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Abstract: Knowledge of causal relationships is fundamental for understanding the dynamic mech-
anisms of ecological systems. To detect such relationships from multivariate time series, Granger
causality, an idea first developed in econometrics, has been formulated in terms of vector autoregres-
sive (VAR) models. Granger causality for count time series, often seen in ecology, has rarely been
explored, and this may be due to the difficulty in estimating autoregressive models on multivariate
count time series. The present research investigates the appropriateness of VAR-based Granger
causality for ecological count time series by conducting a simulation study using several systems
of different numbers of variables and time series lengths. VAR-based Granger causality for count
time series (DVAR) seems to be estimated efficiently even for two counts in long time series. For
all the studied time series lengths, DVAR for more than eight counts matches the Granger causality
effects obtained by VAR on the continuous-valued time series well. The positive results, also in
two ecological time series, suggest the use of VAR-based Granger causality for assessing causal
relationships in real-world count time series even with few distinct integer values or many zeros.

Keywords: causal relationships; count data; vector autoregressive models; Granger causality index;
conditional Granger causality index; MINAR

1. Introduction

The methodology of linear analyses of univariate time series is widely known and
applied frequently in several scientific disciplines, including ecology. Ecology, additionally,
has provided some of the baseline material for nonlinear time series modeling (Tong 1977;
Tong and Lim 1980). However, many problems in ecology (Jassby and Powell 1990; Turchin
and Taylor 1992) as well as in other fields, e.g., economics (Mountford and Uhlig 2009),
involve simultaneous observations of many quantities requiring methods of multivariate
time series analysis (Lütkepohl 2005; Brandt and Williams 2007). The fundamental property
one would first investigate in multivariate time series is the interdependence of the observed
variables, formulated explicitly with the concept of Granger causality (Granger 1969).

Multivariate time series analysis, and Granger causality in particular, is mainly per-
formed on multivariate time series of continuous-valued variables and relies, essentially,
on vector autoregressive (VAR) models (Sims 1980). The causal relationship between two
time series was first defined by Granger (1969) in econometrics and it was formulated as
the improvement in the prediction of one variable when including in the prediction model
the current and past values of another variable. In this case, it is said that the latter variable
Granger-causes the former one, i.e., the current and past values of the one variable improve
the prediction of the other variable. The strength of Granger causality is quantified with
the Granger causality index (GCI), and the presence of Granger causality is decided by the
Granger causality test (Brandt and Williams 2007).
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In ecology, it is of great interest to find relationships in ecological systems and explain
the causal effects among the involved variables (Bonan and Shugart 1989). However,
Granger causality has not been used as frequently in ecology as in other environmental
sciences (Detto et al. 2012; Gan 2006; Sugihara et al. 2012; Barraquand et al. 2020; Lam et al.
2023). This may be due to the lack of long and uninterrupted (without gaps) time series.
On the other hand, VAR models, also called multivariate autoregressive models (MAR or
MVAR), as well as state-space models, have been popular in ecology in describing complex
ecological systems (Hampton et al. 2013; Auger-Méthé et al. 2021). However, the presence
of a variable in the model does not directly establish a causal relationship of this variable
to the response variable. Granger causality makes use of the VAR model to define this
causal relationship explicitly. To be more precise, Granger causality is estimated using two
VAR models: the unrestricted VAR model of all variables (U-model) and the restricted VAR
model of all but the driving variable (R-model).

Ecological time series are often in the form of count data (Gerber and Kendall 2017),
such as, for example, the number of an endangered species’ individuals in a wildlife refuge.
This may be another reason why Granger causality has not been used much in ecology.

Analyses of count time series have been developed rather independently of the analy-
sis of continuous-valued time series (Davis et al. 2021), as it is argued that the traditional
methods for handling time series are not applicable to count data (Fokianos 2012; Fokianos
et al. 2022). This is because, according to Tjøstheim (2012), in the standard time series
setting, the condition for integer response and predictor variables, as well as integer coeffi-
cients and errors, would likely give rise to the non-stationarity of the underlying processes,
an attribute one wants to avoid when modeling stationary time series.

Moreover, as suggested in O’Hara and Kotze (2010), count data should not be log-
transformed (to stabilize the variance), especially when they contain zeros. In this respect,
models developed for the analysis of continuous-valued time series have also been used
in the analysis of ecological count time series, such as state space models (Newman et al.
2014; Hostetler and Chandler 2015) and generalized linear models (GLMs) (Zeger 1988).
Although methods for analyzing univariate count time series with applications are present
in the literature (McKenzie 1985; Al-Osh and Alzaid 1987; Park and Oh 1997; Barry and
Welsh 2002; Cunningham and Lindenmayer 2005; Held et al. 2005; Ver Hoef and Boveng
2007; Richards 2008; Weiß 2008; Fokianos and Fried 2010; Lindén and Mäntyniemi 2011;
Andersson and Karlis 2014; Ahmad and Francq 2016; Bourguignon et al. 2019; Kong and
Lund 2023), the works on multivariate count time series analysis are disproportionately
less (Fokianos 2021; Weiß 2021). The analysis of multivariate count time series regards
distribution models, such as Poisson (Fokianos et al. 2009; Neumann 2011; Chan and Wan
2014; Piancastelli et al. 2023), binomial and negative binomial (Davis and Wu 2009; Scotto
et al. 2014; Christou and Fokianos 2015), and autoregressive models (Franke and Rao
1993; Heinen and Rengifo 2007), such as Pegram’s autoregressive models (Song et al. 2013;
Angers et al. 2017) and the multivariate integer-valued autoregressive (MINAR) models
(Pedeli and Karlis 2011; Pedeli and Karlis 2013a, 2013b; Scotto et al. 2015; Santos et al. 2021).
There are also other application-oriented approaches (Jung et al. 2011; Held et al. 2005; Paul
et al. 2008; Paul and Held 2011), observation-driven models, and models based on Markov
chains (Catania and Di Mari 2021; Fokianos et al. 2022).

The shortage of approaches for Granger causality for multivariate count time series,
discussed by Shojaie and Fox (2022), is the motivation for the present study. In this work,
we investigate the appropriateness of the widely used VAR models in estimating causal
relationships in ecological multivariate time series of count data, typically being short and
often involving only a few distinct integer values. We term the implementation of VAR on
integer time series as a discrete VAR (DVAR) approach.

To address the appropriateness of DVAR, the aim of this study is to find the minimum
range of count data for which DVAR models reliably identify the Granger causality. We
conduct a simulation study using both continuous-valued and integer-valued systems
derived by discretization, using a varying number of bins (integers). We also consider
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integer time series generated by the MINAR system. Further, we apply the DVAR approach
to two ecological multivariate time series. The results of this study allow us to give
guidelines for data collection in ecology and other disciplines.

The structure of this paper is as follows. In Section 2, we present VAR and Granger
causality, as well as the simulated systems and the two ecological time series. In Section 3,
we present the results of the simulations and their application in ecology, and in Section 4,
the results are discussed. The final conclusions are then given in Section 5.

2. Materials and Methods
2.1. Vector Autoregressive Models and Granger Causality

A VAR(p) model to be fitted to time series data of K variables of length N, {yk,t}, k = 1,
. . ., K and t = 1, . . ., T, is defined as follows (Lütkepohl 2005):

yt = v + A1yt−1 + . . . + Apyt−p + et, t = p + 1, . . . , T, (1)

where v is the constant term vector of length K and Ai, i = 1, . . ., p are coefficient matrices
of size K × K; yt is the vector of K variables in time t and et is the vector of K white noise
input variables, with E(et) = 0 (0 is the K × 1 zero vector), and E(ete′t) = Σe being diagonal,
to exclude the presence of instantaneous Granger causality (Lütkepohl 2005), as is out of
the scope of the current study.

The linear Granger causality is typically formulated in terms of VAR models; however,
it is mentioned that many nonlinear Granger causality measures have been developed
recently, such as information-based measures (Siggiridou et al. 2019). In the present study,
we focus only on the linear Granger causality index (GCI) for bivariate time series and the
conditional Granger causality index (CGCI) for multivariate time series (Geweke 1982),
presented briefly below.

Let {xt, yt}T
t=1 be the bivariate time series of two variables, X and Y{x t, yt}

n
t=1. To

investigate whether X Granger causes Y, denoted X → Y, two models for predicting Y
are considered, the one containing past components of both X and Y, called unrestricted
model (U-model), and the other excluding past components of X, called restricted model
(R-model). Thus, the R-model is simply the autoregressive (AR) model for Y:

yt =
p

∑
i=1

aiyt−i + eR,t, (2)

where p is the model order, αi is the model coefficients, and eR,t is the input white noise
(assumed to be normally distributed), where the subscript ‘R’ denotes the R-model. The
U-model adds to the form of the R-model the terms of past components of X for the same
order p:

yt =
p

∑
i=1

aiyt−i +
p

∑
i=1

bixt−i + eU,t, (3)

where eU,t is the input white noise of the U-model. The form in Equation (3) exemplifies
the bivariate VAR(p) model in Equation (1) for Y. In the presence of Granger causality from
X to Y, the fitting error in Equation (3) is expected to be smaller than the fitting error in
Equation (2), and thus, the GCI is defined as follows (Geweke 1982):

GCIX→Y = ln
Var( ê R,t)

Var( ê U,t)
, (4)

where êR,t and êU,t are the estimated fitting errors of the R-model and the U-model, respec-
tively. The GCI is close to zero when the variance of the two fitting errors is about the same
and then X has no causal effect on Y, and it increases as the Granger causality from X to Y
becomes stronger.
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In the presence of other observed variables that may be correlated to any of X and Y,
stacked in the vector variable Z, the conditional Granger causality from X to Y, denoted X
→ Y|Z, can be defined as the direct causality from variable X to variable Y, which is not
mediated by another variable in Z. The corresponding conditional Granger causality index
(CGCI) is similarly defined as

CGCIX→Y = ln
Var(ê′R,t)

Var(ê′U,t)
, (5)

where ê′R,t and ê′U,t are the estimated fitting errors of the R-model and U-model defined as
in Equation (2) and Equation (3), respectively, but both also including the p terms of lagged
variables for each of the variables in Z.

In total, in a multivariate system of K observed variables, K×(K − 1) GCI and CGCI
values can be calculated. The statistical significance of the GCI or CGCI for each causal effect
X → Y is determined by the so-called Granger causality test, focusing on the statistical
significance of all the coefficients of the lagged X variables in the U-model. The null
hypothesis to be tested is H0: bi = 0 for i = 1, . . ., p. The parametric test is performed using
the F statistic (Brandt and Williams 2007). In view of all pairs of the K variables, there are
multiple tests on the same data, and typically, the criterion of false discovery rate (FDR) is
called in to correct for multiple comparisons (Benjamini and Hochberg 1995).

The GCI and CGCI computations, as well as the respective Granger causality tests,
are performed based on the VAR models fitted to the continuous-valued multivariate time
series. We suggest the same analysis for Granger causality be applied to discrete-valued
multivariate time series, i.e., count time series. Though the reasoning for the use of count
data is that the variables can only make sense when they get integer values, this does
not rule out the use of methods for continuous-valued data. The rationale is to treat the
observed variables as being continuous-valued and attribute the integer values of the time
series to round-off observational noise. Thus, the Granger analysis is applied to the count
time series exactly as for the continuous-valued time series, and we refer to this as discrete
VAR (DVAR) analysis, to stress that it is the standard VAR approach applied to discrete data.

To assess the overall accuracy of the VAR-based (DVAR-based when the data are
assumed to be discrete) Granger causality, we consider the Matthews correlation coefficient
(MCC) (Matthews 1975). Assigning as true positive (TP) and false negative (FN) the number
of pairs of true Granger causality that were correctly found to be statistically significant
and wrongly not found to be statistically significant, respectively, and true negative (TN)
and false positive (FP) the number of pairs of not true Granger causality that were correctly
not found to be statistically significant and wrongly found to be statistically significant,
respectively, the MCC is defined as

MCC =
TP × TN − FP × FN√

(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)
, (6)

where ‘×’ denotes multiplication. The MCC can be seen as the correlation coefficient
between the two true (or observed) classes (pairs having or not having Granger causality)
and the two estimated (or predicted) classes, and it ranges between −1 and 1, with −1
meaning complete disagreement, 0 meaning random estimation (or prediction), and 1
meaning perfect match.

2.2. Simulations

In order to assess the validity of DVAR analysis and the accuracy of the derived
GCI and CGCI, we perform extensive simulations in MATLAB (The MathWorks, Inc.,
Natick, MA, USA) on two continuous-valued VAR and three MINAR(1) systems, where
the Granger causality relationships are known. The two VAR systems are as follows.
(Supplementary Materials).
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System 1: A VAR(5) system of four variables, a representative of the class of linear
stochastic dynamic systems used in Winterhalder et al. (2005), defined as

x1,t = 0.8x1,t−1 + 0.65x2,t−4 + e1,t
x2,t = 0.6x2,t−1 + 0.6x4,t−5 + e2,t
x3,t = 0.5x3,t−3 − 0.6x1,t−1 + 0.4x2,t−4 + e3,t
x4,t = 1.2x4,t−1 − 0.7x4,t−2 + e4,t
There are four direct Granger causality relationships in a total of 12 pairs: i. X1→ X3,

ii. X2 → X1, iii. X2 → X3, iv. X4 → X2.
System 2: A VAR(4) system of five variables, selected because it exhibits oscillating

behavior and simulates cyclic-like activity. This system is used in Schelter et al. (2006) and
it is defined as

x1,t = 0.4x1,t−1 − 0.5x1,t−2 + 0.4x5,t−1 + e1,t
x2,t = 0.4x2,t−1 − 0.3x1,t−4 + 0.4x5,t−2 + e2,t
x3,t = 0.5x3,t−1 − 0.7x3,t−2 − 0.3x5,t−3 + e3,t
x4,t = 0.8x4,t−3 + 0.4x1,t−2 + 0.3x2,t−3 + e4,t
x5,t = 0.7x5,t−1 − 0.5x5,t−2 − 0.4x4,t−1 + e5,t
This system has 7 direct Granger causality relationships in a total of 20 pairs: i. X1 →

X2, ii. X1 → X4, iii. X2 → X4, iv. X4 → X5, v. X5 → X1, vi. X5 → X2, vii. X5 → X3.
An MINAR(1) system has the general form Xt = A o xt−1 + et, where Xt is the integer-

valued vector variable of dimension K and et is the innovation vector of K (independent
here) Poisson variables (we set the Poisson parameter equal to 0.1 in order to have a small
range of integer values), A is a coefficient matrix of size K × K, and ‘o’ is the vector thinning
operator (for details, see Franke and Rao (1993); Pedeli and Karlis (2013a); Boudreault and
Charpentier (2011)). Below, we list three MINAR(1) systems we use in the simulations in 2,
3 and 4 variables, respectively.

System 3: An MINAR(1) system of two variables taking integer values from 0 up to 4
and 3, respectively, with the following coefficient matrix:

A =

[
0.25 0.9

0 0.3

]
giving the relationship X2 → X1.

System 4: An MINAR(1) system of 3 variables taking integer values from 0 up to 6, 4
and 3, respectively, with the following coefficient matrix:

A =

0.2 0.8 0.8
0 0.2 0.8
0 0 0.2


giving the following relationships: i. X2 → X1, ii.. X3 → X1, iii. X3 → X2.

System 5: An MINAR(1) system of 4 variables taking integer values from 0 up to 10, 6,
4 and 3, respectively, with the following coefficient matrix:

A =


0.2 0.8 0.8 0.8
0 0.2 0.8 0.8
0 0 0.2 0.8
0 0 0 0.8


giving the following relationships: i. X2 → X1, ii. X3 → X1, iii. X3 → X2, iv. X4 → X1, v. X4
→ X2, vi. X4 → X3.

To obtain statistically valid results, we consider 1000 realizations of each VAR and
MINAR system and different lengths of the generated time series, namely, N = 50, 100, and
1000. For the three MINAR systems, we use also N = 25 because the systems are of order
one, allowing estimation even for very short time series.
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For the two VAR systems, the Granger causality is quantified by the GCI and CGCI on
the original continuous-valued time series (VAR approach with p equal to the true order),
serving as a reference for the DVAR approach. The statistical significance of the GCI and
CGCI is tested with the F-statistic and the FDR for significance level a = 0.05. Then, the
multivariate time series are discretized at varying ranges of integer values, and for each
range, the GCI and CGCI are calculated on the count multivariate time series (DVAR with
p equal to the true order). The varying range of count data is R = 2, 4, 6, 8, 10, 15, 20, 30, 40
and 60. Further, the accuracy of VAR and DVAR (for a different range of integer values) in
matching the true Granger causality relationships of the system is assessed by the MCC.

2.3. Applications

Ecological time series, especially wildlife time series, are typically short. The first
studied time series is for Common Eider (Somateria mollissima) (Milne 1965), available at the
Global Population Dynamics Database of Imperial College (NERC Centre for Population
Biology, Imperial College 2010; data reliability labeled as medium). The data (pop) are
the monthly population abundance of the species as observed at the Ythan Valley of
Aberdeenshire, Scotland, United Kingdom (descriptive statistics: min = 300, max = 3250,
and median = 800 individuals). The time span is from February 1955 to February 1965
(N = 121) and includes 11 missing values.

The Granger causal effect of abiotic factors on the population of Common Eider is
examined, where the time series of abiotic factors are obtained from the meteorological
station in Nairn, Scotland (Met Office 2014). The monthly time series of the following
five variables are considered: (i) mean daily maximum temperature (tmax), (ii) mean daily
minimum temperature (tmin), (iii) days of air frost (af ), (iv) total rainfall (rain), (v) total
sunshine duration (sun). There are some missing values in four of these series, which are
filled with linear interpolation. Figure 1 presents the history plots of the six completed time
series, one of the Common Eider abundance, and five of the abiotic factors’ series.

As shown in Figure 1, all the time series exhibit annual seasonality, but there is no
indication of a trend in any of the series. For each time series, the seasonality is removed by
subtracting the average value for each month of the year. The order p of the VAR model
to be fitted to the six time series is found using the Akaike information criterion (AIC),
implemented for VAR models in MATLAB. Then, we compute the GCI and CGCI using
VAR and DVAR for varying ranges R. Further, we search for the minimum R of the DVAR
that best matches the Granger causal relationships estimated by the VAR model. This is
evaluated with the MCC measure computed for the relationships found by VAR against
those found by the DVAR model for the specific R.
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Figure 1. History plots of the Common Eider population and the five abiotic factor variables of
the application.

The second real example is of a count time series of measles data, as opposed to the
discretized time series in the previous example. Measles dynamics have been investigated
recently in multivariate count data but at a large range of integer values (ranging from 0 to
>1000). Here, we use weekly counts of new measles cases in the administrative region of
Weser-Erms in Lower Saxony in Germany, analyzed in Held et al. (2005). The dataset is
available in the Surveillance package for R (Salmon et al. 2016; Meyer et al. 2017), containing
15 time series at different locations within the region spanning 104 weeks (year 2001 and
2002). Five time series have up to 2 measles cases (Figure 2a), another five time series have
from 3 to 6 cases (Figure 2b), and the remaining five time series have from 9 to 51 cases
(Figure 2c).
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3. Results
3.1. Simulations

We first present, in detail, for System 1 the greatest difference expected between
standard VAR and the DVAR with only two integer values (values 0 and 1, R = 2) and with
length N = 50. Table 1 shows that, for VAR and DVAR, the mean CGCI from 1000 realizations
for the 12 variable pairs, and the number of realizations, the CGCI was found to be
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statistically significant using the FDR correction at the significance level a = 0.05. For such
a short N, the VAR approach does not achieve the accurate identification of the four true
Granger causality effects. On the other hand, the proportion of false positives is below the
significance level (less than 50 of the 1000 realizations for pairs of no true causality) and the
same holds for DVAR with R = 2. As expected, DVAR has less power in identifying the
true direct Granger causality relationships.

Table 1. Comparison of the VAR approach and the DVAR approach with R = 2 for System 1 and
N = 50. The rows in bold show the pairs of true causal relationships; the arrow shows the direction of
the relationship. The columns titled CGCI (for VAR and DVAR) display the mean CGCI in the 1000
realizations and the columns titled FDR (for VAR and DVAR) display the number of times the CGCI
is found to be statistically significant at the significance level a = 0.05 using the FDR correction for
multiple testing.

Pair CGCI (VAR) FDR (VAR) CGCI (DVAR) FDR (DVAR)

X1 → X2 0.1906 18 0.1848 19
X2 → X1 0.8900 890 0.3924 118
X1 → X3 0.7560 781 1.0750 320
X3 → X1 0.1922 16 0.1762 11
X1 → X4 0.1847 19 0.1859 10
X4 → X1 0.1868 17 0.1988 9
X2 → X3 0.5097 419 0.1974 15
X3 → X2 0.1885 20 0.1964 12
X2 → X4 0.1925 18 0.1927 8
X4 → X2 0.7879 830 0.3985 140
X3 → X4 0.1864 25 0.1932 13
X4 → X3 0.1905 18 0.1916 14

The performance of the DVAR improves and tends to match the performance of the
VAR approach as R increases and as N increases. The improvement with R is demonstrated
in Figure 3 for N = 100 in the form of boxplots, where the boxplot for each pair of variables
gives the distribution of the CGCI from the 1000 realizations. Thus, at each panel, the
12 boxplots correspond to the 12 ordered variable pairs (for the order see Table 1), with the
true direct Granger causality relationships being indexed as 2, 3, 7 and 10. The panel for
VAR is to be compared with the panels for DVAR with R increasing from 2 to 60.

For N = 100, the pattern of the 12 boxplots for VAR is well preserved for all but the
DVAR with R = 2. For the latter, the boxplot for X2 →X3 is at the same level as for the
pairs of no direct Granger causality, whereas the other three are distinctly higher (to be
compared with Table 1 for N = 50). As R increases, all four boxplots corresponding to pairs
of true Granger causality rise from the zero level, and already for R = 10 the distributions of
the CGCI values match those of the VAR approach well. Even for R < 10, DVAR identifies
all the causal and non-causal relationships correctly, except from the relationship X2 →X3,
which is found statistically significant less often than with the VAR approach.

The overall performance of VAR and DVAR in identifying the true Granger causality
structure of the system is quantified with the MCC shown in Figure 4 for System 1 and
N = 50, 100 and 1000. For N = 50 and R = 2, DVAR gives MCC = 0.3 and increases
monotonically and fast, with R converging to MCC = 0.76, the score of the VAR approach,
and effectively approaching this value for R > 15. For N = 100, the VAR approach gives
MCC = 0.96, and the MCC for DVAR starts from 0.76 for R = 2 and converges faster than
for N = 50, approaching the 0.96 level already for R = 10. For the largest time series length
(N = 1000), the DVAR for R = 2 gives MCC = 0.9, which is close to MCC = 0.98 for the
VAR approach and this level is reached with R = 4. These results suggest that DVAR is as
efficient as VAR even for a very small range of integers when the time series is long enough.
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Figure 3. Boxplot panels of the CGCI for the 12 variable pairs from 1000 realizations of System 1 for
N = 100, where the left panel (labeled “VAR”) is for the VAR approach and the other panels are for
the DVAR approach with varying range of integer values R.
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The results for System 2 are similar, as shown for the MCC in Figure 5. Here, the seven
true direct Granger causality relationships are harder to identify even with VAR. However,
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the MCC of the DVAR converges with R to the MCC of VAR even faster than for System 1
and effectively obtains the same MCC for R > 8.
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The same analysis on the basis of the GCI (assuming no conditioning on the other
variables) showed the equivalent matching of DVAR to VAR depending, similarly, on R
and N.

For the MINAR(1) systems of the number of variables K = 2, 3 and 4, the DVAR
approach performed equally well as for the discretization of the continuous-valued time
series and identified the true causal relationships. As seen in Table 2 and Figure 6, even for
K = 2 and N = 25, the FDR-corrected Granger causality test identifies the true relationship,
X2→X1, in 85% of the realizations. However, as the number of variables K increases, the H0
is rejected less times for N = 25 but in any case, the rate of false positives does not exceed
the nominal level of 5%. DVAR has again the beneficial property of increasing the power of
detecting the true causal relationships, with the increase in N reaching the maximum 100%
often, even for N = 100.

Table 2. The average of GCI (for K = 2) and CGCI (for K > 2) from 1000 realizations of the MINAR(1)
systems for K = 2, 3 and 4 (Systems 3 to 5) and the number of rejections of H0 with the FDR statistic.
The true causal relationships are highlighted.

K = 2 N = 25 N = 50 N = 100 N = 1000

Relation GCI FDR GCI FDR GCI FDR GCI FDR

X1 → X2 0.051 55 0.024 49 0.012 65 0.001 80

X2→ X1 2.580 850 0.740 973 0.552 998 0.508 1000

K = 3 N = 25 N = 50 N = 100 N = 1000

Relation CGCI FDR CGCI FDR CGCI FDR CGCI FDR

X1 → X2 0.059 54 0.026 46 0.012 46 0.001 55

X2→ X1 1.008 749 0.521 961 0.488 1000 0.461 1000

X1 → X3 0.047 23 0.021 31 0.011 37 0.001 26

X3→ X1 0.758 602 0.342 844 0.311 985 0.286 1000

X2 → X3 0.048 31 0.024 35 0.011 30 0.001 45

X3→ X2 1.687 689 0.469 907 0.424 994 0.403 1000

X1 → X2 0.059 54 0.026 46 0.012 46 0.001 55

K = 4 N = 25 N = 50 N = 100 N = 1000

Relation CGCI FDR CGCI FDR CGCI FDR CGCI FDR

X1 → X2 0.066 42 0.027 53 0.013 37 0.001 49

X2→ X1 0.714 770 0.547 976 0.497 1000 0.462 1000

X1 → X3 0.068 42 0.026 41 0.011 38 0.001 37

X3→ X1 0.493 550 0.357 864 0.326 992 0.299 1000

X1 → X4 0.052 23 0.022 36 0.010 32 0.001 34

X4→ X1 0.382 416 0.232 686 0.206 931 0.183 1000

X2 → X3 0.136 46 0.025 47 0.012 39 0.001 47

X3→ X2 1.239 732 0.526 945 0.493 1000 0.457 1000

X2 → X4 0.132 37 0.023 36 0.010 30 0.001 50

X4→ X2 1.056 563 0.342 828 0.307 982 0.286 1000

X3 → X4 0.132 28 0.026 44 0.012 36 0.001 38

X4→ X3 1.905 643 0.537 886 0.429 994 0.402 1000

X1 → X2 0.066 42 0.027 53 0.013 37 0.001 49
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Figure 6. Boxplot panels of the CGCI from DVAR on 1000 realizations of the MINAR(1) systems,
System 3 in the left column, System 4 in the middle column and System 5 in the right column, and for
N = 25, 50, 100, 1000, for the panels from top to bottom.

3.2. Applications

In the first application of Common Eider data, the minimum AIC was found for
p = 1, and we fit VAR(1) to the six time series. The estimation of the CGCI for all pos-
sible pairs resulted in the following two statistically significant direct Granger causal
relationships: (i) tmax Granger causes tmin conditioning on the other four variables
(CGCItmax->tmin = 0.0477, p = 0.02), and (ii) tmin Granger causes af conditioning on the
other four variables (CGCItmin->af = 0.0588, p = 0.0098). Thus, the weather variables do not
Granger-cause the Common Eider abundance. Note that, here, the statistical significance
was not corrected with FDR for multiple testing; otherwise, no statistically significant
Granger causality could be obtained. We discretized the system for R changing from 2 to
60 as in the simulations. For R = 2 and R = 4, DVAR failed to find the causal relationships
indicated by VAR (another causal relationship was found for R = 4). This was succeeded
first for R = 6 (but it still found another one). The plot of MCC for VAR and DVAR (for
varying R), shown in Figure 7 (top panel), displays their match for R ≥ 8. The result that
DVAR for R > 6 performs similarly to VAR is in agreement with the simulations.
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Figure 7. Top panel: MCC for the Granger causal relationships estimated by the CGCI from the VAR
approach and the DVAR approach for varying R (x-axis) considering all six ecological time series.
Bottom panel: the GCI for the VAR approach (bar) and the DVAR approach (curve) for varying R
(x-axis) for the Granger causality from air frost to Eider abundance.

We also examined the bivariate version of Granger causality (GCI). Usually, for such
an ecological dataset, the researcher would be more interested in testing the causal effect
of meteorological factors on the wild fauna species population (as it was, in this case, the
Common Eider abundance). We concentrated on the causal relationship between a climatic
variable and the Common Eider abundance. We searched at a higher-order p and found
that, for p = 4 (minimum AIC), the days of air frost Granger-cause the Eider abundance.
For this case, the VAR approach gave GCIaf->pop = 0.1077 with p = 0.0185. We discretized
the two series for all R. As found previously, the DVAR with p = 4 succeeded in finding
this causal relationship when R ≥ 6. The comparison of the GCI from VAR and DVAR



Econometrics 2024, 12, 13 16 of 21

for different R is shown in Figure 7 (bottom panel). It seems that the GCI from DVAR
converges quickly with R to the GCI from VAR. In total, this application seems to support
the findings of the simulations that DVAR is efficient in investigating Granger causality in
ecological count data.

The second application on measles involves time series with very few integer values
as well as fewer time series with large integer values. We applied DVAR (order p = 1)
and the FDR correction for the significance of the CGCI at a = 0.05, where for each pair of
locations, the dependence was computed conditioning on all other 13 locations. The results
are shown in the form of a color matrix (white denotes statistically significant relationship,
black no statistical significance) in Figure 8a. In Figure 8b, the same results are shown with
the conditioning taken only on the neighboring locations, as these are specified in Meyer
et al. (2017).
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weekly measles count data of a small integer range at 15 locations showed the good agree-
ment of the causal relationships by DVAR when adding the information of neighboring 
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1. Tools of quantitative (numerical) analysis can indeed be applied to variables that take 

only a minimum of count values, for example 0, 1. For Granger causality, the short-
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Figure 8. Black–white matrix for the statistical significance of CGCI (white: significant, black: not
significant) on all pairs of the 15 time series of different locations of the measles dataset, where in (a),
all 13 of the other locations (other than driving and response location of each pair) are included in the
VAR model, and in (b), only the neighboring locations are included in the VAR model (X34nn is the
number of the district).

There is a good match between the detected Granger causality relationships: there
are 14 significant relationships with conditioning on all locations and 10 of them are also
significant when conditioning on the specified neighbors (out of 13). Though we cannot
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assess the validity of the positive (significant) and negative (non-significant) pair results,
there seems to be a good agreement with the results of the CGCI based on DVAR when
contrasting with the same results utilizing the information for the neighboring locations.

4. Discussion
4.1. Practical Implications

Count data are often encountered in ecological studies, and this study suggests the
use of VAR models for finding Granger causality relationships in multivariate time series
of count data. The simulations establish that VAR models can be an appropriate tool when
dealing with count time series, a stand not previously supported in the literature (Fokianos
et al. 2022).

Through our simulation study, it was found that for long discretized time series
(N = 1000) generated by a VAR system, DVAR (VAR-based estimation of Granger causality
on discrete-valued time series) efficiently identifies the causal and non-causal relationships
even for the discretization of two integer values (0, 1). On the other hand, for very short
count time series (N = 50), the correct identification requires a range of 10 integer values.
The latter was confirmed also with simulations on time series generated by the multivariate
count process MINAR(1). The power of DVAR in identifying causal relationships was good
even for very short time series (N = 25), a useful finding for ecologists.

We applied DVAR to a set of short (N = 121) real ecological time series to investigate
whether species abundance (Common Eider) is affected by abiotic variables. DVAR was
found to estimate the same direct causal relationships as VAR when the discretized integer
values were more than four. In all the simulations as well as the one application, rarely did
we find false positive Granger causality relationships by DVAR that were not detected by
VAR on the corresponding continuous-valued data. The second application on the weekly
measles count data of a small integer range at 15 locations showed the good agreement of
the causal relationships by DVAR when adding the information of neighboring locations.

Some practical guidelines arising from the present research may be helpful for scholars
and practitioners working on ecological multivariate count time series:

1. Tools of quantitative (numerical) analysis can indeed be applied to variables that
take only a minimum of count values, for example 0, 1. For Granger causality, the
shortcoming of having time series of few counts can be balanced by having long
time series.

2. Based on the latter result, it is suggested to rather use a small sampling time in the
observation of ecological populations than aggregating the data in longer sampling
times to produce bigger counts, and then use tools developed for continuous-valued
data. Data aggregation, which is often the common practice, reduces the length of
the time series and may have considerable effects (estimation accuracy, undetected
seasonality or periodicity, occurrence of instantaneous causality). Indeed, it was
shown in the simulation study that Granger causality is less accurately estimated with
short time series.

3. The present study suggests that the data precision can be relaxed at the cost of accuracy
in the estimation of Granger causality. However, this cost can be compensated for
by increasing the time series length, so that in the cases where high-quality data
collection is difficult or costly, low-resolution observations may be adequate if the
time series is long enough. For example, the abundance of the Common Eider species
was rounded to hundreds of Eiders, and the same Granger causality relationships
were estimated by counting the abundance in 10 classes of Eiders from 0 to 9 (0 for no
Eiders). Some abiotic factors could easily be collected directly from the observers of
Eiders, during their work, in similar classes. For instance, the temperature could have
been classified in a scale from 0 to 9 (0 for temperatures close to the area’s minimum
temperature for the season of observations).

We believe that the three previous practical guidelines suggest the broad use of
Granger causality analysis in ecological systems. There are plenty of ecological multi-
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variate count time series to which the proposed VAR model for Granger causality on
count time series can be applied. Additionally, the strategies of data collection may be
revised, also reducing the cost of field observations, and can even be applied to fields
that were not previously possible to work on because of the low-quality and resolution of
the observations.

4.2. Theoretical Implications

There are certain limitations and shortcomings of our approach, some of which could
be addressed in future research. Though the selected applications confirmed the simulation
study, more applications with real count time series are required to confirm whether the
efficiency of DVAR is always the same. Additionally, future research should study the
estimation of the strength of the Granger causality, as measured by the GCI and CGCI
indexes. We did not work on this issue in depth, but we saw that in most of the cases,
DVAR estimated a lower GCI and CGCI. It is possible that the GCI and CGCI computed by
DVAR will converge to the respective indices computed by VAR in a wider range of counts
than the range in which DVAR finds the same statistically significant causal relationships
as VAR.

Nevertheless, more research and innovation are required in the field of analysis of
multivariate count time series for the development of methods to reliably estimate the
Granger causality among ecological (or other disciplines) count data. From our research,
we have seen that the estimation of MINAR(1) models on multivariate count time series
is a hard task, being currently under investigation by several researchers (Fokianos et al.
2022). In the works of Pedeli and Karlis (2011, 2013a), the estimation is restricted on
diagonal forms (no interdependence among the different variables and no cross-correlation
in the counts), and this is still the case in the periodic MINAR(1) extension of Santos et al.
(2021). Additionally, in the work of Boudreault and Charpentier (2011), the general case
considering both autocorrelation and cross-correlation is treated but the detailed estimation
results are given only for the bivariate model, BINAR(1). The solution requires numerical
optimization routines, and their use may be problematic for higher dimensions. We also
note that the parameter estimation solution in the package Surveillance in R regards specific
structures of the Poisson or negative binomial models (Paul and Held 2011). For the so-
called vector Poisson regression (VPR) models and vector negative binomial regression
(VNbR) models in Yip et al. (2013), details of the maximum likelihood estimation of the
model parameters are not given.

A possible extension in the Granger causality analysis of count time series is the study
of other measures of Granger causality, and in particular, information-based measures (e.g.,
see Siggiridou et al. (2019) for a survey simulation study), which can be directly applied to
count data assuming the probability rather than density function of the involved variables
(Papapetrou et al. 2022).

5. Conclusions

Granger causality for count time series is an underdeveloped topic in the statistics and
econometrics literature. This has been one of the first attempts to show that the classical
approach of Granger causality based on vector autoregressive (VAR) models designed
for multivariate continuous-valued time series can also be applied to multivariate count
time series. The VAR-based Granger causality on count time series seems to be estimated
reliably even for two counts when the time series is long enough (a couple of hundreds in
the simulations). For all the studied time series lengths, when there were more than eight
counts, the estimation matched the Granger causality effects obtained by the VAR approach
on the continuous-valued time series well. Policy implications may result from our analysis
for several scientific disciplines such as economics and social and environmental sciences.
The positive results suggest that researchers in ecology, as well as in other disciplines
involving count data, use VAR-based Granger causality for assessing causal relationships
in time series even with few distinct integer values, or many zeros in the count data.
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