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Abstract: Based on the quasi-six-degree-of-freedom flight dynamic equations, considering the changes
in the elevation angle caused by an increase in the rolling angle during maneuvering turns, which
leads to a rise in the radar cross-section. A computational model for the radar detection probability of
aircraft in complex environments was constructed. By comprehensively considering flight parameters
such as turning angle, rolling angle, Mach number, and radar power factor, this study quantitatively
analyzed the influence of these factors on the radar detection probability. It revealed the variation
patterns of radar detection probability under different flight conditions. The results provide theoretical
support for the Radar Valley Radius and Turning Maneuver Method (RVR-TM) based on decision
trees, and lay the foundation for the development of subsequent intelligent decision-making models.
To further optimize the trajectory selection of aircraft in complex environments, this study combines
theoretical analysis with reinforcement learning algorithms to establish an intelligent decision-making
model. This model is trained using the Proximal Policy Optimization (PPO) algorithm, and through
precisely defining the state space and reward functions, it accomplishes intelligent trajectory planning
for stealth aircraft under radar threat scenarios.

Keywords: Radar Valley Radius and Turning Maneuver Method (RVR-TM method); radar valley radius;
turning maneuver; penetration; radar detection probability; aircraft survivability enhancement;
Proximal Policy Optimization (PPO)

1. Introduction

With the continuous advancement of radar detection technology, the stealth perfor-
mance of aircraft has become a key factor in their survivability. Traditional stealth designs
have primarily focused on the aircraft’s geometric shape and stealth materials to reduce
its Radar Cross Section (RCS). However, as counter-stealth technologies have upgraded,
relying solely on RCS as a static indicator to evaluate the stealth performance of aircraft is
no longer sufficient to meet the complexity and dynamism of modern battlefield environ-
ments. Therefore, analyzing the stealth performance of aircraft from a dynamic perspective,
considering the influence of their attitude, speed, and trajectory variations during actual
flight on RCS, has become a new direction in stealth technology research.

Many scholars have delved into the development of trajectory planning methods of
stealthy penetration. Moore FW [1] devised a strategy to minimize peak and cumulative
RCS for autonomous precision-guided munitions. Similarly, Liu et al. [2] presented an
integrated approach combining multi-phase optimal control theory with the adaptive
pseudo-spectral method to engineer stealthy trajectories. Hao et al. [3] proposed a 3D trajec-
tory planning technique employing the A* algorithm, specifically designed for low-altitude
penetration in the context of dual-radar threats. The paper utilizes a cost function for the
A* algorithm that correlates with the average radar intensity, which offers a simplified
representation of the threat landscape with certain limitations in precision. Zhang et al. [4]
introduced a dynamic RCS model-based algorithm for real-time trajectory planning of
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stealthy UAVs tailored for an ellipsoidal shape. Mi et al. [5] developed a stealth trajectory
planning framework leveraging the sparse A* algorithm, considering the constraints of the
threat environment. Further, Guan et al. [6] expanded upon the A* algorithm by incorporat-
ing the log-normal RCS model proposed by Lu et al. [7], leading to the introduction of the
3D Sparse A* Log-normal radar model (3D-SASLRM), which is grounded in the log-normal
radar model.

Search-based trajectory planning methods often require substantial computational
resources for trajectory searching and constructing trajectories that meet penetration re-
quirements. In such searches, many computational resources are used to attempt ineffective
trajectories. Therefore, employing a priori knowledge and the most effective methods for
trajectory planning can significantly reduce search time and improve planning efficiency.
Utilizing the concept of the radar valley radius proposed by Guan et al. [6] and the turning
maneuver penetration method proposed by Lu et al. [7] enables rapid trajectory planning.

In addition to search-based trajectory planning methods and rapid trajectory planning
based on a priori knowledge, an increasing number of researchers are utilizing reinforce-
ment learning, a method that closely resembles human experiential learning, to accomplish
the trajectory planning for various intelligent agents such as aircraft, robots, and underwater
vehicles [8–19]. Currently, a small number of researchers have begun to apply reinforce-
ment learning to stealth penetration decision making. The most fundamental application
is in countering radar tracking, where numerous input stimuli exist, and the rewards are
relatively dense. Alpdemir [20] proposed a deep reinforcement learning solution for the
trajectory planning problem of tactical unmanned aerial vehicles under the threat of radar
tracking, integrating a Markov Decision Process with a variant of Deep Q-Networks and
prioritized experience replay, along with Learning from Demonstrations (LfD). Wang Z [21]
and colleagues introduced a Concealment–Distance Dynamic Weight Deep Q-Network
algorithm for the three-dimensional trajectory planning of unmanned helicopters, which
considers radar and infrared detection threats and optimizes trajectory planning outcomes
through a dynamic weighting reward function. Through comparative analysis, Hameed
et al. [22] studied the application of deep reinforcement learning algorithms in aircraft
avoidance or the minimization of radar detection and tracking, finding that the Proximal
Policy Optimization (PPO) algorithm generally performs better. In scenarios where only
radar detection is considered, and the reward is the sparsest, Ma Zijie et al. [23] proposed
an improved deep reinforcement learning algorithm to enhance cruise missiles’ penetration
trajectory planning capability when facing dynamic early warning radar threats. Wang Y
et al. [24] combined Task Completion Division (TCD) with the Soft Actor-Critic (SAC) algo-
rithm to form the TCD-SAC algorithm, proposing a reinforcement learning method based
on an improved sampling mechanism to enhance the penetration capability of unmanned
aerial vehicles in air defense systems, with the improved sampling mechanism effectively
mitigating the training difficulties caused by sparse rewards.

In this paper, using the aerodynamics, engine, and RCS data of a flying wing aircraft,
and referring to prior knowledge from the analysis of the turning maneuver in the 3D scene,
we propose a Radar Valley Radius and Turning Maneuver Method (RVR-TM method) for
aircraft penetration trajectory planning in dynamic complex environments. This method
first outlines a pre-planned trajectory based on the radar valley radius, then calculates the
aircraft’s relative angle to the radar and employs a maneuver-turning method to adjust
the trajectory at points where the aircraft is most exposed to the radar, thereby reducing
the radar detection probability across the entire trajectory. The results are then compared
with the trajectory planning outcomes of the A* algorithm. Building upon the research on
stealth aircraft penetration, we proposed an intelligent decision-making model based on the
reinforcement learning PPO algorithm. Trajectory planning simulations were conducted in
a single-radar scenario to study the influence of incorporating distance and action penalties
in the planned trajectories.
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2. Models

Before guiding the penetration of stealth aircraft, it is necessary to specify the RCS,
aerodynamic calculation, and engine models used in the computation process. This study
employs a typical flying wing aircraft configuration, with the specific details provided
below.

2.1. Three-Dimensional RCS Model

Lu et al. [7] proposed the turning-maneuver penetration method. In that paper, it was
concluded that in a two-dimensional environment, the RCS peak exposure time could be
significantly reduced by applying this method. However, in a three-dimensional scene, the
RCS peaks are not confined only to the azimuth angle domain, but also extend into the
elevation angle domain, as depicted in Figure 1.
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Figure 1. Typical Stealth Aircraft 3D RCS.

As shown in Figure 1, to draw the RCS in different azimuth and elevation angle, the
RCS in dBsm has been added a fixed value 50 to make sure all RCS value is positive, and
the different colors shows different value of Z-axis. The azimuth domain has four peaks,
and simultaneously, its RCS increases with the increase in the elevation angle, reaching
peaks at both its apex and nadir. To observe this more clearly, the RCS variations with
changes in the azimuth angle under different elevation angles are shown in Figure 2, and
the RCS variations with changes in the elevation angle under different azimuth angles are
displayed in Figure 3.

From Figure 2, it can be observed that there are two pairs of symmetric azimuth-related
peaks, with corresponding peak exposure angles at 35◦ and 145◦. Figure 3 illustrates the
variations in RCS with elevation angle changes. From Figure 3a,b, under non-peak exposure
azimuth angles, the RCS sharply increases as the elevation angle increases. Figure 3c
demonstrates that even at peak exposure azimuth angles, the rise in RCS caused by an
increase in the elevation angle is comparable to peak exposure.

According to the analysis above, it is evident that considering changes in the elevation
angle is necessary in a 3D scenario.
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2.2. Aerodynamic Model

The simplified aerodynamic model is used to describe the relationship of the angle of
attack, flight speed, lift coefficient, and drag coefficient. The aerodynamic model describes
how the aerodynamic forces on an aircraft change with flight speed. Using data calculated
with Datcom for the aircraft, this study performs linear and quadratic fittings to examine
the relationships between important aerodynamic coefficients at different Mach numbers.
The lift coefficient is linearly related to the angle of attack, while the drag coefficient is
modeled as a quadratic function of the lift coefficient. The formulas for these relationships
are presented as follows:

CL = kL1α + kL0
CD = kD2C2

L + kD1CL + kD0
(1)

It can be seen that the parameters kL1, kL0, kD2, kD1 and kD0 can be interpolated given
the Mach number. Therefore, CL and CD can be expressed as CL(α) and CD(α). The lift and
drag coefficient curves are shown in Figure 4.

Aerospace 2024, 11, x FOR PEER REVIEW 5 of 35 
 

 

Figure 3. RCS variations with changes in elevation angle: (a) 0° azimuth angle, (b) 25° azimuth 
angle, and (c) 35° azimuth angle. 

From Figure 2, it can be observed that there are two pairs of symmetric azimuth-re-
lated peaks, with corresponding peak exposure angles at 35° and 145°. Figure 3 illus-
trates the variations in RCS with elevation angle changes. From Figure 3a,b, under non-
peak exposure azimuth angles, the RCS sharply increases as the elevation angle increases. 
Figure 3c demonstrates that even at peak exposure azimuth angles, the rise in RCS caused 
by an increase in the elevation angle is comparable to peak exposure. 

According to the analysis above, it is evident that considering changes in the eleva-
tion angle is necessary in a 3D scenario. 

2.2. Aerodynamic Model 
The simplified aerodynamic model is used to describe the relationship of the angle 

of attack, flight speed, lift coefficient, and drag coefficient. The aerodynamic model de-
scribes how the aerodynamic forces on an aircraft change with flight speed. Using data 
calculated with Datcom for the aircraft, this study performs linear and quadratic fittings 
to examine the relationships between important aerodynamic coefficients at different 
Mach numbers. The lift coefficient is linearly related to the angle of attack, while the drag 
coefficient is modeled as a quadratic function of the lift coefficient. The formulas for these 
relationships are presented as follows: 𝐶 = 𝑘 𝛼 + 𝑘  𝐶 = 𝑘 𝐶 + 𝑘 𝐶 + 𝑘  

(1) 

It can be seen that the parameters 𝑘 , 𝑘 , 𝑘 , 𝑘  and 𝑘  can be interpolated 
given the Mach number. Therefore, 𝐶  and 𝐶  can be expressed as 𝐶 (𝛼) and 𝐶 (𝛼). 
The lift and drag coefficient curves are shown in Figure 4. 

  
(a) (b) 

Figure 4. Aerodynamic model: (a) lift coefficient variation curve with angle of attack; (b) drag coef-
ficient variation curve with lift coefficient. 

2.3. Engine Model 
Engine data are obtained through calculations using the engine simulation software 

named EngineSim (https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/en-
ginesimu/, accessed on 1 January 2024), which was produced by NASA and includes thrust 
generation and fuel consumption. An interpolation model is developed based on the engine 
data, which integrates the flight altitude, Mach number, thrust, and fuel consumption rate. 
Utilizing this model, fuel consumption can be accurately calculated at each waypoint ac-
cording to the corresponding values of flight altitude, Mach number, and thrust. 

  

Figure 4. Aerodynamic model: (a) lift coefficient variation curve with angle of attack; (b) drag
coefficient variation curve with lift coefficient.

2.3. Engine Model

Engine data are obtained through calculations using the engine simulation soft-
ware named EngineSim (https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/
enginesimu/, accessed on 1 January 2024), which was produced by NASA and includes
thrust generation and fuel consumption. An interpolation model is developed based on
the engine data, which integrates the flight altitude, Mach number, thrust, and fuel con-
sumption rate. Utilizing this model, fuel consumption can be accurately calculated at
each waypoint according to the corresponding values of flight altitude, Mach number,
and thrust.

3. Analysis of the Turning Maneuver in the 3D Scene

The 3D-SASLRM method proposed by Guan et al. [6] describes a search approach for
flight polyline trajectory planning; however, it does not consider the roll angle generated by
the turning maneuver between two polyline segments, resulting in a neglect of the effects
caused by changes in the elevation angle.

This section explores the influence of the turning angle, rolling angle, flight Mach
number, and radar power factor on the detection probability during maneuver turns.

https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/enginesimu/
https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/enginesimu/
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3.1. Influence of Turning Angle on Detection Probability
3.1.1. Distance of Radar D = 20 km

The trajectory configuration is shown in Figure 5a,b, where the red dot represents radar.
The probabilities of detection for aircraft at turning angles (TA) of 30◦, 20◦, 10◦, 5◦,−10◦,
−20◦, and −30◦ are compared, with other parameters set as outlined in Table 1.
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Table 1. Scene parameter settings in different TAs when D = 20 km.

Phi Ma D Power Factor

60◦ 0.8 20 km 1 × 10−4

The parameter Phi is the rolling angle of the maneuver turn, and Ma is the flight Mach
number. The radar distance is denoted by D, which means the y-coordinate of the radar.
The power factor of the radar is 1 × 10−4. The trajectory configuration, flight parameters,
and detection probability results are shown in Figure 5.

Figure 5 illustrates the changes in the azimuth angle, elevation angle, cumulative
detection probability, and single-detection probability of an aircraft at different turning
angles during flight. The results show that the lowest probability of detection occurs at a
turning angle of 5◦. In contrast, when the turning angle increases to 10◦ and 20◦, the peak
single-detection probabilities significantly increase due to a rise in the elevation angle and
closer proximity to the radar, leading to a substantial surge in the cumulative detection
probability. Notably, the highest detection probability is observed when the turning angle
is −30◦, and when the aircraft turns upward or downward at the same angle, the detection
probabilities are similarly close.

It is important to note that even when the turning angle is negative, increasing the
distance from the radar, the larger pitch angles still lead to higher detection probability
peaks. Analysis of changes in azimuth angle during the turn shows an increase in peak
exposure times, further elevating the likelihood of the aircraft being detected.

Integrating these analyses, the changes in elevation angle significantly influence the
aircraft’s detection probability in this scenario. Therefore, in designing flight trajectories
and strategies, carefully controlling the turning and elevation angles is one of the keys to
reducing the aircraft’s probability of detection.

3.1.2. Distance of Radar D = 50 km

The trajectory configuration is shown in Figure 6a,b, where the red dot represents radar.
The probabilities of detection for aircraft at turning angles (TA) of 30◦, 20◦, 10◦, 5◦,−10◦,
−20◦, and −30◦ are compared, with other parameters set as outlined in Table 2.

Table 2. Scene parameter settings in different TAs when D = 50 km.

Phi Ma D Power Factor

60◦ 0.8 50 km 1 × 10−4

Figure 6 displays the changes in the azimuth angle, elevation angle, cumulative
detection probability, and single-detection probability of an aircraft at different turning
angles during flight. Compared to a radar distance of 20 km, the hazardous area along
the trajectory significantly expands at 50 km, necessitating a larger turning range to evade
radar detection. Figure 6e shows that the lowest probability of detection occurs at a turning
angle of 5◦, indicating the most effective penetration at this angle. Moreover, the difference
in detection probability between this and a turning angle of −10◦ is relatively small.

3.1.3. Distance of Radar D = 100 km

The trajectory configuration is shown in Figure 7a,b, where the red dot represents radar.
The probabilities of detection for aircraft at turning angles (TA) of 30◦, 20◦, 10◦, 5◦,−10◦,
−20◦, and −30◦ are compared, with other parameters set as outlined in Table 3.

Figure 7 shows the variations in an aircraft’s azimuth angle, elevation angle, cumu-
lative detection probability, and single-detection probability at different turning angles
during flight. According to Figure 7e, the lowest probability of detection also occurs at a
turning angle of 5◦, which is almost zero.
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Table 3. Scene parameter settings in different TAs when D = 100 km.

Phi Ma D Power Factor

60◦ 0.8 100 km 1 × 10−4
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3.1.4. Analysis

A comprehensive analysis under the conditions of radar distances of 20 km, 50 km,
and 100 km reveals that the required range of turning fluctuations increases with the
increase in radar distance D. However, at a turning angle TA of 5◦, due to the relatively
small changes in the pitch angle, this angle consistently demonstrates the most effective
penetration performance. This indicates that, in this scenario, maintaining minimal changes
in pitch angle is a key factor in reducing the probability of detection.
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3.2. Influence of Rolling Angle on Detection Probability
3.2.1. TA = 5◦, D = 20 km

The trajectory configuration is shown in Figure 8a,b, where the red dot represents
radar. The probabilities of detection for aircraft at rolling angles of 60◦, 40◦, and 20◦ are
compared, with other parameters set as indicated in Table 4.

Table 4. Scene parameter settings in different rolling angles when TA = 5◦ and D = 20 km.

TA Ma D Power Factor

5◦ 0.8 20 km 1 × 10−4

Aerospace 2024, 11, x FOR PEER REVIEW 10 of 35 
 

 

penetration performance. This indicates that, in this scenario, maintaining minimal 
changes in pitch angle is a key factor in reducing the probability of detection. 

3.2. Influence of Rolling Angle on Detection Probability 
3.2.1. TA = 5°, D = 20 km 

The trajectory configuration is shown in Figure 8a,b, where the red dot represents 
radar. The probabilities of detection for aircraft at rolling angles of 60°, 40°, and 20° are 
compared, with other parameters set as indicated in Table 4. 

Table 4. Scene parameter settings in different rolling angles when TA = 5° and D = 20km. 

TA Ma 𝑫 Power Factor 
5° 0.8 20 km 1 × 10  

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 8. Results under TA = 5°, D = 20 km: (a) full trajectory view; (b) magnified view of the turn-
ing section; (c) azimuth angle through the trajectory; (d) elevation angle through the trajectory; (e) 
cumulative detection probabilities through the trajectory; and (f) single-detection probabilities 
through the trajectory. 

Figure 8. Results under TA = 5◦, D = 20 km: (a) full trajectory view; (b) magnified view of the
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Figure 8 illustrates the influence of the aircraft rolling angle on detection probability,
considering the variations in the azimuth angle, elevation angle, cumulative detection proba-
bility, and single-detection probability during the flight with rolling angles of 20◦, 40◦, and
60◦ at a turning angle of 5◦. The results indicate that at a rolling angle of 60◦, the aircraft’s
peak detection probability is relatively low, and the cumulative detection probability is the
smallest. The azimuth graph, Figure 8c, shows that at a high rolling angle, the aircraft spends
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less cumulative time in the hazardous azimuth angle regions during turns and has fewer
exposures, thereby reducing the cumulative detection probability along the entire trajectory.

3.2.2. TA = 5◦, D = 50 km

The trajectory configuration is shown in Figure 9a,b, where the red dot represents
radar. The probabilities of detection for aircraft at rolling angles of 60◦, 40◦, and 20◦ are
compared, with other parameters set as indicated in Table 5.

Table 5. Scene parameter settings in different rolling angles when TA = 5◦ and D = 50 km.

TA Ma D Power Factor

5◦ 0.8 50 km 1 × 10−4
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Figure 9. Results under TA = 5◦, D = 50 km: (a) full trajectory view; (b) magnified view of the
turning section; (c) azimuth angle through the trajectory; (d) elevation angle through the trajectory;
(e) cumulative detection probabilities through the trajectory; and (f) single-detection probabilities
through the trajectory.

Figure 9 depicts the changes in the azimuth angle, elevation angle, cumulative de-
tection probability, and single-detection probability of an aircraft at a turning angle of 5◦

and a radar distance D of 50 km, with rolling angles of 20◦, 40◦, and 60◦. Similar to the
scenario with a radar distance D of 20 km, the aircraft’s detection probability is lowest at a
60◦ rolling angle and highest at a 20◦ rolling angle.
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3.2.3. TA = 20◦, D = 50 km

Figure 10a,b shows the trajectory configuration, where the red dot represents radar.
The probabilities of detection for aircraft at rolling angles of 60◦, 40◦, and 20◦ are compared,
and other parameters are set as indicated in Table 6.

Table 6. Scene parameter settings in different rolling angles when TA = 20◦ and D = 50 km.

TA Ma D Power Factor

20◦ 0.8 50 km 1 × 10−4
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Figure 10. Results under TA = 20◦, D = 50 km: (a) full trajectory view; (b) magnified view of the
turning section; (c) azimuth angle through the trajectory; (d) elevation angle through the trajectory;
(e) cumulative detection probabilities through the trajectory; and (f) single-detection probabilities
through the trajectory.

Figure 10 illustrates the variations in the azimuth angle, elevation angle, cumulative
detection probability, and single-detection probability of an aircraft at a turning angle of
20◦ and a radar distance D of 50 km, with rolling angles of 20◦, 40◦, and 60◦. From 3.2.2,
at a turning angle of 5◦ and a rolling angle of 60◦, the aircraft’s detection probability peak
is relatively low, and its cumulative detection probability is the smallest. According to
Figure 10f, when the turning angle increases to 20◦, it shows that, although a larger turning
speed is achieved with a high rolling angle, it results in more exposures at hazardous
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azimuth angles under large turning angles, thereby increasing the cumulative detection
probability along the entire trajectory. In this scenario, a 20◦ rolling angle performs the best.

3.3. Influence of Flight Speed on Detection Probability

The trajectory configuration is shown in Figure 11a,b, where the red dot represents
radar. The probability of detection for aircraft at Mach numbers of 0.65 and 0.7 are com-
pared, and other parameters are set as indicated in Table 7.

Table 7. Scene parameter settings in different flight speeds.

TA Phi D Power Factor

20◦ 60◦ 50 km 1 × 10−4
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Figure 11. Results under different Mach numbers: (a) full trajectory view; (b) magnified view of the
turning section; (c) azimuth angle through the trajectory; (d) elevation angle through the trajectory;
(e) cumulative detection probabilities through the trajectory; and (f) single-detection probabilities
through the trajectory.

Figure 11 displays the variations in the azimuth angle, elevation angle, cumulative
detection probability, and single-detection probability of an aircraft flying at Mach numbers of
0.65, 0.7, and 0.8. It is evident that the Mach number has a significant influence on the peak
values of single-detection probability, leading to differences in cumulative detection probability.
Contrary to conclusions drawn in two-dimensional scenarios, the lowest detection probability
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in this scenario occurs at Ma = 0.65. This phenomenon can be attributed to higher speed,
causing more turning time and more time during which the high-elevation angles’ exposure
to the radar increases, leading to an increase in RCS peak exposure time. This suggests that an
analysis of elevation angles in three-dimensional scenarios is necessary. Although variations in
flight speed do affect radar detection probabilities, their overall influence is relatively limited.

3.4. Influence of Radar Power Factor on Detection Probability

The trajectory configuration is shown in Figure 12a,b, where the red dot represents
radar. The probabilities of detection for aircraft at radar power factors of 5× 10−5, 1× 10−4,
2 × 10−3 are compared, with other parameters set as indicated in Table 8.

Table 8. Scene parameter settings in different power factors.

TA Phi D Ma

20◦ 60◦ 50 km 0.8

Aerospace 2024, 11, x FOR PEER REVIEW 14 of 35 
 

 

  
(e) (f) 

Figure 11. Results under different Mach numbers: (a) full trajectory view; (b) magnified view of the 
turning section; (c) azimuth angle through the trajectory; (d) elevation angle through the trajectory; 
(e) cumulative detection probabilities through the trajectory; and (f) single-detection probabilities 
through the trajectory. 

Figure 11 displays the variations in the azimuth angle, elevation angle, cumulative 
detection probability, and single-detection probability of an aircraft flying at Mach num-
bers of 0.65, 0.7, and 0.8. It is evident that the Mach number has a significant influence on 
the peak values of single-detection probability, leading to differences in cumulative de-
tection probability. Contrary to conclusions drawn in two-dimensional scenarios, the low-
est detection probability in this scenario occurs at Ma = 0.65. This phenomenon can be 
attributed to higher speed, causing more turning time and more time during which the 
high-elevation angles’ exposure to the radar increases, leading to an increase in RCS peak 
exposure time. This suggests that an analysis of elevation angles in three-dimensional sce-
narios is necessary. Although variations in flight speed do affect radar detection probabil-
ities, their overall influence is relatively limited. 

3.4. Influence of Radar Power Factor on Detection Probability 
The trajectory configuration is shown in Figure 12a,b, where the red dot represents 

radar. The probabilities of detection for aircraft at radar power factors of 5 ×  10  , 1 ×  10 , 2 ×  10  are compared, with other parameters set as indicated in Table 8. 

Table 8. Scene parameter settings in different power factors. 

TA Phi 𝑫 Ma 20° 60° 50 km 0.8 
 

  
(a) (b) 

Aerospace 2024, 11, x FOR PEER REVIEW 15 of 35 
 

 

  
(c) (d) 

  
(e) (f) 

Figure 12. Results under different radar power factors: (a) full trajectory view; (b) magnified view 
of the turning section; (c) azimuth angle through the trajectory; (d) elevation angle through the tra-
jectory; (e) cumulative detection probabilities through the trajectory; and (f) single-detection prob-
abilities through the trajectory. 

Figure 12 shows changes in the azimuth angle, elevation angle, cumulative detection 
probability, and single-detection probability of an aircraft under radar power factors of 5 ×  10 , 1 ×  10 , 2 × 10  The analysis reveals that radar power factors primarily 
increase the cumulative detection probability by enhancing the peak values of single-de-
tection probabilities while having minimal influence on other flight parameters, such as 
the azimuth and elevation angle. Therefore, although radar power factors can influence 
the probability of detection, their practical value is relatively limited when formulating 
trajectory planning and tactical decisions during aircraft penetration operations. 

3.5. Scenario with Two Radars 
3.5.1. Influence of Turning Angle in a Scenario with Opposing Dual Radars 

Figure 13 displays the changes in flight parameters for an aircraft performing pene-
tration maneuvers at turning angles of 30°, 20°, 10°, 5°, −10°, −20°, and −30° in a scenario 
with opposing dual radars. Other parameter settings are as specified in Table 9. And the 
red dots in Figure 13a represent radars. 

Table 9. Scene parameter settings in a scenario with dual radars. 

Power Factor Phi 𝑫 Ma 1 × 10  60° 50 km 0.8 
 

Figure 12. Results under different radar power factors: (a) full trajectory view; (b) magnified view of
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(e) cumulative detection probabilities through the trajectory; and (f) single-detection probabilities
through the trajectory.

Figure 12 shows changes in the azimuth angle, elevation angle, cumulative detection
probability, and single-detection probability of an aircraft under radar power factors of
5× 10−5, 1× 10−4, 2× 10−3 The analysis reveals that radar power factors primarily increase
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the cumulative detection probability by enhancing the peak values of single-detection prob-
abilities while having minimal influence on other flight parameters, such as the azimuth
and elevation angle. Therefore, although radar power factors can influence the probability
of detection, their practical value is relatively limited when formulating trajectory planning
and tactical decisions during aircraft penetration operations.

3.5. Scenario with Two Radars
3.5.1. Influence of Turning Angle in a Scenario with Opposing Dual Radars

Figure 13 displays the changes in flight parameters for an aircraft performing penetra-
tion maneuvers at turning angles of 30◦, 20◦, 10◦, 5◦, −10◦, −20◦, and −30◦ in a scenario
with opposing dual radars. Other parameter settings are as specified in Table 9. And the
red dots in Figure 13a represent radars.

Table 9. Scene parameter settings in a scenario with dual radars.

Power Factor Phi D Ma

1 × 10−4 60◦ 50 km 0.8
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Figure 13 shows the changes in the azimuth angle, elevation angle, cumulative detec-
tion probability, and single-detection probability of an aircraft at different turning angles
in a scenario with opposing dual radars. It illustrates that a 5◦ turning angle is no longer
optimal when radars are on both sides. This is because, although the aircraft evades the
hazardous azimuth angles of the radar on one side by turning, it enters directly into the
high detection probability area of the opposite-side radar upon realigning, leading to peak
exposure and a significant increase in the cumulative detection probability. At this point,
±10◦ becomes the best choice in this scenario, serving as a strategy to balance the avoidance
of a threat on one side while reducing exposure on the other. Consistent with the analysis
in 3.1 of the turning angles, the detection probability is highest at ±30◦ turning angles.

3.5.2. Influence of Turning Angle in a Scenario with a Closely Positioned Radar

Figure 14 displays the changes in flight parameters for an aircraft performing penetra-
tion maneuvers at turning angles of 30◦, 20◦, 10◦, 5◦, −10◦, −20◦, and −30◦ in a scenario
with a closely positioned radar on the same side. In this situation, the aircraft makes a
turn while simultaneously crossing the hazardous areas of both radars. Other parameter
settings are the same as in Table 9. And the red dots in Figure 14a represent radars.
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Figure 14. Results of a closely positioned radar scenario: (a) full trajectory view; (b) magnified
view of the turning section; (c) azimuth angle through the trajectory; (d) elevation angle through
the trajectory; (e) cumulative detection probabilities through the trajectory; and (f) single-detection
probabilities through the trajectory.
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Figure 14 shows the changes in the azimuth angle, elevation angle, cumulative detec-
tion probability, and single-detection probability of an aircraft at different turning angles in
a scenario with closely positioned dual radars on the same side. From this, it can be seen
that when two radars are nearby, if the aircraft adopts a single-turn maneuver to evade
the hazardous areas of both radars simultaneously, the lowest detection probability occurs
at a −20◦ turning angle, a slightly higher detection probability at a 5◦ turning angle, and
the highest detection probability at a −10◦ turning angle due to exposure to high-intensity
peak detection zones.

3.5.3. Influence of the Turning Angle in a Scenario with Radars Positioned Further Apart

Figure 15 displays the changes in flight parameters for an aircraft performing penetration
maneuvers at turning angles of 30◦, 20◦, 10◦, 5◦, −10◦, −20◦, and −30◦ in a scenario with
radars positioned further apart on the same side. In this situation, the aircraft makes two
turns while simultaneously crossing the hazardous areas of the radars. Other parameter
settings are the same as in Table 9. And the red dots in Figure 15a represent radars.
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Figure 15. Results of radars positioned further apart: (a) full trajectory view; (b) magnified view of the
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(e) cumulative detection probabilities through the trajectory; and (f) single-detection probabilities
through the trajectory.
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Figure 15 shows the changes in the azimuth angle, elevation angle, cumulative detec-
tion probability, and single-detection probability during the flight of an aircraft at different
turning angles in a dual radar scenario on the same side and at a longer distance. It can be
seen that when the turning angle is 5◦, the aircraft has the lowest probability of detection.
This is mainly because the aircraft maintains a small elevation angle at this turning angle.
Hence, the peak value of the single-detection probability is small, resulting in a relatively
low cumulative detection probability. Conversely, when the turning angle is −20◦, there
is the highest probability of detection due to the prolonged and intense peak exposure to
which the aircraft has been subjected. It shows that the choice of the turning angle has an
important effect on reducing radar detection probability when planning flight trajectories
and penetration strategies.

3.6. Summary

This section investigates the influence of various factors, including the turning angle,
rolling angle, flight speed, and radar power factor, on radar detection probability in both
single-radar and dual-radar scenarios. The results indicate that during the process of an
aircraft avoiding the hazardous areas of radar detection, optimizing the aircraft’s turning
angle and rolling angle can effectively reduce its exposure time, thereby significantly
lowering the overall probability of detection.

Results reveal that the turning angle is particularly critical among the factors examined.
In a single-radar scenario, a 5◦ turning angle has been found to yield optimal performance
during the aircraft’s penetration process. Regarding the aircraft’s flight speed, the study
demonstrates that the radar detection probability is lower at a Mach number (Ma) of
0.65 than at Ma = 0.8. It is hypothesized that this discrepancy is due to the increase
in turning maneuver time, leading to an increase in the RCS peak exposure time. This
finding contradicts the conclusions drawn from two-dimensional scenarios, highlighting
the necessity of analyzing elevation angles in 3D scenarios. Additionally, the analysis of
various rolling angles suggests that when the adverse effects of a significant elevation angle
increase, induced by high overload, they outweigh the time accumulation benefits, and
that employing high overload is no longer the optimal strategy for executing penetration
maneuvers.

These conclusions provide significant guidance for subsequent flight trajectory plan-
ning and tactical decision making, emphasizing the necessity for precise maneuvering in
complex environments.

4. RVR-TM Algorithm
4.1. Analysis of the Turning Maneuver

However, in the 3D scene, the elevation angle rapidly increases during the turning
maneuver, which can cause an increase in detection probabilities. Thus, we need to analyze
the factors that influence turning maneuvers.

During the maneuver, the radius is the function of load factor N.

R =
V2

√
N2 − 1g

(2)

In Formula (2), R is the turning radius, V is the turning velocity, N is the load factor,
and g is the gravitational acceleration. Thus, the turning time can be as follows:

T =
θR
V

=
θV√

N2 − 1g
(3)

In Formula (3), T is the turning time, and θ is the turning angle. According to For-
mula (2), the turning time is proportional to the turning angle and velocity. Thus, a decrease
in turning velocity can reduce the RCS peak exposure time and the detection probability,
which is counterintuitive.
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Based on this conclusion, we can propose a new turning-over method with the lowest
turning angle and velocity, as shown in Figure 16. The detection probabilities are shown in
Figure 17. The azimuth and elevation angle curves are shown in Figure 18.
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4.2. Steps of the RVR-TM Algorithm

The steps of the RVR-TM algorithm are given as shown in Algorithm 1.

Algorithm 1 The RVR-TM algorithm

Input: Coordinates of the start node Ps, coordinates of the goal node Pg, radar layout.
Output: Trajectory.
1: while not reach goal node do
2: if (Distance to Radar ≤ 2 ∗ Radar Valley Radius) then
3: Hover around Radar;
4: return New Command;
5: Continue;
6: if (Distance to Radar ≤ 2 ∗ Radar Valley Radius) then
7: Do Turning Maneuver;
8: return New Command;
9: Continue;
10: else then
11: return NONE;
12: Continue;

4.3. Simulations in Single-Radar Scenario

The radar specification parameters used in the simulation are shown in Table 10.

Table 10. Radar parameters for single-radar threat environment for RVR-TM algorithm.

Index Tscan (s) PFA N ρ VH RH Power Factor

1 4 1 × 10−6 2 0.5 0 0 1 × 10−4

The analysis environment is shown in Figure 19; the mission is defined as a penetration
from (−200, 0, 8) to (200, 0, 8), and the radar is located at (0, 20, 0) with normal power.
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Figure 19. Straight trajectory before planning in single-radar scenario.

4.3.1. Straight Trajectory

Figures 20 and 21 reveal that during the aircraft’s flight, the RCS peaks at 35 degrees
forward-left and 145 degrees backward-left are exposed to the radar for extended periods,
leading to the aircraft’s detection. Concurrently, as the aircraft approaches the (0,0) point,
its elevation angle, relative to the radar, increases. However, due to the maximal value of
the elevation angle not being significantly large, this does not manifest as a pronounced
peak on the detection probability curve.
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4.3.2. RVR-TM Method

From Figures 22–24, it is observed that during the aircraft’s penetration process, it first
encounters the radar valley radius range, thereby moving perpendicularly to the radar
valley radius to avoid entering the hazardous zone. Upon exiting the radar valley radius
area, it continues to advance toward the target point. Near (50,0), to prevent the aircraft’s
rear-left RCS peak from being exposed to the radar for an extended duration, the aircraft
executes a maneuvering turn, allowing the RCS peak to swiftly sweep past the radar station,
ultimately reducing the overall trajectory radar detection probability from 100% to 2%. The
total Planning Time is 8.18 s.
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4.3.3. D-SASLRM Method

Figures 25 and 26 illustrate that the 3D-SASLRM method can produce a planned
trajectory with a minimal radar detection probability (0.1%), albeit at the cost of a longer
search duration, which amounts to 126.72 s.
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4.4. Simulations in a Three-Radar Scenario

The radar parameters are set in Table 10. The analysis environment is shown in
Figure 27. The mission is defined as a penetration from (−250, 0, 8) to (250, 0, 8), and the
radar is located at (0, 100, 0), (−20, −100, 0), or (20, −100, 0) with normal power.
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Figure 27. Straight trajectory before planning in a three-radar scenario.

4.4.1. Straight Trajectory

Figures 28 and 29 reveal that during the aircraft’s flight, the RCS peaks at 35 degrees
forward-left and 145 degrees backward-left are exposed to the radar for extended periods,
leading to the aircraft’s detection. Concurrently, as the aircraft approaches the (0,0) point,
its elevation angle relative to the radar increases. However, due to the maximal value of
the elevation angle not being significantly large, this does not manifest as a pronounced
peak on the detection probability curve.
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4.4.2. RVR-TM Method

From Figures 30–32, it is observed that during the aircraft’s penetration process, it
ultimately reduces the overall trajectory radar detection probability from 64% to 12%. The
total Planning Time is 75.89 s.
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4.4.3. D-SASLRM Method

Figures 33 and 34 illustrate that the 3D-SASLRM method can produce a planned
trajectory with a minimal radar detection probability (0.6%), albeit at the cost of a longer
search duration, which amounts to 330.43 s.
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5. Reinforcement Learning Algorithm

Based on Sections 3 and 4, reinforcement learning is applied to intelligent decision-
making regarding stealth aircraft penetration.

Proximal Policy Optimization (PPO) is a reinforcement learning algorithm that utilizes
stochastic policy gradients, applicable to both continuous and discrete action spaces. The
PPO algorithm is based on the Actor-Critic framework, which includes two Actor networks
and one Critic network. This structure employs an online policy during training, meaning
the policy used for generating samples is the same as that used for training.

The main innovation of PPO lies in its solution to the issue of step-size selection in
policy gradient algorithms. It introduces a mechanism to limit the magnitude of policy
updates, thereby maintaining the stability of the training process. This approach not
only stabilizes the training process but is also widely appreciated for its simplicity of
implementation, ease of tuning, and excellent performance. Currently, PPO has become
one of the commonly used reinforcement learning algorithms by OpenAI. These features
have made PPO perform exceptionally well in various tasks and environments, especially
in scenarios that require handling complex action spaces.

5.1. Reinforcement Learning Decision Process

Based on the PPO algorithm and drawing on the relevant conclusions from the simu-
lations discussed earlier in the text, this paper has established a decision-making model for
the penetration of stealth aircraft. The decision-making model for stealth aircraft penetra-
tion is designed as an integrated system, with the aim of achieving efficient penetration
operations without detection by enemy radar systems. The decision-making model com-
prises three main components, namely, a state input module, a decision-making module,
and an action output module, as shown in Figure 35.
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The state input module is responsible for collecting key information from multiple
sources, such as the aircraft’s current velocity, position, attitude, and radar detection
information. These data points are aggregated into a state vector, which provides the
necessary contextual information for decision making.

The decision-making module is driven by the PPO reinforcement learning algorithm,
which includes two key neural networks: the Actor and Critic networks. The Actor
network is responsible for proposing actions, generating two sets of outputs by analyzing
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the state vector St, an exploratory action network (Actor network 1) and a deterministic
action network (Actor network 2). Exploratory actions allow the aircraft to explore new
penetration strategies during training, while deterministic actions execute the optimal
behavior based on the trained model. In actual operation, there is no need to maintain two
Actor networks simultaneously; instead, the norms of the two sets of networks are stored
separately, updating the strategy by retaining some old policy samples for comparison
with the new strategy. Consequently, the Actor network 2 in Figure 35 is indicated with
a dashed frame to signify that it is not a physical entity. Meanwhile, the Critic network
evaluates the performance of the current policy, providing feedback values (value function
outputs) to help optimize the strategy generated by the Actor network.

Subsequently, based on the output of the Actor network, the action output module
executes specific actions At. After the action is executed, the results of the aircraft’s interac-
tion with the environment, including signals received from enemy radar, are collected and
fed back into the experience pool.

In the experience pool, a large amount of data on aircraft states and action outcomes
are stored, providing rich learning material for the decision-making module. Using this
data, the model continuously improves its decision-making quality through iterative
training, ensuring effective stealth penetration behavior in different penetration scenarios.
In addition, the results of the action execution are used to adjust the model further to ensure
that the aircraft’s penetration actions are both covert and effective.

Through this process of cyclical learning and adjustment, the stealth aircraft penetra-
tion decision-making model aims to achieve adaptive and optimized behavior in complex
hostile environments, thereby increasing the success rate of the mission.

5.2. State Space Design
5.2.1. Deterministic Expression of Detection Probability

When training the penetration decision-making model for stealth aircraft, the Monte
Carlo method is used to estimate the probability of the aircraft being detected by radar
through random simulation. Although this method can theoretically simulate complex
stochastic processes, it also introduces significant uncertainty into the training. Specifically,
because the radar detection is stochastic, using the results of the Monte Carlo simulation as
the basis for training can make the signals in the learning process extremely unstable.

To reduce this uncertainty and improve training efficiency, it is necessary to transform
the random event of the aircraft detected by radar into a numerical expression. Since
radar detection probabilities are usually represented in a multiplicative form (cumulative
risk), applying them directly to the reward function complicates matters. In contrast,
logarithmic transformation is an effective method that converts the multiplication of cu-
mulative probabilities into addition, facilitating direct provision as rewards or penalties to
the aircraft.

For this reason, in the penetration decision-making model constructed in this paper,
the following deterministic expression method for detection probability is proposed:

Logarithmic Probability Transformation: By taking the logarithm of the radar detection
probability, the product of cumulative probabilities is converted into a summation form,
which allows for a more direct integration into the reward function;

Deterministic Mission Failure Condition: Instead of the random comparison method
based on the Monte Carlo model, a clear maximum detection probability threshold can be
set, such as 30%; when the cumulative logarithmic probability exceeds the corresponding
logarithmic value, the mission is judged to have failed;

Logarithmic Transformation of Health and Damage Values: Combining the above
two points, the health value of the aircraft is defined as the negative logarithm of the
maximum allowable detection probability; for example, if the highest probability is 30%,
then the health value is set to −log(1 − 0.3); similarly, the radar detection probability
increase caused by each danger point is also represented by the negative logarithm of the
detection probability, converted into damage value.
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Compared to the Monte Carlo method, the advantage of this state space design lies in
transforming uncertainties and probabilistic issues into deterministic numerical problems,
significantly enhancing the stability of the training process. This approach eliminates
randomness in the training process, allowing the agent to learn effective penetration
strategies within the radar coverage area more robustly, thereby improving the learning
efficiency and policy performance of the entire model. Moreover, this method facilitates the
agent’s ability to assess the potential risks of the actions, optimize the trajectory selection,
and maximize mission success rates while minimizing the risk of being detected.

5.2.2. Dual-Layer State Space

In the construction of the stealth aircraft penetration decision-making model, this
paper designs a dual-layer state space, which includes the external input state and the
true state used for decision making. This design fully utilizes environmental information,
transforming high-dimensional raw data into lower-dimensional data that are more direct
and effective for decision making, thereby enhancing the learning efficiency and decision
quality of the agent.

The external input state includes the initial position, velocity, and health value of the
aircraft, as well as the positions of the radar and the target, etc., providing the absolute
position of the aircraft in the environment. However, directly using these high-dimensional,
absolute coordinate data may lead to the decision-making process of the agent being
susceptible to overfitting, especially when the positions of the radar and the target are fixed
and unchanged.

To address this issue, this paper introduces a true state space, which characterizes
the positional relationship of the aircraft relative to the radar and the target based on
relative azimuth angles and relative distances. The design of the true state space reflects a
description based on the relative relationships between the agent and key environmental
objects, rather than relying on a global coordinate system. This design helps the agent learn
to make more adaptable decisions under varying environments.

During the training process, the true state, which changes with every movement
of the aircraft, has a dynamic characteristic that not only prevents overfitting but also
enriches the agent’s experience. It provides a more diverse range of scenarios to promote
generalization learning. Since the true state no longer directly depends on unchanging
references in the environment, such as specific landmarks or radar positions, the agent can
learn effective decision making in various environments, rather than only performing well
under particular conditions. At the same time, the agent does not need to relearn strategies
when facing radars with different positions but essentially the same configuration, which
enhances the model’s applicability and robustness in unknown environments.

The true state space plays a central role in the agent’s decision-making process, directly
affecting the behavioral output of the Actor network and providing the Critic network with
a basis for evaluating the quality of the strategy. This accelerates the learning process, espe-
cially in handling complex interactions and adapting quickly to environmental changes.

In summary, models that directly use the agent’s position, radar’s position, and target
position as states are susceptible to the limitations of specific environmental settings. Com-
pared to methods that directly construct a map, the true state space approximates the use
of “relative azimuth angles are important in stealth aircraft penetration” as prior knowl-
edge, replacing traditional convolutional neural networks. By introducing relative azimuth
angles and distances, the agent’s ability to adapt to changing conditions is enhanced. This
method better simulates the operational environment of the real world, where aircraft may
need to make effective decisions in the absence of fixed reference points or under changing
reference points. Therefore, such a state representation is not only beneficial for learning
efficiency during the training process but also helps the agent to make faster, more accurate
and robust decisions in various situations upon actual deployment.

The state information constructed in this paper is divided into two layers, one for map
state information and the other for azimuth feature information. After inputting the map
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information, the decision model calculates the map state information and reconstructs the
true state for subsequent forward propagation. The specific definition of the state space is
referenced in Table 11.

Table 11. Specific definition of the state space.

Identifier Name Range Description

AgentAzi Aircraft Azimuth [−π, π] (rad) The azimuth angle of the aircraft’s direction of movement
relative to the map’s X-axis

AgentVelocity Aircraft Velocity 0–10 (km/10 s) The flight distance of aircraft between each decision

AgentHP Aircraft Health 0–100 Represents the highest acceptable probability of
radar detection

EnemyAzi Radar Azimuth Angle [−π, π] (rad) The angle between the aircraft-radar vector and the X-axis
in the aircraft’s body coordinate system

EnemyDis Radar Relative
Distance (−∞, +∞) (km) The magnitude of the vector from the aircraft to the radar

EnemyPow Radar Power 0–1 Radar power factor

TargtAzi Target Azimuth Angle [−π, π] (rad) The angle between the aircraft-target vector and the
X-axis in the aircraft’s body coordinate system

TargtDis Target Relative
Distance (−∞, +∞) (km) The magnitude of the vector from the aircraft to the target

5.3. Reward Function

To ensure that the aircraft completes the mission according to the rules, it is necessary to
assign reward values to its various actions. Positive reward values indicate encouragement
of the action, while negative reward values indicate discouragement.

5.3.1. Conventional Reward Function

Goal Approach Reward: After each action by the aircraft, if the distance to the target
position is reduced, it receives a reward based on the extent of the distance reduction,
which is the positive change in distance multiplied by 40.

Health Loss Penalty: If the agent is detected by radar due to its action, the corre-
sponding health loss will be reflected in the reward function as a penalty 100 times the
loss value.

Action Cost: Each action by the aircraft incurs a cost, with each time step imposing a
−1 penalty to encourage the aircraft to reach the destination quickly; there is also a penalty
based on the aircraft’s turning to restrict excessive maneuvering.

Terminal Rewards and Penalties: A reward of 100 is given for successfully completing
the mission (the aircraft reaching the target position). A penalty of −100 is incurred for
failure (the aircraft’s health is depleted or the maximum number of steps is exceeded).

5.3.2. Reward Shaping

Reward shaping is achieved by analyzing the maneuvering patterns of the aircraft
under radar detection. The purpose of reward shaping is to guide the aircraft to learn
how to take appropriate maneuvers when the risk of being detected by the radar is high,
thereby increasing its survival rate and mission success rate. This is facilitated by adding
extra rewards to the aircraft’s decision-making process, which are calculated based on the
aircraft’s current state and the actions taken.

The reward-shaping mechanism used in this paper is as follows.
When the relative azimuth angle of a radar enters a certain dangerous angle range,

such as 30 to 40 degrees or 140 to 150 degrees, if the aircraft’s action is to maneuver, it will
be rewarded to encourage more active maneuvers.

When the aircraft is too close to the radar, deciding to move away from the radar
direction will also be rewarded. In this case, the sign of the action needs to be opposite to
the sign of the azimuth angle, indicating that the aircraft is taking evasive action.
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If the aircraft is not in a dangerous area and takes no action (the action value action is
0), it will receive a small positive reward. Such a reward may be to encourage the aircraft
to maintain the current state when there is no direct threat, save resources and reduce
unnecessary exposure.

The advantage of this reward-shaping method is that it encourages the aircraft to
make more complex and nuanced flight decisions based on specific scenarios.

5.4. Simulation with Reinforcement Learning Algorithm

A preliminary simulation is performed for a single-radar scenario. Based on the
decision model in Figure 35, simulations for trajectory planning under different reward
functions are conducted and the generalization capability of the algorithm is validated.

5.4.1. Influence of the Distance Penalty

The scene of the simulations is set as Table 12. For the reward setting, Figure 36a has
no distance penalty, while Figure 36b has distance penalty applied.

Table 12. Radar parameters for single-radar threat environment.

Index Location Tscan (s) PFA N ρ VH RH Power Factor

1 (0,60,0) 4 1 × 10−6 2 0.5 0 0 1 × 10−4
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In Figure 36a, the aircraft tends to avoid actions that may result in significant health
damage due to the absence of distance penalty. This implies that a safer but longer trajec-
tory is chosen. For Figure 36b, an appropriate penalty for health loss allows the aircraft
to balance the achievement of the destination with the maintenance of health. The tra-
jectories show that the aircraft can efficiently approach the destination while avoiding
unnecessary detours.

5.4.2. Influence of the Action Penalty

After introducing the distance penalty, the aircraft will choose the direct trajectory.
However, due to the time required for policy updates and the presence of errors in the
Critic network, there may be a high frequency of actions. Therefore, an action penalty is
included to adjust accordingly. Before and after the adjustment, the radar’s azimuth angle
relative to the aircraft throughout the entire trajectory is shown in Figure 37.

In Figure 37a, since frequent actions do not result in penalties, when the aircraft is
facing the radar at angles between 30 to 40 degrees, it will frequently change its action,
thereby freely exploring different strategies to enhance its performance. As shown in
Figure 37b, when an action penalty is introduced, the increase in the number of actions leads
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to a decrease in rewards, which encourages the aircraft to reduce unnecessary movements
to maintain its total reward value.
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5.5. Imitation Learning
5.5.1. Limits of Reward Shaping

In Sections 3 and 4, a maneuvering strategy available to stealth aircraft during three-
dimensional penetration is proposed and analyzed. During the actual training, the prede-
fined strategy can be utilized to shape the rewards, guiding the aircraft to prioritize the
exploration of trajectories that are advantageous based on a priori knowledge, thereby
accelerating the training process. In complex environments, the aircraft can learn how to
achieve specific destinations more rapidly. At the same time, this approach also avoids the
difficulty of balancing the coefficients in the reward settings. The penetration trajectory
with reward shaping is shown in Figure 38a, and the radar’s relative azimuth angle is
depicted in Figure 38b.
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Despite introducing reward shaping to guide the behavior, the probability of the
overall reward system and the singularity of the maneuvering actions, Figure 38 illustrates
that if too many restrictive conditions are set for reward shaping, the agent can hardly
explore the target actions, rendering the reward shaping ineffective. Conversely, reducing
the restrictiveness of these conditions may affect other states, leading to a decline in
penetration effectiveness. As shown in Figure 38a,b, the agent took a wide detour and
exhibited significant fluctuations in the azimuth angle, indicating that the agent performed
excessive and unnecessary actions. This observation suggests that careful consideration is
needed in reward design to ensure that the agent can explore effective actions without being
overly influenced by the shaping, which could negatively impact the overall performance.
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5.5.2. Process of Imitation Learning

Therefore, this section introduces an imitation-learning strategy that allows the agent
to accumulate effective experience under the guidance of an ‘expert policy.’ This approach
can significantly enhance learning efficiency in a sparse reward environment, reduce
aimless exploration, and quickly master the target actions, laying a foundation for the
agent’s rapid decision making and precise actions.

The process of imitation learning in this section is depicted in Figure 39.
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The agent first executes maneuvering strategies in the environment to obtain training
samples, also known as sample state transition samples (s, a, s′, r). Here, a is the action
taken by the agent under the current policy π in state s, s′ is the next state, and r is the
immediate reward received. Subsequently, an imitation-learning model is constructed, and
the policy network is trained using the gradient descent method. The objective function is
as follows:

min
θ

1
|D| ∑

(s,a)∈D
L(πθ(s), a) (4)

In Equation (4), θ represents the parameters of the agent’s policy, and L is the loss
function, which typically employs either mean squared error or cross-entropy error.

By performing gradient descent on the objective function, the parameters θ of the
policy network are obtained. The corresponding Actor network clones the behavior of the
turning maneuver strategy. However, such a policy lacks generality; hence, it is necessary
to allow the agent to continue exploring while also updating the Critic network.

5.5.3. Performance after Incorporating Imitation Learning

After incorporating the imitation learning, the penetration trajectories before and after
free exploration are shown in Figure 40a,b, and the radar’s relative azimuth angles are
depicted in Figure 40c,d.

After incorporating the imitation learning, the agent begins free exploration. In
Figure 40a,c, it can be observed that the agent very strictly executes the pre-defined turning
maneuver strategy, demonstrating good policy fitting during the imitation-learning phase.
In Figure 40b,d, despite the trajectory during the free exploration phase involving multiple
turns, the agent is still able to make the correct turning decisions at critical moments,
indicating that it has grasped the core timing and method of the turning maneuver.

Furthermore, by observing the trajectory, it takes a reasonable trajectory to avoid
radar detection, which further verifies the feasibility of the strategy combining imitation
learning with free exploration. This strategy not only allows the agent to optimize its
decision-making process through self-exploration while imitating expert behavior, but also
enhances the efficiency and quality of the task.
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6. Conclusions

This study explores innovative approaches in stealth aircraft penetration strategies
by integrating advanced computational methods and leveraging prior knowledge for
enhanced radar evasion effectiveness. Based on the research conducted in this paper, the
following conclusions are drawn:

(1) The turning maneuver penetration method remains applicable when extending from
two dimensions to three dimensions, but it is necessary to minimize the turning
angle and speed in planning; this reduction aims to decrease the duration the aircraft
exposes its RCS peaks to radar stations at high elevation angles;

(2) Through extensive analysis of typical threat scenarios, the effectiveness and applicable
contexts of turning maneuvers in three-dimensional situations have been determined,
which can aid in rapid decision-making; additionally, based on the analysis, a penetra-
tion maneuver strategy called the “RVR-TM method” was developed using a decision
tree approach;

(3) Comparative studies of single-radar and triple-radar scenarios under straight tra-
jectory, RVR-TM planned trajectory, and 3D-SALSRM planned trajectory indicate
that both methods significantly reduce the radar detection probability compared
to straight trajectories, thereby enhancing aircraft survivability; notably, RVR-TM
achieves feasible trajectories in far less time than 3D-SALSRM;

(4) Using reinforcement learning and a 3D trajectory algorithm, this study suggests re-
placing the Monte Carlo environment with probabilistic deterministic expression and
designing state space from prior knowledge; a stealth aircraft decision model using
the Proximal Policy Optimization (PPO) algorithm, supplemented by the RVR-TM
training method, facilitated rapid 3D decision making, proving effective in achieving
radar evasion through prior knowledge.
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