned by user P created after time T.

INSERT INTO measurement_tags
SELECT gen_random_uuid() AS measurement_tag_id

, m.measurement_id
, 1 = 1 AS ground_truth
, ‘diagnostic’ AS measurement_tag_type
, ‘component’ AS measuerement_tag_level
, ‘faulty’ AS measurement_tag_value

FROM machines mc

JOIN components c ON c.machine_id = mc.machine_id
JOIN sensors s ON s.component_id = c.component_id
JOIN measurements m ON m.sensor_id = s.sensor_id

AND m.mtime::time > ‘2000-01-21 00:00:00′

JOIN gateways gw ON gw.gateway_id = s.gateway_id
JOIN users u ON u.user_id = gw.user_id

AND user_email = ‘gking@scott-medina.biz’

WHERE mc.machine_id = ‘6c834752-35a7-4fc0-81fb-be93a08b84f3′)
RETURNING *

Query 4
Delete raw data, measurements, and metrics related to user X.
DELETE FROM raw_data r
USING measurements m

JOIN sensors s ON s.sensor_id = m.sensor_id
JOIN gateways gw ON gw.gateway_id = s.gateway_id
JOIN users u ON u.user_id = gw.user_id

WHERE r.measurement_id = m.measurement_id

AND u.user_email = ‘egriffith@gonzalez.com’

RETURNING *
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Appendix C. OWL Representation of the PHM Ontology

Classes:

• Measurement
• RawData
• Metric
• MeasurementTag
• Event

# Component
# Machine
# Sensor

• Sensor
• SensorModel
• Component

# Bearing
# Gear_Box
# Shaft
# . . .

• Machine

# AC_Motor
# Pump
# . . .

• MachineTag

# Component_Tag
# Sensor_Tag

• Gateway
• User
• Institution

Object Properties:

• sendsMeasurement (Sensor, Measurement)
• hasData (Measurement, RawData)
• hasMetric (Measurement, Metric)
• hasTag (Measurement, MeasurementTag)
• hasEvent (Sensor, Event)
• hasEvent (Component, Event)
• hasEvent (Machine, Event)
• determinesModel (SensorModel, Sensor)
• isMonitored (Component, Sensor)
• connectsTo (Gateway, Sensor)
• hasAccess (User, Gateway)
• isComposedOf (Machine, Component)
• employes (Institution, User)

Data Properties:

• component_id
• component_name
• component_type
• description
• email
• event_id
• external_ id
• external_id_type
• gateway_id
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• ground_truth
• install_date
• institution_id
• institution_name
• last_serviced
• last_transmission
• location
• machine_id
• machine_name
• machine_tag_id
• machine_tag_name
• machine_tag_value
• machine_type
• mdata
• measurement_id
• measurement_tag_ id
• measurement_type
• metric_id
• metric_name
• metric_value
• model_number
• mtag_ level
• mtag_ type
• mtag_value
• mtime
• next_service
• property measured
• raw_data_id
• replaced_date
• role
• sensor_id
• sensor_model_id
• serial number
• user_ id

Constraints:

• A Measurement must have a sensor, time, and type;
• A RawData belongs to at most one Measurement;
• A Metric belongs to one Measurement and has a value;
• A MeasurementTag is associated with a Measurement with a key and value;
• An Event can be related to a Measurement, Sensor, Component, or Machine;
• A Sensor has a model;
• A Sensor monitors one or more Components;
• A Component is part of one Machine;
• A Machine has one or more Components;
• A Sensor is connected to exactly one Gateway;
• A User is a member of one Institution.
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