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Abstract: In light of the satellite rejection environment and how aircraft can obtain high-precision
positioning, this paper proposes a collaborative correction algorithm for aircraft based on the rank-
defect network. Aiming at the problem of insufficient anchor points, which result in insufficient
observations and the divergence of aircraft inertial navigation errors, this algorithm can effectively
improve the navigation performance of cluster aircraft. On the basis of the observation information
provided by the anchor aircraft, the observation information between aircraft is fully utilized to
improve the observability of the aircraft cluster positioning method. At the same time, the pseudo-
observation equation of heterogeneous aircraft cluster positioning is introduced, and the divergence of
inertial navigation positioning errors caused by insufficient observations is suppressed by the pseudo-
observation solution. On the basis of introducing the pseudo-observation equation, the inertial
navigation error is solved and corrected by the Newton iterative method and the divergence of the
inertial navigation position error is restrained. Compared with an aircraft cluster positioning method
that does not use the inertial navigation error co-correction based on the pseudo-observation solution,
this paper can achieve better overall cluster positioning accuracy when the available observations are
insufficient, which is suitable for practical applications.

Keywords: collaborative localization; hybrid network; range and angle measurement; aerial swarm

1. Introduction

With the development of the Information Age, the application of UAVs is more and
more extensive. At the same time, the cluster network composed of multiple UAVs also
has very broad application prospects [1].

The initial research on the cluster collaboration algorithm mainly focused on maritime
navigation [2], and subsequent research expanded to the ground [3] and air [4]. In an
environment with weak satellite signals, it is difficult to obtain accurate GNSS positioning,
so the overall performance of navigation is improved through the collaboration algorithm.
Xie [5], Zhang [6], and Nicholson [7] used underwater sonar to transmit information, obtain
information between multiple unmanned ships, and fuse it with the information obtained
by the sensors of the unmanned ships themselves, estimate the position of the unmanned
ships, and effectively improve the navigation accuracy. Zhang [8] and Santiago [9] consid-
ered the impact of ocean currents on the unmanned ship cooperative positioning algorithm
and improved the algorithm using the ocean current information received by the main
unmanned ship. Feng [10] and Qi [11] considered the delay of underwater communication
and effectively solved the problem of communication delay by improving the algorithm.
Hu [12] studied the use of high-precision unmanned ship information and the relative
distance information between unmanned ships for collaborative positioning, which effec-
tively improved the dynamic positioning performance of unmanned ships. In the “two
master and one slave” unmanned ship system, the distance between the master and slave
unmanned ships is used to assist the position estimation of the slave unmanned ship [13],
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and all information are weighted and fused. Fortmann [14] and Sun [15] used factor
graph theory to design an underwater unmanned ship cooperative navigation algorithm
and verified that the positioning accuracy of the algorithm was higher than the extended
Kalman. Chen [16], Liu [17], and Zhang [18] studied the indoor pedestrian positioning
method, which is based on the premise that only one pedestrian can obtain GNSS posi-
tioning. Chen [16] used the distance information between pedestrians to suppress the
divergence of other pedestrian inertial navigation positioning. Liu [17] and Zhang [18]
used the particle filter algorithm and Kalman filter algorithm, respectively, to fuse the UWB
ranging information and IMU information, which can effectively compensate for IMU
errors. Zhao [19] aimed at the satellite rejection environment, added a pseudo satellite on
the ground to assist with the vehicle positioning, and verified the navigation performance
under static and dynamic conditions. When some GNSS nodes are missing, the system
model is built based on the particle filter and track estimation principle, and the location
of GNSS missing nodes is estimated based on the relative distance information between
ground nodes [20].

At present, aircraft cluster networking mostly uses GNSS and inertial navigation for
integrated navigation to determine the position information of each aircraft. There are
still some defects that cannot be ignored when cooperating in air operations, that is, when
GNSS signals are subject to strong electromagnetic interference or are even completely re-
jected [21,22], the accuracy of the positioning and navigation cannot meet the requirements.
When the cluster aircraft is an unmanned aircraft, the above problems will be more acute.
Liu [23] constructed the observation equation through the data link ranging information,
estimated the missile position information using the weighted least squares, and effectively
suppressed the divergence of inertial navigation. Liu [24] used the relative distance and
relative motion between nodes (speed difference and path difference between nodes) to
conduct missile formation and studied the impact of relative motion between nodes on the
navigation performance of the missile system. Causa [25] used the parent UAV to assist
the child UAV rejected by GNSS in positioning, and used the accuracy factor to predict the
positioning accuracy of the child UAV. Wang [26] reconstructed the measurement equation
using the ranging information of anchor and label aircraft, deduced the pseudo-observation
equation, and estimated the positioning error using the least square method. Wang [27]
proposed a collaborative navigation method based on partnership optimization for clus-
tered aircraft and analyzed the impact of the equivalent ranging error on the optimization
effect of a geometric configuration.

In this paper, based on the analysis of the rank-defect observation in the cluster
network when the satellite is rejected, a distributed inertial navigation error cooperative
correction scheme for heterogeneous multi-aircraft is proposed. Secondly, based on the
cluster network positioning technology of aircraft mutual ranging and angle measurement,
a distributed inertial navigation error co-correction model of heterogeneous multi-aircraft
based on pseudo-observation was established, and a distributed inertial navigation error
co-correction algorithm of heterogeneous multi-aircraft based on pseudo-observation was
designed according to the characteristics of the model. Finally, the proposed algorithm
was simulated and analyzed. The simulation results show that the distributed inertial
navigation error correction algorithm based on pseudo-observation for heterogeneous
multi-aircraft can effectively improve the overall navigation accuracy of the rank-defect
network, and that the algorithm also significantly improves the navigation accuracy when
the benchmark aircraft participates in the cooperation.

2. Construction of Hybrid Measurement Network for Aerial Swarm
2.1. Network by Relative Measurement

The cooperative observations among the aircraft can make full use of the relative
observation advantages of the cluster to form a cluster observation geometric network.
In some complex environments, due to the lack of external reference information and the
inability of GNSS signals to cover all aircraft, the observation geometric network composed
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of relative observations between multi-aircraft cannot be aligned to the real position. The
relationship between the observation geometric network and the real geometric network
space is shown in Figure 1. At this time, the observability of positioning is obviously
insufficient. With the help of the pseudo-observation method and the characteristics of
the inertial navigation geometric network composed of mathematical analysis and multi-
aircraft airborne inertial navigation, the observability of positioning can be improved,
and therefore, the positioning accuracy of collaborative navigation can be improved. The
schematic diagram of a geometric network corrected by the pseudo-observation method is
shown in Figure 1.
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Figure 1. Schematic diagram of the observation geometric network, real geometric network, and
modified geometric network.

As shown in Figure 1, the relative observation information can only determine the
space relative position of multi-aircraft. To align to the real space position, three rotational
degrees of freedom and three translational degrees of freedom are also required. From
a mathematical point of view, there is a rank defect in the multi-aircraft cooperative
observation equation.

2.2. Observation Geometry with Anchors

When there is an anchor aircraft used to provide reliable information in the cluster
network, the schematic diagram of space transformation based on distance observation
network with anchor aircraft is as follows:

It can be seen from Figure 2a that by adding an anchor aircraft to measure the relative
distance of each label aircraft, the geometric network of multi-aircraft that originally lacked
the limit of six degrees of freedom increased the limit of three degrees of freedom. It
reduced the observation rank defect as well as the uncertainty of cluster collaborative
positioning. It can be seen from Figure 2b that by adding an anchor aircraft to measure the
relative distance and the relative line-of-sight angle of each label aircraft, the multi-aircraft
geometric network that originally lacked the restriction of six degrees of freedom will
no longer lack the restriction of degrees of freedom. At this time, the observation of the
measuring geometric network is not rank deficient. It can be seen that compared with the
ranging method, the multi-aircraft geometric network of angle and ranging measurement
cooperation has lower requirements on the number of anchor aircraft.
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3. Collaborative Localization with Hybrid Measurement Network
3.1. Airborne Navigation Scheme with Measurement Network

In order to solve the problem of the rank defect of heterogeneous multi-aircraft co-
operative observations caused by the lack of external reference information, based on the
above analysis of the deviation between the multi-aircraft observation geometric network
and the real geometric network, this paper designed a general scheme of heterogeneous
multi-aircraft cooperative navigation error correction based on pseudo-observation, as
shown in Figure 3.
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As shown in Figure 3, there are two types of heterogeneous multi-aircraft: anchor
aircraft and label aircraft. The anchor aircraft needs to support its high-precision positioning
with the help of satellite signals. However, in the harsh environment of GNSS discussed
in this paper, there are few or even no anchor aircraft in the cluster, so it is very easy
to have a collaborative observation rank defect. The overall scheme of error correction
based on pseudo-observation mainly includes the inter-aircraft transmission of observation
and position information, the establishment of the observation model and the cooperative
model, and the error calculation and correction of the airborne inertial navigation system.
Firstly, each label aircraft synchronously obtains the relative observation information of
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other aircraft in the cluster and the output position of the airborne inertial navigation
system through the cooperative measurement sensor and the aircraft communication
equipment. Secondly, the heterogeneous multi-aircraft cooperative measurement modeling
is carried out by using the distance and line-of-sight angle measurement information, the
anchor aircraft position, and the inertial navigation position of the label aircraft. That is,
the multi-aircraft inertial navigation error model based on the relative distance and the
multi-aircraft inertial navigation error model based on the phase angle are established
by the range linearization and the angle linearization. The pseudo-observation model is
established according to the rank defect of the observation equation. Finally, the inertial
navigation error of each label aircraft is obtained and the error compensation is carried
out by solving the error of the cooperative observation equation fused with the pseudo-
observation equation.

3.2. Modeling of Measurement Network for Aerial Swarm

Assume that the position coordinates of each label aircraft in the cluster on the geo-
centric earth fixed connection coordinate system are (xi, yi, zi), i = 1, 2, · · · , n, n is the total
number of label aircraft in the cluster, and the coordinate position of the anchor aircraft is
(x, y, z). This paper studied the adverse combat environment of satellite signal rejection, so
it was assumed that there was at most one anchor aircraft in the cluster. The inertial navi-
gation position estimated by the airborne inertial navigation system of each label aircraft
is
(

xI
i , yI

i , zI
i
)
, so the estimation of its positioning error by the airborne inertial navigation

system of the label aircraft can be expressed by the following formula:

{δxi, δyi, δzi} =
{

xI
i , yI

i , zI
i

}
− {xi, yi, zi} (1)

The measured distance between aircraft is obtained through the distance sensor, which
can be expressed as:

rm
ij =

√(
xi − xj

)2
+

(
yi − yj

)2
+

(
zi − zj

)2
+ εr

ij (2)

where εr
ij is the measurement noise of the distance between Aircraft i and Aircraft j.

Accordingly, the distance estimation value obtained from the inertial navigation
position can be expressed as:

rI
ij =

√(
xI

i − xI
j

)2
+

(
yI

i − yI
j

)2
+

(
zI

i − zI
j

)2
(3)

The above formula is linearized, that is, it is expanded into the Taylor series at the true
value, and the first two terms are approximately taken as

rI
ij ≈

√(
xj − xi

)2
+

(
yj − yi

)2
+

(
zj − zi

)2

+

(
−

xI
j −xI

i

rI
ij

)(
xi − xI

i
)
+

(
−

yI
j−yI

i

rI
ij

)(
yi − yI

i
)
+

(
−

zI
j−zI

i

rI
ij

)(
zi − zI

i
)

+

(
xI

j −xI
i

rI
ij

)(
xj − xI

j

)
+

(
yI

j−yI
i

rI
ij

)(
yj − yI

j

)
+

(
zI

j−zI
i

rI
ij

)(
zj − zI

j

) (4)

Subtract Formula (4) from Formula (2) to construct the cooperative measurement
equation of cluster aircraft based on distance measurement:

rm
ij − rI

ij = −
xI

j − xI
i

rI
ij

δxI
i −

yI
j − yI

i

rI
ij

δyI
i −

zI
j − zI

i

rI
ij

δzI
i +

xI
j − xI

i

rI
ij

δxI
j +

yI
j − yI

i

rI
ij

δyI
j +

zI
j − zI

i

rI
ij

δzI
i (5)

In the same way, the distance measurement value between the aircraft and the anchor
aircraft is rm

i through the range sensor equipped by the aircraft, and the measurement
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equation based on the distance measurement between the reference and the label aircraft
can be constructed:

rm
i − rI

i = −
xI − xI

i
rI

ij
δxI

i −
yI − yI

i
rI

ij
δyI

i −
zI − zI

i
rI

ij
δzI

i (6)

Combine all n(n − 1)/2 cooperative distance measurement equations and n ∗ m rela-
tive distance measurement equations between the label aircraft and the anchor aircraft into
a set of equations, expressed as:



...
rm

ij − rI
ij

...
rm

ik − rI
ik

...
rm

jk − rI
jk

...


=



...
...

...
...

...
...

−
xI

i −xI
j

rI
ij

−
yI

i −yI
j

rI
ij

−
zI

i −zI
j

rI
ij

xI
i −xI

j

rI
ij

yI
i −yI

j

rI
ij

zI
i −zI

j

rI
ij

...
...

...
...

...
...

− xI
i −xk
rI

ik
− yI

i −yk
rI

ik
− zI

i −zk
rI

ik
0 0 0

...
...

...
...

...
...

0 0 0
xI

k−xI
j

rI
kj

yI
k−yI

j

rI
kj

zI
k−zI

j

rI
kj

...
...

...
...

...
...





...
∆xI

i
∆yI

i
∆zI

i
∆xI

j
∆yI

j
∆zI

j
...


+



...
εr

ij
...
εr

ik
...
εr

jk
...



≜ Yr
net = Hr

netX + Vr
net

(7)

where
[
∆xI

i , ∆yI
i , ∆zI

i
]
=

[
xI

i , yI
i , zI

i
]
− [xi, yi, zi], (i = 1, 2, · · · , n) is the inertial navigation

position error of the aircraft. k = 1, 2, · · · , m, m is the total number of label aircraft in the
cluster, and the distance measured noise εr obeys a normal distribution.

Based on the configuration connection of the aircraft cluster, as shown in Figure 2b,
we can also obtain the corresponding azimuth angle θm

ik and height angle φm
ik . Similar

to the relative distance measurement in Formula (7), we can establish a relative angle
measurement equation as follows:



...
θ I

ij − θm
ij

φI
ij − φm

ij
...

θ I
ik − θm

ik

φI
ik − φm

ik
...

θ I
jk − θm

jk

φI
jk − φm

jk
...



=



...
...

...
...

...
...

yI
j −yI

i(
dI

ij

)2 −
xI

j −xI
i(

dI
ij

)2 0 −
yI

j −yI
i(

dI
ij

)2

xI
j −xI

i(
dI

ij

)2 0(
xI

j −xI
i

)(
zI

j −zI
i

)
dI

ij

(
rI

ij

)2

(
yI

j −yI
i

)(
zI

j −zI
i

)
dI

ij

(
rI

ij

)2 −
dI

ij(
rI

ij

)2 −
(

xI
j −xI

i

)(
zI

j −zI
i

)
dI

ij

(
rI

ij

)2 −
(

yI
j −yI

i

)(
zI

j −zI
i

)
dI

ij

(
rI

ij

)2

dI
ij(

rI
ij

)2

...
...

...
...

...
...

yI
k−yI

i

(dI
ik)

2 − xI
k−xI

i

(dI
ik)

2 0 0 0 0

(xI
k−xI

i )(zI
k−zI

i )
dI

ik(rI
ik)

2
(yI

k−yI
i )(zI

k−zI
i )

dI
ik(rI

ik)
2 − dI

ik

(rI
ik)

2 0 0 0

...
...

...
...

...
...

0 0 0 −
yI

k−yI
j(

dI
jk

)2

xI
k−xI

j(
dI

jk

)2 0

0 0 0 −
(

xI
k−xI

j

)(
zI

k−zI
j

)
dI

jk

(
rI

jk

)2 −
(

yI
k−yI

j

)(
zI

k−zI
j

)
dI

jk

(
rI

jk

)2

dI
jk(

rI
jk

)2

...
...

...
...

...
...





...
∆xI

i

∆yI
i

∆zI
i

∆xI
j

∆yI
j

∆zI
j

...



+



...
εθ

ij

ε
φ
ij

...
εθ

ik

ε
φ
ik

...
εθ

jk

ε
φ
jk

...



≜ Ya
net = Ha

netX + Va
net

(8)

where dI
ij =

√(
xI

i − xI
j

)2
+

(
yI

i − yI
j

)2
and the angle measured noise εθ , εφ obeys a nor-

mal distribution. Ya
net = Ha

netX + Va
net is the cooperative angle measurement equation of
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heterogeneous multi-aircraft including the n(n − 1) cooperative angle measurement equa-
tions of mutual angle measurement between the label aircraft, and the 2n ∗ m cooperative
angle measurement equations of angle measurement between the anchor aircraft and the
label aircraft.

Based on Formulas (7) and (8), the measurement model can be established as follows:

 Yr
net

Ya
net

 =

 Hr
net

Ha
net

X +

 Vr
net

Va
net


Ynet = HnetX + Vnet ≜



...
rm

ij − rI
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(9)

The auxiliary measurement of angle can reduce the requirements of the multi-aircraft
geometric network on the number of anchor aircraft in the cluster. At the same time,
because the observation information of the navigation system is increased, the proposed
algorithm can be strengthened in terms of navigation performance.

3.3. Collaborative Localization According to Measurement Network

The cooperative observation equation of heterogeneous multi-aircraft obtained from
Section 3.1 is

Ynet = HnetX + Vnet (10)

where Ynet is the cooperative observation, Hnet is the observation matrix, X is the position
coordinate error estimate of each aircraft in the cluster to be solved, and Vnet is the coop-
erative measurement noise. Solving Formula (10) can provide the estimated value of the
inertial navigation error X̂ =

[
HT

netPYHnet
]−1HT

netPYYnet, where PY is the weight matrix for
measurement error.

However, the cooperative observation only cannot determine the absolute position
coordinates of each aircraft in the cluster. When rank(Hnet) < rank(X) = 3n, Formula (10)
is rank deficient and HT

netPYHnet is irreversible.
In order to solve the observation equation, we wanted to add a restriction matrix to

make the rank defect become a non-rank defect and make the equation have a solution. That

is, we constructed 0 = GTPXX + VG to make rank
(

Hnet
GTPX

)
= 3n, where we observed

the full rank of the pseudo-observation equation. PX is the weight matrix of the state
quantity, and VG is the pseudo-observation noise.
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The pseudo-observation solution of weighted minimum norm adjustment is referred
to, which gives the conditions to be satisfied for the construction of pseudo-observation
equation, namely Condition 1 rank(G) = 3n − r, Condition 2 HT

netPYHnetG = 0. This
paper uses the zero eigenvalue vector of HT

netPYHnet to construct G. Because the zero
eigenvalue vector of Hnet can just be represented by r unrelated vectors, that is, Hy = 0 has
basic solution systems, and the matrix G composed of the basic solution systems satisfies
Condition 1 and Consition 2.

Therefore, the pseudo-observation equations are constructed using zero eigenvalues
as follows:

0 = GTPXX + VG (11)

By adding a pseudo-observation equation to make the measurement matrix full rank,
a multi-aircraft cooperative observation equation incorporating the pseudo-observation
equation can be constructed as follows:{

Ynet = HnetX + Vnet
0 = GTPXX + VG

(12)

When there is no anchor aircraft in the ranging network rank(G) = 6, adding the
pseudo-observation equation can provide six spatial degrees of freedom for the cluster
network, so the observation is no longer rank deficient.

At this time, the cooperative observation equation based on the pseudo-observation
solution can be expressed as:{

HT
netPYHnetX̂ = HT

netPYYnet
GTPXX̂ = 0

(13)

GTPXX̂ = 0 multiplies PXG to the left and the descendants enter HT
netPYHnetX̂ =

HT
netPYYnet, so the following solution formula is obtained:

X̂ =
(

HT
netPYHnet + PXGGTPX

)−1
HT

netPYYnet (14)

Because PX is a positive definite weight matrix and G is composed of zero eigenvalues
of HT

netPYHnet, HT
netPYHnet + PXGGTPX is full rank and its inverse exists, which can be

solved by Formula (11) for the cooperative observation equation.
When there is no observation rank defect in the multi-aircraft geometric network, the

weighted least squares method can be used to solve it. The solution formula is as follows:

X̂ =
[
HT

netPYHnet

]−1
HT

netPYYnet (15)

4. Simulation and Analysis
4.1. Analysis of Collaboration Mode with Hybrid Measurements

In order to verify the effectiveness of the algorithm proposed in this paper, the posi-
tioning error before and after using the algorithm was simulated and analyzed in the static
positioning mode of multi-aircraft. Since the method proposed in this paper discusses
the conditions of ranging cooperation, angle measurement and ranging cooperation, and
whether there is an anchor aircraft cooperation, it was necessary to analyze and verify
all situations during the simulation exploration in order to simplify the description. The
classification of various situations is shown in Table 1.

In the static simulation, the initial error of each axis setting the inertial navigation
position followed a normal distribution with a standard deviation of 10 m, the angle
measurement error was 0.1◦, and the ranging error was 1 m. The space position of each
aircraft is shown in Figure 4, and 1000 Monte Carlo simulations were conducted.
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Table 1. Collaboration mode and anchor aircraft set in the algorithm simulation analysis.

Case 1⃝ Case 2⃝ Case 3⃝ Case 4⃝

Collaboration mode Ranging Ranging Ranging and angular Ranging and angular

Anchor aircraft Nonexistent Existent Nonexistent Existent
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Figure 4. Schematic diagram of the relative space position of static cluster aircraft.

As shown in Figure 5, the simulation statistical results of the axial positioning errors
of all label aircraft are displayed in the form of CDF (cumulative distribution function) in
order to analyze the algorithm performance more intuitively.
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It can be seen from the inertial navigation error curve in Figure 5 that when multi-
label aircraft only relied on the inertial navigation system for positioning, the cumulative
probability density of the position error at 10 m was about 68%, and the cumulative
probability density at 20 m was about 98%, because the initial error of each axis of the
inertial navigation position followed a normal distribution with a standard deviation
of 10 m. It can be seen from the case 1⃝ curve that after increasing the mutual ranging
cooperation between the label aircraft, the cumulative probability density of the position
error at 10 m was about 93%, and the cumulative probability density at 20 m was 100%.
It can be seen from the case 3⃝ curve that after adding the mutual ranging and angle
measurement cooperation between the label aircraft, the cumulative probability density of
the position error at 10 m was about 94%, and the cumulative probability density at 20 m
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was 100%. It can be seen from the curves of cases 2⃝ and 4⃝ that the cumulative probability
density of the position error of ranging and angular positioning in 10 m increased to 98%
and 100%, respectively, by increasing the coordination of the anchor aircraft. Therefore, the
co-correction method for navigation errors of heterogeneous multi-aircraft based on pseudo-
observation can effectively correct the inertial navigation error, and the performance of the
algorithm can be enhanced by adding the assistance of the reference vehicle. This effect is
particularly significant in the cooperative mode of ranging and angle measurement.

4.2. Analysis of Influential Factors on Collaborative Performance

Theoretically, the mutual observation accuracy of multi-aircraft, that is, the size of rang-
ing and angle measurement error, the number of aircraft, and the configuration of aircraft
are important factors that affect the collaborative correction method for navigation errors
of heterogeneous multi-aircraft based on pseudo-observation. Therefore, this section simu-
lated and analyzed the impact of key factors such as aircraft configuration, collaborative
measurement accuracy, and the number of aircraft on the algorithm performance.

(1) Multi-aircraft configuration factor.
The collaborative correction method for navigation errors of heterogeneous multi-

aircraft based on pseudo-observation proposed in this paper is closely related to the rank
of the multi-aircraft cooperative observation equation. The configuration of aircraft has
a great impact on the number of observation ranks, so the impact of configuration was
analyzed first. The configuration of the aircraft to be simulated and analyzed was set as
shown in Figure 6. The label aircraft were conical, square, and straight.
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According to the situation in Table 1, the observed rank defects of each configuration
in Figure 6 were classified and counted, and the statistical results are shown in Table 2.

Table 2. Observed rank deficiency numbers of aircraft configurations.

Aircraft Configuration Case 1⃝ Case 2⃝ Case 3⃝ Case 4⃝

Taper 6 3 6 0
Square 7 5 7 3

Line 9 7 9 5

For the conical cluster in Figure 6a, in case 1⃝, the measurement equation was calcu-
lated to have a rank of 6 and a rank deficiency of 6. At this point, the measurement equation
Ynet = HnetX + Vnet has no solution, and the cluster cannot perform the collaborative
positioning calculation. By using the method proposed in Section 3, the eigenvector G

(rank(G) = 3n − r = 6 and rank
(

Hnet
GTPX

)
= 3n = 12) corresponding to the eigenvalue of

HT
netPYHnet was calculated to compensate for the rank deficiency of the measurement equa-
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tion. Furthermore, the measurement equation was constructed as
{

Ynet = HnetX + Vnet
0 = GTPXX + VG

and was solvable after rank supplementation. The cluster collaborative positioning calcula-
tion was used to suppress the divergence of inertial navigation errors.

Table 2 shows that in cases 1⃝– 4⃝, the number of observed rank defects of multi-
aircraft in the square configuration and line configuration was higher than that in taper
configuration. By comparing case 1⃝, case 2⃝, case 3⃝, and case 4⃝, it was found that the
addition of the anchor aircraft reduced the observation rank defects of each configuration.
Moreover, in the conical configuration, the addition of the anchor aircraft reduced the
observation rank defect number more. Due to the increase in the rank defect number, the
effectiveness of the algorithm proposed in this paper in the square and line configurations
of the label aircraft will be reduced, so the navigation accuracy in the square and line
configurations will be reduced.

In order to verify the above reasoning, the simulation of the average position error of
multi-aircraft after using the algorithm under the above configuration was carried out, and
the probability density function (PDF) of each average position error was calculated. With
the exception of the configuration, the other simulation parameters were consistent with
Section 4.1. The simulation results are shown in Figure 7.

It can be seen from Figure 7a that the algorithm had an obvious correction effect on
the inertial navigation error under various conditions in the conical configuration, and
the addition of the anchor aircraft significantly increased the probability of the average
positioning error within 10 m. It can be seen from Figure 7b that in the square configuration,
the magnitude of partial positioning error in case 1⃝ and case 3⃝ was too large, and the
probability of average positioning error within 10 m was significantly lower than that in
the conical configuration, especially when there was no anchor aircraft coordination. It can
be seen from Figure 7c that in the linear configuration, there were still some cases where the
magnitude of positioning error was too large, and the probability of the average position
error within 10 m in the conical configuration and the square configuration was significantly
reduced, and the addition of the anchor aircraft could not be improved. Therefore, when
multi-aircraft perform tasks together, the algorithm proposed in this paper should be used
to correct the position error of inertial navigation, and the situation of coplanar or collinear
aircraft should be avoided as much as possible.

(2) Sensor accuracy factor.
The algorithm is based on the range and angle measurement cooperation among

aircraft, so the range and angle measurement accuracy will have a certain impact on the
performance of the algorithm. The configuration of aircraft was maintained as shown
in Figure 6a. Except for the range and angle measurement error, the other simulation
conditions were consistent with the settings in Section 4.1. The variation curve of the
average position error of multi-aircraft with the measurement accuracy under 1000 times
of Monte Carlo simulation is shown in Figure 8.

It can be seen from Figure 8a that with the increase in ranging error, the position
error of cluster aircraft also increased, and the increase in the position error was more
obvious after the anchor aircraft participated in the cooperative navigation. It can be
seen from Figure 8b that increasing the angle measurement error had little impact on the
performance of the algorithm when the non-anchor aircraft participated in the cooperation.
After increasing the anchor aircraft cooperation, the position error also increased with the
increase in the angle measurement error. Therefore, the collaborative correction method for
heterogeneous multi-aircraft navigation errors based on pseudo-observation proposed in
this paper was restricted by sensor accuracy to a certain extent, so it was necessary to select
high-precision measurement sensors within the allowable range to improve the overall
navigation performance of multi-aircraft.



Aerospace 2024, 11, 304 12 of 18

Aerospace 2024, 11, x FOR PEER REVIEW 13 of 19 
 

 

 

  

(a) Taper 

  

(b) Square 

  

(c) Line 

Figure 7. Position error and probability density function of each configuration. 

It can be seen from Figure 7a that the algorithm had an obvious correction effect on 

the inertial navigation error under various conditions in the conical configuration, and the 

addition of the anchor aircraft significantly increased the probability of the average 

positioning error within 10 m. It can be seen from Figure 7b that in the square 

configuration, the magnitude of partial positioning error in case ① and case ③ was too 

large, and the probability of average positioning error within 10 m was significantly lower 

than that in the conical configuration, especially when there was no anchor aircraft 

coordination. It can be seen from Figure 7c that in the linear configuration, there were still 

Figure 7. Position error and probability density function of each configuration.



Aerospace 2024, 11, 304 13 of 18

Aerospace 2024, 11, x FOR PEER REVIEW 13 of 19 
 

 

  

(c) Line 

Figure 7. Position error and probability density function of each configuration. 

It can be seen from Figure 7a that the algorithm had an obvious correction effect on 

the inertial navigation error under various conditions in the conical configuration, and the 

addition of the anchor aircraft significantly increased the probability of the average posi-

tioning error within 10 m. It can be seen from Figure 7b that in the square configuration, 

the magnitude of partial positioning error in case ① and case ③ was too large, and the 

probability of average positioning error within 10 m was significantly lower than that in 

the conical configuration, especially when there was no anchor aircraft coordination. It 

can be seen from Figure 7c that in the linear configuration, there were still some cases 

where the magnitude of positioning error was too large, and the probability of the average 

position error within 10 m in the conical configuration and the square configuration was 

significantly reduced, and the addition of the anchor aircraft could not be improved. 

Therefore, when multi-aircraft perform tasks together, the algorithm proposed in this pa-

per should be used to correct the position error of inertial navigation, and the situation of 

coplanar or collinear aircraft should be avoided as much as possible. 

(2) Sensor accuracy factor 

The algorithm is based on the range and angle measurement cooperation among air-

craft, so the range and angle measurement accuracy will have a certain impact on the per-

formance of the algorithm. The configuration of aircraft was maintained as shown in Fig-

ure 6a. Except for the range and angle measurement error, the other simulation conditions 

were consistent with the settings in Section 4.1. The variation curve of the average position 

error of multi-aircraft with the measurement accuracy under 1000 times of Monte Carlo 

simulation is shown in Figure 8. 

  

(a) Ranging error (b) Angular error 

Figure 8. Average position error of four label aircraft with the measurement accuracy.

(3) Aircraft quantity factor.
In order to explore the impact of the number of aircraft on the algorithm performance,

a simulation of the change in the average position error of multi-aircraft with the number
of label aircraft was carried out. Except for the number of label aircraft and the distribution
of aircraft, the other simulation conditions were consistent with the settings in Section 4.1.
The distribution of aircraft is shown in Figure 9a, and the curve of the average position
error of multi-aircraft with the number of label aircraft is shown in Figure 9b.
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As shown in Figure 9, with the increase in the number of label aircraft, the overall
average position error of multiple aircraft decreased gradually. However, in case 4⃝ of the
range and angle measurement cooperation and anchor aircraft cooperation, the average
position error was not affected by the number of label aircraft and remained at a low
level. Therefore, when the cluster cooperatively observes the rank defect, as in cases 1⃝– 3⃝,
appropriately increasing the number of label aircraft in the cluster within a certain range
can improve the overall positioning accuracy of the cluster.
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4.3. Analysis of Collaborative Navigation Performance

In order to verify the effectiveness of the algorithm proposed in this paper in the
real-time navigation of heterogeneous multi-aircraft, this paper also carried out a dynamic
simulation and analysis. The simulation settings of the airborne inertial sensors, ranging,
and angle measurement sensors of the aircraft are shown in Table 3. The position of the
anchor aircraft and the track of each label aircraft in the dynamic simulation are shown in
Figure 10. The simulation time was 400 s, and the dynamic simulation was the statistical
result of 20 Monte Carlo simulations.

Table 3. Airborne navigation sensor error parameter settings of the aircraft.

Sensor Error Parameters Value

Constant drift error of gyroscope 0.3(◦)/h
Gyro first-order Markov process time 3600 s

Accelerometer bias error 1 × 10−4 g
Accelerometer first-order Markov process time 1800 s

Range sensor accuracy 1 m
Angle measuring sensor accuracy 0.1◦

Number of label aircraft 7
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Figure 10. Schematic diagram of the track of heterogeneous multi-aircraft.

In the dynamic simulation, the position of the anchor aircraft and the track of each
label aircraft are shown in Figure 10. The cluster aircraft are divided into the anchor aircraft
and the label aircraft. The anchor aircraft is located in high-altitude areas with good satellite
signals, which can be approximately considered to be accurately known. The label aircraft
measure each other through distance measurement sensors and angle measurement sensors,
and exchange navigation information through airborne communication equipment. The
anchor aircraft can provide the label aircraft with relative distance angle measurement
information and its own position information. Because it was necessary to simulate and
explore the cooperative correction method for navigation errors of heterogeneous multi-
aircraft based on pseudo-observation under the harsh GNSS environment, at most only
one anchor aircraft was considered to participate in the simulation of the algorithm. Taking
label aircraft 1 as an example, the observation information changes of each aircraft relative
to it in the navigation simulation are shown in Figure 11.
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For the four cases described in Table 1, the average position error change curve of the
seven label aircraft before and after correction using the method proposed in this paper is
shown in Figure 12.
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From the simulation curve, it can be seen that for the flight time of 400 s, the average
position error accumulation of the label aircraft could reach more than 450 m only by
relying on the inertial navigation system for navigation and positioning. After using the
cooperative correction method for navigation errors of heterogeneous multi-aircraft based
on pseudo-observation, the algorithm for only ranging cooperation reduced the cumulative
position error to less than 300 m. On this basis, an anchor aircraft was added, and the
accumulated position error was reduced to less than 150 m. It can be seen that the algorithm
improved the overall positioning accuracy of the cluster by solving the observation rank
defect, and the addition of the anchor aircraft further aligned the observation geometric
network with the real geometric network, additionally improving the navigation accuracy.
With the addition of line-of-sight angle assistance, the pseudo-observation-based coordi-
nated correction method for navigation errors of heterogeneous multi-aircraft could also
reduce the position error to less than 250 m without the addition of an anchor aircraft, which
was superior to the algorithm simulation results that only relied on the range coordination
method. With the addition of anchor aircraft assistance, the positioning accuracy was also
greatly improved due to the fact that the observation itself was not rank defect, and the
average position error was limited to 50 m. The simulation results verify the effectiveness
of the co-correction method for navigation errors of heterogeneous multi-aircraft based on
pseudo-observation in dynamic navigation.

5. Conclusions

Aiming at the problem of the insufficient observability of inter-aircraft cooperative
measurement, this paper studied the cooperative correction method for navigation errors
based on pseudo-observation. In this paper, we analyzed the observation rank defect of
the heterogeneous multi-aircraft navigation and integrated the cooperative observation
equation and the pseudo-observation equation between the aircraft. We also constructed
a new multi-aircraft navigation model and derived the model solution method. The
simulation results show that the collaborative correction method proposed in this paper
can play a role in mitigating the divergence of navigation errors of multi-aircraft when the
external available information is insufficient in the harsh GNSS environment. Simulation
analyses of the cluster configuration, measurement accuracy, and the number of aircraft
that affect the performance of the algorithm were carried out. The results show that the
square configuration and line configuration of multiple aircraft reduce the performance of
the algorithm, while the improvement in the measurement accuracy and the increase in
the number of aircraft can enhance the effectiveness of the navigation error collaborative
correction method within a certain range.
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