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Abstract: Effective heat dissipation challenges transient high-power electronic devices in hypersonic
vehicle cabins. This study introduces a Phase Change Heat Exchange Unit with Layered Porous
Media (PCHEU–LPM) employing pulsed heat flow at the top and forced convection at the bottom.
The primary aim was a comparative parametric study analyzing the thermal response of the heating
surface under pulsed heat flow conditions. The geometric model was generated using electron
microscopy images of manufactured objects and the numerical model was established based on the
enthalpy–porosity method. Numerical simulations explored amplitude and frequency effects on
pulsed thermal excitation, evaluating temperature and phase fields. A comprehensive time-frequency
transformation assessed the temperature response. The results indicated an initial decrease and
subsequent increase in interface temperature fluctuation with pulse heat flux amplitude growth. Tem-
perature field uniformity correlated with natural convection strength in two-phase and liquid-phase
regions. At mid and low frequencies, the phase change process increasingly suppressed interface
temperature fluctuations. Optimal pulse thermal excitation selection was crucial for minimizing
temperature fluctuations while maintaining the interface temperature within the expected phase
transition range. In conclusion, a novel design concept is posited herein, aiming to enhance surface
temperature uniformity and broaden the applicability of electronic devices through the manipulation
of porosity rates.

Keywords: phase change material; electronic thermal management; pulsed heat flow; thermal
response analysis; temperature fluctuation

1. Introduction

Electronic devices, such as chips or semiconductors, showcase remarkable perfor-
mance attributes, encompassing speed, flexibility, accuracy, and resistance to electromag-
netic interference. These qualities render them essential components in the onboard elec-
tronic systems of hypersonic aircraft. Nevertheless, at high Mach numbers, substantial
aerodynamic heating is encountered by hypersonic aircraft on their surfaces, creating a
more formidable thermal dissipation challenge within compartments. The inadequacy
of the thermal sink introduces novel complexities in the cooling and heat dissipation of
pulsed electronic devices [1].

The primary focus of traditional heat sink design processes is the maintenance of
the heat source within a safe temperature range, often overlooking the importance of
temperature stability. In response to this context, PCM heat sinks have emerged as a viable
solution [1]. With their nearly isothermal properties during the phase change process,
temperature fluctuations in electronic equipment can be effectively mitigated through
careful design [2–6]. They can be specifically tailored to suppress temperature fluctuations
in electronic devices.

In the past, low-temperature PCMs were unsuitable for cooling electronic equipment
due to their low thermal conductivity. Consequently, research on phase change heat
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transfer predominantly focused on the thermal enclosure of buildings [7–9], refrigeration
and cooling [10–13], and aerospace battery heat storage [14,15]. However, the recent
development of innovative PCM fabrication technology has significantly improved the
thermal conductivity of these materials [16,17]. This advancement has led to investigations
of phase change heat transfer under more intense transient conditions.

In this context, Casano et al. [18] have investigated phase change heat transfer prob-
lems in scenarios where transient effects are more intense. The findings reveal that, for
relatively small Fourier (Fo) numbers, the heat flow absorbed by the phase change material
remains nearly constant, independent of the Stefan (Ste) number, and does not oscillate
due to excitation. However, for larger Fo numbers, the phase change material oscillates
periodically with pulsed thermal excitation, with the amplitude of oscillation increasing
with the Ste number. In another study, Kalbasi et al. [19] conducted numerical research on a
two-dimensional phase change material heat sink structure with fins. The authors focused
on optimizing the geometrical parameters of the heat sink and demonstrated that a larger
aspect ratio of the phase change material heat sink structure results in lower temperature
oscillations under thermal excitation, thus facilitating temperature control. Moreover, the
effectiveness of thermal control devices in regulating temperature depends on the phase
change temperature range of the phase change material and the fluctuation range of out-
door temperature. When the phase change temperature range was proportional to the
outdoor temperature fluctuation range, the phase change material could effectively reduce
energy consumption and enhance temperature control performance. The authors also used
the heat balance integration method to establish an approximate analytical relationship
between the phase interface position and thermal parameters under specific conditions [20].
The results indicated that the evolution of the phase interface was a highly nonlinear
problem influenced by the combined effects of the amplitude of the periodic temperature
boundary, the phase change material’s temperature response amplitude and frequency, the
Bekele (Pe) number, and the equivalent thermal conductivity corresponding to the phase
change material thickness.

The cited references [15–21] extensively investigated the heat storage process of PCM.
However, advanced high-power electronic devices demand significantly enhanced heat
dissipation capabilities. Consequently, heat sinks often necessitate active cooling techniques,
such as forced convection, to mitigate heat buildup and subsequent temperature elevations.
The amalgamation of phase change heat sinks with active cooling methods has garnered
limited research attention, particularly when confronted with intricate transient pulse heat
excitation scenarios. An exploration of the optimal conditions for PCM concerning varying
pulse amplitudes and frequencies remains outstanding. In complement to these research
endeavors, the primary objective of this study was to conduct an exhaustive parametric
analysis concerning the impacts of pulse heat flux amplitude and frequency variations on
temperature fields, phase fields, and interface temperature responses.

In this study, a mathematical model for the three-dimensional heat transfer structure
of PCHEU–LPM was constructed. The configuration was designed to absorb transient
pulse heat flux at one extremity while mitigating it through forced convection cooling
at the opposing end. A parameter study was then undertaken to analyze the impact of
variations in pulsed heat flux amplitude and frequency on the temperature and phase fields
within the PCHEU–LPM system. These insights were employed to establish a correlation
between the amplitude and frequency of external thermal excitation applied to the PCM.
The correlation was determined by examining the resulting temperature response at the
heating surface through time–frequency transformation methodologies. Through these
investigations, this paper aims to elucidate the thermal response characteristics of PCMs
under intricate boundary conditions and determine the optimal amplitude and frequency
ranges for the design of heat sink systems incorporating high thermal conductivity PCMs.
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2. Methodology
2.1. Physical Model

Solidification casting, also known as cryogenic casting or ice templating, represents a
controlled biomimetic porous material fabrication technique. Through this methodology,
the directed generation of specific morphologies in porous structures is achieved, thereby
enabling the realization of composite phase change materials with commendable thermal
conductivity and latent heat performance [21]. In this study, a lamellar porous medium
structure was employed, and microphotographs illustrating the specific morphological
features are depicted in Figure 1. The copper-based metal framework was aligned par-
allel to the heat transfer direction, maximizing thermal conduction. Cavity interstices
between layers were filled with paraffin, characterized by high latent heat and a low phase
transition temperature, serving as the phase change material. Figure 2 illustrates the pro-
cessed and shaped PCHEU–LPM, constituting a rectangular prism with dimensions of
40 mm × 12 mm × 7 mm. The top surface was subjected to pulsed thermal flux loading
while forced convection heat dissipation was applied to the bottom surface, with specific
parameters outlined in Table 1.
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Table 1. Types of boundary conditions and parameters.

Boundary Conditions Location Boundary Condition Parameters

Pulsed heat flux Top Heat flux
50,000 W/m2

Pulse period
50 s

Pulse duty cycle
0.5

Microchannel water cooling Bottom Mean flow rate
2 m/s

Refrigerant materials
Water

Refrigerant incoming
flow temperature

297 K
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2.2. Governing Equations
2.2.1. Governing Equations for the Porous Medium Framework

The thermal process necessitated the formulation of certain assumptions prior to
constructing the heat transfer model. These assumptions are enumerated as follows:

(1) The framework material is copper.
(2) The porous medium exhibits isotropy in all directions.
(3) Uniform pore density and constant porosity. The heat transfer within the copper

framework is mathematically articulated through the energy control equation, as
denoted by Equation (1).

(ρC)g
∂Tg

∂t
= λg

(
∂2Tg

∂X2 +
∂2Tg

∂Y2

)
− hgp

(
Tg − Tp

)
(1)

In the aforementioned equation, the subscript g denotes the physical properties per-
taining to the framework, while the subscript p denotes the physical properties associated
with the phase change material.

2.2.2. Governing Equations for the PCM

Before constructing the heat and mass transfer model for phase change materials, the
following assumptions were made:

(1) The phase change material is pure paraffin.
(2) The internal structure of the phase change material is isotropic.
(3) The post-melting flow of the phase change material is laminar, incompressible, and

includes a mushy zone during the phase transition.
(4) The physical properties of paraffin remain constant in the solid and liquid phases,

independent of temperature, while linearly varying in the mushy zone.
(5) Post-melting paraffin adheres to the Boussinesq assumption, wherein density changes

only affect the volume force term in the momentum equation.
(6) The influence of surface tension is neglected.

Based on these assumptions, continuity, momentum, and energy equations were
established to elucidate the heat and mass transfer processes of the phase change material.
The continuity equation is expressed as follows:

∂ρp

∂t
+∇

(
ρpu

)
= 0 (2)

Momentum equation:

ρ
∂u
∂t

+ ρ(u · ∇)u = ∇ ·
(
−pI + µ

(
∇u + (∇u)T

))
− ρgαv(T − Tm) + S (3)

In the aforementioned equation, the buoyancy force influenced by gravity only varies
in the v-direction. Here, µ represents the viscosity of the PCM, I represents the unit vector,
Tm denotes the phase change temperature of the PCM, and S denotes the body force terms
in the momentum equation, defined as follows:

S =
(1 − ε)2

(ε3 + B)
Amushy u (4)

The parameter B was introduced to ensure the meaningfulness of the definition when
the PCM was in the solid phase. Typically assigned a minute value, such as 10−10, this
parameter preserves the integrity of the expression under such conditions. Additionally,
Amushy serves as a damping parameter, ensuring the continuity of the momentum equation
across the two-phase region. It uniformly varied from 107 to 104 as the liquid fraction
ε ranged from 0 to 1.
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Energy equation:

ρpcp

[
∂Tp

∂τ
+ u∇T

]
= ∇ · (k∇T) + ρpL

∂ε

∂t
(5)

In the aforementioned equation, L represents the latent heat of phase transition from
solid to liquid.

2.3. Mesh Model

Based on the microphotograph in Figure 1, a simplified geometric model was estab-
lished, as illustrated in Figure 3. Based on the simplified geometric model, a thermal model
was established in Comsol 5.6 software and grid divisions were performed. The grid was
divided according to the solid domain and fluid domain, as shown in Figure 4a,b. The
grid elements were triangular with a maximum size of 0.774 mm and a minimum size
of 0.0157 mm. Mesh refinement was applied at the fluid–solid coupling interface with a
boundary layer grid refinement of 5 layers and a growth rate of 1.2, with the first layer
thickness set to 0.311 mm. When grid division was performed for the thermal model, grid
refinement was applied at the fluid–solid coupling interface, with a minimum thickness of
the boundary layer of 0.311 mm, resulting in a total of 113,981 grid elements. The average
grid quality was 0.758 and the minimum element area was 0.223 mm2. Grid independence
was assessed by controlling the maximum value of different grid sizes and evaluating the
average liquefaction rate based on different grid sizes. The results of the grid independence
test are shown in Figure 5. From Figure 5, it can be observed that when the maximum grid
length was ≤0.3 µm, the average liquefaction rate φav no longer changed; thus, this value
was selected as the maximum length of the grid model.
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2.4. Model Validation

To validate the effectiveness of the thermal model’s computational approach, this
study first configured the thermal model according to the materials, physical parameters,
and boundary conditions outlined in reference [22]. The average melting rate calculated
using the methodology employed in this study was compared with the experimental results
from reference [22], as shown in Figure 6. Furthermore, the evolution of the dimensionless
position of the phase interface over time, obtained from the computational results, was
compared with the simulation results from reference [22], as depicted in Figure 7. From the
results presented in Figures 6 and 7, it is evident that the computational outcomes obtained
using the model established in this study, along with the corresponding computational
methods, exhibited good agreement with the simulation and experimental results in the
reference, with discrepancies not exceeding 5%. Consequently, the model developed in this
study, along with its associated computational methods, is considered to be effective.
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Furthermore, practical experimental measurements of the effective thermal conduc-
tivity for PCHEU–LPM were conducted, as illustrated in Figure 8. The experimentally
determined effective thermal conductivity was found to be 12.9 W/(m·K), with a deviation
of 15.6% compared to the simulation results, as shown in Figure 9. The experimental results
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indicate that the thermal model slightly overestimated the effective thermal conductivity
compared to the actual value. This discrepancy arose from the presence of a certain thermal
contact resistance between the metal framework and PCM in reality that was neglected in
the simulation.
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3. Simulation Results and Discussion

The rectangular prism-shaped PCHEU–LPM, as described in Section 2.1, was selected
as the object of this study. The porosity of the PCM and porous composite material was set
at 70%, with the porous matrix having a density of 7093 kg/m3 and constant pressure heat
capacity of 385 J/(kg·K) and the PCM-filled pores having a reference density of 910 kg/m3.
Adhering to the Boussinesq assumption, the density variation rate with temperature was
0.011, the constant pressure heat capacity was 2130 J/(kg·K), and the latent heat was
220 kJ/kg. The inlet temperature of the cooling agent at the bottom of the PCHEU–LPM
was 293 K, with an inlet velocity of 0.4 m/s. At the top, a pulsating heat flux was applied
with a pulse period of 50 s and a duty cycle of 0.5. Through simulation calculations, varying
the amplitude and frequency of the heat flux applied at the top of the PCHEU-LPM yielded
temperature responses at the heated interface. This enabled the identification of thermal
boundary conditions corresponding to minimized temperature fluctuations.

3.1. Variation in Heat Flow Amplitude

The applied external heat flux amplitude, denoted as qw, varied in the range of
6 × 105 W/m2 to 1.4 × 106 W/m2 at the top of the PCHEU–LPM. To explore the correla-
tion between damping properties in the two-phase region and pulse heat excitation, we
utilized the Fast Fourier Transform (FFT) method to analyze the amplitude–frequency and
phase–frequency characteristics of the PCM heat transfer process. This facilitated a compre-
hensive understanding of the frequency–domain features of the PCM heat transfer system
under intricate boundary conditions. Employing Fourier transforms on the input signal
(χ(N)) and output signal (ζ(N)), the frequency–domain characteristics (σ(N) = ζ(N)/χ(N))
of the PCM heat transfer system are depicted in Figure 10. Additionally, the phase–frequency
characteristics are presented as σ(N), with the phase angle difference between χ(N) and
σ(N) denoted as Angle(σ(N)) − Angle(χ(N)). Figure 10a showcases the baseline temper-
ature response at 0 Hz, which escalated with increasing heat excitation amplitude. In
Figure 10b, within the low-frequency sampling range of 0 to 0.05 Hz, the surface tempera-
ture transformed into a series of superimposed waves with varying amplitudes. Notably,
the amplitude–frequency characteristics prominently dominated around 0.01 Hz, closely
aligning with the 0.01 Hz pulse heat flow frequency at the top of the heat sink. Ampli-
tude comparisons at this frequency revealed an initial decrease followed by an increase,
mirroring the interface temperature response. This suggests that the phase change pro-
cess attenuated the amplitude of external heat flow, with the damping effect gradually
weakening as phase change saturation progressed. Turning to Figure 10c, representing
the high-frequency sampling range from 0.05 to 0.5 Hz, amplitudes gradually dimin-
ished to negligible levels, indicating minimal influence on the final results and they were
thus disregarded.
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Figure 11 presents the phase–frequency characteristics of the thermal response of the
heat transfer system, indicating the phase angle difference between the pulse heat input
and the corresponding temperature response in the phase change heat transfer system.
The phase–frequency curve corresponding to the 1 × 106 W/m2 heat excitation serves as a
reference for comparison. The results demonstrate that increasing the amplitude of external
heat excitation led to more frequent oscillations in the phase–frequency characteristics,
transforming the system into a higher-order phase change heat transfer system, with the
system’s damping characteristics gradually diminishing.
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Figure 12 depicts the three-dimensional temperature field nephogram of the PCHEU–LPM
at 450 s, corresponding to the peak moment of the last pulse heat excitation. Figure 13
presents the velocity field nephogram and phase field contour map of the PCHEU–LPM
at 450 s. Combining Figures 12 and 13, it is evident that when the phase change heat
transfer system exhibited low-order damping characteristics, the relationship between
the temperature field as the output of the heat transfer system and the input pulse heat
excitation became more linear. In such instances, the heat transfer system displayed lower
complexity, resulting in a more uniform temperature field distribution, as illustrated in
Figure 12a,b. Conversely, when the phase change heat transfer system exhibited high-order
damping characteristics, the system became more complex, with enhanced nonlinearity
between input and output. This was reflected in a more uneven temperature field, as shown
in Figure 12c–e. From Figure 13, it is observed that with an increase in the amplitude of
the pulse heat flux, the liquid-phase and two-phase regions gradually transitioned from
the upper to the lower region of the radiator. Simultaneously, the maximum flow velocity
steadily increased and low-speed vortices gradually formed, with the vortex position
shifting from near the top of the radiator to the middle. This phenomenon indicates
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that greater amplitude external heat excitation drives the phase interface forward in the
direction of heat flow. The fully molten liquid-phase region expands, and natural convection
heat transfer within the liquid-phase region intensifies. Therefore, the observed uneven
temperature distribution in the PCHEU–LPM shown in Figure 12 is directly attributable to
the natural convection phenomena within the liquid-phase region.
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The above results indicate that as the amplitude of the pulse heat excitation increased,
the peak temperature response at the heated surface also increased, while the tempera-
ture fluctuation values initially decreased and then increased. The primary reason for
this behavior was the damping effect of the two-phase region within the heat transfer
system. When the pulse amplitude was relatively small, the temperature field inside the
PCHEU–LPM exhibited spatial uniformity. However, at larger amplitudes of pulse heat
flux, the temperature field became non-uniform, depending on the strength of natural
convection in the two-phase and liquid-phase regions. When utilizing the PCHEU–LPM
in pulse electronic thermal control systems, matching the heat source with the amplitude
of the pulse heat flux is crucial. In addition, in order to reduce the surface temperature
gradient generated by natural convection and meet the spatial temperature uniformity
requirements of heating devices, measures to suppress the intensity of natural convection
need to be taken, such as using a PCHEU–LPM with smaller porosity.

3.2. Variation in Heat Flow Frequency

Figure 14 presents a schematic of the pulsed thermal excitation applied to the PCM heat
sink during the 450 s study period, featuring different frequencies. To mitigate the scattering
of finite element calculations caused by continuously oscillating boundary conditions over
a short duration, we implemented a buffering technique. This involved blunting the sharp
transitions of the square wave thermal excitation to suppress high-frequency variations.
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The frequency of the thermal excitation, denoted as fq, varied in the range of 5 Hz to
0.008 Hz. Figure 15 illustrates the amplitude–frequency characteristics of the PCM heat
transfer system, categorizing the temperature response on the heating surface into various
frequency ranges. Notably, at 0 Hz, the baseline temperature amplitude was observed to
randomly fluctuate between 313 K and 315 K, irrespective of external pulse excitation fre-
quency. Within the low-frequency sampling range of 0 to 0.05 Hz, the interface temperature
response exhibited significant variations in response to low-frequency heat excitation, with
the magnitude decreasing as the heat excitation frequency gradually increased. When the
heat excitation frequency surpassed 1 Hz, no discernible amplitude was observed, indicat-
ing that the temperature response on the heating surface was unaffected by heat excitation
oscillations. Figure 16 presents the phase–frequency characteristics of the PCM heat transfer
system under different heat excitation frequencies. As the frequency fq decreased from high
to low, the fluctuation in the phase–frequency curve initially increased and then decreased.
This pattern implied that the complexity and nonlinearity of the phase change heat transfer
system first intensified and then diminished with varying fq frequencies. This behavior
was attributed to the extremely high oscillation frequency of fq (>1 Hz), which was smaller
than the system’s thermal response characteristic time, resembling a nearly continuous
and constant heat flux to the system. Consequently, at such frequencies, no temperature
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fluctuations occurred. Conversely, at very low oscillation frequencies of fq (<0.008 Hz),
where the heat flux changed slowly, the temperature variation followed Fourier’s heat
conduction law. The nonlinearity introduced by phase change was evident only at the
onset and conclusion of the phase transition, corresponding to the middle section of the
red line in Figure 16d.
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Figure 17 illustrates the three-dimensional temperature field nephogram of the
PCHEU–LPM at the moment corresponding to the last peak of the different frequency pulse
heat excitations shown in Figure 14. Figure 18 displays the velocity field nephogram and
phase field contour map of the PCHEU–LPM at the corresponding moment. Combining
Figures 16 and 17 reveals a direct correlation between the uniformity of the temperature
field and its phase–frequency characteristics. When the phase–frequency curve exhibited
significant fluctuations, indicating a higher-order nonlinearity in the heat transfer system,
the surface temperature gradient of the PCHEU–LPM was pronounced. Conversely, when
the phase–frequency curve showed minimal fluctuations, indicating a lower-order non-
linearity, the surface temperature of the PCHEU–LPM was uniform. Observing Figure 18,
when fq > 1 Hz or fq < 0.008 Hz, the phase field uniformly changed along the direc-
tion of heat flow, and natural convection at the bottom of the PCHEU was inhibited. In
the mid-frequency range between 1 Hz and 0.008 Hz, the phase field extended to the
bottom of the PCHEU, and natural convection in the liquid-phase region became more
intense. Combining Figures 17 and 18 indicates that the spatial temperature distribution’s
non-uniformity originated from natural convection, with more intense natural convection
occurring when the heat excitation was in the mid-frequency range. During this period,
the surface temperature gradient of the PCHEU–LPM was more pronounced.
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The aforementioned findings indicate that variations in pulse frequency did not im-
pact the temporal average of the interface temperature within each cycle. However, the
amplitude of temperature fluctuations throughout the cycle increased with a decrease in
frequency. Moreover, frequency exhibited a close correlation with the uniformity of spatial
temperature distribution. For thermal excitations at higher or lower frequencies, the phase
change heat transfer system tended to be a low-order damping system, resulting in better
temperature uniformity. In contrast, at intermediate frequencies, the phase change heat
transfer system behaved as a high-order damping system, leading to larger spatial temper-
ature gradients. Therefore, an alternative approach to promoting temperature uniformity
is to preferentially employ thermal sources oscillating at higher or lower frequencies.
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3.3. Variable Porosity Structure

Based on the results from Sections 3.1 and 3.2, the non-uniformity in the distribution of
the temperature field was attributed to the uneven intensity of natural convection induced
by specific thermal boundary conditions. As evident from Figures 12d, 13d, 17d and 18d,
the highest natural convection intensity occurred in the central region of the PCHEU–LPM,
where the maximum surface temperature difference exceeded 11 K. To expand the ap-
plication range of the PCHEU–LPM under high-amplitude or medium-frequency pulsed
heat flux and enhance its temperature uniformity, a variable porosity structure was intro-
duced, as illustrated in Figure 19. In this configuration, the porosity in the central part
was set at 70% while the porosity on the sides was set at 45%. This configuration was
strategically advantageous as it increased the thermal conductivity on the initially local
high-temperature sides, thereby improving heat dissipation and reducing temperatures,
ultimately enhancing overall temperature uniformity. Simultaneously, the higher porosity
in the central part maximally preserved latent heat. The temperature field and velocity field
results for the PCHEU–LPM with variable porosity under a pulsed heat flux amplitude
of 1.2 × 106 W/m2 and a duty cycle of 0.04 are presented in Figure 20 and Figure 21, re-
spectively. A comparison between the temperature field results of Figures 12d, 17d and 20
reveals a reduction in the maximum surface temperature difference from 8.5 K and 11.3 K
to 4.6 K, indicating a significant improvement in surface temperature uniformity. The
velocity field distribution in Figure 21 shows a decrease in vortex speed on the sides of
the PCHEU–LPM with variable porosity, resulting in a closer approximation to natural
convection at various locations. This was a direct contributing factor to the enhanced
uniformity in the temperature field.
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The above results show that the design featuring high porosity in the central region and
low porosity on the sides holds promise for enhancing the surface temperature uniformity
of the PCHEU–LPM. This configuration can enable electronic devices within the payload
bay of hypersonic aircraft to operate in pulsed mode at higher amplitude ranges and
broader frequency spectrums. In practical applications, the fabrication of a PCHEU–LPM
with variable porosity entails the casting of a porous medium using a thermoelectric cooler
with temperature variation capabilities in a specific region. This allows for the modulation
of porosity through distinct cooling temperatures. However, the realization of highly
precise and regionally variable thermoelectric coolers necessitates further development.

4. Conclusions

This paper presented a numerical investigation into the interface temperature response
of the heating surface in a three-dimensional PCHEU–LPM model. The model incorporated
combined boundary conditions of pulsed heating and forced convection heat dissipation,
allowing for an analysis of the impact of changing pulsed heat flow conditions. The effects
of variations in heat flow amplitude and frequency on the temperature and phase fields
were examined, leading to the following conclusions:

(1) It is crucial for the PCHEU–LPM to work within an appropriate amplitude of the pulse
heat flow generated by the heat source. When the heat flow amplitude is excessively
large, the heating surface and the surrounding PCM enter a superheated state. Con-
versely, when the amplitude is excessively small, they remain in a supercooled state.
Neither extreme allows for the optimal utilization of latent heat during phase change,
leading to the inadequate suppression of temperature fluctuations at the interface.

(2) Natural convection in the liquid-phase region is attenuated when the PCHEU–LPM
handles either high-frequency or low-frequency pulsed heat generation. As a result,
the interface temperature exhibits a more uniform distribution. Specifically, when
dealing with high-frequency heat flow (>1 Hz), the interface temperature fluctua-
tion remains below 1 K. For medium-frequency heat flow (0.2 Hz to 0.04 Hz), the
fluctuation ranges from approximately 4.5 K to 10 K, while low-frequency heat flow
(<0.008 Hz) leads to fluctuations exceeding 14.5 K. Nevertheless, compared to heat
sinks made of single-phase metal materials, the PCHEU–LPM still demonstrates
superior suppression of temperature fluctuations when handling medium- and low-
frequency heat flows.

(3) If the thermal control of electronic devices inside cabins needs to further enhance the
uniformity of spatial temperature distribution, one method is that a PCHEU–LPM
with lower porosity can be used to suppress natural convection intensity. Another
method is to make the pulse working mode of electronic devices ≥ 1 Hz or ≤0.008 Hz.

(4) The design featuring high porosity in the central region and low porosity on the sides
holds promise for enhancing the surface temperature uniformity of the PCHEU–LPM.
Compared to the PCHEU–LPM with a porosity of 70%, which maintains a 70%
porosity in the central region and reduces it to 45% on both sides to enhance thermal
conductivity, this design improves surface temperature uniformity, reducing the
maximum surface temperature difference from 11.3 K to 4.6 K. This configuration
enables electronic devices within the payload bay of hypersonic aircraft to operate in
pulsed mode at higher amplitude ranges and broader frequency spectrums.
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Nomenclatures

Parameter Name
L Length mm
H Width mm
δ Height mm
q Heat flow W/m2

T Temperature K
U X-direction speed m/s
V Y-direction speed m/s
W Z-direction speed m/s
S Body force N/m3

s Phase interface location m
h Convective heat transfer coefficient W/m2-K
∆h Latent heat of phase change KJ/kg
A Area m2

Greek alphabet
τ Time s
ε Porosity or liquid phase ratio
µ Sport viscosity Pa-s
ρ Density kg/m3

k Thermal conductivity W/m-K
Y Latent heat of phase change KJ/kg
α Thermal diffusion coefficient m2/s
ς Permeability m2

Subscript
l Liquid phase
s Solid phase
n Directional vector at the phase interface
w External thermal excitation
m Phase change state
c Cold fluids
0 Initial state
ss Steady-state, time-averaged value of

transient temperature fluctuations
h Hot end
c Cold end
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