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Abstract: This study models the subcritical Hopf bifurcation in thermoacoustic Stirling engines using
the Stuart–Landau model, highlighting the role of nonlinear dynamics. By inducing self-sustained
oscillations and measuring pressure fluctuations across different temperature gradients imposed on
the regenerator, we reveal the engine’s transition to a nonlinear domain, characterized by heightened
oscillation amplitudes and unique periodic patterns. Interpreted Landau constants and growth rates
illuminate the stabilizing effects of nonlinear dynamics, demonstrating the Stuart–Landau model’s
applicability in thermoacoustic engine analysis. Our research confirms that this empirically refined
model reliably describes oscillation amplitudes and transient phenomena, contributing valuable
perspectives for advancing thermoacoustic engine design and operational understanding.
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1. Introduction

In dissipative fluid systems, spontaneous thermoacoustic oscillations undergo tran-
sitions between dynamical states through bifurcations, leading to significant amplitude
oscillations indicative of a self-sustained state, known as thermoacoustic instability. This
phenomenon arises from thermally nonlinear interactions between sound waves and solid
walls in confined flow channels, driven by steep axial temperature gradients, and precipi-
tates through Hopf bifurcations. It is possible to apply these bifurcations of thermoacoustic
oscillations as a natural heat engine [1].

The evolution of thermoacoustic systems into qualitatively distinct behaviors is termed
bifurcation [2]. Changes in system parameters, such as the axial temperature gradient, can
dramatically shift their qualitative nature. These shifts are crucial as they can create or
destroy fixed points, such as stable fixed points or limit cycle oscillations, fundamentally
altering the system’s dynamics. The certain values of parameters at which these changes
occur are known as bifurcation points. Understanding bifurcations is essential for gaining
insights into the dynamic behavior of thermoacoustic engines and crucial for predicting
and managing thermoacoustic instability

Within thermoacoustic engines, both supercritical and subcritical Hopf bifurcations are
observed [3]. An increase in the temperature gradient results in a supercritical Hopf bifurcation,
leading to a gradual increase in oscillation amplitude, whereas a subcritical Hopf bifurcation
causes an abrupt amplitude jump at the Hopf point, where the system’s stable steady-state
becomes unstable and a stable limit cycle emerges. Subcritical cases have been extensively
documented across various thermoacoustic engine configurations, including standing wave,
traveling wave, phase change, and free-piston Stirling types [3–11]. Furthermore, a decrease
in the temperature gradient reveals hysteresis in oscillation amplitude with subcritical Hopf
bifurcations, eventually ceasing through a saddle-node bifurcation at a distinct fold point [2],
which signifies the minimum temperature gradient necessary for engine operation.

The Bifurcation of the thermoacoustic engine system, in terms of triggering and
ceasing thermoacoustic instability, can be described by Rott’s linear theory [12]. Based on
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the linearized hydrodynamic equations, Rott’s theory provides a theoretical framework
for analyzing thermoacoustic engine performance using wave equations in the frequency
domain. This framework enables us to determine the growth/attenuation rate of oscillation
amplitudes, crucial for estimating non-combustion-driven thermoacoustic instability.

While Rott’s linear theory lays a solid foundation for analyzing thermoacoustic phe-
nomena, predicting frequencies and growth rates consistent with supercritical Hopf bifur-
cations [13], it inadequately addresses the nonlinear dynamics crucial for understanding
subcritical bifurcations. This oversight underscores the importance of delving into the
nonlinear dynamics that govern the complex behaviors observed in thermoacoustic engines,
particularly those leading to hysteresis effects.

Further, thermoacoustic systems exhibit rich nonlinear dynamics [14], such as limit
cycles, quasi-periodic oscillations, harmonics, shock waves, synchronization, and more.
While computational fluid dynamics (CFD) methods effectively capture these nonlinear
phenomena [15], they do come with significant computational costs. Recently, we have
refined Rott’s model by integrating empirically derived nonlinear flow resistance [3]. This
addition temporarily characterizes the reduction of the linear growth rate, enhancing Rott’s
frequency theory to better describe the evolution of amplitude saturation from onset to limit
cycles. Still, integrating every nonlinear effect emerging in thermoacoustic systems into the
linear theoretical framework presents significant challenges. This difficulty is perceived
due to the complex and interdependent nature of these nonlinear effects. It highlights the
necessity of developing a simplified nonlinear model to depict their collective impact on
the thermoacoustic system.

The Stuart–Landau equation (SLE) [16–18] is instrumental in describing the bifurcation
dynamics within fluid dynamic systems, offering insights into the nonlinear stabilizing
effects within the system. It is instrumental in studying a variety of physical systems
undergoing bifurcation, especially in systems that exhibit oscillatory behavior, such as jet
and shear flow instabilities and bluff body wake instabilities [19–24]. Additionally, the
SLE plays a crucial role in modeling significant nonlinear phenomena like frequency lock-
in [25] and resonance in flow systems [26]. In studies of combustion-driven thermoacoustic
systems [27,28], the SLE captures the weakly nonlinear dynamics near bifurcation points.
The criticality of the bifurcation is determined by the sign of the coefficient of the leading
nonlinearities, known as a Landau constant, which underlines the equation’s utility in
assessing the stabilizing effects of nonlinearities within the system.

For the case of the supercritical Hopf bifurcation observed in a standing wave thermoa-
coustic system, Biwa et al. [29] experimentally derived the evolution equation by measuring
energy and energy flow under external oscillatory perturbations at the limit cycle frequency.
This study seeks to expand the SLE model’s application, also referred to as the evolution
equation, for the empirical determination of Landau constants to explore the critical behav-
ior of Hopf bifurcations leading to self-sustained oscillations in a thermoacoustic Stirling
engine. By focusing on the nonlinear dynamics, especially those governing subcritical
Hopf bifurcations, we aim to shed light on their implications for engine operation. In
the following, we begin by detailing the theoretical background and methodology of our
study. Section 3 outlines the experimental setup designed for our thermoacoustic Stirling
engine. Section 4 then presents our findings and their analysis. Finally, we conclude by
summarizing our key insights in Section 5.

2. Stuart–Landau Model

The Landau model [18] offers a framework for analyzing the nonlinear dynamics
around phase transitions. It is extensively used to describe and categorize the bifurcation
behaviors in fluid systems. Additionally, there have been several studies on using this
model for understanding combustion-driven thermoacoustic instabilities in Rijke tubes. A
detailed explanation of the Stuart–Landau model, which is derived from the Navier–Stokes
equations, is provided in Stuart [16,17]. The model is read as
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dA
dt

= A(σ + iω) + A
∞

∑
k=1

(−1)k lk|A|2k, (1)

where A(t) represents the complex amplitude of the oscillation mode, σ is the linear
temporal growth rate, ω is the linear angular frequency, and the complex coefficients lk
are called the kth Landau constants that adjust the oscillation frequency at saturation.
Landau constants lk describe nonlinear interactions in systems near instability. Derived by
linearizing and then expanding system equations around a base state, they show how a
system’s behavior changes near critical points. Note that due to the inherent symmetries
of the oscillating system’s wavefront, only odd terms of the complex amplitude A are
permitted on the right-hand side of the SL model [18]. The Landau constants, as key
nonlinear coefficients, moderate system responses significantly by counteracting amplitude
growth, thus ensuring steady oscillation states. These coefficients are critical in quantifying
nonlinear effects and are typically determined through experimental data [28] or theoretical
calculations [27,30] based on physical models.

Presenting the complex amplitude A(t) in modulus and argument form as

A(t) = |A(t)| exp[iϕ(t)], (2)

where |A(t)| represents the instantaneous amplitude of the mode and ϕ(t) its phase, both
being real variables. Note that |A| and ϕ are experimentally determined in the following
Section 3 for estimating the Landau constants. Substituting A(t) into Equation (1) and
focusing on the real part yields the Landau amplitude equation:

1
|A|

d|A|
dt

=
d(ln |A|)

dt
= σ − l|A|2 + q|A|4 − · · · , (3)

where l and q are the real part of Landau constants for the cubic and quintic terms,
respectively. The linear growth rate σ is emphasized to depend on the bifurcation control
parameter [22]: positive values indicate instability and amplitude growth, while negative
values suggest stability and decay of oscillations. The equation is typically truncated after
the cubic term to represent supercritical Hopf bifurcations effectively. This approach stems
from the cubic term, with l being positive, being generally sufficient to moderate the initial
exponential growth, leading to saturation, thereby ensuring the model accurately captures
the nonlinear dynamics near transitions, especially for small saturation amplitudes [21,22].
If l is negative, however, higher-order terms become essential for depicting saturation
due to enhanced perturbation growth by the cubic term q. The sign of l determines the
transition type: positive l indicates a supercritical (smooth) transition, while negative
l signifies a subcritical (hysteretic) transition [31]. The linear growth rate, σ, marks the
stability change at the transition point by shifting the sign. In non-combustion-driven
thermoacoustic systems, this control parameter is the temperature difference ∆T across
the regenerator. Clearly, Equation (3) describes the dynamics of the temporal growth rate,
which are tempered by high-order terms corresponding to oscillation amplitudes. It should
be noticed that, in the scenario of a subcritical bifurcation, the temporal growth of the
amplitude is saturated by the higher-order nonlinear terms, necessitating the inclusion of
at least quintic terms.

3. Experimental Setup and Mehod

Figure 1 presents a schematic diagram of the experimental setup for the present study.
This experimental setup was aimed to investigate subcritical bifurcation behaviors for a
thermoacoustic Stirling engine, featuring a looped tube and a branch resonator made from
a 0.03-m-inner diameter stainless-steel cylindrical pipe. The loop has an average length
of L = 1.68 m, with the branch resonator of Lb =1.875 m opened to the atmosphere, oper-
ating with air at atmospheric pressure. The looped section includes various components:
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resonator tube 1, a cold heat exchanger, a stacked-screen regenerator, a hot heat exchanger,
a thermal buffer tube, and resonator tube 2, arranged along the axial coordinate x from the
T-junction. The 20 mm long regenerator comprises stainless-steel woven mesh screens of #
30 mesh number, with a wire diameter of 0.22 mm, hydraulic diameter of 0.82 mm, and a
volume porosity of 0.79.

x
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recorder

Ambient heat 
exchanger
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exchanger
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Figure 1. Experimental setup of the thermoacoustic Stirling engine.

To impose temperature gradients on the regenerator, electrical cartridge heaters and
cooling water are used in the hot and cold heat exchangers, respectively, both fitted with
brass fins 1 mm apart and a porosity of 0.667. Type-K thermocouples monitor tempera-
tures at both ends of the regenerator to determine TH and TC and hence the temperature
difference ∆T = TH − TC, recorded by a temperature recorder (LR8450, HIOKI, Ueno,
Japan), ensuring precise temperature control. Pressure oscillations within the gas column
are measured at x = 0.24 m using a pressure transducer (PMS-5M-2-1M, JTEKT, Nagoya,
Japan). The signals are then amplified by a DC Amplifier (AA6210, JTEKT, Nagoya, Japan)
and analyzed with a fast Fourier transform analyzer (OR35, OROS, Grenoble, France) to
track the transition from initial to steady oscillation states. For data collection, we utilize the
FFT spectrum analyzer to capture the time series of the pressure signal p′(t) at a sampling
rate of 1/τ = 3276.8 Hz. It is important to note that we preprocess the measured data by
applying band filtering to p′(t) to reduce noise. We isolated measured p′(t) within the
22 to 26 Hz range, determined by the engine’s spontaneous oscillation frequency, roughly
estimated at 24.1 Hz using a/(L + Lb)× 1/4 [3], where a is the adiabatic sound speed at
room temperature.

The experimental procedure begins with the initiation of spontaneous gas column
oscillations by establishing steep temperature gradients across the regenerator, ensuring
thermal steadiness by maintaining a constant heat power supplied to the cartridge heaters.
Throughout the experiment, we closely monitor the stability limits and pressure oscillation
behaviors. To experimentally observe the subcritical bifurcation behaviors, we system-
atically reduce the supplied heat power once steady pressure oscillations are achieved,
recording the smaller pressure oscillations steadily in the reverse path. This approach
facilitates the observation of hysteresis loops of the thermoacoustic Stirling engine.

To experimentally obtain Landau coefficients, we examine the transient behavior
under a subcritical bifurcation scenario. This involves setting up constant temperature
differences across the regenerator within bistable regions, located between the fold and
the Hopf points, as well as above the Hopf bifurcation point. Once bistable regions are
reached, we introduce external airflow disturbances at the branch resonator’s open end to
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induce pressure oscillations p′(t). Note that the airflow uses a manually operated air blow
gun. Air is applied at a pressure of 5 kg-f/cm² for approximately 0.2 seconds to initiate
the engine. Depending on the magnitude of external disturbances and their distance from
subcritical Hopf bifurcation points, oscillation amplitudes can either grow over time and
saturate finite amplitudes or decrease and eventually fade away. In contrast, we maintain
steady temperature differences above the Hopf point while sealing the end of the branch
resonator with a plate to prevent the excitation of spontaneous oscillations. Subsequently,
we remove the plate to observe the initial growth of pressure oscillations, leading to finite
amplitudes.

With the measured pressure fluctuations p′(t) = [p′j, p′j+τ , p′j+2τ , · · · , p′j+(d−1)τ ], where
j signifies the initial time index and d represents the number of recorded data points, we
obtain its normalization p∗(t) using the mean value p̄ and the standard deviation sd, which
can be expressed as follows:

p∗ =
p′ − p̄

sd
. (4)

p∗(t) are characterized by a complex angular frequency, ωn = ωR + iωI, with ωR repre-
senting the oscillation’s angular frequency and ωI its growth rate. We perform a Hilbert
transform (HT) on the normalized pressure fluctuations p∗(t) using MATLAB’s built-
in function (version R2021b, Mathworks, Inc., Natick, MA, USA). This converts the
normalized pressure signal p∗(t) of the real-axis to an imaginary-axis signal pH(t), en-

abling the calculation of the normalized oscillation magnitude |A(t)| =
√

p∗2(t) + p2
H(t)

from the experimental data. The obtained time series of the instantaneous amplitude

|A(t)|=
[∣∣Aj

∣∣, ∣∣Aj+τ

∣∣, ∣∣Aj+2τ

∣∣, · · · ,
∣∣∣Aj+(d−1)τ

∣∣∣] enables us to numerically calculate the
time derivative d(ln |A|)/dt. The time derivative d(ln |A|)/dt is approximated from its
finite difference ∆(ln|A|)/∆t in the time series as

d(ln|A|)
dt

≈ ∆(ln|A|)
∆t

=

 ln
∣∣Aj+τ

∣∣− ln
∣∣Aj

∣∣
τ

,
ln
∣∣Aj+2τ

∣∣− ln
∣∣Aj+τ

∣∣
τ

, · · · ,
ln
∣∣∣Aj+(d−1)τ

∣∣∣− ln
∣∣∣Aj+(d−2)τ

∣∣∣
τ

. (5)

Note that Equation (5) can also be determined using MATLAB’s built-in function “gra-
dient”. This experimental data analysis provides insight into the oscillation’s growth rate,
ωI, realizing from the Landau amplitude Equation (3). By plotting d(ln|A(t)|)/dt against
|A(t)|2, as shown in the latter, we can ascertain the Landau constants from Equation (3)
through least-squares fitting of polynomial curves. In this study, we utilize MATLAB’s
built-in function “lsqcurvefit” to perform this fitting.

4. Result and Discussion

Figure 2 depicts the hysteresis loop of saturated pressure oscillations measured across
the regenerator under various steady temperature differences ∆T. Two distinct paths, the
forward (indicated by red markers △) and reverse (indicated by blue markers ▽), illustrate
the steady oscillations of acoustic pressures. Notably, upon steadily increasing temperature
differences above the engine onset, the forward path reveals significant finite amplitudes
of acoustic pressure, culminating at the Hopf bifurcation point. Conversely, during the
reverse process, characterized by decreasing temperature differences after engine initiation,
thermoacoustic oscillations persist until approaching the lower critical temperature differ-
ence, denoted as the saddle-node bifurcation point. Figure 2 demonstrates nearly identical
steady amplitudes of pressure oscillations in both forward and reverse paths above the
Hopf point, indicative of subcritical Hopf bifurcation behavior in the current setup of the
thermoacoustic Stirling engine.
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Figure 2. Hysteresis loop constituted from measured saturated amplitudes of pressure oscillations.

Within the region delimited by the saddle-node and Hopf points, commonly referred
to as the “bistability region”, we set steady ∆T before thermoacoustic oscillations to explore
Landau constants, aiming to investigate the potential for empirical modeling. This explo-
ration includes acknowledging the variations in temperature differences once oscillations
are initiated, which arise due to the axial heat transfer caused by acoustic pumping [32],
and can impact the attainment of saturated steady-state pressure amplitudes and steady
temperature differences in the system. Within this bistability region, Figure 3 illustrates the
triggering of original self-sustained pressure oscillations by external airflow disturbances
and bandpass-filtered p′ mainly oscillating with 23 Hz. Notably, the filtered p′ excludes the
pulse resulting from external disturbances, and its clear wavefront, as depicted in the inlet
of Figure 3, enables us to pursue further investigations. Capitalizing on this, we utilize
least-squares fits with the Stuart–Landau model to determine Landau constants.

External airflow disturbance (0.2 sec)

Figure 3. Comparison between the original pressure signal of measurement and the bandpass-filtered
pressure signal.

We examine the evolution of pressure oscillations at specific temperature differences:
within the bistability region at 339 K and 341 K, and above the Hopf bifurcation point



Aerospace 2024, 11, 347 7 of 13

at 343 K, 345 K, and 347 K. These conditions are set to explore the system’s response in
thermally steady states before the initiation of oscillations. The experiments were replicated
up to three times to ensure reliability. The analysis employs Hilbert transform techniques
to reveal the nonlinear transition characteristics of the normalized pressure oscillations
p∗. These transitions are categorized into subfigures of Figure 4 for clear comparison:
Figure 4a,b represent the conditions within the bistability region at 339 K and 341 K,
respectively; while Figure 4c–e correspond to conditions above the Hopf bifurcation point
at 343 K, 345 K, and 347 K, respectively. Each subfigure consists of two parts: (i) traces the
evolution of the normalized instantaneous amplitudes |A(t)| from their initiation to the
maximum amplitude phase, and (ii) displays the corresponding growth rates versus |A|2.

(i)

(ii)

95% Confidence interval

R2=0.9767

a. ∆T = 339 K, within the bistability region.

(i)

(ii)

95% Confidence interval

R2=0.9978

b. ∆T = 341 K, within the bistability region.

(i)

(ii)

95% Confidence
interval

R2=0.8334

c. ∆T = 343 K, above the Hopf bifurcation point.

(i)

0 1 2 3 4
-0.05

0
0.05

0.1

(ii)

95% Confidence interval

R2=0.8561

d. ∆T = 345 K, above the Hopf bifurcation point.

(i)

(ii)

95% Confidence interval
R2=0.9911

e. ∆T = 347 K, above the Hopf bifurcation point.

Figure 4. Evolution of normalized pressure oscillations and growth rates in the thermoacoustic
Stirling engine system. (a,b) represent conditions within the bistability region at ∆T = 339 K
and ∆T = 341 K, respectively; while (c–e) depict the system above the Hopf bifurcation point at
∆T = 343 K, ∆T = 345 K, and ∆T = 347 K. Each subfigure consists of part (i) showing the instan-
taneous amplitude growth to peak, and part (ii) displaying the corresponding growth rates versus
squared amplitude, with Stuart–Landau model fits indicated.
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Due to the necessity of external perturbations for the excitation of self-sustained
oscillations for the bistability region (339 and 341 K), the analysis indicates that the growth
rates exhibit positive values at specific amplitudes |A|2, decreasing to zero as the amplitude
reaches saturation. In contrast, for the conditions above the Hopf bifurcation point (343 K,
345 K, and 347 K), growth rates are positive even at lower amplitudes and increase to a
peak before declining to zero with further amplitude growth.

Furthermore, the growth rates derived from the time series pressure data analyzed via
the Hilbert transform are fitted using a model that extends to quintic terms of the Landau
amplitude Equation (3). This approach facilitates the determination of linear growth rate
σ and the Landau constants l and q, which are used to plot fitted dash-dotted curves
within each subfigure (ii) in Figure 4. These curves, based on coefficients averaged at
every experimental iteration, suggest that while the fit to quintic terms may not perfectly
align with the experimental observations at 345 K and 343 K, the latter comparison of the
calculated instantaneous amplitudes, based on the Stuart–Landau equation, with measured
values justifies the model’s overall appropriateness.

The derived linear growth rate σ and Landau constants l and q are presented in
Table 1. Observations indicate that σ increases with rising ∆T. The cubic term l consistently
shows negative values, indicating an acceleration in growth as oscillation amplitudes
increase. Consequently, the negative quintic term q plays a crucial role in stabilizing the
system as amplitudes grow. While the growth rate σ can potentially be described within
Rott’s linear theory framework due to its linear nature [3], the constants l and q represent
the system’s nonlinear aspects. Furthermore, we observe that the constants l and q are
dependent on temperature differences across the regenerator. This dependence might be
attributed to nonlinear viscous and heat transfer effects in the tiny flow channels of the
regenerator, which are sensitive to local temperatures. The weakly nonlinear theoretical
study of the thermoacoustic engine [33], though limited in describing the supercritical
bifurcation, shows that the analytical evolution equation clearly exhibits a temperature
dependence on perturbation parameters. This would explain the observed ∆T dependence
of the Landau constants obtained in this study. Addressing the theoretical implications of l
and q, like weakly nonlinear theoretical studies conducted by Subramanian et al. [27] and
Orchini et al. [30], will be an important focus of future research. In contrast to theoretical
studies, the empirical modeling results presented in this study would contribute to guide
the theoretical analysis for developing the evolution equation using the Stuart–Landau
model for the thermoacoustic Stirling engine.

Table 1. Linear growth rate and Landau constants determined from Equation (3), extended to
incorporate quintic terms.

∆T (K) σ l q

Within the bistability region 339 −0.015326 −0.028968 −0.0070583
341 0.010792 −0.061028 −0.02404

Above the Hopf bifurcation point
343 0.010044 −0.058972 −0.013558
345 0.024856 −0.10616 −0.039699
347 0.10994 −0.04836 −0.037495

Upon empirically deriving Landau constants from Figure 4 and listed in Table 1, we
utilized MATLAB’s “ode89” numerical solver to tackle the Landau amplitude equation:

d|A|
dt

= σ|A| − l|A|3 + q|A|5. (6)

This equation allowed us to model the evolution of acoustic pressure oscillation
amplitudes, adjusting these by scaling with the standard deviations sd and adding the
mean pressure value p̄ to account for normalization in the time series pressure analysis.
Note that we use the default settings for the ode89 solver, with a relative error tolerance
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(RelTol) of 10−3 and an absolute tolerance (AbsTol) of 10−6. These adjusted computational
results were then directly compared with the time series pressure measurements shown
in Figure 5. Additionally, the figures include the evolution of ∆T for context, indicating
how the initiation of oscillation pressures leads to acoustic pumping of the heat flux,
which slightly reduces ∆T over time. It is also observed that the amplitude reaches finite
saturation after achieving peak pressure values, highlighting the system’s dynamic stability.
Notably, all changes in ∆T over time are kept within a 5 K range, emphasizing the system’s
consistent response to induced oscillations.

a. ∆T = 339 K, within the bistability region.

b. ∆T = 341 K, within the bistability region.

c. ∆T = 343 K, above the Hopf bifurcation point.

d. ∆T = 345 K, above the Hopf bifurcation point.

e. ∆T = 347 K, above the Hopf bifurcation point.

Figure 5. Comparison of instantaneous amplitudes from Stuart–Landau equation solutions and ex-
perimental time-series pressure measurements, alongside ∆T evolution over time in a thermoacoustic
system. (a,b) detail the bistability region at ∆T = 339 K and ∆T = 341 K, respectively. (c–e) focus
on conditions above the Hopf bifurcation point at ∆T = 343 K, ∆T = 345 K, and ∆T = 347 K. The
right y-axis in each panel quantifies the variation of ∆T over time, illustrating the system’s thermal
response to induced oscillations.
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Within the bistability region at ∆T = 339 K and 341 K, we utilized the initial experimen-
tal pressure amplitude as the initial condition for solving the Landau model described by
Equation (6). The close alignment between the numerical solutions and experimental data
validates the Landau model’s capability to accurately capture the essence of self-sustained
pressure oscillations. For scenarios above the Hopf bifurcation point, specifically at 343 K,
345 K, and 347 K, the model was solved using minimal initial amplitudes. It effectively
captures the system’s transition into a state of increased nonlinearity, evidenced by the
growth in oscillation amplitudes. This phase is marked by augmented amplitudes and
clear periodic patterns. Despite slight variances in transient phases between the model’s
predictions and experimental findings, the critical aspects, such as the trend and period-
icity of the oscillations, are precisely depicted. The slight discrepancies observed are
likely due to the system’s inherent nonlinearity, which suggests the need for incorporating
terms beyond quintic in the Stuart–Landau Equation for accurately modeling the tran-
sient phase. However, the current model up to quintic terms suffices for depicting the
saturated amplitude.

Also, to further validate our model’s accuracy in depicting bifurcation behavior, we
conducted numerical calculations using Equation (6) under varying initial conditions within
the bistable region at ∆T = 339 K. Figure 6 illustrates the system’s responses, calculated
using the ode89 solver by varying sets of the relative error RelTol and AbsTol. The results
demonstrate consistent finite amplitudes or stable states (no oscillation) across different
initial conditions of pressure when setting smaller error tolerances, thereby reinforcing
the robustness and reliability of our approach in modeling the critical dynamics of ther-
moacoustic systems. These findings clarified the potential impacts of initial conditions on
the numerical integrations and highlighted the necessity of rigorous numerical methods
to ensure accurate empirical modeling. This convinces us of the empirical modeling
approach’s effectiveness in capturing the dynamics of the system near critical thresholds.

0 100 200 300 400 500 600
0

100

200

300

400

500

600

Using ode89 solver

Figure 6. Numerical results showing the finite amplitudes for different initial conditions at ∆T = 339 K
within the bistable region. Each plot represents the system’s response computed using the ode89
numerical solver with several sets of fixed relative error (RelTol) and absolute tolerance (AbsTol).
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Besides SLE, studies of combustion-driven thermoacoustic instability offer alterna-
tive approaches for nonlinear modeling into thermoacoustic Stirling engines. Noiray and
Schuermans [34], Noiray [35] explore deterministic quantities and linear growth rates within
thermoacoustic systems, applying a noise-driven Van Der Pol oscillator and analyzing acous-
tic signal envelopes to elucidate the complex interactions in combustors. Seshadri et al. [36]
further this exploration by modeling the effects of vortex shedding on oscillation amplitudes,
providing insights into instability control through system design. Dutta et al. [37] employ the
Kuramoto model to examine synchronization dynamics in combustors, highlighting transi-
tions between unstable and stable states. Additionally, Bonciolini et al. [38] study how rate
changes can delay transitions in thermoacoustic systems. Together, these studies deepen our
understanding of nonlinear dynamics in thermoacoustics and could offer valuable insights
for advancing research on thermoacoustic engines.

5. Conclusions

This study effectively utilized the Stuart–Landau equation for empirical modeling to
investigate the dynamics of the thermoacoustic Stirling heat engine. Through the analysis
of saturated pressure oscillations, from their initiation to finite amplitudes using filtered
pressure signals, and by observing the oscillation evolution across different temperature
gradients, we have verified the equation’s capability in capturing the intricate nonlinear
behavior of the thermoacoustic system. The study shows that the Stuart–Landau equation,
particularly when extended to quintic terms, effectively captures the system’s shift to a
more nonlinear regime, marked by increased oscillation amplitudes and distinct periodic
patterns. In summary, this research validates the Stuart–Landau equation’s applicability in
thermoacoustic engine modeling, emphasizing the importance of the empirical modeling
approach in understanding the underlying dynamics associated with subcritical Hopf
bifurcations. This study highlights how the Stuart–Landau equation, with quintic term
extensions, precisely captures the transition to a more nonlinear regime in thermoacoustic
engines, evident from increased oscillation amplitudes at temperature differences exceeding
the Hopf bifurcation point. It emphasizes the equation’s effectiveness in detailing the
dynamics specific to subcritical Hopf bifurcations and underscores the significance of
empirical modeling. These findings are crucial for enhancing the design and control of
thermoacoustic systems, offering a path forward for advanced theoretical modeling of
nonlinear behaviors under the Stuart–Landau framework.
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