
Citation: Ahmad, Z.; Almaspoor, Z.;

Khan, F.; El-Morshedy, M. On

Predictive Modeling Using a New

Flexible Weibull Distribution and

Machine Learning Approach:

Analyzing the COVID-19 Data.

Mathematics 2022, 10, 1792. https://

doi.org/10.3390/math10111792

Academic Editor: Andrea De

Gaetano

Received: 23 March 2022

Accepted: 17 May 2022

Published: 24 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

On Predictive Modeling Using a New Flexible Weibull
Distribution and Machine Learning Approach: Analyzing the
COVID-19 Data
Zubair Ahmad 1 , Zahra Almaspoor 1,*, Faridoon Khan 2 and Mahmoud El-Morshedy 3,4

1 Department of Statistics, Yazd University, Yazd P.O. Box 89175-741, Iran; zubair@stu.yazd.ac.ir
2 PIDE School of Economics, Islamabad 44000, Pakistan; faridoonkhan_18@pide.edu.pk
3 Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin

Abdulaziz University, Al-Kharj 11942, Saudi Arabia; mah_elmorshedy@mans.edu.eg
4 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
* Correspondence: z.almaspoor@stu.yazd.ac.ir

Abstract: Predicting and modeling time-to-events data is a crucial and interesting research area.
For modeling and predicting such types of data, numerous statistical models have been suggested
and implemented. This study introduces a new statistical model, namely, a new modified flexible
Weibull extension (NMFWE) distribution for modeling the mortality rate of COVID-19 patients. The
introduced model is obtained by modifying the flexible Weibull extension model. The maximum
likelihood estimators of the NMFWE model are obtained. The evaluation of the estimators of the
NMFWE model is assessed in a simulation study. The flexibility and applicability of the NMFWE
model are established by taking two datasets representing the mortality rates of COVID-19-infected
persons in Mexico and Canada. For predictive modeling, we consider two pure statistical models
and two machine learning (ML) algorithms. The pure statistical models include the autoregressive
moving average (ARMA) and non-parametric autoregressive moving average (NP-ARMA), and the
ML algorithms include neural network autoregression (NNAR) and support vector regression (SVR).
To evaluate their forecasting performance, three standard measures of accuracy, namely, root mean
square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) are
calculated. The findings demonstrate that ML algorithms are very effective at predicting the mortality
rate data.

Keywords: flexible Weibull extension; mortality rate; COVID-19 event; simulation; statistical modeling

MSC: 62N01; 62N02

1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic has strongly affected the schedule
of everyday life; particularly, it has created public health crises the likes of which we have
never before faced. Biomedical researchers are constantly paying attention to estimating and
predicting the average of new cases, the number or ratio of deaths, or the rate of recovery of
the infected patients to make the appropriate arrangements (Hogan et al. [1]). In this regard,
several studies on the COVID-19 pandemic have appeared. For example, Mizumoto et al. [2]
estimated the asymptomatic proportion of COVID-19 cases in Japan. Ilyas et al. [3] studied
the scenario of the COVID-19 pandemic in Pakistan. Rao et al. [4] investigated COVID-19
data using the Weibull distribution under indeterminacy. Up to 27 November 2021, 10:53
GMT, the total number of registered cases has reached 261 million, the total number of
deaths around the globe has reached 5.2 million, and 235.86 million infected persons have
recovered. Based on the latest updates about the COVID-19 pandemic, the United States of
America is at the top of the list, having 49 million total cases and 799,138 deaths.
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Several statistical models (SMs) have been implemented to describe, estimate, and
predict the nature of the COVID-19 pandemic. For example, Singhal et al. [5] modeled
and predicted the COVID-19 epidemic using the Gaussian model. Qin et al. [6] estimated
the distribution of the incubation period of COVID-19 events. Almetwally et al. [7] im-
plemented a new version of the inverted Topp–Leone (ITL) distribution to analyze the
COVID-19 mortality rate. Almongy et al. [8] applied an extended version of the Rayleigh
distribution to the COVID-19 data. Liu et al. [9] modeled the survival times of COVID-19-
infected persons in China. El-Sagheer et al. [10] applied the mortality distribution to the
COVID-19 data based on randomly censored observations.

In today’s competitive era, the data generated from various fields are becoming in-
creasingly more complex. As a result, in modeling such data, we need machine learning
tools under probability distributions that are best suited for analytical studies of multidi-
mensional and complex data. Machine learning algorithms are often expressed in terms
of probability; most machine learning tools are based on inferential statistics, where the
statistics are based on probability theory. In essence, probability theory mathematically
expresses how likely something is, given our assumptions. There are now probabilistic
interpretations of black-box algorithms such as deep learning. These interpretations help
us understand how such algorithms work, and how to improve them. There are many
researchers who base their entire models for computer learning on statistics. At a basic
level, they think that the world, or at least their problem, is driven by or best represented
by certain combinations of random variables, which are best expressed by statistics. These
models are typically suited to very different types of problems than are multifactor models.
Furthermore, forecasting stock prices is a good example, where statistical models can be
used for machine learning. Thus, machine learning is more linked to statistics and proba-
bilities. See, for example, Eliwa et al. [11], El-Morshedy et al. [12,13], Altun et al. [14,15],
among others.

In the current scenario, the best description of the COVID-19 pandemic is a crucial
research topic. Several SMs are available that can be used to describe the behavior of
the COVID-19 pandemic adequately, in addition to machine learning tools. Among the
available SMs, the two-parameter flexible Weibull extension (FWE) model holds a key place
(see Bebbington et al. [16]). Different variants of the FWE model have been introduced and
implemented for dealing with the data in numerous sectors; see El-Morshedy et al. [17],
El-Morshedy et al. [18], and Abubakari et al. [19].

Let a random variable W have the FWE model with parameters σ1 > 0 and σ2 > 0; its
cumulative distribution function (CDF) can be expressed as

K(w; σ1, σ2) = 1− e−Υ(w;σ1,σ2), w ≥ 0, (1)

with the probability density function (PDF) given by

kFWE(w; σ1, σ2) =
(

σ1 +
σ2

w2

)
Υ(w; σ1, σ2)e−Υ(w;σ1,σ2), w > 0,

where Υ(w; σ1, σ2) = eσ1w− σ2
w . To add further flexibility to the FWE model, El-Gohary

et al. [20] proposed the exponentiated FWE (Exp-FWE) model with parameters σ1 > 0, σ2 > 0,
and δ1 > 0. The CDF of the Exp-FWE model is given by

K(w; σ1, σ2, δ1) =
(

1− e−Υ(w;σ1,σ2)
)δ1

, w ≥ 0.

El-Damcese et al. [21] further modified the Exp-FWE model by introducing the
Kumaramswamy FWE (Ku-FWE) model with parameters σ1 > 0, σ2 > 0, δ1, and δ2 > 0.
The CDF K(w; σ1, σ2, δ1, δ2) of the Ku-FWE model is given by

K(w; σ1, σ2, δ1, δ2) = 1−
(

1−
[
1− e−Υ(w;σ1,σ2)

]δ1
)δ2

, w ≥ 0.
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Recently, Ahmad et al. [22] further contributed to this research area by proposing a
new family of distributions with CDF, given by

M(w; λ, ϑϑϑ) =
λK(w; ϑϑϑ)

λ− 1 + K(w; ϑϑϑ)
, w ∈ R, λ > 1, (2)

where K(w; ϑϑϑ) is the CDF of the baseline model with parameter vector ϑϑϑ. The corresponding
PDF, survival function (SF), and hazard function (HF) to Equation (2) are given by

m(w; λ, ϑϑϑ) =
λ(λ− 1)k(w; ϑϑϑ)

[λ− 1 + K(w; ϑϑϑ)]2
, w ∈ R,

S(w; λ, ϑϑϑ) = 1− λK(w; ϑϑϑ)

λ− 1 + K(w; ϑϑϑ)
, w ∈ R,

and

h(w; λ, ϑϑϑ) =
λk(w; ϑϑϑ)

(1− K(w; ϑϑϑ))[λ− 1 + K(w; ϑϑϑ)]
, w ∈ R,

respectively.
As we know, heavy-tailed (HT) distributions play a vital role in medical and other

related sectors ((Gardiner et al. [23]), (Zhao et al. [24])). However, in the literature, there are
only few distributions that possess the HT characteristics ((Bhati and Ravi, [25]), (Ahmad
et al. [26]), (Ahmad et al. [27])). Keeping in view the importance of the HT distributions,
we introduce a new HT distribution, namely, a new modified flexible Weibull extension
(NMFWE) distribution. The HT characteristics of the NMFWE distributions are proved
mathematically (see Section 3). The NMFWE distribution is introduced by incorporating
K(w; σ1, σ2) = 1− e−Υ(w;σ1,σ2) in Equation (2).

2. A New Modified Flexible Weibull Extension

A random variable W has the NMFWE distribution with parameters λ > 1, σ1 > 0,
and σ2 > 0, if its CDF can be formulated as

M(w; λ, σ1, σ2) =
λ− λe−Υ(w;σ1,σ2)

λ− e−Υ(w;σ1,σ2)
, w ≥ 0. (3)

In link to M(w; λ, σ1, σ2), the PDF and HF can be expressed as

m(w; λ, σ1, σ2) =
λ(λ− 1)

(
σ1 +

σ2
w2

)
Υ(w; σ1, σ2)e−Υ(w;σ1,σ2)[

λ− e−Υ(w;σ1,σ2)
]2 , w > 0, (4)

and

h(w; λ, σ1, σ2) =
λ
(

σ1 +
σ2
w2

)
Υ(w; σ1, σ2)

λ− e−Υ(w;σ1,σ2)
, w > 0,

respectively.
For different values of λ, σ1, and σ2, visual illustrations of m(w; λ, σ1, σ2), and h(w; λ, σ1, σ2)

are presented in Figure 1.
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Figure 1. The PDF (left panel) and HRF (right panel) plots for the NMFWE distribution.

It is found that the proposed model can be used effectively in modeling symmetric
and asymmetric data. Moreover, it can be utilized as a probability tool to discuss various
kinds of failure rates.

3. The HT Characteristics

This section is devoted to proving the HT characteristics of the NMFWE distribution.

Regular Variational Property

Here, we prove the regular variational property of the NMFWE distribution. Accord-
ing to Seneta [28], in terms of SF S(w; ϑϑϑ) = 1− K(w; ϑϑϑ), we have:

Theorem 1. If [1− K(w; ϑϑϑ)] is the SF of the regular varying distribution (RVD), then
[1−M (w; λ, σ1, σ2)] is an RVD.

Proof. Suppose limw→∞
[1−K(aw;ϑϑϑ)]
[1−K(w;ϑϑϑ)] = f (w) is finite but nonzero for every w > 0. Incorpo-

rating Equation (5), we obtain

lim
w→∞

1−M(aw; λ, σ1, σ2)

1−M(w; λ, σ1, σ2)
= lim

w→∞

(λ− 1)[1− K(aw; ϑϑϑ)]

λ− 1 + K(aw; ϑϑϑ)
× λ− 1 + K(w; ϑϑϑ)

(λ− 1)[1− K(w; ϑϑϑ)]
,

lim
w→∞

1−M(aw; λ, σ1, σ2)

1−M(w; λ, σ1, σ2)
= lim

w→∞

[1− K(aw; ϑϑϑ)]

[1− K(w; ϑϑϑ)]
× λ− 1 + K(w; ϑϑϑ)

λ− 1 + K(aw; ϑϑϑ)
,

lim
w→∞

1−M(aw; λ, σ1, σ2)

1−M(w; λ, σ1, σ2)
= lim

w→∞
f (w)× λ− 1 + K(w; ϑϑϑ)

λ− 1 + K(aw; ϑϑϑ)
. (5)

Using Equation (3) in Equation (5), we obtain

lim
w→∞

1−M(aw; λ, σ1, σ2)

1−M(w; λ, σ1, σ2)
= lim

w→∞
f (w)×

λ− 1 +
(

1− e−eσ1w− σ2
w

)
λ− 1 +

(
1− e−e

σ1(aw)− σ2
(aw)

) ,

lim
w→∞

1−M(aw; λ, σ1, σ2)

1−M(w; λ, σ1, σ2)
= lim

w→∞
f (w)×

λ− 1 +
(

1− e−eσ1×∞− σ2
∞

)
λ− 1 +

(
1− e−e

σ1(a×∞)− σ2
(a×∞)

) ,
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lim
w→∞

1−M(aw; λ, σ1, σ2)

1−M(w; λ, σ1, σ2)
= lim

w→∞
f (w)×

λ− 1 +
(

1− e−e∞
)

λ− 1 + (1− e−e∞)
,

lim
w→∞

1−M(aw; λ, σ1, σ2)

1−M(w; λ, σ1, σ2)
= lim

w→∞
f (w)× λ− 1 + (1− e−∞)

λ− 1 + (1− e−∞)
,

lim
w→∞

1−M(aw; λ, σ1, σ2)

1−M(w; λ, σ1, σ2)
= lim

w→∞
f (w)×

λ− 1 +
(

1− 1
e∞

)
λ− 1 +

(
1− 1

e∞

) ,

lim
w→∞

1−M(aw; λ, σ1, σ2)

1−M(w; λ, σ1, σ2)
= lim

w→∞
f (w)× λ− 1 + 1

λ− 1 + 1
,

lim
w→∞

1−M(aw; λ, σ1, σ2)

1−M(w; λ, σ1, σ2)
= lim

w→∞
f (w). (6)

Since Equation (6) is nonzero for every w > 0, [1−M(w; λ, σ1, σ2)] is the SF of the
RVD.

A Supportive Example of RVP

Suppose W follows a power-law behavior; then, as per the definition of the HT
property, we have

1− K(w; ϑϑϑ) = P(W > w) ∼ w−β.

By implementing Karamata’s characterization theorem (Seneta, [28]), we can write the
expression [1−M(aw; λ, σ1, σ2)] as

1−M(w; λ, σ1, σ2) = w−βL(w),

where the quantity L(w) represents the slowly varying function (SVF). From Equation (5),
we have

1−M(w; λ, σ1, σ2) =
[1− K(w; ϑϑϑ)](λ− 1)

λ− 1 + K(w; ϑϑϑ)
,

1−M(w; λ, σ1, σ2) =
w−β(λ− 1)

λ− 1 + K(w; ϑϑϑ)
,

1−M(w; λ, σ1, σ2) = w−βL(w), (7)

where L(w) = (λ−1)
λ−1+K(w;ϑϑϑ) . If we can show that L(w) is an SVF, then the result obtained in

Equation (7) is true. To show L(w) is an SVF, we must satisfy

lim
z→∞

L(aw)

L(w)
= 1.

So,

L(aw)

L(w)
=

(λ−1)
λ−1+K(aw;ϑϑϑ)

(λ−1)
λ−1+K(w;ϑϑϑ)

,

L(aw)

L(w)
=

λ− 1 + K(w; ϑϑϑ)

λ− 1 + K(aw; ϑϑϑ)
,

L(aw)

L(w)
=

λ− 1 +
(

1− e−eσ1×w− σ2
w

)
λ− 1 +

(
1− e−eσ1(a×w)− σ2

a×w

) .
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Applying the limit, we obtain

lim
w→∞

L(aw)

L(w)
=

λ− 1 +
(

1− e−eσ1×∞− σ2
∞

)
λ− 1 +

(
1− e−eσ1(a×∞)− σ2

a×∞

) ,

lim
w→∞

L(aw)

L(w)
=

λ− 1 + 1
λ− 1 + 1

,

lim
w→∞

L(aw)

L(w)
= 1.

4. Estimation and Simulation

In this section, we adopt a known estimation procedure to obtain the maximum
likelihood estimators (MLEs)

(
σ̂1, σ̂2, λ̂

)
of the parameters (σ1, σ2, λ). After obtaining the

MLEs of the parameters, we conduct a simulation study (SimS) to assess the performances
of the estimators.

Let W1, W2, · · · , Wn be an observed random sample (RS) of size n, taken from m(w; λ, σ1, σ2).
In link to m(w; λ, σ1, σ2), the likelihood function (LiF), say ∆(λ, σ1, σ2|w1, w2, · · · , wn), is
given by

∆(λ, σ1, σ2|w1, w2, · · · , wn) =
n

∏
a=1

λ(λ− 1)
(

σ1 +
σ2
w2

a

)
Υa(wa; σ1, σ2)e−Υa(wa ;σ1,σ2)[

λ− e−Υa(wa ;σ1,σ2)
]2 , (8)

where Υa(wa; σ1, σ2) = eσ1wa−
σ2
wa . The corresponding log LiF to ∆(λ, σ1, σ2|w1, w2, · · · , wn)

can be formulated as

δ(λ, σ1, σ2|w1, w2, · · · , wn) = n log λ + n log(1− λ) +
n

∑
a=1

log
(

σ1 +
σ2

w2
a

)
+

n

∑
a=1

σ1wa

−
n

∑
a=1

σ2

wa
−

n

∑
a=1

Υa(wa; σ1, σ2)− 2
n

∑
a=1

log
[
λ− e−Υa(wa ;σ1,σ2)

]
.

Based on δ(λ, σ1, σ2|w1, w2, · · · , wn), the partial derivatives are given by

∂

∂σ1
δ(λ, σ1, σ2|w1, w2, · · · , wn) =

n

∑
a=1

1(
σ1 +

σ2
w2

a

) +
n

∑
a=1

wa −
n

∑
a=1

waΥa(wa; σ1, σ2)

− 2
n

∑
a=1

waΥa(wa; σ1, σ2)e−Υa(wa ;σ1,σ2)[
λ− e−Υa(wa ;σ1,σ2)

] ,

∂

∂σ2
δ(λ, σ1, σ2|w1, w2, · · · , wn) =

n

∑
a=1

1
wa(

σ1 +
σ2
w2

a

) − n

∑
a=1

1
wa

+
n

∑
a=1

1
wa

Υa(wa; σ1, σ2)

+ 2
n

∑
a=1

1
wa

Υa(wa; σ1, σ2)e−Υa(wa ;σ1,σ2)[
λ− e−Υa(wa ;σ1,σ2)

] ,

and
∂

∂λ
δ(λ, σ1, σ2|w1, w2, · · · , wn) =

n
λ
+

n
(1− λ)

− 2
n

∑
a=1

1[
λ− e−Υa(wa ;σ1,σ2)

] ,

respectively.
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Solving ∂
∂σ1

δ(λ, σ1, σ2|w1, w2, · · · , wn) = 0, ∂
∂σ2

δ(λ, σ1, σ2|w1, w2, · · · , wn) = 0, and
∂

∂λ δ(λ, σ1, σ2|w1, w2, · · · , wn) = 0 yields σ̂1, σ̂2, and λ̂, respectively.
Next, we assess the performances of σ̂1, σ̂2, and λ̂ via an SimS. For carrying out the

SimS, an RS, say n = 25, 50, · · · , 500, was obtained from the NMFWE model. The SimS was
performed for two schemes as follows: scheme I: σ1 = 0.6, σ2 = 1.4, λ = 1.1); scheme II:
σ1 = 1.1, σ2 = 1.6, λ = 1.4. Furthermore, two evaluation criteria, bias and mean square
error (MSE), were considered for assessing σ̂1, σ̂2, and λ̂. These criteria were, respectively,
computed using the below expressions:

Bias(Θ̂ΘΘ) =
1
n

n

∑
a=1

(
Θ̂ΘΘ−ΘΘΘ

)
,

and

MSE(Θ̂ΘΘ) =
1
n

n

∑
a=1

(
Θ̂ΘΘ−ΘΘΘ

)2
,

where ΘΘΘ = (σ1, σ2, λ).
Corresponding to scheme I, the results of the SimS are provided in Table 1 and

presented visually in Figure 2, whereas Table 2 (numerical illustration) and Figure 3 (visual
illustration) offer the results of the SimS for schema II. The SimS was performed with the
objective that (i) as the value of n increases, the values of σ̂1, σ̂2, and λ̂ tend to stability, and
(ii), the biases and mean square errors tend to zero as the sample size grows; this proves
the consistency property for the estimators. Thus, we can conclude that the maximum
likelihood approach works quite well in estimating the model parameters under various
sample sizes.
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Figure 2. A visual display of the results of the SimS of the NMFWE model for σ1 = 0.6, σ2 = 1.4, and
λ = 1.1.
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Table 1. The results of the SimS of the NMFWE model for σ1 = 0.6, σ2 = 1.4, and λ = 1.1.

n Parameters MLEs MSEs Biases

σ1 0.89302560 0.315274822 0.293025560
25 σ2 1.36985000 0.092232346 −0.03015010

λ 1.24237000 0.158247051 0.142369775

σ1 0.75604460 0.105204950 0.156044587
50 σ2 1.36711800 0.047163494 −0.03288202

λ 1.15347600 0.013885900 0.053475874

σ1 0.69801090 0.055053130 0.098010942
75 σ2 1.38220000 0.034336224 −0.01779995

λ 1.13308800 0.007274670 0.033088078

σ1 0.68048360 0.037073941 0.080483598
100 σ2 1.39280200 0.028143866 −0.00719760

λ 1.12277300 0.004239282 0.022773367

σ1 0.64644740 0.021180684 0.046447381
150 σ2 1.39273800 0.018909237 −0.00726232

λ 1.11521500 0.002497769 0.015214547

σ1 0.63668930 0.014568689 0.036689263
200 σ2 1.40180900 0.014734874 0.001809424

λ 1.10985700 0.001831123 0.009857116

σ1 0.62596330 0.010368965 0.025963329
250 σ2 1.39177300 0.011995360 −0.00822708

λ 1.11065800 0.001393079 0.010658350

σ1 0.62550910 0.009587663 0.025509126
300 σ2 1.39270200 0.009345810 −0.00729828

λ 1.10861100 0.001066879 0.008610622

σ1 0.62391800 0.006948299 0.023917996
350 σ2 1.39811500 0.008009759 −0.00188529

λ 1.10609300 0.000808322 0.006093125

σ1 0.61132940 0.005626040 0.011329370
400 σ2 1.39673000 0.007298053 −0.00327033

λ 1.10493100 0.000693269 0.004930592

σ1 0.61765410 0.005751539 0.017654106
450 σ2 1.39418200 0.006140556 −0.00581764

λ 1.10637100 0.000606152 0.006371330

σ1 0.61250040 0.004853576 0.012500388
500 σ2 1.39779400 0.006180866 −0.00220605

λ 1.10388200 0.000549189 0.003882268

Table 2. The results of the SimS of the NMFWE model for σ1 = 1.1, σ2 = 1.6, and λ = 1.4.

n Parameters MLEs MSEs Biases

σ1 1.21214000 0.109696162 0.112139576
25 σ2 1.65247100 0.211066950 0.052471477

λ 2.22540700 2.677630360 0.825406630

σ1 1.16302800 0.046138277 0.063028001
50 σ2 1.60940600 0.127701240 0.009405599

λ 1.96382400 1.630116700 0.563823750

σ1 1.14084100 0.029142804 0.040841203
75 σ2 1.61535700 0.080794640 0.015357220

λ 1.70831400 0.785862990 0.308313730
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Table 2. Cont.

n Parameters MLEs MSEs Biases

σ1 1.12400600 0.018225475 0.024006192
100 σ2 1.60450400 0.065363500 0.004504030

λ 1.63171300 0.494613440 0.231713380

σ1 1.11539700 0.012912002 0.015397237
150 σ2 1.59474700 0.048261320 −0.005252810

λ 1.55643900 0.268352060 0.156439100

σ1 1.12505500 0.009975488 0.025054780
200 σ2 1.59002600 0.031762970 −0.00997431

λ 1.53205300 0.172517940 0.132052860

σ1 1.10665200 0.007469320 0.006651779
250 σ2 1.61439400 0.028265080 0.014393549

λ 1.45660500 0.079107080 0.056605210

σ1 1.10702000 0.005739174 0.007019600
300 σ2 1.60981400 0.022193800 0.009813938

λ 1.43945700 0.037317540 0.039456630

σ1 1.10944500 0.005131958 0.009445283
350 σ2 1.60127800 0.019648730 0.001277727

λ 1.45528500 0.056621610 0.055285400

σ1 1.10729900 0.004561712 0.007299329
400 σ2 1.60803700 0.017440070 0.008037465

λ 1.43753900 0.036744330 0.037538550

σ1 1.10532200 0.003908403 0.005322438
450 σ2 1.60144000 0.016748580 0.001439921

λ 1.44244400 0.033483900 0.042444350

σ1 1.10438500 0.003518714 0.004384936
500 σ2 1.60492800 0.013190150 0.004928443

λ 1.43178200 0.024440440 0.031781690
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Figure 3. A visual display of the results of the SimS of the NMFWE model for σ1 = 1.1, σ2 = 1.6, and λ = 1.4.

5. Data Analysis

This section deals with data analysis to illustrate the crucial and important role of
the NMFWE model in real life data modeling. To show the applicability of the NMFWE
model and to carry out its illustration, two datasets from the health sector are considered.
The first dataset (Data 1) consists of 106 observations and represents the mortality rate of
patients during the COVID-19 pandemic in Mexico. The second dataset (Data 2) consists
of 224 observations and represents the mortality rate of patients during the COVID-19
pandemic in Canada. Both datasets are provided in Table 3.

Table 3. The COVID-19 datasets.

Data 1

1.7652, 1.2210, 1.8782, 2.9924, 2.0766, 1.4534, 2.6440, 3.2996, 2.3330, 1.2030, 2.1710, 1.2244,
1.3312, 0.6880, 1.1708, 2.1370, 2.0070, 1.0484, 0.8688, 1.0286, 1.5260, 2.9208, 1.5806, 1.2740,
0.7074, 1.2654, 0.9460, 0.6430, 1.8568, 2.5756, 1.7626, 2.0086, 1.4520, 1.1970, 1.2824, 0.6790,
0.8848, 1.9870, 1.5680, 1.9100, 0.6998, 0.7502, 1.3936, 0.6572, 2.0316, 1.6216, 1.3394, 1.4302,
1.3120, 0.4154, 0.7556, 0.5976, 0.6672, 1.3628, 1.6650, 1.5708, 1.7102, 0.6456, 1.4972, 1.3250,
1.2280, 0.9818, 0.9322, 1.0784, 2.4084, 1.7392, 0.3630, 0.6654, 1.0812, 1.2364, 0.2082, 0.3600,
0.9898, 0.8178, 0.6718, 0.4140, 0.6596, 1.0634, 1.0884, 0.9114, 0.8584, 0.5000, 1.3070, 0.9296,
0.9394, 1.0918, 0.8240, 0.7844, 0.6438, 0.2804, 0.4876, 0.6514, 0.7264, 0.6466, 0.6054, 0.4704,
0.2410, 0.6436, 0.5852, 0.5202, 0.4130, 0.6058, 0.4116, 0.4652, 0.5012, 0.3846

Data 2

0.9636, 2.7852, 3.8628, 2.6436, 3.0120, 2.1780, 1.7952, 1.9236, 1.0176, 1.3272, 2.9796, 2.3520,
2.8644, 1.0488, 1.1244, 2.0904, 0.9852, 3.0468, 2.4324, 2.0088, 2.1444, 1.9680, 0.6228, 1.1328,
0.8964, 1.0008, 2.0436, 2.4972, 2.3556, 2.5644, 0.9684, 2.2452, 1.9872, 1.8420, 1.4724, 1.3980,
1.6176, 3.6120, 2.6088, 0.5436, 0.9972, 1.6212, 1.8540, 0.3120, 0.5400, 1.4844, 1.2264, 1.0068,
0.6204, 0.9888, 1.5948, 1.6320, 1.3668, 1.2876, 0.7500, 1.9596, 1.3944, 1.4088, 1.6368, 1.2360,
1.1760, 0.9648, 0.4200, 0.7308, 0.9768, 1.0896, 0.9696, 0.9072, 0.7056, 0.3612, 0.9648, 0.8772,
0.7800, 0.6192, 0.9084, 0.6168, 0.6972, 0.7512, 0.5760, 5.2956, 3.6624, 5.6340, 8.9772, 6.2292,
4.3596, 7.9320, 9.8988, 6.9984, 3.6084, 6.5124, 3.6732, 3.9936, 2.0640, 3.5124, 6.4104, 6.0204,
3.1452, 2.6064, 3.0852, 4.5780, 8.7624, 4.7412, 3.8220, 2.1216, 3.7956, 2.8380, 1.9284, 5.5704,
7.7268, 5.2872, 6.0252, 4.3560, 3.5904, 3.8472, 2.0364, 2.6544, 5.9604, 4.7040, 5.7300, 2.0988,
2.2500, 4.1808, 1.9716, 6.0948, 4.8648, 4.0176, 5.1300, 1.9368, 4.4916, 3.9744, 3.6840, 2.9448,
2.7960, 3.2352, 7.2252, 5.2176, 1.0884, 1.9956, 3.2436, 3.7092, 0.6240, 1.0800, 2.9688, 2.4528,
2.0148, 1.2420, 1.9788, 3.1896, 3.2652, 2.7336, 2.5752, 1.5000, 3.9204, 2.7888, 2.8176, 3.2748,
2.4720, 2.3532, 1.9308, 0.8412, 1.4628, 1.9536, 2.1792, 1.9392, 1.8156, 1.4112, 0.7224, 1.9308,
1.7556, 1.5600, 1.2384, 1.8168, 1.2348, 1.3956, 1.5036, 1.1532, 4.2360, 2.9304, 4.5072, 7.1808,
4.9836, 3.4872, 6.3456, 7.9188, 5.5992, 2.8872, 5.2104, 2.9376, 3.1944, 1.6512, 2.8092, 5.1288,
4.8168, 2.5152, 2.0844, 2.4684, 3.6624, 7.0092, 3.7932, 3.0576, 1.6968, 3.0360, 2.2704, 1.5432,
4.4556, 6.1812, 4.6764, 1.3188, 3.7068, 6.6516, 3.8244, 3.1848, 3.7476, 4.5180, 5.4912, 7.3872,
3.4908, 3.0804, 3.3684, 4.1184, 3.0912, 1.3176, 3.4884, 4.9176
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Corresponding to Data 1, the initial density shape is reported using the non-parametric
kernel density estimation (KDE) approach in Figure 4, and it is noted that the density is
asymmetric and unimodal. The normality condition is checked via the quantile–quantile
(Q–Q) plot in Figure 4. The extremes are spotted using the box plot in Figure 4, and it is
showed that some extreme observations were listed. Moreover, Figure 4 indicates that
Data 1 has an increasing failure shape, based on the total time test (TTT) plot. For Data 2,
the initial density shape, KDE, Q-Q plot, box plot, and TTT plot are presented in Figure 5.
From the plots in Figure 5, we can see that the second dataset is unimodal, skewed to the
right, and has an increasing failure shape.
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Figure 4. Nonparametric plots for Data 1.
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Figure 5. Nonparametric plots for Data 2.
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Using the above mortality rate datasets, we show the applicability and best fitting
capability of the NMFWE distribution. For this purpose, the comparison of the performance
of the NMFWE distribution is made with the baseline FWE model, an exponentiated version
of the FWE distribution, namely, an exponentiated FWE (E-FWE), the Weibull model,
a generalization of the Weibull model, namely, the exponentiated Weibull (E-Weibull),
and another famous extension of the Weibull model called the Kumaraswamy Weibull
(K-Weibull) distribution. The SFs of the selected models are

• FWE:
M(w; σ1, σ2) = e−eΥ(w;σ1,σ2), w ≥ 0,

where σ1 > 0 and σ2 > 0;
• E-FWE:

M(w; β1, σ1, σ2) =
(

1− e−Υ(w;σ1,σ2)
)β1

, w ≥ 0,

where σ1 > 0, σ2 > 0, and β1 > 0;
• Weibull:

M(w; σ1, σ2) = 1− e−σ2wσ1 , w ≥ 0,

where σ1 > 0 and σ2 > 0;
• E-Weibull:

M(w; β1, σ1, σ2) =
(

1− e−σ2wσ1
)β1

, w ≥ 0,

where σ1 > 0, σ2 > 0, and β1 > 0;
• K-Weibull:

M(w; β1, β2, σ1, σ2) = 1−
[

1−
(

1− e−σ2yσ1
)β1
]β2

, w ≥ 0,

where σ1 > 0, σ2 > 0, β1, and β2,> 0.

After choosing the competing models for comparative purposes, the very next step
is to select the statistical tools to judge the performances of the fitted models. For the
illustration and evaluation of these distributions, certain statistical tools and tests were
selected and computed. These tools are given by

• AIC (Akaike information criterion), obtained as

2k− 2δ(λ, σ1, σ2|w1, w2, · · · , wn);

• CAIC (corrected Akaike information criterion), calculated by

2nk
n− k− 1

− 2δ(λ, σ1, σ2|w1, w2, · · · , wn);

• BIC (Bayesian information criterion), computed as

k log(n)− 2δ(λ, σ1, σ2|w1, w2, · · · , wn);

• HQIC (Hannan–Quinn information criterion), obtained using the formula

2k log(log(n))− 2δ(λ, σ1, σ2|w1, w2, · · · , wn);

• AD (Anderson–Darling) test, having a mathematical expression given by

−n− 1
n

n

∑
a=1

(2a− 1)[log M(wa) + log{1−M(wn−a+1)}];
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• CM (Cramér-von Mises) test, obtained using the formula

1
12n

+
n

∑
a=1

[
2a− 1

2n
−M(wa)

]2
;

• KS (Kolmogorov–Smirnov) test, whose value is computed using the expression

supw[Mn(w)−M(w)].

From the expressions of the MLEs obtained in the previous section, we can observe
that these expressions

∂

∂σ1
δ(λ, σ1, σ2|w1, w2, · · · , wn),

∂

∂σ2
δ(λ, σ1, σ2|w1, w2, · · · , wn),

and
∂

∂λ
δ(λ, σ1, σ2|w1, w2, · · · , wn),

are not in simple forms. Therefore, we have to adopt an optimization procedure to obtain
the numerical values of σ̂1, σ̂2, and λ̂.

For Data 1, the numerical values of σ̂1, σ̂2, λ̂, β̂1, and β̂2 are presented in Table 4. The
values of the comparative tools are provided in Tables 5 and 6. From the numerical
illustrations of the fitted models in Tables 5 and 6, we observe that the NMFWE model
is the best one for modeling the mortality rate data. For the NMFWE distribution, the
numerical values of the selected statistical measures are AIC = 186.12600, CAIC = 186.36130,
BIC = 194.11630, HQIC = 189.36450, CM = 0.03276, AD = 0.20485, and KS = 0.05085, with
p-value = 0.94680. Based on the KS criterion with the p-value, the FWE is the second-best
model, with the respective values given by 0.05313 and 0.92580, whereas, by considering
the AD and CM tools, the E-FWE is the best model. For the E-FWE model, these values are
given by AD = 0.03866 and CM = 0.25671. From Tables 5 and 6, it is now obvious that the
NMFWE model is the best choice to apply for modeling the mortality rate data.

Furthermore, a visual illustration to support the numerical results is provided in
Figure 6. For a visual illustration of the NMFWE distribution, the plots of the fitted PDF,
PP, CDF, HF, CHF, and SF functions were obtained. These plots visually confirm the best
fitting of the NMFWE distribution.

Table 4. The numerical values of σ̂1, σ̂2, λ̂, β̂1, and β̂2, using the first COVID-19 dataset.

Model σ̂1 σ̂2 λ̂ β̂1 β̂2

NMFWE 0.61568
(0.06012)

1.33469
(0.20807)

2.86140
(1.76820) - -

FWE 0.64201
(0.05039)

1.11759
(0.10961) - - -

E-FWE 0.65089
(0.11588)

1.35112
(2.14650) - 0.82677

(1.39368) -

Weibull 1.92159
(0.14090)

0.58694
(0.07121) - - -

E-Weibull 1.00398
(0.32020)

1.78865
(0.75560) - 4.02508

(3.10070) -

K-Weibull 1.44294
(0.14370)

3.76192
(NaN) - 3.13605

(1.63131)
0.24665
(NaN)
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Table 5. The values of AIC, CAIC, BIC, and HQIC of the fitted models, using the first COVID-19 dataset.

Model AIC CAIC BIC HQIC

NMFWE 186.12600 186.36130 194.11630 189.36450
FWE 189.04580 189.16230 196.37270 191.20480

E-FWE 187.01970 187.25500 195.01000 190.25820
Weibull 191.38590 191.50240 196.71280 193.54490

E-Weibull 188.2469 0 188.48220 196.23720 191.48540
K-Weibull 189.18680 189.58290 199.84060 193.50490

Table 6. The values of CM, AD and KS of the fitted models, using the first COVID-19 dataset.

Model CM AD KS p-Value

NMFWE 0.03276 0.20485 0.05085 0.94680
FWE 0.03963 0.26343 0.05313 0.92580

E-FWE 0.03866 0.25671 0.05589 0.89500
Weibull 0.10233 0.65790 0.06967 0.68220

E-Weibull 0.05380 0.29853 0.06758 0.71820
K-Weibull 0.04335 0.24179 0.06477 0.76540
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Figure 6. A visual illustration of the NMFWE model using Data 1.

For Data 2, the numerical values of σ̂1, σ̂2, λ̂, β̂1, and β̂2 are provided in Table 7. For this
data, the values of the analytical tools are presented in Tables 8 and 9. From the numerical
comparison of the competing distributions in Tables 8 and 9, we observe that the proposed
NMFWE model is the best choice to implement for dealing with the mortality rate data.
For the NMFWE distribution, the values of the analytical measures are AIC = 848.33910,
CAIC = 848.44800, BIC = 858.57400, HQIC = 852.47040, CM = 0.03762, AD = 0.21668, and
KS = 0.04217, with p-value = 0.82040. The second-best model, based on the KS test with
p-value, is the K-Weibull distribution, with the respective values given by 0.04345 and
0.79130. By considering the other analytical tools, we observe that the E-FWE model is the
second-best model.
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To support the best fitting power of the NMFWE model, a visual illustration is pro-
vided in Figure 7. From the visual illustration in Figure 7, we can see that the NMFWE
distribution follows the fitted PDF, CDF, and SF very closely.

Table 7. The numerical values of σ̂1, σ̂2, λ̂, β̂1, and β̂2, using the second COVID-19 dataset.

Model σ̂1 σ̂2 λ̂ β̂1 β̂2

NMFWE 0.21080
(0.02141)

2.14767
(0.01293)

10.42059
(2.72864) - -

FWE 0.64201
(0.05039)

1.11759
(0.10961) - - -

E-FWE 0.21612
(0.01809)

3.86071
(1.84962) - 0.54707

(0.27101) -

Weibull 1.61908
(0.08247)

0.14782
(0.02037) - - -

E-Weibull 0.89210
(0.69863)

0.81533
(0.69098) - 3.72610

(2.65132) -

K-Weibull 1.20004
(NaN)

2.22247
(NaN) - 4.63532

(0.13187)
0.14624

(0.01021)

Table 8. The values of AIC, CAIC, BIC, and HQIC of the fitted models, using the second COVID-19
dataset.

Model AIC CAIC BIC HQIC

NMFWE 848.33910 848.44800 858.57400 852.47040
FWE 851.87659 851.90876 863.87654 856.75648

E-FWE 850.06480 850.17658 861.29978 854.19629
Weibull 859.51210 859.56640 866.33540 862.26630

E-Weibull 855.16730 855.27630 865.40220 859.29860
K-Weibull 852.71950 852.90220 866.36610 858.22800
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Figure 7. A visual illustration of the NMFWE model using Data 2.
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Table 9. The values of CM, AD, and KS of the fitted models, using the second COVID-19 dataset.

Model CM AD KS p-Value

NMFWE 0.03762 0.21668 0.04217 0.82040
FWE 0.04076 0.25807 0.04746 0.71927

E-FWE 0.03975 0.24540 0.04819 0.67560
Weibull 0.13201 0.92260 0.05400 0.53080

E-Weibull 0.05951 0.40453 0.04895 0.65640
K-Weibull 0.04285 0.26641 0.04345 0.79130

Based on the obtained results in Tables 4–9, we observe that the NMFWE model
works quite well for analyzing the COVID-19 datasets. Therefore, it can be considered
the best model among all competitive distributions, and we can utilize it as an alternative
probability tool in prediction, rather than of recording data for a long period of time.

6. An Econometric Approach

In the previous section, the modified distribution is compared with numerous existing
distributions under simulation and real data related to the mortality rate caused by the
COVID-19 epidemic in Mexico and Canada. In this section, some pure statistical models
are compared with machine learning algorithms via forecasting on the same datasets. The
parametric autoregressive moving average (ARMA) and non-parametric autoregressive
integrated moving average (NP-ARMA) are pure time series models, while neural net-
work autoregression (NNAR) and support vector regression (SVR) are machine learning
algorithms. Data splitting is needed to segment the data into two parts, in the form of
training data and testing data, in order to obtain forecast errors. Therefore, 80 percent of the
data is provided for model fitting, and 20 percent is preserved for the models’ comparison,
following (Qi and Zhang, [29]). Details regarding each technique used for the modeling are
given below.

6.1. The ARMA Model

In the time series forecasting literature, the ARMA is a powerful tool for univariate
modeling. In the last few decades, ARMA has found successful applications in different
areas such as economics, finance, engineering, and so forth (Khashei and Bijari, [30]).
Generally, ARMA is a combination of autoregressive (AR) and moving average (MA)
models. Mathematically, the ARMA can be written as

πt = µ +
m

∑
a=1

δaπt−a +
n

∑
b=0

ζbℵt−b, (9)

where µ indicates an intercept term, δa(a = 1, 2, · · · , m) and ζb(b = 1, 2, · · · , m) represent
the coefficients of AR and MA, respectively, and ℵt−b represents the white noise term with
zero mean and variance σ2

ℵ. The order of m and n is often determined by an autocorrelation
function (ACF) and by partial autocorrelation (PACF); see Bibi et al. [31]. In our case, we fit
an ARMA (2, 1) model to the underlying time series πt.

6.2. The NP-ARMA Method

The additive non-parametric counterpart of the ARMA process leads to an additive
model (NP-ARMA), where the association between πt and its lagged variables do not have
any specific known functional form. Probably, for any sort of non-linear form which is
stated as

πt = g1(πt−1) + g2(πt−2)+, ...,+gk(πt−m) + ℵt, (10)

where gi (i = 1, 2, · · · , k) show the smoothing functions which describe the association
between πt and its own lagged variables, the functions gi represent the cubic regression
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splines (Shah et al., [32]). In the recent case, we incorporate four lags while estimating
the model.

6.3. The NNAR Method

Customarily, a network or circuit of neurons leads to a neural network (NN). If the
neurons or nodes are artificial, it leads to an artificial neural network. Neural network
models have the potential to capture the complex non-linear nexus between an outcome
variable and its covariates. A feedback NN is built with lagged time series variables as a
covariate and hidden layer(s) with dimension nodes. NNAR consists of at least three layers
of nodes: an output layer, a hidden layer, and an input layer. The outputs of a single layer
are utilized as inputs to the succeeding one. A nonlinear NNAR model can be fitted/trained
to predict a series by using its lagged variables as inputs πt, πt−1, · · · , πt−m; this process
entails “so-called” feedback delays, where t represents the time delay parameter. The
expression NNAR (h, w) shows that there are h delay inputs and w nodes in the hidden
layers. The NNAR is the same as ARMA (h, 0), conditionally, if there are zero nodes, i.e.,
NNAR (h, 0). However, here, the parameter which ensures stationarity is not incorporated
(Bibi et al., [31]). The nonlinear NNAR equation can be expressed as

πt = Ω0 +
h

∑
c=1

Ωcζ

(
φc +

z

∑
w=1

φcwπt−w

)
+ ℵt, (11)

where φc(c = 1, 2, · · · , h, w = 1, 2, · · · , z) and Ωc(c = 1, 2, · · · , h) indicate the weights of
interconnection, h shows the length of the hidden layers with activation function ζ, and z
shows the length of input layers. In our study, NNAR (6, 2) is utilized, which reveals six
lagged variables, which are used as inputs, and two hidden layers. The input and hidden
layers are selected for the model estimation through a trial-and-error approach, following
(Khashei and Hajirahimi, [33]).

6.4. The SVR Method

Support vector regression is an alternative tool for solving regression issues such
as nonlinearity and complexity in the data by introducing an alternative loss function
(Vapnik et al. [34]; Vapnik [35]). SVR is based on the same principles as support vector
machines (SVMs). It is an effective tool and has shown remarkable forecasting performance
in many practical applications. The SVR utilizes different kernel functions to compute the
resemblance between two data points to overcome the non-linearity. The core benefit of
SVR lies in its capability to capture the covariate nonlinearity and then utilize it to boost the
forecasting situations. It helps researchers discover a model’s acceptable margin of error
(Bibi et al. [31]; Ribeiro et al. [36]). The mathematical form of SVR with kernel function can
be described as

πt =
h

∑
c=1

(γc − γ∗c )M(uc, u) + ϕ, (12)

where the kernel function M(uc, u) refers to the inner product, ϕ is adjusted within the
kernel function, and ∑h

c=1(γc − γ∗c ) is a constraint. Among numerous kernel functions,
radial basis function (RBF) is commonly used, which can be described as

M(uc, u) = exp
(
−||uc − um||2

2σ2

)
,

where ||uc− um||2 represents the Euclidean distance amid the two covariate vectors squared
and σ2 shows the width of RBF (Lu et al., [37]). Our study proceeds with the RBF kernel
function.

The predictive potential of all econometric models is evaluated by utilizing standard
accuracy measures computed from a testing dataset. Statistically, the forecast errors are a
more suitable criterion for assessing forecasting capability and for choosing the best tool.
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The widely used principles are mean absolute error (MAE), root mean square error (RMSE),
and mean absolute percentage error (MAPE). Hence, our study adopts these three criteria
to judge the models’ prediction performance. Their mathematical forms can be written as

MAE = mean(|πt − π̂t|),

RMSE =

√
mean(πt − π̂t)

2 ,

and

MAPE = mean
(
|πt − π̂t

πt
|
)
× 100 ,

respectively.

6.5. Empirical Results

This section presents the findings of the forecasting experiments and some graphical
representations. In this paper, we use the mortality rate of COVID-19 patients in Mexico
and Canada, respectively, in order to quantify the predictability of the pure statistical and
ML models. We split the data into two parts, intending to facilitate the out-of-sample
prediction accuracy. For estimation, we use 80 percent of the data, and the remaining
20 percent of the data is used for checking the models’ multistep-ahead out-of-sample
forecasting accuracy.

6.5.1. Analyzing the COVID-19 Data Taken from Mexico

In Figure 8, the mortality rates of the COVID-19 patient data are divided by a vertical
blue dotted line, where the training part is used for model estimation and the second part
(testing data) is used for out-of-sample prediction.
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Figure 8. Divison of mortality rate of the COVID-19 patients data taken from Mexico.

The data pattern in Figure 9 shows non-constancy in the mean, variance, and covari-
ance over time, which provides a piece of evidence about the unit root problem. Similarly,
ACF and PACF also illustrate that the original data of the mortality rates of COVID-19
patients is non-stationary; see Figure 10. In general, time series models such as ARMA
require stationary series for modeling; thus, to achieve stationarity, we adopted a differ-
encing approach. Post-differencing, ACF and PACF confirmed that the transformed series
is stationary.
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Figure 9. Trend of mortality rate data taken from Mexico.
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Figure 10. ACF and PACF for level (first row) and differenced data (second row).

Table 10 presents the results for the Jarque–Bera and Box–Ljung tests. The corre-
sponding p-values exceed a five percent significance level; hence, we cannot reject the null
hypothesis of random and normally distributed residuals of an estimated model. To be
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specific, it is declared that the residuals of the fitted model are uncorrelated and normally
distributed. Thus, the ARMA model can be used for prediction.

Table 10. The results of the Box–Ljung and Q-statistics tests.

Test χ2 p-Value

Box–Ljung test 23.697 0.10
JB test 1.932 0.38

Alternatively, to identify the normality and randomness of the fitted models’ residuals
is to consider the graphs of the ACF, the Box–Ljung test, and the Q–Q plot of the residuals;
see Figure 11. The plots in Figure 11 demonstrate that the residuals of the estimated model
are random and normally distributed.
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Figure 11. Diagnostic check.

The three standard measures of accuracy under the COVID-19 dataset are reported
in Table 11. We can notice that RMSE, MAE, and MAPE computed for machine learning
(ML) tools such as NNAR and SVR are substantially smaller than their pure statistical
counterparts. Therefore, it can be concluded that predictions via ML tools tend to perform
better than the rival statistical counterparts in terms of forecasting.

Table 11. The error metrics using the COVID-19 dataset taken from Mexico.

Criteria ARIMA NP-ARMA NNAR SVR

RMSE 0.359 0.576 0.230 0.073
MAE 0.320 0.525 0.169 0.043

MAPE 0.696 1.127 0.431 0.104

Furthermore, amid ML tools, the SVR outperforms the NNAR. A flowchart of forecast
comparison is also presented in Figure 12. The plots in Figure 12 illustrate that ML tools,
particularly SVR, remain effective tools for predicting the COVID-19 patient mortality rate
trend. Moreover, Figure 13 also shows the performance of all models, and supports the
output of Figure 12.
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Figure 12. Forecasts comparsion for the COVID-19 dataset taken from Mexico.

Figure 13. Forecasting performance of the models.

6.5.2. Analyzing the COVID-19 Data Taken from Canada

For estimating the models, we utilize 80 percent of the data, and the remaining
20 percent of the data is used for assessing the models’ multistep-ahead post-sample
predictive power. In Figure 14, the mortality rate of the COVID-19 patients’ data is halved
by a vertical blue dotted line, where the training part is utilized for model estimation and
the second part (testing data) is utilized for post-sample forecasting.

The data pattern in Figure 14 shows non-constancy in the mean, variance, and co-
variance over time, which reflects the problem of a unit root. Likewise, the steady decline
in the ACF plot reveals that the original data on the mortality rate of COVID-19 patients
follow a random walk; see Figure 15. It is a fact that ARMA modeling requires station-
ary series; therefore, we take the first difference to make the underlying series stationary.
Post-differencing, the ACF confirmed that the transformed series is stationary.

The numerical resutls of the Jarque–Bera and Box–Ljung tests are presented in Table 12.
We can observe that the corresponding p-values exceed the five percent significance level;
hence, we cannot reject the null hypothesis of random and normally distributed residuals.
To be more specific, it is declared that the residuals of the fitted model are independent and
follow a normal distribution. Therefore, the ARMA model can be used for prediction.
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Figure 14. The mortality rate of the COVID-19 patients in Canada.
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Figure 15. ACF and PACF for level (first row) and differenced data (second row).
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Table 12. The resutls of the Box–Ljung and Q-statistics tests.

Test χ2 p-Value

Box–Ljung test 17.95 0.59
JB test 0.172 0.91

Alternatively, to identify the normality and randomness of the fitted models, we
consider the graphs of the ACF, the Box–Ljung test, and the Q–Q plot of the residuals;
see Figure 16. The plots in Figure 16 reveal that the residuals are random and normally
distributed.
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Figure 16. Diagnostic check.

For the COVID-19 dataset of Canada, the same three standard measures of accuracy
are reported in Table 13. From the numerical results in Table 13, it is clear that the RMSE,
MAE, and MAPE computed for the ML tools are substantially smaller. Hence, it can be
inferred that predictions via the ML tools tend to perform better than their rival statistical
counterparts in terms of forecasting. A flowchart of forecast comparison is also depicted in
Figure 17.

Figure 17. Flowchart of forecast errors.
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Table 13. The error metrics.

Criteria ARIMA NP-ARMA NNAR SVR

RMSE 1.793 1.735 1.558 1.583
MAE 1.415 1.330 1.161 1.185

MAPE 0.365 0.360 0.323 0.358

The plots in Figure 18 reveal that the ML algorithms, particularly NNAR, remain a
more effective tool in capturing the pattern of the mortality rate of COVID-19 patients in
Canada. In addition, Figure 18 also portrays the performance of all models and supports
the output of Figure 17.

Figure 18. Forecasting performance of models.

7. Final Remarks

The COVID-19 epidemic has highly affected the business, trade, education, economy,
and health sectors, etc. Among the affected areas, the health sector is one of the most-
affected sectors. To have the best description and knowledge of the COVID-19 epidemic,
many statistical studies have been carried out. This paper has added some further contri-
butions towards the literature on COVID-19 data modeling. This paper suggested a new
statistical model for analyzing the mortality rate of the COVID-19 pandemic in Mexico
and Canada. The new model was named the NMFWE distribution and was applied to
COVID-19 data in comparison with other statistical models. Based on seven statistical
quantities, it is observed that the NMFWE model was the best competitor for dealing with
mortality rate data. In addition, the COVID-19 datasets were also modeled through pure
statistical models including ARMA, NP-ARMA, and two ML algorithms, including NNAR
and SVR. The RMSE, MAE, and MAPE are utilized to evaluate the effectiveness of the
underlying models. The findings illustrate that ML algorithms are successful at predicting
the mortality rate of COVID-19 patients. The results also suggested that SVR provides
a better forecast than NNAR in the case of Mexico. On the other hand, in the case of
Canada, the NNAR outperforms the SVR, showing clearly that increasing the number of
observations improves the NNAR forecasting performance, as compared to SVR. In other
words, it can be inferred that NNAR requires more data for accurate predictions, in contrast
to SVR.

In the future, we are committed to employing the proposed model in the machine
learning field. We are also motivated to introduce the bivariate extension of the proposed
model for analyzing bivariate data in the health sector.
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