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Abstract: The application of space robotic manipulators and heightened autonomy for In-Orbit
Servicing (IOS) represents a paramount pursuit for leading space agencies, given the substantial
threat posed by space debris to operational satellites and forthcoming space endeavors. This work
presents a guidance algorithm based on Deep Reinforcement Learning (DRL) to solve for space
manipulator path planning during the motion-synchronization phase with the mission target. The
goal is the trajectory generation and control of a spacecraft equipped with a 7-Degrees of Freedom
(7-DoF) robotic manipulator, such that its end effector remains stationary with respect to the target
point of capture. The Proximal Policy Optimization (PPO) DRL algorithm is used to optimize the
manipulator’s guidance law, and the autonomous agent generates the desired joint rates of the robotic
arm, which are then integrated and passed to a model-based feedback linearization controller. The
agent is first trained to optimize its guidance policy and then tested extensively to validate the results
against a simulated environment representing the motion synchronization scenario of an IOS mission.

Keywords: deep reinforcement learning; 7-DoF space manipulator; motion synchronization; in-orbit
servicing

1. Introduction

The recent surging interest in advancing technologies and methodologies for IOS of
satellites and space systems is motivated by the continuous expansion of space exploration
and utilization, demanding efficient and dependable approaches to repairing, refueling,
and repositioning space assets. Spaceborne robotic systems are a key technology potentially
unlocking the ability to perform these tasks, and their accurate handling and control is
an essential aspect of IOS missions. The aforementioned activities are carried out either
on a cooperative or an uncooperative target, and it is the latter scenario that is driving
the current research field. The inherent uncertainties associated with the interaction with
uncooperative targets necessitate a high degree of motion control autonomy, reactivity, and
adaptability to the surrounding environment. The rapid progress in the field of Artificial
Intelligence is promising substantial enhancements in the capabilities of autonomous Guid-
ance, Navigation, and Control (GNC) within these systems. Reinforcement Learning (RL),
above all, seems like a promising tool to solve complex decision making problems, formu-
lated as Markov Decision Processes (MDPs). The fusion of neural networks’ generalization
abilities with Reinforcement Learning methods has given rise to DRL, which is extensively
employed in solving planning problems, for its capacity to handle high-dimensional state
and action spaces, as well as its ability to cope with Partially Observable Markov Decision
Processes (POMDPs).

DRL has been recently adopted to generate the trajectory to fly around a target object,
for its autonomous shape reconstruction, in [1,2]. Other applications of RL and, more specif-
ically, meta-RL were applied in [3] to enhance the guidance and control of endo-atmospheric
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missiles, in [4] for 6-Degrees of Freedom (6-DoF) planetary landing applications, and in [5]
for the autonomous generation of asteroid close-proximity guidance.

Regarding the application of RL to aid in Space Robot guidance and control, such
methodology is currently considered one of the most promising research directions [6],
but the present literature is still quite scarce. Indeed, further research efforts in the short
term will be required to unlock its full potential. In [7], a motion planning strategy for
a 7-Degrees of Freedom (7-DoF) space manipulator was implemented, and some of the
concepts detailed in that work are also applied here, specifically in the context of the reward
function. Multi-target trajectory planning is presented in [8], while control of a free-floating
Space Robot through RL is tackled in [9].

This work originates from the recent applications of DRL for GNC problems in the
space field, which have demonstrated the possibility of training highly autonomous agents,
capable of executing complex objectives even in environments that they have not been
strictly trained in. With regards to more classic Space Robot control approaches, there
are currently many difficulties that hinder the use of redundant manipulators in space
while being able to exploit their full potential, such as the ill-posed inverse kinematics,
and complexities in the implementation of trajectory constraints. While optimization-
based approaches have been developed to achieve such goals, they are often unfit for
real-time implementation on space-rated hardware. To this extent, the ability to achieve
such objectives with an autonomous DRL agent, requiring little to no real-time optimization,
could be highly beneficial for robotics technologies in space but requires large research
efforts before becoming a viable alternative. Given the novelty of such approaches, this
work aimed to take a step forward in the application of DRL for the trajectory planning of
a redundant space manipulator in a challenging and dynamic IOS mission environment.
The obtained results demonstrate the enhanced autonomy and reactivity provided by the
application of DRL in the context of the motion-synchronization phase of a hypothetical
IOS mission and prove that the proposed method has the potential to be extended to a
wider set of spaceborne scenarios.

2. Problem Statement

In robotic IOS missions, a key phase involves motion synchronization. The main oper-
ations performed during a robotic IOS mission are reported in a block diagram in Figure 1:

Figure 1. Orbital Robotics Mission (ORM) phases.

During this phase, the chaser spacecraft fine-tunes its relative position and orientation
until its end effector remains stationary relative to the target capture point. Achieving the
correct relative state at the end of this closing phase is critical for the subsequent tasks of
grasping and making contact. Figure 2 illustrates the problem at hand.
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Figure 2. Motion-synchronization scenario.

The end effector of the space manipulator shall effectively track a specified grasping
point on the tumbling target and follow its motion, in preparation for the subsequent
activities. A generic shape for the target is selected, without loss of generality, and it is
designed as a cylinder with two appendages representing solar panels. The chaser, instead,
is a 6-Degrees of Freedom (6-DoF) spacecraft equipped with a 7-Degrees of Freedom (7-DoF)
redundant manipulator.

The DRL agent—that is, the PPO—performs the guidance and control tasks, receiving
the input data from the navigation block. The work operates under the assumption of
having prior knowledge of the state variables describing the scenario at every time instant
and omits the inclusion of a physical navigation block responsible for estimating these state
parameters since it is outside the scope of this study.

Consequently, the state variables are presumed to be available and are directly input
into the guidance and control blocks. These blocks then generate control actions, which
are subsequently applied to the system. The system, in turn, integrates the equations of
motion for both the chaser and the target and provides the scenario for the next simulation
step, effectively closing the feedback loop.

2.1. Space Manipulator Dynamics

This section provides a concise introduction to the equations of motion for a space
manipulator with N DoF. It is important to note that in the scope of this study the multi-
body system is described as free-flying, signifying that the spacecraft is actively controlled
in both translation and rotation, in contrast to the free-floating scenario [10]. By employing
the direct path approach, the spacecraft’s center of mass is utilized as the representative
point for translational motion, enabling the derivation of the system’s kinematics and
dynamics [11]. This approach results in more streamlined equations. Using a Newton–
Euler formulation, the equations of motion of the space manipulator system are computed,
and they are reported in Equation (1) [11]:

H(q)q̈ + C(q, q̇)q̇ = τ (1)

H ∈ R(6+N)×(6+N) is the symmetric, positive-definite Generalized Inertia Matrix
(GIM), C ∈ R(6+N)×(6+N) is the Convective Inertia Matrix (CIM), containing the nonlinear
contributions, the Coriolis, and the centrifugal forces, and τ ∈ R(6+N) is the vector of
generalized forces in the joint space. The parameter q entails the selected generalized
variables, which compose the space manipulator state and are reported in Equation (2):

q = [r0, R0, qm]
⊤ = [q0, qm]

⊤ (2)

where r0 is the position vector of the base spacecraft in the inertial frame, R0 is the orien-
tation of the base spacecraft with respect to the inertial frame, employing a quaternion
representation, qm contains the joint angles of the robotic arm, and q0 is an auxiliary variable
used to collect the state of the base (r0, R0) in a single vector.
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The kinematic and dynamic properties of the system were determined using the MAT-
LAB R2023a library SPART (SPAce Robotics Toolkit) [11], a software package designed
for modeling and controlling mobile-base robotic multi-body systems with efficient and
recursive algorithms, taking advantage of the kinematic tree topology of the system. Ad-
ditionally, for solving the equations of motion, a model of the space manipulator was
constructed using the Simulink Simscape Multi-body library. The implemented simulator
captures some of the main characteristics typical of multi-body systems in space, such
as the high degree of dynamic coupling between the base and the manipulator. To limit
the computational complexity of the model, considering the large number of simulations
required to train the autonomous agents, flexibility effects in the joints and the links of the
manipulator were not considered. Especially when employing large manipulators, flexibil-
ity effects are expected to produce non-negligible deviations from the rigid body model
that has been implemented, but such aspects were omitted from this work as its scope was
to evaluate the possibility of using DRL as a guidance strategy for space manipulators. In
the future, once a strong baseline guidance architecture has been determined, an insightful
extension to the work contained here would be to evaluate whether the agent provides any
benefits in overcoming flexibility effects.

2.2. Target Dynamics

As the target is positioned at the origin of the LVLH (Local-Vertical, Local-Horizontal)
reference frame, its translational motion can be disregarded, focusing instead on the rota-
tional dynamics, which are modeled using Euler equations in orthogonal principal axes of
inertia coordinates, as in Equation (3):

Iω̇T + ωT × (IωT) = M (3)

I is the target’s inertia matrix, ωT is its angular velocity vector, and M is the vector of
applied torque, assumed to be null in this work. Once again, the equations of motion of the
target were solved through a Simulink Simscape Multi-body model of the target.

3. Reinforcement Learning Guidance

RL is a widely utilized tool for tackling Markov Decision Processess (MDPs). When
combined with Neural Networks for function approximation, it becomes a potent method
for addressing complex problems characterized by high dimensionality and partial observ-
ability [12]. A cutting-edge DRL algorithm designed for problems with continuous state
and action spaces—that is, the PPO [13]—was investigated, for the robotic manipulator’s
guidance optimization.

3.1. Proximal Policy Optimization

The PPO is a state-of-the-art on-policy, model-free DRL algorithm belonging to the family
of policy gradient methods. With respect to its predecessor, Trust Region Policy Optimization
(TRPO) [14], the PPO provides a simpler implementation with higher sample efficiency [13],
which makes for faster training without compromising reliability. As for its performance
on complex, high-dimensional, and partially observable continuous control problems, the
PPO outperforms many of its competitors in various benchmarks and provides high training
stability. The PPO is based on the Actor–Critic framework [15], where the Actor represents the
decision-making logic of the agent (i.e., the policy π), and the Critic evaluates the actions of
the Actor in the environment. Both Actor and Critic are approximated through Deep Neural
Networks (DNNs) parametrized through variables θ, which are updated throughout the
training process. The Actor–Critic approach is briefly described:

1. An agent is initially situated at a state s and perceives its environment through
observations o.

2. Based on o, the Actor autonomously decides the action a to take and applies it in the
environment to move to a new state s′.
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3. Depending on the definition of the reward R(ak, sk), the Critic evaluates the action that
has been taken and guides the parameter updates of the Actor through a stochastic
gradient descent on a loss function.

The optimal policy in an infinite-horizon problem is found through Equation (4), and
provides the agent with the maximum reward when applied in the environment:

π∗ = argmax
π

Eπ

[
∞

∑
k=0

γkR(ak, sk)

]
(4)

where the discount factor γ ∈ [0, 1] introduces a decay of rewards obtained distantly in
time and measures whether the agent seeks short-term or cumulative rewards, and R(ak, sk)
is the reward function.

Compared to the loss function in TRPO, the PPO’s clipped surrogate objective
(Equations (5) and (6)) has the advantage of limiting the policy’s parameter updates by
clipping the loss function, providing increased training stability:

pk(θ) =
πθ(ak|sk)

πθold(ak|sk)
(5)

LCLIP(θ) = Ek[min(pk(θ), clip(pk(θ), 1 − ε, 1 + ε))]Ak (6)

where Ak (Equation (7)) is the advantage function at timestep k, and where ε is the hy-
perparameter defining the clipping range. The entropy loss term S(πθ)sk, weighted by a
hyperparameter w, is added to Equation (6) to promote agent exploration, and it encourages
the Actor to try a variety of different actions, without becoming too greedy towards the ones
it thinks are best. Finally, the advantage function A(sk, ak) (Equation (7)) measures how ad-
vantageous taking an action a at timestep k is, instead of simply running the current policy πθ.
The Critic’s job is to approximate the value function V(sk), which represents the cumulative
sum of discounted rewards if only the current policy were run until the end of the episode:

A(sk, ak) =

[
T

∑
j=k

γj−kR(ak, sk)

]
− V(sk) (7)

3.2. GNC Implementation and Environment

This work presents a novel Artificial Intelligence (AI)-based autonomous guidance
law for a 7-Degrees of Freedom (7-DoF) redundant manipulator mounted on a Space Robot
(SR), used to achieve simultaneous end effector positioning and attitude alignment with
respect to a desired state, as well as its tracking. As defined in [12], the environment in the
DRL framework corresponds to everything outside the agent’s control; hence, everything
outside the manipulator’s guidance system is taken as part of the environment, including
the remainder of the SR and the target. A simplified scheme of the SR’s GNC system is
reported in Figure 3:

Figure 3. GNC architecture of SR.
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The SR’s control system is implemented through a coupled, nonlinear model-based
feedback linearization controller, where the resulting system is controlled through two
Proportional-Derivative (PD) regulators, for the base and manipulator, respectively. The
base is kept at the desired synchronized state with respect to the target, while the manipu-
lator is commanded by the DRL agent. The coupled control law is provided in Equation (8),
but being part of the DRL environment, it could be substituted with a more performant
control approach with little to no retraining:

τ =

{
τ0
τm

}
= H

{
PD(q∗

0 − q0)
PD(q∗

m − qm)

}
+ Cq̇ (8)

where H and C are, respectively, the system’s 13 × 13 GIM and CIM [11], and q = [q0, qm]⊤

is the Space Robot’s state collecting the 6-DoF of the base and the 7-DoF of the manipulator.
The scalar gains of the two PDs are set as in Table 1, and were tuned through trial-and-error
before the training process, such that the manipulator’s joints effectively converged to the
desired values produced by the agent. In any case, the controller was not found to limit the
agent’s performance, and the control errors converged to zero within the first seconds of
the simulation.

Table 1. PD gains for the Space Robot base and manipulator.

DoF Proportional Gain 1 Derivative Gain 1

Base 0.4 0.3
Manipulator 2.5 1.25

1 PD gains are the same for all base DoF and all manipulator DoF, respectively.

3.3. Action Space and Observation Space

The agent’s policy, which represents the Actor of the PPO implementation and provides
the autonomous guidance of the manipulator, receives 32 observations o (Equation (9)), and
outputs seven actions a (Equation (10)):

o = [qm, q̇m, r̃, ˜DCM, ṽ, ω̃]⊤ (9)

The terms in Equation (9) correspond to the current joint angles and joint rates of the
manipulator (qm, q̇m) and the errors between the current and desired end effector states
(r̃, ˜DCM, ṽ, ω̃), retrieved through kinematics and rotated in the SR’s body frame. The
observation vector is normalized before providing it to the guidance for better convergence
of the PPO [8]. The main benefit of using the agent only to provide manipulator guidance is
that kinematic information is sufficient in the observations, which decreases the complexity
of the policy and eases convergence of the algorithm.

a = q̇∗
m = [ϕ̇1, ϕ̇2, ϕ̇3, ϕ̇4, ϕ̇5, ϕ̇6, ϕ̇7]

⊤ (10)

The seven actions a produced by the agent correspond to the desired joint rates of the
manipulator, and are integrated (Figure 3), such that both the desired joint angles and rates
(q∗

m, q̇∗
m) can be provided to the manipulator’s PD controller [16].

3.4. Reward

Providing the agent with rewards and penalties is the sole mechanism that incentivizes
the manipulator’s guidance system to increase its performance. Adequate reward function
design is critical as it directly impacts the convergence of the policy towards the optimal
one, as well as the overall attainable performance. Since training on a sparse reward with
high-dimensional state and action spaces is extremely difficult, reward shaping has been
introduced through the definition of an Artificial Potential Field (APF) (Equation (11)),
expanding upon [7]:
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Uk = −r̃ +
10

1 + r̃ax
+

10
1 + r̃tx

+
10

1 + θ̃
(11)

where r̃ is the magnitude of the error between the desired and current positions of the
end effector, r̃ax and r̃tx are the projections of r̃ parallel and transverse to the X-axis of the
SR’s body frame (Figure 2), and θ̃ is the scalar error angle between the desired and current
attitude of the end effector, in axis–angle representation. The reward is given as a function
of the end effector’s potential variation (∆U) between timesteps (Equations (12) and (13)):

∆U = Uk − Uk−1 (12)

Rk =

{
∆U if ∆U ≥ 0
1.5 ∆U if ∆U < 0

(13)

where the 1.5× multiplier discourages the end effector from moving along equipotential sur-
faces. A bonus sparse reward of +0.01 is provided while r̃ax, r̃tx, and θ̃ are simultaneously
below a desired threshold.

4. Training and Results

Before proceeding with training, the initial conditions and the DRL hyperparameters
were introduced. The scenario was that of a target spacecraft tumbling around its major
inertia axis. The SR’s state was kept synchronized with that of the target, such that they
spun together and any relative motion between the desired end effector state and the
SR was minimized. The SR was positioned along the angular momentum (LT) of the
target at a nominal distance of 5 m, and its angular velocity was set as in Equation (14) for
synchronization purposes:

ω0 = [ωT · L̂T , 0, 0]⊤ (14)

The nominal initial manipulator state was found in Equation (15), and it was selected
to point the end effector in the direction of the target at the start of each episode:

qm = [0, 285, 0, 210, 0, 75, 0]⊤ deg q̇m = [0, 0, 0, 0, 0, 0, 0]⊤ deg/s (15)

To increase the robustness of the agent, and to show that it could adapt to conditions
that it had not strictly been trained on, the nominal initial conditions of the target object
and the SR were randomized at the start of each simulation, according to the following list:

• Target’s major-axis spin rate ωT ∈ [−3, 3] deg/s.
• Each initial manipulator joint angle is perturbed by a random value δϕi ∈ [−15, 15] deg.
• Desired end effector state is randomized on the whole SR-facing side of the target,

both in terms of position and attitude.
• Distance between SR and target is perturbed by a random value δd ∈ [−25, 25] cm.

Simulations were only terminated if the manipulator’s configuration became singular,
to prevent the DRL algorithm from breaking down due to mathematical issues. With
regards to the PPO hyperparameters, the sample time of the agent was set to 0.3 s as a
trade-off between the computational expense, convergence, and reactivity of the SR. The
Actor and Critic were represented through two Feedforward Neural Networks (FNNs),
with the hyperparameters in Table 2.

A stochastic policy was used to increase agent exploration [9]; hence, the Actor’s
14 outputs (Table 2) represent, respectively, the mean and standard deviation of each
desired joint velocity. The remainder of the PPO hyperparameters were selected among
typical values: the clipping factor ε = 0.2, the discount factor γ = 0.99, the entropy
loss weight w = 0.01, the mini-batch size was 128, and the training epochs were 4. The
agent was trained for 3500 episodes, each of 420 s duration, for a total of 4.9 M timesteps
(see Figure 4).
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Table 2. Actor and Critic Networks hyperparameters.

Layers Actor Neurons Critic Neurons

Input 32 32
1st hidden 300 300
2nd hidden 300 300
3rd hidden 300 300

Output 14 1
Learning Rate 1 × 10−5 1 × 10−5

Activation tanh tanh

Figure 4. Average episode reward throughout training.

4.1. Agent Performance

The agent’s success in a simulation was defined as its ability to keep the end effector
within a selected tolerance from the desired state, in terms of both position and orientation,
consecutively for at least tmin = 30 s. This differs with respect to what is currently done
in the majority of the literature, where, once the end effector enters the selected threshold
for the first time, the episode is considered successful and the simulation is terminated. In
such a highly dynamic scenario, the latter approach does not prove that the end effector’s
state can remain synchronized with that of the grasping position, and would artificially
increase the agent’s performance in the environment.

The minimum error thresholds that guaranteed the 100% success rate of the agent,
and that represented its performance baseline, were r̃ax, r̃tx < 5 cm, and θ̃ < 5 deg.
These results were confirmed through the Monte Carlo analysis in Figures 5 and 6, which
show that regardless of the grasping point’s location in the target’s body frame the agent
could successfully synchronize the manipulator’s end effector with the desired state, for
consecutive periods that were much higher than tmin.

Through a deeper analysis of Figure 6, the average time that the end effector took
to successfully converge to the desired state was found to be 103 s, and, in any case, no
episodes took longer than 219 s to accomplish the objective, which was approximately half
of the complete episode duration. These values were driven by the randomized initial
configuration between the manipulator and grasping point and increased proportionally
to the range of motion that needed to be carried out by the robotic arm. Additionally, the
average consecutive time that the end effector stayed within the selected error tolerances
was 312 s, corresponding to 74% of the total episode duration. This confirms that once the
end effector converges to the desired state, it does not manifest largely oscillatory behavior.

Building on the few studies found in the literature, this work demonstrates that
the proposed AI-based robotic arm guidance strategy, when applied to a 7-Degrees of
Freedom (DoF) redundant manipulator that has a randomized positioning and attitude
alignment goal for extended periods of time, reliably provides performance in the order of
centimeters and degrees. These results show an improvement on what is currently found
in the literature: in [17], the guidance of a 7-Degrees of Freedom (DoF) manipulator was
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trained to achieve an end effector positioning goal, whereas its attitude was neglected; in [7],
a 7-Degrees of Freedom (DoF) manipulator was trained to accomplish both a positioning
and attitude alignment objective, but only the first 6 of 7 joints were controlled, since the
end effector was symmetrical around the last joint’s rotation axis.

Figure 5. Correlation of grasping location to episode success.

Figure 6. End effector error evolution over 500 testing episodes.

4.2. Agent Robustness

The need for highly reactive, adaptive, and autonomous systems anticipated for future
close-proximity operations has been one of the driving factors towards the introduction
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of AI-based methods into spacecraft GNC. Despite being new, the recent applications of
DRL in the space field have emerged as promising strategies for the generation of highly
adaptive agents that can handle unforeseen conditions that they have not strictly been
trained on, with significant increases toward mission robustness. These capabilities have
been shown to be intrinsic to the use of Deep Neural Networks, and, if achieved, would
provide many benefits supporting the addition of AI into classic GNC systems. To give
some preliminary insight into why using such approaches could be advantageous, the
agent’s limits and generalization capabilities were stressed in two scenarios that it had not
been trained to handle.

To this extent, errors in the spin rate synchronization around the target’s rotation axis
were added, to see whether the agent could adapt to this new scenario without further
training. The difference from the previous case, in which the grasping point was static
with respect to the SR, was that the end effector now needed to track a moving point and
synchronize its motion with it, maintaining a constant attitude. The maximum spin rate
error between the base of the SR and the target was taken from the COMRADE study [18],
where the requirement for the angular rate control error was set to ||ω0 − ωT || < 0.5 deg/s.
Hence, the SR’s angular velocity was perturbed each episode by a random value ωerr ∈
[−0.5, 0.5] deg/s, as in Equation (16). An overview of this new scenario is provided
in Figure 7.

ω0 = [ωT · L̂T + ωerr, 0, 0]⊤ (16)

Figure 7. Trajectory of desired end effector position.

A Monte Carlo analysis was conducted to evaluate the agent’s performance over
500 testing episodes. In these conditions that the agent had never experienced during
training, the success rate, defined in the same way as in the previous section, dropped
to 94%. These results show that despite a small decrease in performance the agent was
robust against errors in the attitude synchronization and was capable of tracking a moving
position in time. Referring to Figure 8, it can be seen that the episode failures do not show
a correlation to ωerr since many episodes were successful even when the synchronization
error between the SR and the target was high in magnitude. Instead, the failures of the
agent were more tied to the initial configuration between the manipulator and grasping
point and were located primarily in the third quadrant.

For a more thorough comparison of the agent’s behavior with and without errors in
the SR’s base attitude synchronization, the distribution of two performance indicators is
reported in Figures 9 and 10: the first figure shows how the time of the end effector’s first
successful entry in the thresholds was distributed among episodes, whereas the second
figure shows the distribution of the maximum consecutive time that the end effector
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remained inside the threshold, in each episode. Overall, even when the agent was subjected
to a new environment that it had not been trained in, its behavior was quite similar to
that which it demonstrated in nominal conditions. The main difference was found in
terms of outliers in the distributions, which recurred more often when synchronization
errors were present. Despite this similarity in results, better and more robust performance
could be obtained by directly training the agent to handle the more complex environment,
where possible.

Figure 8. Synchronization error correlation to success.

Figure 9. First end effector entry in threshold.

Figure 10. End effector consecutive time in threshold.
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To better understand how and why the episodes were failing, a sensitivity analysis
on the definition of episode success was carried out. The end effector’s error thresholds
r̃ax, r̃tx < 5 cm and θ̃ < 5 deg, which needed to be guaranteed consecutively for at least
tmin = 30 s, were selected arbitrarily, and in real scenarios would be heavily mission-
dependent. Figure 11 shows the variation of the success rate over 500 episodes, when these
values were changed, in two distinct cases:

1. The curves associated to the left axis show how the success rate varied in function of
the thresholds on r̃ax, r̃tx, and tmin while keeping the one on θ̃ fixed.

2. The curves associated with the right axis show how the success rate varied in function
of the thresholds on θ̃ and tmin while keeping the ones on r̃ax and r̃tx fixed:

80% 85% 90% 95% 100%

4

5

6

7

8

4

5

6

7

8

Figure 11. Success sensitivity to thresholds.

From Figure 11, it can be seen that in both analyses, varying tmin had negligible
effects on the success rate, which is explained by the fact that in the majority of cases the
agent could keep the end effector’s errors low for consecutive periods much longer than
tmin. By increasing the threshold on θ̃ from its baseline value of 5 deg, the success rate
remained unchanged, signifying that the end effector’s attitude was not the main factor
limiting performance. Differently, by increasing the end effector’s positioning thresholds,
the success rate started to increase, making this value act as the main bottleneck in the
obtained performance.

These results were determined by a combination of different effects: firstly, the simple
PD controller that was used to control the system after feedback linearization could not
guarantee null steady-state errors, which was a first factor impacting the convergence of
the end effector towards its final desired state; secondly, the agent’s sample time of 0.3 s,
coupled with the integration of the Actor’s outputs, may also have reduced the agent’s
maximum performance, especially once the end effector errors had been reduced below
the baseline threshold values.

A final test was conducted to further stress the agent’s generalization capabilities
when applied to a target that was larger than the one used during training. Specifically,
the agent was trained to correctly position and align the end effector in front of a target of
50 cm radius, and was instead asked to complete the same randomized objective, but on a
target of 150 cm radius. The agent’s performance was evaluated over 500 testing episodes,
and its success rate is shown in Figure 12.

The results show that as the goal position of the end effector moved outside the area
where it had been trained, the performance dropped significantly. Despite this, it was
found that no episodes fell below a radius of 64.5 cm, which shows that the agent could
adapt to a condition that it had not experienced during training, and achieve the objective
on a target that was at most 28% larger than the one used in training. To confirm these
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results in a statistical sense, 200 additional testing episodes were conducted, randomizing
the goal position within a radius of 64.5 cm from the center of the target, and the success
rate of the agent remained at 100%.

Figure 12. Generalization to a larger target.

5. Conclusions

This work proposes a novel autonomous guidance algorithm for the manipulator of
a free-flying Space Robot, allowing automatic synchronization of the end effector with a
desired state fixed to the uncooperative target spacecraft in a hypothetical IOS mission.
The problem was formulated as a Partially Observable Markov Decision Process (POMDP),
and solved through the state-of-the-art PPO algorithm. An FNN provided the guidance
of the manipulator in real time based on values retrieved through the navigation system,
which was not implemented, and its outputs were provided to a model-based feedback
linearization controller, which coupled the control laws of the base of the servicer and its
manipulator. After the training process, the agent successfully reached a randomized end
effector state objective, in a highly randomized environment, with a 100% success rate,
keeping its errors in terms of position and attitude below thresholds of 5 cm and 5 deg
for lengthy consecutive periods. Without any further training, the same agent was found
to be robust against errors in the attitude synchronization between SR and target, and it
could also complete the same objective on a target that was at most 28% larger than the one
used during training. Future extensions of similar approaches could obtain better results
by using more performant control systems that guarantee null steady-state errors, or by
decreasing the sample time of the agent. The latter would have to be tuned based on the
frequency of the values provided by the navigation filters.

Despite the literature on this topic being new and with many shortcomings, the results
produced in this work convey that DRL should be investigated further, as a prospective
solution to an even wider set of robotic IOS scenarios.

Further Developments

The outcomes obtained in this study show great potential and emphasize a few of
the advantages that implementing a DRL-driven space manipulator guidance system
could offer in upcoming Orbital Robotics Missions. These advantages include enhanced
autonomy, reactivity, and robustness of the system for off-nominal scenarios. However,
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the practical application of such techniques in real missions remains distant, requiring
further research and development efforts. Several directions for enhancing the agent’s
performance beyond the current state are suggested as potential extensions to this work.
The main focus should be on increasing the achievable accuracy of the end effector’s
positioning and attitude alignment, which is currently in the order of (5 cm, 5 deg) for a
7-Degrees of Freedom (DoF) manipulator that needs to concurrently track a desired full
state, randomized in each simulation.

• A possible strategy is to develop new reward functions to train the agent, that inher-
ently take into account the end effector’s position and attitude. Indeed, the majority
of reward functions found in the literature only consider the positioning component
and are unfit to achieve goals similar to those set in this work. Detailed analyses
on alternative reward functions is a topic often overlooked, but could be one of the
main strategies to improve the convergence properties of the DRL algorithm and the
manipulator’s performance at end effector level.

• Another approach to increasing the agent’s performance and robustness would be
to focus on the neural network architectures themselves, to see which ones provide
the greatest benefits to the manipulator’s guidance. For example, Recurrent Neural
Networks (RNN) have been demonstrated to provide increased robustness against
autonomous DRL agents [1,2] when subject to environments with large domain gaps
with respect to training, and their evaluation could provide insightful extensions to
this work.

• Finally, methods are being explored in the literature to ease policy convergence during
optimization, which is often hindered by a difficult selection and the tuning of the
reward function and hyperparameters, especially in environments with large observa-
tion spaces. Among these is the use of offline data to pre-train the neural networks,
which has been shown [19] to provide considerable benefits to the subsequent online
optimization process, achieved through agent–environment interactions. Considering
the current computational limitations of space-rated hardware, running complete
agent training in space is unrealistic, and deploying agents that have been pre-trained
on the ground seems to be one of the most promising approaches. To this extent, many
research lines are emerging within the so-called Sim2Real DRL transfer [20,21], which
are aimed at finding ways to limit the discrepancies between the performances of
agents tested both in a simulated environment and the real world.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
APF Artificial Potential Field
CIM Convective Inertia Matrix
DNN Deep Neural Network
DoF Degrees of Freedom
DRL Deep Reinforcement Learning
FNN Feedforward Neural Network
GIM Generalized Inertia Matrix
GNC Guidance, Navigation, and Control
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IOS In-Orbit Servicing
LR Learning Rate
MDP Markov Decision Process
ORM Orbital Robotics Mission
POMDP Partially Observable Markov Decision Process
PPO Proximal Policy Optimization
RL Reinforcement Learning
SR Space Robot
TRPO Trust Region Policy Optimization
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