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1. Introduction

The work is based on papers [1–18].
The author is very grateful for the great help in editing the manuscript to Adel Abyzov,

Oleg Lyubimtsev and Danil Tapkin.
In Introduction and Sections 2–6, the word ring means an associative ring. By de-

fault, it is assumed that a ring has 1 6= 0; the case of not necessarily unital rings is
specially indicated.

In Section 7, the word ring means a not necessarily associative ring.
A not necessarily unital ring A is said to be a ring with an essential center or a centrally essential

ring, or a CE ring if either A is commutative or for any non-central element a ∈ A, there
are non-zero central elements x and y with ax = y.

It is clear that any commutative ring is centrally essential. A unital ring A with center
C = Z(A) is centrally essential if and only if the C-module A is an essential extension of CC.

In Section 2, we study general properties of centrally essential rings, semiprime and
nonsingular centrally essential rings, local and semiperfect centrally essential rings, perfect
and semi-Artinian centrally essential rings.

In Section 3, we study centrally essential Grassmann algebras over fields and rings.
In Section 4, we study centrally essential rings arising from various constructions. In

particular, we consider polynomial and series rings, group and semigroup rings, rings of
fractions, local subalgebras of triangular algebras, and endomorphism rings of Abelian groups.

In Section 5, we study centrally essential distributive and uniserial rings. In particular,
we consider uniserial Artinian (resp., Noetherian) rings, rings with flat ideals, distributive
Noetherian rings .

In Section 6, we study centrally essential semirings.
In Section 7, we study several types of centrally essential non-associative rings. In par-

ticular, we consider reduced and semiprime rings, Cayley–Dickson process and associative
Centers, quaternion and octonion algebras.

From the definition of a centrally essential ring A, it might seem that such a ring is
possibly commutative. Indeed, A satisfies many properties of commutative rings. The
following are some examples:

• All idempotents of A are central; see Proposition 3 below.
• If A is semiprime, then A is commutative; see Theorem 1.
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• If A is a centrally essential local ring, then the ring A/J(A) is a field and, in particular,
is commutative; see Theorem 2.

• If A is a right or left semi-Artinian centrally essential ring, then the factor ring A/J(A)
is commutative; see Theorem 5.

However, a centrally essential ring A may be very far from a commutative ring. The
following are some examples:

• The factor ring A/J(A) of A with respect to the prime radical can be not centrally
essential and, in particular, the semiprime ring A/J(A) can be non-commutative; see
Theorem 17.

• For any ideal of A generated by central idempotents, the corresponding factor ring is
not necessarily centrally essential; see Example 4.

• Factor rings of ring A are not necessarily centrally essential; see the two previous items.
• There are finite non-commutative centrally essential unital group algebras; see

Example 1 below.
• There are finite non-commutative centrally essential Grassmann algebras; see

Example 2 below;
• There are torsion-free Abelian groups G of finite rank such that their endomorphism

rings are non-commutative centrally essential rings; see Theorem 20(c).

Example 1. Let F be the field of order 2 and let G = Q8 be the quaternion of the group of order
8, i.e., G is the group with two generators a, b and three defining relations a4 = 1, a2 = b2 and
aba−1 = b−1; see [19], [Section 4.4]. Then the group algebra FG is a non-commutative finite local
centrally essential ring consisting of 256 elements; this follows from Proposition 16 below.

We give some necessary notions. For a ring A, we denote by Z(A) (or C(A)), J(A), N(A)
and K(A) the center, the Jacobson radical, the prime radical and the Köthe radical (i.e., the sum of
all nil ideals, which is the largest nil ideal), respectively. We also set [a, b] = ab− ba for any two
elements a, b of the ring A. For a group or a semigroup X, we denote by Z(X) or C(X) the center
of X.

Example 2. We give one more example of a non-commutative finite centrally essential ring. Let F
be a field consisting of three elements, V be a linear F-space with basis e1, e2, e3, and let Λ(V) be
the Grassmann algebra (See Section 3.2) of the space V. Since e1 ∧ e1 = e2 ∧ e2 = e3 ∧ e3 = 0 and
any product of generators is equal to the ±product of generators with ascending subscripts, we have
that Λ(V) is a finite F-algebra of dimension 8 with basis

{1, e1, e2, e3, e1 ∧ e2, e1 ∧ e3, e2 ∧ e3, e1 ∧ e2 ∧ e3},

|Λ(V)| = 38, ek ∧ ei ∧ ej = −ei ∧ ek ∧ ej = ei ∧ ej ∧ ek.

Therefore, if

x = α0 · 1 + α1
1e1 + α2

1e2 + α3
1e3 + α1

2e1 ∧ e2 + α2
2e1 ∧ e3+

+α3
2e2 ∧ e3 + α3e1 ∧ e2 ∧ e3,

then
[e1, x] = 2α2

1e1 ∧ e2 + 2α3
1e1 ∧ e3,

[e2, x] = − 2α1
1e1 ∧ e2 + 2α3

1e2 ∧ e3,
[e3, x] = − 2α1

1e1 ∧ e3 − 2α2
1e2 ∧ e3.

Thus, x ∈ Z(Λ(V)) if and only if α1
1 = α2

1 = α3
1 = 0. In other words, the center of the algebra

Λ(V) is of dimension 5. On the other hand, if α1
1 6= 0, then

x ∧ (e2 ∧ e3) = α0e2 ∧ e3 + α1
1e1 ∧ e2 ∧ e3 ∈ Z(Λ(V)) \ {0}.
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In addition, e2 ∧ e3 ∈ Z(Λ(V)). A similar argument applies if α2
1 6= 0 or α3

1 6= 0. Conse-
quently, Λ(V) is a finite centrally essential non-commutative ring.

Example 3. This example is due to the reviewer of the paper [10] who has kindly suggested a series
of examples of non-commutative centrally essential rings arising from a construction described
in [20]. The following statement (∗) and its proof were also proposed by the reviewer:

(∗) If B is an ideal of the ring A such that B ⊆ Z(A) and A/B is a field, then A is a centrally
essential ring.

We assume that A is not commutative and a is a non-central element of A. If aB 6= 0, then it
is clear that Z(A) ∩ aZ(A) 6= 0. We assume the contrary, i.e., aB = 0. Since a /∈ B and A/B is a
field, the element a is an invertible modulo B, i.e., sa = 1− x for some s ∈ A and x ∈ B. For any
y ∈ B, we have 0 = say = y− xy; this implies that xB = B = xA, x is a central idempotent,
and A has a Peirce decomposition A = Ax⊕ A(1− x), where the both summands Ax = B and
A(1− x) ∼= A/B are commutative. Therefore, A is commutative. This contradicts the choice of A,
and (∗) is true.

It remains to be considered the simplest case of the construction given in [20] [Proposition 7]
(we reserve the notation of this paper). Let F = Q(x, y) be the field of rational functions. We

consider two partial derivations d1 =
∂

∂x
and d2 =

∂

∂x
. Then the ring A = T(F, F) consisting

of matrices 
 f d1( f ) g

0 f d2( f )
0 0 f

 ∣∣∣∣∣∣ f , g ∈ F


and its ideal

B = F̂ =


0 0 g

0 0 0
0 0 0

 ∣∣∣∣∣∣ g ∈ F


satisfy the conditions of (∗).

We give some definitions. For a module M, the socle Soc M is the sum of all simple
submodules of M; if M does not contain simple submodules, then Soc M = 0 by definition.
A module M is said to be finite-dimensional (in the sense of Goldie) if M does not contain a
submodule which is an infinite direct sum of non-zero submodules. A module M is said to
be Noetherian (respectively, Artinian) if M does not contain an infinite properly ascending
(respectively, properly descending) chain submodules. Direct summands of free modules
are called projective modules. A module M is said to be hereditary if all submodules of the
module M are projective. A module M is said to be distributive (respectively, uniserial), if
the submodule lattice of the module M is distributive (respectively, it is a chain). We recall
that a module X is called an essential extension submodule Y of the module X if Y ∩ Z 6= 0
for any non-zero submodule Z in X. In this case, Y is called an essential submodule of the
module X. A submodule Y of the module X is said to be closed (in X) if Y = Y′ for any
submodule Y′ of the module X, which is an essential extension of the module Y.

A ring A is called a domain if A does not have non-zero zero divisors. A commutative
domain A is called a Dedekind domain if A is a commutative hereditary Noetherian
domain. If A is a ring, then a proper ideal B of the ring A is said to be completely prime
if the factor ring A/B is a domain. A ring A is said to be right invariant (respectively,
left invariant) if all right (respectively, left) ideals of the ring A are ideals. A ring R is
said to be semiprime (respectively, prime), if R does not have nilpotent non-zero ideals
(respectively, the product of any two non-zero ideals of the ring R is not equal to zero).
A ring R is said to be arithmetical if the lattice of its two-sided ideals is distributive,
i.e., X ∩ (Y + Z) = X ∩Y + X ∩ Z for any three ideals X, Y, Z of the ring R. It is clear that a
commutative ring is right (respectively, left) distributive if and only if the ring is arithmetical.
For a ring R, an element r is called a left non-zero divisor or a right regular element if the
relation rx = 0 implies the relation x = 0 for any x ∈ R. We note that one-sided zero
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divisors are two-sided zero divisors in a centrally essential ring; see Proposition 1(a). A ring
R has the right (respectively, left) classical ring of fractions Qcl(Rr) (respectively, Qcl(Rl))
if and only if for any two elements a, b ∈ R such that b is a non-zero divisor, there exist
elements c, d ∈ R such that d is a non-zero-divisor and bc = ad (respectively, cb = da).
If the rings Qcl(Rr) and Qcl(Rl) exist, then they are isomorphic to each other over R. In this
case, one says that there exists the two-sided ring of fractions Qcl(R).

For a ring R and a subset S in R, we denote by `R(S) the left annihilator {r ∈ R | rS = 0}
of the set S. The right annihilator rR(S) is defined similarly. For a right (respectively, left)
R-module M, its fully invariant submodule consisting of all elements whose annihilators
are essential right (respectively, left) ideals in R is called the singular submodule for M; it
is denoted by SingM. For M = RR (respectively, M = RR), the ideal SingM is called the
right (respectively, left) singular ideal of the ring R.

Necessary information from ring theory is contained in [21–26]. See [27,28] for neces-
sary information on Abelian groups.

2. Semiprime, Local, Perfect and Semi-Artinian Rings

In Section 2, the word ring means an associative ring. By default, it is assumed
that the ring has a non-zero identity element; the case of not necessarily unital rings is
specified separately.

2.1. General Properties

Remark 1. If A is a ring such that the set B of all left zero divisors is an ideal, then B is a completely
prime ideal.

Proof. Let a, b ∈ A and ab ∈ B. Then, there exists an element x ∈ A \ {0} such that abx = 0.
If bx = 0, then b ∈ B. Otherwise, it follows from relation a(bx) = 0 that a ∈ B.

Proposition 1. Let A be a centrally essential ring.

a. Every left (respectively, right) non-zero-divisor a of the ring A is a right (respectively, left)
non-zero divisor of the ring A.

b. The ring A is left uniform(a module M is said to be uniform if any two of its non-zero
submodules have non-zero intersection) if and only if A is right uniform.

c. If the ring A is right uniform and B = Sing AA, then B is the set of all (left or right) zero
divisors of ring A, and B is a completely prime ideal of ring A.

d. If the ring A has a proper ideal B containing all left zero divisors of ring A, then factor ring
A/B is commutative.

e. If an ideal B of the ring A contains all central zero-divisors of the ring A, then `.AnnA(B) ⊆
Z(A).

Proof.

a. We consider only the case where a is a left non-zero divisor. We can assume that a
is a central element of the ring A. We assume the contrary. Then, ba = 0 for some
non-zero element b of ring A. Since b 6= 0, there exist non-zero central elements x, y of
ring A such that bx = y 6= 0. Then ya = bxa = bax = 0. This is a contradiction.

b. We assume that the ring A is right uniform and a1, a2 are non-zero elements of ring A.
There exist non-zero central elements x1, x2, y1, y2 of the ring A such that a1x1 = y1
and a2x2 = y2. Then

Aa1 ∩ Aa2 ⊇ Ax1a1 ∩ Ax2a2 = a1x1 A ∩ a2x2 A = y1 A ∩ y2 A 6= 0.

c. By the definition of the right singular ideal, all its elements are left zero divisors.
Conversely, let a be a left or right zero divisor of ring A. Then, r(a) 6= 0 by the first
assertion of the lemma. In a right uniform ring, this means that r(a) is an essential
right ideal, i.e., a ∈ B. Now we use Remark 1
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d. Let a, b ∈ A \ B. There exist non-zero central elements x, y ∈ A such that bx = y. Then
[a, b]x = [a, bx] = 0, i.e., [a, b] is a left zero divisor. Therefore, [a, b] ∈ B.

e. Let r ∈ `.AnnA(B). There exist non-zero central elements x, y of the ring A such that
rx = y. It is clear that x 6∈ B, whence x is not a zero divisor. Therefore, for every
element a ∈ A, it follows from relations 0 = [a, y] = [a, rx] = [a, r]x that [a, r] = 0.

Proposition 2. Let A be a centrally essential ring and let B be its right ideal.

a. If the right ideal B is not essential (this is the case if B is a proper closed right ideal), then there
exists a non-zero central element y of the ring A such that B ∩ yA = 0 and, consequently,
yB = By = 0. In particular, all elements of the right ideal B are zero divisors.

b. There exists a centrally essential finite-dimensional algebra over a field which has a closed
right ideal which is not ideal.

Proof.

a. Since B is not essential, B ∩ dA = 0 for some non-zero d ∈ A. Since A is centrally
essential, dx = y for some non-zero central elements x, y ∈ A. Then B ∩ yA = 0.

b. See Example 10.

Proposition 3. If a not necessarily unital ring A is centrally essential, then every idempotent
e ∈ A is contained in the center Z(A).

Proof. We can assume that A is not commutative. Let a ∈ A. We have to prove that
ae = ea = eae. First, we prove the relation e(a − ae) = 0. We assume the contrary,
e(a− ae) 6= 0. Since the ring A is centrally essential, there exists x, y ∈ Z(A) such that

xe(a− ae) = y = ey = ye 6= 0.

Then
0 6= y = ye = xe(a− ae)e = x(eae− eae) = 0.

This is a contradiction. Therefore, e(a− ae) = 0. Similarly, we have (a− ea)e = 0.
Therefore, the idempotent e is central.

Proposition 4 ([5]). Let ring A be a not necessarily unital, centrally essential ring, e = e2 ∈ A,
a, x1, .

. ots, xn, y1, .
. ots, yn ∈ A, and let{

x1y1 +
.

. ots + xnyn = e
x1aey1 +

.
. ots + xnaeyn = 0

.

Then ae = 0.

Proof. We assume that ae 6= 0. If the element ae is central, then

ae = ae2 = ae(x1y1 +
.

. ots + xnyn) = x1aey1 +
.

. ots + xnaeyn = 0;

this is a contradiction.
Now we assume that element ae is not central. Since ring A is centrally essential and

ae 6= 0, there exist non-zero central elements x, y ∈ A such that xae = y. We note that
y = ye. Therefore,

0 6= y = ye = y(x1y1 +
.

. ots + xnyn) = x(x1yey1 +
.

. ots + xnaeyn) = 0;

this is a contradiction. Therefore, ae = 0.



Mathematics 2022, 10, 1867 6 of 74

Proposition 5. If A is a centrally essential ring with 1 6= 0 and M is a maximal right ideal of the
ring A, then either M is an ideal or there exists a non-zero central element x ∈ (∩n≥1Mn).

Proof. We assume the contrary. Then there exist non-zero elements m ∈ M and a ∈ A such
that am /∈ M. Since M is a maximal right ideal, there exist elements b ∈ A and m′ ∈ M
such that 1 = amb + m′. Since the ring A is centrally essential, there exist non-zero central
elements x, y ∈ A such that ax = y. Then

x = (amb + m′)x = (ax)mb + m′x = mby + m′x ∈ M

and (ax)mb ∈ M2 and m′x ∈ M2. Therefore, x = (ax)mb + m′x ∈ M2 and (ax)mb, m′x ∈
M3. Then x ∈ M3. By repeating a similar argument, we obtain that 0 6= x ∈ (∩n≥1Mn).

Proposition 6. Let R be a ring and let A be a subring in R such that there exists a basis of the
module RA contained in Z(R). If ring A is centrally essential, then ring R is centrally essential,
as well.

Proof. Let B be a basis of the module RA and B ⊆ Z(R). Every element r ∈ R \ {0} has
the unique decomposition of the form

r =
n

∑
i=1

bisi, where b1
.

. otsbn ∈ B and s1
.

. otssn ∈ R \ {0}. (1)

We define a function k : R→ Z by equating k(r) to the number of coefficients si in the
above decomposition (1) that are contained in Z(A) for r 6= 0 and k(0) = 0. It is clear that
r ∈ Z(A) if and only if k(r) = 0. Now let x ∈ R \ {0}. In the set xZ(A) \ {0}, we take an
element r such that the integer k(r) is minimal. We prove that k(r) = 0. We assume the
contrary. Then we can assume that s1 ∈ Z(A) in (1). Since the ring A is centrally essential,
there exist non-zero central elements x, y ∈ Z(A) such that xs1 = y. Then xr ∈ xZ(A),
xr 6= 0 and k(xr) < k(r); this contradicts the choice of the element r. We obtain that
0 6= r ∈ xZ(A) ∩ Z(R) ⊆ xZ(R) ∩ Z(R).

Proposition 7. Let F be a field and let R be a centrally essential F-algebra. Then for any commuta-
tive F-algebra A, the algebra A⊗F R is centrally essential.

Proof. If B is an F-basis of the commutative of the algebra A, then {b⊗ 1|b ∈ B} is a basis
of the free module (A⊗ R)R, which satisfies the conditions of Proposition 6.

Remark 2. If A is a centrally essential ring with center C = Z(A), then its right ideal B is an
essential extension of the ideal M = ⊕i∈Ici A, ci ∈ C generated by central elements.

Proof. LetM be a non-empty set of all ideals of the ring A, which are contained in B and
are direct sums of principal ideals generated by a central element. We define a partial order
onM such that M1 ≤ M2 ⇔ M2 = M1 ⊕ X, X ∈ M. By the Zorn lemma,M contains a
maximal element M. We assume that BA is not an essential extension of MA. Then there
exists a non-zero element b ∈ B such that M ∩ bA = 0. Since A is a centrally essential ring,
bc = d for some non-zero central of elements c, d ∈ A. Then M ∩ dA = 0 and M⊕ dA is an
element of the setM which exceeds maximal element M. This is a contradiction.

Remark 3. It is directly verified that any filtered product of centrally essential rings is a centrally
essential ring. In particular, ultra-degrees of a centrally essential ring are centrally essential rings.

Problem 1. Is it true that any tensor product of centrally essential algebras is centrally essential?
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2.2. Semiprime and Nonsingular Rings

We recall that a ring A is said to be semiprime if A does not have non-zero nilpotent
ideals. A ring A with non-zero 1 is said to be right nonsingular if the right annihilator rA(a)
of any non-zero element a ∈ A is not essential.

Lemma 1. Let A be a centrally essential ring with center C = Z(A) and let a be a non-zero
element of the ring A. If an = 0 (n ∈ N), then there exists a non-zero central element y of the ring
A such that y ∈ (aC) ∩ (Ca), (AyA)n = 0 and (yC)n = 0. Consequently, if at least one of the
rings A and C is semiprime, then A does not have non-zero nilpotent elements.

Proof. Since a 6= 0 and the ring A is centrally essential, ax = xa = y for some non-zero
central elements x and y of the ring A. Then

(AyA)n = yn An = (ax)n An = anxn An = 0.

Theorem 1 ([10] [Theorem 1.3(a)]). Let A be a centrally essential ring. If at least one of the rings
A and Z(A) is semiprime, then A is a commutative ring without non-zero nilpotent elements.

Proof. By Lemma 1,the ring A does not have non-zero nilpotent elements. We assume that
the ring A is not commutative. Then ab− ba 6= 0 for some a, b ∈ A. Let C = Z(A) be the
center of the ring A and let E = {c ∈ C | ac ∈ C}. We have that E is an ideal of the ring
C. We take any element d ∈ C with dE = 0. If xd 6= 0, then xdz ∈ C \ {0} for some z ∈ C.
Therefore, dz ∈ E, whence d(dz) = 0 and (dz)2 = 0. Therefore, dz = 0 and xdz = 0; this is
a contradiction. Therefore, xd = 0, whence d ∈ E. Therefore, d2 = 0 and d = 0. Then we
obtain that AnnC(E) = 0. For any i ∈ E, we have xi = ix ∈ C, whence

[x, y]i = (xy− yx)i = x(yi)− y(xi) = xiy− xiy = 0

and [x, y]E = 0. However, c1[x, y] = c2 for some c1, c2 ∈ C \ {0}, whence c2E = 0 and
therefore, AnnC(E) 6= 0; this is a contradiction. Therefore, the ring A is commutative.

Remark 4. In connection to Theorem 1, we note that a ring A with semiprime center Z(A) is not
necessarily commutative. The corresponding example is the ring A of all 2× 2 matrices over R; the
center of the ring A consists of scalar matrices.

Corollary 1. If A is a centrally essential, right nonsingular ring, then A is commutative and does
not have non-zero nilpotent elements.

Proof. By Theorem 1, it is sufficient to prove that A is a ring without non-zero nilpotent
elements. We assume the contrary. There exists a non-zero element a of ring A with
a2 = 0. Since A is centrally essential, there exist non-zero central elements x, y ∈ A with
ax = y. It follows from the Zorn lemma that there exists a right ideal B of ring A such
that B ∩ yA = 0 and right ideal B⊕ yA is an essential. Since yB = By ⊆ B ∩ yA = 0 and
y2 = a2x2 = 0, we have y(B⊕ yA) = 0. Since right ideal B⊕ yA is an essential, y = 0; this
is a contradiction.

In connection to Theorem 1, we prove the following proposition.

Proposition 8 ([5]). If A is a not necessarily unital, centrally essential ring and its the center is a
semiprime ring, then ring A is commutative.
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Proof. We assume that the ring A is not commutative, i.e., there exist elements a, b ∈ A
such that ab − ba 6= 0. Since ring A is centrally essential, there exist non-zero central
elements x and y such that (ab− ba)x = y. We note that ay 6= 0; otherwise,

y2 = (ab− ba)xy = ((ay)b− b(ay))x = 0;

this is impossible since y 6= 0.
If ay /∈ Z(A), then there exist non-zero central elements z, t ∈ A such that ayz = t. We

consider the set W = {w ∈ Z(A) | aw ∈ Z(A)}. It is clear that yz ∈ W. Now we assume
that yW = 0. Then y(yz) = 0, (yz)2 = 0 and yz = 0; this is a contradiction. Therefore,
yw 6= 0 for some w ∈W. However,

yw = (ab− ba)yw = ((wa)b− b(wa))x = 0,

and this is a contradiction, as well.
Therefore, we have 0 6= ay ∈ Z(A)
We assume that at ∈ Z(A). Then ayb 6= 0; otherwise,

y2 = (ayb− bay)x = −bayx = aybx = 0.

In addition, (ab)y = (ba)y. Therefore, (ab− ba)y = 0. However, y2 = (ab− ba)xy = 0; this
is a contradiction. Therefore, ring R is commutative.

Remark 5. If A is a ring and the factor ring A/J(A) is centrally essential, then all maximal right
ideals of the ring A are ideals.

Proof. Since A/J(A) is a centrally essential semiprime ring, it follows from Theorem 1 that
the ring A/J(A) is commutative. In particular, all maximal right ideals of the ring A/J(A)
are ideals. Then all maximal right ideals of the ring A are ideals.

2.3. Local and Semiperfect Rings

Let A be a ring with Jacobson radical J(A). Ring A is said to be local if the factor
ring A/J(A) is a division ring. A ring A is said to be semiperfect if the factor ring A/J(A)
is isomorphic to a finite direct product of matrix rings over division rings and every
idempotent the factor of the ring A/J(A) is the image of some idempotent e ∈ A under the
natural epimorphism A→ A/J(A).

Remark 6. It is clear that any finite direct product of local rings is a semiperfect ring. In addition,
all idempotents of any centrally essential of the ring are central by Proposition 3. Therefore, centrally
essential semiperfect rings coincide with finite direct products of centrally essential of local rings,
and their study is reduced to the study of centrally essential local rings.

Theorem 2. Let A be a centrally essential local ring with Jacobson radical J(A). Then, factor ring
A/J(A) is a field (in particular, it is commutative) and M ∩ Z(A) 6= 0 for every minimal right
ideal M.

Proof. Let a, b ∈ A and ab− ba /∈ J(A). An element ab− ba is invertible since A is local.
Since a 6= 0 and A is centrally essential, ax = y for some non-zero x, y ∈ Z(A). Then

x = x(ab− ba)(ab− ba)−1 = (yb− by)(ab− ba)−1 = 0;

this is a contradiction. Therefore, ab− ba ∈ J(A) and the ring A/J(A) is commutative.
Now we assume that M ∩ Z(A) = 0 for some minimal right ideal M of the ring A.

Let m be a non-zero element of M. By assumption, there exist non-zero central elements x
and y of the ring A such that mx = y. Since x /∈ J(A) (otherwise, mx = 0), the element x is
invertible in A and m = x−1y ∈ Z(A); this is a contradiction.
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Theorem 3. Let A be a centrally essential semiperfect ring with center C = Z(A). Then A/J(A)
is a finite direct product of fields. In particular, ring A/J(A) is commutative. In addition, A is a
finite direct product of centrally essential local rings and Soc(AC) ⊆ C.

Proof. By the definition of a semiperfect ring, the ring A/J(A) is the direct sum of simple
Artinian rings, and each of them is isomorphic to a matrix ring over a division ring.
Let ē1, .

. ots, ēn be a complete system of indecomposable orthogonal idempotents of the
ring Ā = A/J(A). Then there exists a complete system of indecomposable orthogonal
idempotents e1, .

. ots, en in A such that ei + J(A) = ēi, i = 1, .
. ots, n. By Proposition 3,

all idempotents e1, .
. ots, en are central. Therefore, A = ⊕n

i=1 Aiei is a decomposition of
the ring A into a direct sum of local centrally essential rings. Consequently, all rings
Ai/J(Ai) are commutative by Theorem 2. It is directly verified that all rings Ai = Aei
are centrally essential; therefore, division ring Ai/J(Ai) is commutative. Then the ring
R/J(R) = ⊕n

i=1Ri/J(Ri) is commutative, as well.
It follows from the above that, without loss of generality, we can assume that ring A is

local. We note that J(C) = C ∩ J(A) and C is a local ring.
Now let s be a non-zero element of Soc (RC). There exist non-zero central elements

x, y such that sx = y. It is clear that x /∈ J(R), since J(C)Soc AC = 0. Consequently, x is an
invertible element and s = x−1y ∈ C.

Remark 7. It follows from the above that if A is a centrally essential semiperfect ring, then
Soc A A = Soc AA.

2.4. Perfect and Semi-Artinian Rings

Let A be a ring with Jacobson radical J(A).
Ring A is said to be left perfect if A is semiperfect and the radical J(R) is left T-nilpotent,,

i.e., for any sequence x1, x2, .
. ots of elements in J(A), there exists a subscript n such that

x1x2
.

. otsxn = 0. Right perfect rings are similarly defined.
Ring A is said to be semilocal if the factor ring A/J(A) is isomorphic to a finite direct

product of matrix rings over division rings.
Module M is said to be semi-Artinian if either M = 0 or every non-zero factor module

of the module M is an essential extension of a semisimple module.

Theorem 4. Let A be a right or left perfect ring with center C = Z(A).

a. Ring A is centrally essential if and only if Soc AC ⊆ C and all idempotents of the ring A
are central.

b. Assume that all idempotents of the ring A are central, the factor ring A/J(A) is commutative,
Soc AC = Soc AA, and M ∩ C 6= 0 for every minimal right ideal M. Then the ring A is
centrally essential.

Proof.

a. If A is centrally essential, then Soc AC ⊆ C and all idempotents of the ring A are
central by Proposition 3 and Theorem 3.
Conversely, let Soc AC ⊆ C and let all idempotents of the ring A be central. Since all
idempotents are central, we can assume that A is a local ring. Then J(C) = C ∩ J(A)
and C/J(C) is a field.
Let x be a non-zero element of the ring A. If J(C)x = 0, then x ∈ Soc AC; therefore,
x ∈ C. Otherwise, there exists an element c1 ∈ J(C) such that c1x 6= 0. If J(C)c1x = 0,
then c1x ∈ Soc AC and c1x ∈ C; otherwise, we take an element c2 ∈ J(C) such
that c2c1x 6= 0, and so on. Since the radical J(A) of the right perfect or left ring A
is a T-nilpotent right or left and elements ci are central, this process stops at some
finite step.

b. By a, it is sufficient to prove the relation Soc AC ⊆ C which is equivalent to the
property that M ⊆ C for any minimal right ideal M. By assumption, M ∩ C 6= 0 and
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the ring A/J(A) is commutative by assumption; therefore, we have ab− ba ∈ J(A),
for all a, b ∈ A. For every m ∈ M ∩ C, we have m(ab− ba) = 0. On the other hand,
since m ∈ C, we have

(ma)b = mba = b(ma), ma ∈ C.

In addition, ma ∈ M. Consequently, M∩C is a non-zero right ideal of the ring A. Since
M is a minimal right ideal, M∩C = M and M ⊂ C. Therefore, Soc AC = Soc AA ⊆ C.

Remark 8. In Theorem 4, we cannot omit the condition that R is right or left perfect since every
non-commutative local domain (for example, the formal power series ring in one variable over the
Hamiltonian quaternion division ring) satisfies all remaining conditions of this theorem but this
ring is not centrally essential.

Lemma 2. Let A be a semiprime ring and let S = Soc AA be the right socle. If S is an essential
right ideal of the ring A and st = ts for all s, t ∈ S, then the ring A is commutative.

Proof. We prove the following property (∗) of our ring A:
If e = e2 ∈ A and eA is a minimal right ideal, then the idempotent e is central. Indeed,

let a ∈ A. Since S is an ideal, ae ∈ S. By assumption,

eae = e · ae = ae · e = ae.

Similarly, ea = eae = ae and the idempotent e is central.
We prove that ab − ba = 0 for any elements a, b ∈ A. We assume that ab − ba 6=

0. It is well known that every minimal right ideal of a semiprime ring is generated
by an idempotent. Since S is an essential right ideal and is generated, by the above,
by idempotents, S ∩ (ab− ba)A 6= 0 and e(ab− ba) 6= 0 for some idempotent e ∈ A. Then
eab 6= eba and (ea)(eb) = (eb)(ea) by assumption.

By properties (∗), the idempotent e is central. Then

eab = eeab = eaeb = ebea = eba;

this is a contradiction. Therefore, A is commutative.

Lemma 3. Let A be a centrally essential ring and let P be a semiprime nil-ideal of the ring A such
that the right socle S/R of the ring A/P is an essential right ideal of the ring A/P. Then the ring
A/P is commutative.

Proof. We use the following well-known facts.

a. In any semiprime ring R, the set of all minimal right ideals coincides with the set of
all minimal left ideals and this set coincides with the set of all right ideals eR such that
e = e2 and eRe is a division ring; in addition, Soc RR = Soc RR.

b. If R is a ring and P is a nil ideal of the ring R, then every idempotent e of the ring R/P
is of the form e + P, where e = e2 ∈ R.

Let h : A → A/P be the natural epimorphism. For every subset X in A, we write
X instead of h(X). By a, there exists an ideal S of the ring A such that P ⊂ S and S =
Soc A A = Soc AA.

First, we show that the ideal S is commutative. By a and b, any minimal left ideal V of
the ring A is generated by some primitive idempotent e, which is of the form e = e + P for
some primitive idempotent e of the ring A. By Proposition 3, the idempotent e is central.
Therefore, V is an ideal of A, eA and (1− e)A are ideals in A, and A = eA ⊕ (1− e)A.
Therefore, the ring eA is centrally essential. In addition, eAe = eA = V and V = (eA +
P)/P ∼= eA/(P ∩ eA). Therefore, J(eA) ⊆ P ∩ eA. However, P is a nil ideal, whence



Mathematics 2022, 10, 1867 11 of 74

P ∩ eA ⊆ J(eA) and P ∩ eA = J(eA). By Theorem 2, ring V is commutative. Therefore,
Soc (A) is a commutative ring, as a direct sum of commutative rings. In addition, Soc (A) is
an essential right ideal of the semiprime ring A. Then A is commutative by Lemma 2.

Theorem 5. If A is a centrally essential, left or right semi-Artinian ring, then A/J(A) is a
commutative (von Neumann) regular ring.

Proof. Let A be a centrally essential semi-Artinian right or left ring and A = A/J(A).
Since A is a right or left semi-Artinian ring, J(A) is a nil ideal by [29] [Proposition 3.2]. By
Lemma 3, ring A/J(A) is commutative. Every commutative semi-Artinian semiprimitive
ring is von Neumann regular by [29] [Theorem 3.1].

3. Graded Rings and Grassmann Algebras

Sections 3.1 and 3.2 are based on [9].

3.1. Graded Rings

Let (S,+) be a semigroup. A ring A is said to be S-graded if A is a direct sum of
additive subgroups As, s ∈ S, and As At ⊆ As+t for any elements s, t ∈ S.

For any s ∈ S, elements of the subgroup As are called homogeneous elements of
degree s.

If S = N∪ {0}, then S-graded rings are called graded rings. It is directly verified that
the identity element of a graded ring is contained in the subgroup A0. On an arbitrary
graded ring A = ⊕n∈N∪{0}An, we can define Z2-graduation:

A = A(0) ⊕ A(1), where A(i) =
⊕

k∈N∪{0}
A2k+i, i ∈ {0, 1}.

One says that a graded ring A = ⊕n∈N∪{0}An is generalized anti-commutative if for
any integers m, n ∈ N ∪ {0} and arbitrary elements x ∈ Am and y ∈ An, the relation
yx = (−1)mnxy holds.

If the graded ring A = ⊕n∈N∪{0}An satisfies the condition

∀m, n ∈ N∪ {0}, Am+n 6= 0⇒ Am 6= 0& ∀x ∈ Am \ {0}, xAn 6= 0, (2)

then one says that R is a homogeneously faithful ring.

Proposition 9. In any graded ring A = ⊕n∈N∪{0}An, the relation Z(A) = ⊕n∈N∪{0}(An ∩
Z(A)) holds.

Proof. The inclusion ⊕n∈N∪{0}(An ∩ Z(A)) ⊆ Z(A) is obvious.
Let x = x0 + x1 +

.
. otsxn ∈ Z(A), where xi ∈ Ai, i = 0, 1, .

. ots, n. If y ∈ Am for some
m ∈ N ∪ {0}, then 0 = [x, y] = [x0, y] + .

. ots + [xn, y] and summands of the last sum are
contained in distinct direct summands Am, Am+1, .

. ots, Am+n. Therefore, [xi, y] = 0 for any
homogeneous element y and of all i = 0, 1, .

. ots, n. Then xi ∈ Z(A) since any element of
the ring is a sum of homogeneous elements.

Remark 9. If S is a commutative cancellative semigroup, then the proof below remains true for
every S-graded ring.

Proposition 10. Let A = ⊕n∈N∪{0}An be a graded generalized anti-commutative homogeneously
faithful ring which does not have additively 2-torsion elements. If there exists an odd positive integer
n such that An 6= 0 and An+1 = 0, then Z(A) = A(0) + An. Otherwise, Z(A) = A(0).

Proof. It follows from the generalized anti-commutativity relation that A(0) ⊆ Z(A).
The following property follows from (2):



Mathematics 2022, 10, 1867 12 of 74

if such an integer n exists, then Am = 0 for m > n and Am 6= 0 for 0 ≤ m ≤ n; in addition,
if x ∈ An and y = y0 + z ∈ A, where y0 ∈ A0 and z ∈ ⊕m>0 Am, then [x, y] = [x, y0] = 0,
i.e., An ⊆ Z(A). Conversely, let x ∈ Z(A). By Proposition 9, we can assume that x is a
homogeneous element of odd degree i. Let x 6= 0 and Ai+1 6= 0. Then it follows from (2)
that there exists an element y ∈ A1 such that xy 6= 0. We obtain that 0 = [x, y] = 2xy; this
is a contradiction. Therefore, either x = 0 or x 6= 0 but Ai+1 = 0, i.e., i = n.

Theorem 6. Let A = ⊕n∈N∪{0}An be a graded generalized anti-commutative homogeneously
faithful ring without additively 2-torsion elements. Ring A is centrally essential if and only if either
A = A0 or there exists an odd positive integer n such that An 6= 0 and An+1 = 0.

Proof. Let A be a centrally essential ring, C = Z(A), and let A 6= A0. By (2), we have
A1 6= 0. We take an element x ∈ A1 \ {0} and assume that such an integer n does not exist.
By Remark 9, we have C = A(0) and xC ⊆ A(1), whence xC ∩ C ⊆ A(1) ∩ A(0) = 0; this is
a contradiction.

Conversely, if A = A0, then C = A since ring A0 is commutative. We assume that
there exists an odd positive integer n such that An 6= 0 and An+1 = 0. Let 0 6= x ∈ A \ C.
We have x = x0 +

.
. ots + xn, where xi ∈ Ai, and we take the least odd positive integer m

such that xm 6= 0. It is clear that 1 ≤ m ≤ n. We set k = n−m and take an element y ∈ Ak
such that xmy 6= 0. It is clear that y ∈ C. In addition, xy is a sum of homogeneous elements
of even degree, and the element xmy of odd degree n. Therefore, xy ∈ C by Remark 9 and
xy 6= 0.

3.2. Grassmann Algebras over Fields

Let F be a field of characteristic 0 or p > 2, V = Fn be a vector space over F of
dimension n > 0, and let Λ(V) be the Grassmann algebra of the space V [21] [§III.5] which
is defined as a unital F-algebra with respect to multiplication operation ∧ with generators
e1, .

. ots, en and defining relations ei ∧ ej + ej ∧ ei = 0 for all i, j ∈ {1, .
. ots, n}.

The algebra Λ(V) has a natural graduation:

Λ(V) =
⊕

p∈N∪{0}
Λp(V),

where Λp(V), 1 ≤ p ≤ n, is a vector space with basis

{ei1 ∧
.

. ots ∧ eip : 1 ≤ i1 < .
. ots < ip ≤ n},

Λ0(V) = F and Λp(V) = 0 for p > n.
It is well known that Grassmann algebras are generalized anti-commutative.

Proposition 11. The graded algebra R = Λ(V) is a homogeneously faithful ring.

Proof. Let p, q ∈ {0, .
. ots, n} and p + q ≤ n. If pq = 0, then the condition (2) holds. Now

let 0 < p < n and 0 6= x ∈ Rp. We take a basis element ei1 ∧
.

. ots∧ eip , which has a non-zero
coefficient in the representation of x. Since p + q ≤ n, there exist subscripts j1, .

. ots, jq ∈
{1, .

. ots, n} such that 1 ≤ j1 < .
. ots < jq ≤ n and {i1, .

. ots, ip} ∩ {j1, .
. ots, jq} = ∅. We

set y = ej1 ∧
.

. ots ∧ ejq and note that the basis element ±ei1 ∧
.

. ots ∧ eip ∧ ej1 ∧
.

. ots ∧ ejq
of the space Λp+q(V) has the non-zero coefficient in the representation of the element xy,
since products of remaining basis elements of the space Λp(V) by the element y are equal
to either 0 or ±other basis elements of the space Λp+q(V).

Theorem 7. Let F be a field of characteristic 0 or p > 2 and let V be a finite-dimensional vector
F-space. The Grassmann algebra Λ(V) of the space V is a centrally essential ring if and only if V is
of an odd dimension.
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Theorem 7 follows from Propositions 11 and 10.
If F is a finite field of odd characteristic and dim V is an odd positive integer exceeding

1, then Λ(V) is a centrally essential non-commutative finite ring. Thus, if F is the finite
field of order 3 and Λ(V) is an 8-dimensional F-algebra with basis

{1, e1, e2, e3, e1 ∧ e2, e1 ∧ e3, e2 ∧ e3, e1 ∧ e2 ∧ e3},

then Λ(V) is a centrally essential non-commutative finite ring of order 38.

Example 4. If R is a centrally essential ring and B is a proper ideal of ring R generated by some
infinite set of central idempotents and the factor ring R/B does not have non-trivial idempotents,
then ring R/B is not necessarily centrally essential.

Let F be a field of order three, A = Λ(F3) be the Grassmann algebra of the three-dimensional
vector F-space F3, and let S = Λ(F2) be the Grassmann algebra of two-dimensional vector F-of
the space F2 considered a subalgebra of algebra A. We consider the direct product P = AN =
{(a1, a2, .

. ots) | ai ∈ A} of countable set of copies of ring A and its subring R consisting of all
eventual constant sequences (a1, a2, .

. ots) ∈ P which stabilize at a finite step on elements of S
depending on the sequence.

Let ei be a central idempotent which has the identity element of the field F on the i-th position
and zeros on remaining positions. We denote by B the ideal of the ring R generated by all idempotents
{ei}. It follows from Theorem 7 that R is a centrally essential ring and the factor ring R/B is
isomorphic to ring S, which is not centrally essential and does not have non-trivial idempotents.

3.3. Grassmann Algebras over Rings

This subsection is based on [10].
Let A be a not necessarily commutative ring with center C = Z(A) and let An be a

finitely generated free module of rank n. We define the algebra Λ(An) of the module An.
Namely, Λ(An) = A⊗C Λ(Cn), where Λ(Cn) is the Grassmann algebra of the free module
Cn over the commutative ring C; see [21] [§III.5].

Let {e1, .
. ots, en} be a basis of the module Cn. For all x ∈ Λ(Cn), we identify 1⊗ x

with x and obtain that the set

Bn = {ei1 ∧
.

. ots ∧ eis |0 ≤ s ≤ n, 1 ≤ i1 < .
. ots < is ≤ n}

is a basis of the A-module Λ(An) (we assume that the product is equal to 1 for s = 0). It
is clear that the ring R = Λ(An) has a natural graduation R = ⊕s≥0Rs, where R0 = A,
Rs = ⊕1≤i1<

.
. ots<is≤n Aei1 ∧

.
. ots ∧ eis for 1 ≤ s ≤ n, and Rs = 0 for s > n.

Theorem 8. For positive integer n and a ring A with center C = Z(A), the ring Λ(An) is cen-
trally essential if and only if A is centrally essential and at least one of the following conditions holds.

(a) n is an odd integer.
(b) The ideal AnnA(2) is an essential submodule of the module AC.

Proof. We set R = Λ(An). Let R be centrally essential.
Let a ∈ A \ {0} and a′ = ae1 ∧ .

. ots ∧ en. Then 0 6= a′ ∈ R. Therefore, there exists
an element c ∈ Z(R) such that 0 6= ca′ ∈ Z(R). We have c = c0 + c′, where c0 ∈ A,
and c′ ∈ ⊕s>0Rs. It is directly verified that c0 ∈ Z(A) = Z(R) ∩ R0. In addition, it is clear
that ca′ = c0a′ = c0ae1 ∧ .

. ots ∧ en, whence we have c0a 6= 0. For every b ∈ A, we have

0 = [b, c0ae1 ∧ .
. ots ∧ en] = [b, c0a]e1 ∧ .

. ots ∧ en,

whence c0a ∈ Z(A), i.e., A is a centrally essential ring.
We assume that the ideal AnnA(2) is not an essential submodule of the module AC

and n is an even integer.
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We take an element a ∈ A such that a 6= 0 and Ca ∩AnnA(2) = 0. We consider the
element x = ae2 ∧ .

. ots ∧ en.
Let c ∈ Z(R) and 0 6= cx ∈ Z(R). We have c = c0 + c1e1 + c′, where c′ is a linear

combination of elements of the basis Bn, which are equal to 1 and e1. It is clear that c0, c1 ∈ C
and cx = c0ae2 ∧ .

. ots ∧ en + c1ae1 ∧ .
. ots ∧ en, where both summands are contained in

the center of the ring R.
We prove that c0a = 0. Indeed,

0 = [e1, c0ae2 ∧ .
. ots ∧ en] = c0ae1 ∧ .

. ots ∧ en − c0ae2 ∧ .
. ots ∧ en ∧ e1 =

= c0a(1− (−1)n−1)e1 ∧ .
. ots ∧ en = 2c0ae1 ∧ .

. ots ∧ en,

whence c0a ∈ AnnA(2) ∩ Ca = 0 by the choice of a. Then c1a 6= 0 and c1e1 ∈ Z(R).
However c1 ∈ C, 0 = [c1e1, e2] = 2c1e1 ∧ e2. Then c1a ∈ Ca ∩ AnnA(2) = 0. This is
a contradiction.

Now we assume that A is centrally essential, and at least one of the above conditions
(a) or (b) holds.

Let (a) hold. We set N = AnnC(2) = C ∩AnnR(2). We note that N is an essential
submodule in AC. We consider an arbitrary non-zero element x ∈ R. We have

x =
n

∑
s=0

∑
1≤i1<

.
. ots<is≤n

ai1, .
. ots,is ei1 ∧

.
. ots ∧ eis ,

where coefficients ai1, .
. ots,is are contained in A. We can multiply x by elements C ⊆ Z(R)

and obtain a situation, where all coefficients in representation of x are contained in N. Indeed,
if some coefficient ai1, .

. ots,is is not contained in N, then there exists an element c ∈ C such
that 0 6= cai1, .

. ots,is ∈ N, i.e., under multiplication by c, the number of coefficients, contained
in N, decreases. It remains to be noted that x ∈ Z(R) if all coefficients of their representation
of x are contained in N. Indeed, [x, a] = 0 for any a ∈ A, since N ⊆ Z(A) and

[x, ei] =
n

∑
s=0

∑
i1<

.
. ots<is

ai1, .
. ots,is [ei1 ∧

.
. ots ∧ eis , ei].

We note that if the number s is even or i ∈ {i1, .
. ots, is}, then [ei1 ∧

.
. ots ∧ eis , ei] = 0.

Otherwise,
[ei1 ∧

.
. ots ∧ eis , ei] = αei1 ∧

.
. ots ∧ eis ∧ ei,

where α ∈ {0, 2}, i.e., we have [ai1, .
. ots,is ei1 ∧

.
. ots ∧ eis , ei] = 0. Since elements of the ring

A and e1, .
. ots, en generate the ring R, we have x ∈ Z(R), which is required.

Now we assume that condition (b) holds. We consider an arbitrary non-zero element
x ∈ R. By repeating the argument from the previous case, we can use multiplication by
elements of C to obtain such a situation that all coefficients x with respect to the basis Bn
are contained in C.

We take the least odd k such that the element ei1 ∧
.

. ots ∧ eik of the basis Bn is contained
in the representation of x with non-zero coefficient a (if this is impossible, then x ∈ Z(R)). Let

m = n− k, {j1, .
. ots, jq} = {1, .

. ots, n} \ {i1, .
. ots, ik}.

It is clear that integer m is even, whence c = ej1 ∧
.

. ots ∧ ejm ∈ Z(R). Then, it is
directly verified that cx = ±ae1 ∧ .

. ots ∧ en + x′, where x′ is a linear combination of
elements of the basis Bn with even degree s and coefficients in C. Therefore, we repeat the
argument from the previous case and obtain that x′ ∈ Z(R). Finally, it is directly verified
that ae1 ∧ .

. ots ∧ en ∈ Z(R). The assertion is proved.

Lemma 4. If A is a ring of finite characteristic s and C = Z(A), then the following conditions
are equivalent.
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(a) The ideal AnnA(2) is an essential submodule of the module AC.
(b) s = 2m for some m ∈ N.

Proof. (a)⇒ (b). We assume the contrary. Then there exists an odd prime integer p
dividing s. The non-zero ideal AnnA(p) of the ring A has the zero intersection with the
ideal AnnA(2). Therefore, the ideal AnnA(2) is not an essential submodule of the module
AC. This is a contradiction.

(b)⇒ (a). Since s = 2m, we have that for every a ∈ A \ {0}, the relation ord a = 2k

holds for some k ∈ N. Then 0 6= 2k−1a ∈ Ca ∩AnnA(2). Therefore, the ideal AnnA(2) is an
essential submodule of the module AC.

If A is a ring of finite of characteristic or A does not have zero divisors, then the
formulation of Theorem 8 can be simplified; see Theorem 9.

Theorem 9. Let A be a ring with center C = Z(A) and let n be a positive integer.
The ring Λ(An) is centrally essential if and only if A is centrally essential and at least one of

the following conditions holds.

a. If A is a ring of finite characteristic s (this is the case if the ring A is finite), then ring Λ(An)
is centrally essential if and only if ring A is centrally essential and at least one of the following
conditions holds.

• n is an odd integer.
• s = 2m for some m ∈ N.

b. If A is a domain, then the ring Λ(An) is centrally essential if and only if the ring A is
centrally essential and at least one of the following conditions holds.

• n is an odd integer.
• A is a ring of characteristic 2

Proof. We set R = Λ(An).

1. The assertion follows from Theorem 8 and Lemma 4.
2. If A is a ring of characteristic 2 or n is an odd integer, then R is a centrally essential

ring by a.

Now we assume that A is a domain and ring R is centrally essential. By Theorem 8, ring
A is centrally essential and it is sufficient to consider the case, where n is an even integer
and ideal AnnA(2) is an essential submodule of the module AC. Since A is a domain,
AnnA(2) = A. Therefore, A is a ring of characteristic 2.

4. Constructions of Rings
4.1. Polynomials, Series and Fractions

Section 4.1 is based on [15].
For arbitrary finite subset S of the monoid G and any ring A, we denote by ΣS the

element ∑x∈S x of the monoid ring AG. For any element r = ∑g∈G ag · g ∈ AG, we say that
the set {g ∈ G|ag 6= 0} is the support of the element r; we denote this set by supp (r).

Proposition 12. If A is a centrally essential ring and G is a commutative monoid, then the monoid
ring R = AG is centrally essential.

Proof. For any non-zero element r = ∑g∈G rg · g ∈ R, let

k(r) = |{g ∈ G|rg ∈ Z(A)}|.

It is clear that k(r) ≤ |supp (r)| < ∞. With the use of the induction on k, we prove
that for k(r) = k, there exist non-zero central elements x and y such that rx = y.

If k = 0 then rg ∈ Z(A) for all g ∈ G and, therefore, r ∈ Z(R).
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Otherwise, if k > 0 and k(r) = k, then we can take an element h ∈ G with rh ∈ Z(A).
Since the ring A is centrally essential, there exist non-zero central elements x and y with
xrh = y. It is clear that 0 6= xr = ∑g∈G xrg · g and k(xr) < k(r). By the induction
hypothesis, there exist non-zero central elements u and v of the ring R such that uxr = v.
Since ux ∈ Z(R), the proof is completed.

The following assertion is a corollary of Proposition 12.

Corollary 2. For any centrally essential ring A, the polynomial ring A[x] and the polynomial
Laurent ring A[x, x−1] are centrally essential.

Remark 10. Let A be a centrally essential ring, Q be the ring of fractions of the ring A with respect
to some central multiplicative system S consisting of non-zero-divisors, and let 0 6= s−1a = as−1 ∈
Q, s ∈ S. By assumption, there exist non-zero central elements x, y ∈ A with ax = y. Then
0 6= as−1x = s−1y is a central element of the ring Q and the ring Q is centrally essential. If Q is a
centrally essential ring, then it is similarly proved that A is a centrally essential ring.

Remark 11. Since the formal Laurent series ring A((x)) is the ring of fractions of the ring formal
power series A[[x]] with respect to the central multiplicative system {xk}∞

k=0, it follows from Remark
10 that the ring A((x)) is centrally essential if and only if the ring A[[x]] is centrally essential.

Proposition 13. If R is a finite-dimensional centrally essential algebra, then the formal power
series ring R[[x]] is centrally essential.

Proof. It is sufficient to prove that the ring R[[x]] is isomorphic to F[[x]]⊗ R. First, we
prove the injectivity of a natural homomorphism ϕ : F[[x]] ⊗ R → R[[x]] defined by
the relation ϕ( f (x) ⊗ r) = f (x)r for every f (x) ∈ F[[x]] and r ∈ R. Indeed, every
element of the algebra F[[x]] ⊗ R can be represented in the form r = ∑n

i=1 fi(x) ⊗ ri,
where f1(x), .

. ots, fn(x) ∈ F[[x]], r1, .
. ots, rn are linearly independent elements of the

algebra R (for example, { f1(x), .
. ots, fn(x)} can be subset of some fixed finite or infi-

nite of the basis for R). By assuming fi(x) = ∑∞
j=0 xjαij for some αij ∈ F, we have that

ϕ(r) = ∑n
i=1(∑

∞
j=0 xjαij)ri = ∑∞

j=0 xj(∑n
i=1 αijri). Therefore, if ϕ(r) = 0, then for all j ≥ 0,

we have ∑n
i=1 αijri = 0, whence we have αij = 0 and fi(x) = 0 for all i = 1, .

. ots, n;
consequently r = 0.

If R is a finite-dimensional algebra with basis r1, .
. ots, rn, then for any series f (x) =

∑∞
j=0 xjtj with coefficients tj ∈ R, we have tj = ∑n

i=1 αijri, whence

f (x) =
∞

∑
j=0

xj(
n

∑
i=1

αijri) =
n

∑
i=1

(
∞

∑
j=0

xjαij)ri ∈ ϕ(F[[x]]⊗ R).

Theorem 10. If R is a finite-dimensional centrally essential algebra, then the following conditions
are equivalent.

(1) Ring R is centrally essential.
(2) Power series ring R[[x]] is centrally essential.
(3) Ring Laurent series R((x)) is centrally essential.

Proof. The implication (1)⇒ (2) follows from Proposition 13.
The implication (2)⇒ (1) is directly verified.
The equivalence (2)⇔ (3) follows from Remark 11.

4.2. Group Rings

Section 4.2 is based on [15].
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Let R be a ring and let G be a group. We set (x, y) = x−1y−1xy for any elements
x, y of the group G; additive commutators and multiplicative commutators are denoted
differently, since elements of the group are considered as elements of the group ring,
as well. For any element g of the group G, we denote by gG the class of conjugated elements
which contains g. For the group G, the upper central series of the group G is a chain of
subgroups {1} = Z0(G) ⊆ Z1(G) ⊆ .

. ots, where Zi(G)/Zi−1(G) is the center of the group
G/Zi−1(G), i ≥ 1. We denote by NC(G) the nilpotence class of the group G, i.e., the least
positive integer n with Zn(G) = G (if it there exists a).

A group G is called an FC-group if all classes of conjugated elements in G are finite.

Proposition 14. Let A be a ring and G be a group. If the group ring R = AG is centrally essential,
then A also is a centrally essential ring and the group G is an FC-group.

Proof. Let 0 6= a ∈ A. Since A ⊆ R and R is centrally essential, there exists an element
c ∈ Z(R) such that 0 6= ca ∈ Z(R). We have c = ∑g∈G cg · g and ca = ∑g∈G cga · g. It
follows from relations 0 = [c, b] = ∑g∈G[cg, b] · g for any b ∈ A that cg ∈ Z(A) for all g ∈ G.
Similarly, we have cga ∈ Z(A) for any g ∈ G. Since there exists at least one element g ∈ G
with cga 6= 0, we obtain our assertion on the ring A.

Now let g be an arbitrary element of the group G. It is well known (e.g., see [30]
[Lemma 4.1.1]) that Z(AG) is a free Z(A)-module with basis

{ΣK |K is a finite class of conjugated elements in G}. (3)

In particular,

r ∈ Z(AG)⇒ |gG| < ∞ for any g ∈ supp (r). (4)

Since AG is centrally essential, 0 6= cg = d for some c, d ∈ Z(AG). By comparing
coefficients in the left part and the right part of the relation cg = d, we obtain that for any
y ∈ supp (d), there exists an element x ∈ supp (c) such that xg = y. For any h ∈ G, we
have hgh−1 = (hxh−1)−1hyh−1, whence gG ⊆ (x−1)G · yG. Since |(x−1)G| = |xG|, we have
that |gG| ≤ |xG| · |yG| < ∞, by (4).

Lemma 5. Let G be a group, F be a field of characteristic p > 0, and let q be a prime integer which
is not equal to p. If the ring FG is centrally essential, then every q-subgroup in G is a normal
commutative subgroup.

Proof. First, let H be a finite q-subgroup of the group G. Then |H| = n = qk is a non-
zero element of the field F and the element eH = 1

n ΣH is an idempotent of the ring FG.
By Proposition 3, eH is a central idempotent. Consequently, geH g−1 = 1

n ∑h∈H ghg−1 =
1
n ∑h∈H h for any g ∈ G. By comparing coefficients in the both parts of the last relation, we
see that ghg−1 ∈ H, i.e., the subgroup H is normal.

Let F0 be a prime subfield of the field F. We consider the finite ring F0H. By the
Maschke theorem, it is isomorphic to some finite direct product of matrix rings over
division rings; in addition, any finite division ring is a field by the Wedderburn theorem.
We assume that the group H is not commutative. Then one of the summands of the ring
F0H is the matrix ring of order k > 1 over some field; this is impossible since such a matrix
ring contains a non-central idempotent.

Now let H be an arbitrary q-subgroup in G. We take any element h ∈ H and an
arbitrary element g ∈ G. Since h generates a cyclic q-subgroup H0 = 〈h〉, we have
ghg−1 ∈ H0 ⊆ H for any g ∈ G, i.e., the subgroup H normal.

If x, y ∈ H, then the subgroup H1 = 〈x, y〉 is finite by Proposition 14. and the following
Dicman’s lemma:

If x1, .
. ots, xn are elements of finite order of an arbitrary group G and each of the

elements x1, .
. ots, xn has only a finite number of conjugated elements, then there exists
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a finite normal subgroup N of the group G containing x1, .
. ots, xn (see [24] [Lemma C,

Appendixes]).
By the first part of the proof, the subgroup H1 is commutative, therefore, xy = yx.

In the case of finite groups, we have a more strong assertion which reduces the study
of centrally essential group algebras of finite groups to the study of centrally essential
group algebras of finite p-groups.

Proposition 15. Let |G| = n < ∞ and let F be a field of characteristic p > 0. Then the following
conditions are equivalent.

(1) The ring FG is centrally essential.
(2) G = P × H, where P is the unique Sylow p-subgroup of the group G, the group H is

commutative, and the ring FP is centrally essential.

Proof. Let FG be centrally essential. By Lemma 5, every Sylow q-subgroup for q 6= p is
normal in G and it is commutative; consequently, the product H of all such subgroups is a
commutative normal subgroup. Let m = |H|. We note that (m, p) = 1, whence the element
m is invertible in F.

We prove that the Sylow p-subgroup P is normal in G.
We consider the following linear mapping f : R→ R:

f (r) =
1
m ∑

h∈H
hrh−1.

It is clear that f (1) = 1 and f (yry−1) = f (r) for any y ∈ H since the left part and
right part of the relation contain equal summands. Now we assume that xy 6= yx for
some x ∈ P and y ∈ H. We set r = x − yxy−1. It is directly verified that r 6= 0 but
f (r) = f (x)− f (yxy−1) = 0; this contradicts Proposition 4. Therefore, elements of P and
H commute, G = PH and P ∩ H = {1}; consequently, G = P× H. By considering FG as
the group ring (FP)H, we obtain from Proposition 14 that FP is centrally essential.

The converse assertion directly follows from Proposition 12 and the isomorphism
FG ∼= (FP)H.

Proposition 16. Let G be a finite p-group and let F be a field of characteristic p. If NC(G) ≤ 2,
then ring FG is centrally essential.

Proof. We recall that for any subgroup H of G, we denote by ωH the right ideal of the ring
FG generated by the set {1− h|h ∈ H}; we also recall that this right ideal is an ideal if and
only if the subgroup H is normal. It is well known (e.g., see [30] [Lemma 3.1.6]) that the
ideal ωG is nilpotent in our case.

Let 0 6= x ∈ FG. We consider all products x(1− z), where z ∈ Z = Z(G). If at least
one of them (say, x1 = x(1− z1)) is non-zero, then we consider the product x1(1− z) and
so on. This process terminates at some step, i.e., there exists an integer k ≥ 0 such that
xk 6= 0 but xkωZ = 0 (we assume that x0 = x). Then xk ∈ FGΣZ (see [30] [Lemma 3.1.2]).
We note that FGΣZ ⊆ Z(FG). Indeed, if g, h ∈ G, then

[g, hΣZ] = [g, h]ΣZ = gh(1− h−1g−1hg)ΣZ = 0,

Since h−1g−1hg ∈ G′ ⊆ Z. Therefore, by setting c = (1− z1)
.

. ots(1− zk) (or c = 1
for k = 0), we obtain c ∈ Z(FG) and xc = xk ∈ Z(FG) \ {0}, which is required.

Lemma 6. Let F be a field of characteristic p and let G be a finite p-group, which satisfies the
following condition:

(∗) for any element g ∈ G \ Z(G), there exists a non-trivial subgroup H ⊆ Z(G) such that
Hg ⊆ gG.
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If NC(G) > 2, then the ring R = FG is not centrally essential.

Proof. Let K = gG be a class of conjugated elements of the group G such that |K| > 1, and let
H be a subgroup that satisfies (∗). We note that Hg′ ⊆ K for any g′ ∈ K, since g′ = a−1ga
for some a ∈ G and Hg′ = Ha−1ga = a−1Hga ⊆ a−1Ka = K. Let Hx1, .

. ots, Hxt be all
distinct cosets for G with respect to H contained in K. Then K is a disjoint union of these
cosets, whence ΣK = ∑t

i=1 ΣHxi . Now we note that (ΣZ)h = ΣZ for any h ∈ H since H ⊆ Z;
therefore, ΣZ · ΣH = |H|ΣZ = 0. Then we obtain that

ΣZΣK =
t

∑
i=1

ΣZ · ΣH · xi = 0. (5)

Next, if NC(G) > 2, then there exists an element g ∈ G \ Z2(G). This means that there
exists an element a ∈ G such that (g, a) ∈ Z. We consider element x = gΣZ 6= 0. We have

[a, x] = [a, gΣZ] = (ag− ga)ΣZ = ag(1− (g, a))ΣZ 6= 0,

since 1 − (g, a) ∈ ωZ. Consequently, x ∈ C = Z(R). With the use of the basis (3),
an arbitrary element c ∈ C can be represented in the form c = c0 + c1, where c0 ∈ FZ,
c1 = ∑s

i=0 αiΣKi , K1, .
. ots, Ks are classes of conjugated elements of the group G, |Ki| > 1

and αi ∈ F for all i = 1, .
. ots, s. We assume that xc ∈ Z(R). By (5) , we have xc1 = 0,

whence xc = xc0. Since (ΣZ)z = ΣZ for any z ∈ Z, we obtain that xc0 = αx for some α ∈ F.
If α 6= 0, then x ∈ C; this is a contradiction. We obtain that xC ∩ C = 0.

Lemma 7. Let G be a group. If the centralizer CG(Z2(G)) of the subgroup Z2(G) is contained in
Z2(G), then G satisfies condition (∗) of Lemma 6.

Proof. Let g be an element of G \ Z(G). We assume that there exists an element a ∈ G
such that

(g, a) ∈ Z(G){1}. (6)

Let z = (g, a). Then gz = a−1ga ∈ gG, whence gzk = a−kgak ∈ gG for any k ≥ 1.
Therefore, the subgroup H, generated by z, satisfies (6).

Now we consider two cases. If g ∈ Z2(G) \ Z(G), then there exists an element a ∈ G
such that (g, a) 6= 1. However, it follows from the definition of Z2(G) that (g, a) ∈ Z(G),
whence (6) is true.

It remains to consider the case g ∈ Z2(G). In this case, g ∈ Z(Z2(G)), whence
there exists an element a ∈ Z2(G) such that z = (g, a) 6= 1. However z ∈ Z1(G), since
a ∈ Z2(G), we obtain (6).

Remark 12 (A.Yu. Olshansky). There exists another series of groups which satisfies the conditions
of Lemma 7. Namely, let p be a prime integer and let G be a free 3-generated group of the
variety defined by identities xp = 1 and (x1, x2, x3, x4) = 1. Then G/G′ is an elementary
Abelian p-group; therefore, G′ is the Frattini subgroup of the group G. If g ∈ G′, then we can
include gG′ in a system of free generators of the group G/G′; consequently, the element g can be
included in a system consisting of three generators of the group G. Since group G is finite, this
generator system is free. Therefore, if g ∈ CG(G′), then G satisfies the identity (x1, x2, x3) = 1;
this is impossible, since the group G can be homomorphically mapped onto the group of upper
uni-triangular matrices of order 4 over GF(p), which does not satisfy this identity. Therefore,
Z2(G) ⊇ G′ ⊇ CG(G′) ⊇ CG(Z2(G)).

Proposition 17. If F is a field of characteristic p > 0, then there exists a group G of order p5 such
that the group algebra FG is not centrally essential.

Proof. We construct the group which satisfies the conditions of Lemma 7. We consider
cases p = 2 and p 6= 2 separately.
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Let p = 2. We consider the direct product N of the quaternion group Q8 = {±1,±i,±j,±k}
and the cyclic group 〈a〉 of order 2 with generator a, we also consider the automorphism
α of the group N defined on generators by relations α(i) = j, α(j) = i, α(a) = (−1)a. We
set Γ = 〈α〉. We have the semidirect product G = N o Γ whose elements are considered
as products xγ, where x ∈ N and γ ∈ 〈α〉 and the operation is defined by the relation
xγx′γ′ = xγ(x′)γγ′. Elements of the form x · 1 are naturally identified with elements
x ∈ N and elements of the form 1 · γ identified with elements γ ∈ Γ. It is directly verified
that Z1(G) = 〈−1〉, Z2(G) = 〈k, a〉 = CG(Z2(G)).

Now we assume that p > 2. We consider the semidirect product N = A o Γ of the
elementary Abelian group A of order p3 with generators a, b, c and the cyclic group Γ = 〈γ〉,
where γ is an automorphism of the group A defined on generators by relations

γ(a) = a, γ(b) = b, γ(c) = bc.

It is directly verified that |N| = p4 and any element of the group N can be uniquely
represented as the product akblcmγr, where k, l, m, r ∈ {0, .

. ots, p − 1}. We prove that
mapping β : {a, b, c, γ} → N defined by relations

β(a) = a, β(b) = b, β(c) = ac, β(γ) = abcγ,

can be extended to an automorphism β̂ of the group N. Indeed, for any k, l, m, r ∈ Z, we set

β̂(akblcmγr) = akblamcmarbr(cγ)r = ak+m+rbl+ r(r+1)
2 cm+rγr.

This definition is correct since p| r(r+1)
2 if p|r. It is directly verified that for any

k, l, m, r, k′, l′, m′, r′ ∈ {0, .
. ots, p− 1}, relations

akblcmγr · ak′bl′cm′γr′ = ak+k′bl+l′+rm′cm+m′γr+r′

hold. Consequently,
β̂(akblcmγr · ak′bl′cm′γr′) =

= ak+k′+m+m′+r+r′bl+l′+rm′+ (r+r′)(r+r′+1)
2 cm+m′+r+r′γr+r′ .

On the other hand,
β̂(akblcmγr) · β̂(ak′bl′cm′γr′) =

= (ak+m+rbl+ r(r+1)
2 cm+rγr) · (ak′+m′+r′bl′+ r′(r′+1)

2 cm′+r′γr′) =

= ak+m+r+k′+m′+r′bl+ r(r+1)
2 +l′+ r′(r′+1)

2 +r(m′+r′)cm+r+m′+r′γr+r′ .

It remains to note that we have the following identity

l +
r(r + 1)

2
+ l′ +

r′(r′ + 1)
2

+ r(m′ + r′) =

= l + l′ + rm′ + rr′ +
r2 + r + r′2 + r′

2
= l + l′ + rm′+

+
r2 + 2rr′ + r′2 + r + r′

2
= l + l′ + rm′ +

(r + r′)(r + r′ + 1)
2

Now we set G = N o 〈β〉. It is directly verified that Z1(G) = 〈a, b〉 and Z2(G) =
〈a, b, c〉 = CG(Z2(G)).

Theorem 11. Let F be a field of characteristic p > 0.



Mathematics 2022, 10, 1867 21 of 74

a. If G is an arbitrary finite group, then the group algebra FG is a centrally essential ring if and
only if G = P× H, where P is the unique Sylow p-subgroup of the group G, the group H is
commutative, and the ring FP is centrally essential.

b. If G is a finite p-group and the nilpotence class(it is well known that every finite p-group is
nilpotent, for example, see [19] [Theorem 10.3.4]) of the group G does not exceed 2, then group
algebra FG is a centrally essential ring.

c. There exists a group G of order p5 such that the group algebra FG is centrally essential.

Proof. Theorem 11 follows from Proposition 34, Proposition 16 and Proposition 17.

Remark 13.

a. It is well known that a group ring AG is semiprime if and only if the ring A is semiprime and
orders of finite normal subgroups of the group G are not zero-divisors in A.

b. If A is a semiprime ring such that its additive group is torsion free and G is an arbitrary group,
then the group ring AG is centrally essential if and only if the ring A and the group G are
commutative. Indeed, by Theorem 1, any centrally essential semiprime ring is commutative.
Therefore, Remark b follows from Remark a.

c. Let F be an arbitrary field of zero characteristic and let G be a group G. In connection to
Theorem 11, we note that the group algebra FG is centrally essential if and only if the algebra
FG is commutative; see Remark b. Therefore, only the case of fields of positive characteristic is
of interest under the study of centrally essential group algebras over fields.

d. Let G be a finite p-group of nilpotence class 3. In connection to Theorem 11c, we note that
group rings of G can be centrally essential and can be not centrally essential. More precisely,
we used computer algebraic system GAP [31] to verify the property that for any group of order
16 and nilpotence class 3, its group algebra over a field GF (2) is centrally essential.

e. There exists a finite 2-group G such that the group algebra R = FG over the field F of order 2
is centrally essential and contains an element x such that x2 = 0 but xRx 6= 0.

Proof. Let G = D4 be the dihedral group of order 8 defined by generators a, b and defining
relations a4 = b2 = (ab)2 = 1. It is easy to verify that

G = {1, a, a2, a3, b, ab, a2b, a3b}, G′ = Z(G) = 〈a2〉.

Therefore, the group algebra FG is centrally essential.
In the same time, (1 + b)2 = 1 + b2 = 1 + 1 = 0 and

(1 + b)a(1 + b) = a + ba + ab + bab = 1 + a3 + ab + a3b 6= 0.

4.3. Rings of Fractions, Group and Semigroup Rings

This subsection is based on [3,6].

4.3.1. Rings of Fractions and Group Rings

For a fixed group G, we denote by P(G) and Gp the torsion part G and the set of ele-
ments of the group G whose orders are degrees of prime integer p, respectively. In addition,
Z(G) is the center of the group G, K is a field of characteristic p > 0, and KG is the group
algebra of the group G over K.

For an FC-group G, it is known that Gp is a characteristic subgroup in G; see, for ex-
ample [30] [Lemma 8.1.6].

In Theorem 11(a), it is proved that if a group G is finite, then KG is a centrally essential
ring if and only if G = Gp × H, where Gp is the unique Sylow p-subgroup in G and the
ring KGp is centrally essential.
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If G is a finitely generated FC-group, then the torsion part P(G) is a finite normal
subgroup in G. In addition, G/P(G) is a finitely generated Abelian torsion-free group; see,
for example [30] [Lemma 4.1.5]. Let

G/P(G) = 〈a1〉 × .
. ots× 〈an〉, where 〈ai〉 = aiP(G), i = 1, 2, .

. ots, n.

Then G is a semidirect product G = P(G)o F, where F = A1 × .
. ots× An, Ai =<

ai > is an infinite cyclic group, i = 1, 2, .
. ots, n; see [32] [Theorem 4].

Remark 14. Let K be a field of zero characteristic, G be any group, and let the group algebra KG be
centrally essential. In Remark 13(c), it is proved that KG is commutative.

Let R be a commutative ring and let G be a torsion-free group such that the group ring RG is
centrally essential. Then the ring RG is commutative. Indeed, by Proposition 14, the ring R also
is centrally essential and all classes of conjugated elements in G are finite. By [30] [Lemma 4.1.6],
the group G is Abelian, the group ring RG is commutative and, consequently, RG has commutative
classical ring of fractions.

Remark 15. If the group G does not have elements of order p and the group algebra KG is centrally
essential, then KG is commutative.

Proof. It follows from [30] [Theorem 4.2.13] that KG is a semiprime algebra. Consequently,
the centrally essential semiprime algebra KG is commutative by Theorem 1.

Proposition 18. Let R be a ring. If for any non-zero-divisor b, there exists a non-zero-divisor x
such that bx = y ∈ Z(R) (respectively, xb = y ∈ Z(R)), then R has the right (respectively, left)
classical ring of fractions.

Proof. Let a, b ∈ R, where b is a non-zero-divisor in R. Then b(xa) = a(bx) = ay. Therefore,
the ring R satisfies the right Öre condition, (ax)b = a(xb) = (xb)a, and the ring R satisfies
the left Öre condition.

Corollary 3. Any centrally essential group algebra has the two-sided classical ring of fractions.

Proof. Since the group G is an FC-group, it follows from [30] [Lemma 4.4.4] that for any
non-zero-divisor b, there exists a non-zero-divisor x ∈ KG such that xb = y ∈ Z(KG)
(bx = y ∈ Z(KG)) and y is a non-zero-divisor in KG.

Remark 16. Corollary 3 also follows from [33] since all classes of conjugated elements in G
are finite.

Proposition 19. Let G be a finitely generated group. If KG is a centrally essential ring, then G is
an FC-group and KGp is a centrally essential ring. If F ⊆ Z(G) (under the above notations), then
the converse is true, as well.

Proof. By Proposition 14, the group G is an FC-group. As was mentioned above, KGp
is a centrally essential ring provided KP(G) is a centrally essential ring. Consequently,
without loss of generality, it is sufficient to prove that KP(G) is a centrally essential ring.

By assumption, for 0 6= α ∈ KP(G), there exist non-zero central elements β, γ ∈ KG
such that αβ = γ. Let π(γ) 6= 0, where π : KG → KP(G) be a natural projection defined
by the relation π(∑x∈G axx) = ∑x∈P(G) axx. Let µ ∈ KP(G). Then it follows from [30]
[Lemma 1.1.2] that

µπ(β) = π(µβ) = π(βµ) = π(β)µ.

Therefore, π(β) ∈ Z(KP(G)). Next,

µαπ(β) = π(µαβ) = π(αβµ) = απ(β)µ.
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Therefore, απ(β) ∈ Z(KP(G)) and απ(β) = π(αβ) = π(γ) 6= 0.
Let π(γ) = 0. We verify that γ is a non-zero-divisor in KG. It follows from [34]

[Lemma 6] that γ is a non-zero-divisor in KG if and only if γ is a non-zero-divisor in the ring
Z(KG)∩KH, where H = 〈supp γ〉. Since the group H is a finitely generated normal torsion-
free subgroup in G, we have that H has a finitely generated central torsion-free subgroup
of finite index; see [30] [Lemma 4.1.8]. It follows from [35] [Corollary 2] that KH does not
have zero divisors. Consequently, elements γ and β are non-zero divisors in KG. Since KG
has the classical ring of fractions Qcl(KG), there exists a β−1 ∈ Qcl(KG). Next, β ∈ Z(KG)
and Z(Qcl(KG)) = Qcl(Z(KG)); see [30] [Theorem 4.4.5]. Then β−1 ∈ Z(Qcl(KG)). Since
αβ = γ, we have α = γβ−1 ∈ Z(KP(G)).

Conversely, we take the set A1 × .
. ots× An = F as a transversal for the subgroup

P(G). It follows from [30] [Lemma 1.1.4] that F is a basis of the algebra KG over KP(G).
Since F ⊆ Z(G) and the algebra KP(G) is a centrally essential ring, algebra KG also is a
centrally essential ring by Proposition 6.

Example 5. Let K be a field. We consider the ringR of all 3× 3 matrices of the form

A =

k a b
0 k a
0 0 k

,

where k ∈ K, a and b are contained in the polynomial ring K〈x, y〉 in two non-commuting variables
x and y over the field K with relations xk = kx and ky = yk, where k ∈ K, and yx− xy = x; for
example, see [36].

We note that the ringR is not commutative. Indeed,0 x 0
0 0 x
0 0 0

0 y 0
0 0 y
0 0 0

 =

0 0 xy
0 0 0
0 0 0

 6=
0 0 yx

0 0 0
0 0 0

 =

=

0 y 0
0 0 y
0 0 0

0 x 0
0 0 x
0 0 0

.

Next,

Z(R) =


k k′ h

0 k k′

0 0 k

∣∣∣∣∣∣k, k′ ∈ K; h ∈ K〈x, y〉

.

In addition, if f ∈ K〈x, y〉, then0 f 0
0 0 f
0 0 0

0 1 0
0 0 1
0 0 0

 =

0 0 f
0 0 0
0 0 0

 ∈ Z(R).

Consequently,R is a centrally essential ring. For any regular matrix

A =

k a b
0 k a
0 0 k

,

there exists a regular matrix

A′ =

k′ a′ 0
0 k′ a′

0 0 k′

,
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where k′ 6= 0, a′ =
1
k
(k′′ − ak′) for some 0 6= k′′ ∈ K such that AA′ ∈ Z(R). It follows

from Proposition 18 thatR is a non-commutative centrally essential ring which has the two-sided
classical ring of fractions.

Proposition 20. Let R be a centrally essential ring and let α be a non-zero-divisor in Z(R). Then
α is a non-zero-divisor in R.

Proof. Let αβ = 0 for some 0 6= β ∈ R. Then β /∈ Z(R) and there exist elements c, d ∈ Z(R)
such that 0 6= βc = d. Since α is a non-zero-divisor in Z(R), we have that αd 6= 0 and
αβc 6= 0. This is a contradiction.

Proposition 21. Let R be a centrally essential ring and R has the classical ring of fractions. Then
Qcl(Z(R)) ⊆ Z(Qcl(R)).

Proof. Let α ∈ Z(R) be a non-zero-divisor in Z(R). It follows from Proposition 20 that α
is a non-zero divisor in R. Consequently, there exists an element α−1 ∈ Qcl(R). We verify
that α−1 ∈ Z(Qcl(R)).

Let β = γδ−1 ∈ Qcl(R). Since αγ = γα, we have that γ = α−1γα in the ring Qcl(R).
Then

(γδ−1)α−1 = γ(αδ)−1 = γ(δα)−1 = γα−1δ−1 =

= α−1γαα−1δ−1 = α−1(γδ−1).

Therefore, α−1 ∈ Z(Qcl(R)). If α ∈ Z(R) is a zero divisor, then it follows from relations
αδ = δα and α = δ−1αδ that

α(γδ−1) = (γα)δ−1 = γδ−1αδδ−1 = (γδ−1)α.

Therefore, Qcl(Z(R)) ⊆ Z(Qcl(R)). The left-sided analogue is similarly verified.

Theorem 12. Every centrally essential group algebra over any field has two-sided classical ring of
fractions. In addition, the group algebra over a field is centrally essential if and only if it has right
classical ring of fractions which is a centrally essential ring.

Proof. The first assertion of the theorem follows from Corollary 3. Let 0 6= as−1 ∈ Qcl(KG),
where a, s ∈ KG and s is a non-zero divisor. Since G is an FC-group, it follows from [30]
[Lemma 4.4.4] that there exists a non-zero divisor γ ∈ KG such that sγ = t ∈ Z(KG) and t
is a non-zero divisor in KG. Therefore, we have that s−1 = γt−1, in the ring Qcl(KG). By
assumption, for the non-zero element aγ ∈ KG, there exist non-zero elements c, d ∈ Z(KG)
such that (aγ)c = d. By Proposition 21 (also see [30] [Theorem 4.4.5] ), any element of
Z(KG) is central in Qcl(KG), i.e., c, d, t−1 ∈ Z(Qcl(KG)). Then

0 6= (as−1)c = (aγt−1)c = (aγc)t−1 = dt−1 ∈ Z(Qcl(KG)).

Conversely, let 0 6= r ∈ KG. By assumption, there exist elements t, s ∈ Z(Qcl(KG))
such that 0 6= rt = s. Since Z(Qcl(KG)) = Qcl(Z(KG)), we have that t = cd−1 and
s = mn−1 for some c, d, m, n ∈ Z(KG). Then the relation rcd−1 = rt = s = mn−1 implies
that rc = mn−1d and

r(cn) = (rc)n = md ∈ Z(KG).

In addition, md 6= 0, since d is a non-zero-divisor in KG.

Remark 17. Let G be a group,

∆(G) = {x ∈ G : |G : CG(x)| < ∞}
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(i.e., ∆(G) is an FC-subgroup in G), and let

∆+(G) = {x ∈ ∆(G) | o(x) < ∞}.

It is well known that ∆(G) and ∆+(G) are characteristic subgroups in G; see details in [30].
If the group ∆+(G) is finite, then the ring Qcl(K∆(G)) and is a quasi-Frobenius ring; in particular,
it coincides with maximal ring of fractions Qmax(K∆(G)); see [34]. It follows from these facts and
Theorem 12 that we obtain the following remark.

a. If the subgroup ∆+(G) of the group G is finite, then the following conditions are equivalent.

• KG is a centrally essential ring.
• Qcl(KG) is a centrally essential ring.
• Qmax(KG) is a centrally essential ring.

b. A ring A is called a ring with large center if any non-zero ideal of the ring A has the non-zero
intersection with the center of the ring A. In [37] [Theorem 2] is proved such that if R is a
ring with large center, then Qmax(Z(R)) ⊆ Z(Qmax(R)). Since it is clear that any centrally
essential ring is a ring with large center, the assertion of Proposition 21 remains true for the
maximal rings of fractions, as well.

4.3.2. Rings of Fractions and Semigroup Rings

In this subsection, F is a field, S is a semigroup, F is a field, and FS is the semigroup
F-algebra of the semigroup S. The centers of the semigroup S and the semigroup algebra
FS are denoted by Z(S) and Z(FS), respectively. If a = ∑ αss ∈ FS, then supp (a) = {s ∈
S | αs 6= 0}.

Remark 18.

a. A semigroup S is called a left cancellative semigroup if a = b for any a, b, c ∈ S with ca = cb.
A right cancellative semigroup is defined dually. A right and left cancellative semigroup is
called a cancellative semigroup. It is well known that a torsion cancellative semigroup is a
group, e.g., see [38]. A cancellative semigroup is embedded in the right group of fractions if
and only if the intersection of any two principal right ideals of the semigroup S is non-empty,
i.e., sS ∩ tS 6= ∅ for all s, t ∈ S (the right Öre condition). If S also satisfies the left Öre
condition which is symmetrically defined, then the group GS = SS−1 = S−1S is called the
group of fractions of the semigroup S. Any element of the group GS can be written in the form
a−1b and in the form cd−1, where a, b, c, d ∈ S.

b. We recall that the subgroup ∆(G) of the group G and properties of ∆(G) are considered in
Remark 17.

c. Let S be a cancellative semigroup and s ∈ S. If for some x ∈ S, there exists an element t ∈ S
such that xs = tx, then the element t is uniquely defined; it is denoted by sx. Then ∆(S) is the
set of elements s ∈ S such that elements sx are defined for all x ∈ S and the set {sx | x ∈ S} is
finite. If s ∈ ∆(S), then we set DS(s) = {sx | x ∈ S}. It is clear that if S is embedded in the
group of fractions GS, then for s ∈ ∆(S), the set DS(s) is embedded in the set of conjugated
elements for s in GS. If S is a cancellative semigroup, then Z(FS) is an F-subspace in FS
generated by elements of the form ∑t∈DS(s) t, where s ∈ ∆(S); see [39] [Theorem 9.10].

Proposition 22. Let S be a cancellative semigroup. If the semigroup algebra FS is a centrally
essential ring, then S = ∆(S).

Proof. Let s ∈ S. By assumption, 0 6= cs = d for some c, d ∈ Z(FS). For any y ∈ supp (d),
there exists an element x ∈ supp (c) such that xs = y. It follows from [39] [Proposition
9.2(iii)] that x, y ∈ ∆(S). In addition, ∆(S) is a right and left Öre set in S and G∆(S) =

∆(S)−1∆(S) = ∆(S)∆(S)−1 is an FC-group; see [39] [Corollary 9.6 and Proposition 9.8(iii)].
Consequently, s = x−1y, where x−1 ∈ ∆(S)−1, y ∈ ∆(S). For any t ∈ S, we have xt ∈ ∆(S).
Therefore, it follows from tx = xtt that (xt)−1t = tx−1, i.e., (xt)−1 = (x−1)t in the group
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G∆(S). Then for the element st = (x−1y)t = (x−1)tyt, there exists (a) for any t ∈ S; see [39]
[Basic property (a), p.108]. Next,

{st | t ∈ S} = {(x−1y)t | t ∈ S} = {(x−1)t | t ∈ S} · {yt | t ∈ S} =

{(xt)−1 | t ∈ S} · {yt | t ∈ S}.

The first set is finite since the set {xt | t ∈ S} is finite.It follows from y ∈ ∆(S) that the
second set is finite. Therefore, the set DS(s) is finite and s ∈ ∆(S).

Corollary 4. If FS is a centrally essential semigroup algebra of the cancellative semigroup S, then
S has the group of fractions GS.

Proof. By Proposition 22, we have S = ∆(S). Since ∆(S) is a right and left Öre set, S has
the group of fractions GS.

By Corollary 4, under the study of centrally essential semigroup algebras of can-
cellative semigroups, it is sufficient to consider semigroups S which have the group of
fractions GS.

Corollary 5. Let F be a field with char F = 0. Then any centrally essential semigroup F-algebra of
a cancellative semigroup is commutative.

Proof. The algebra FS is semiprime if and only if the algebra FGS is semiprime; see [39]
[Theorem 7.19]. It is well known that the group algebra over a field of characteristic 0 is
semiprime; e.g., see [30] [Theorem 4.2.12]. By Theorem 1, all centrally essential semiprime
rings are commutative.

Example 6. We consider the subringR of the ring M7(F) of all matrices of order 7 over a field F
of characteristic 0 consisting of matrices of the form

α a b c d e f
0 α 0 b 0 0 d
0 0 α 0 0 0 e
0 0 0 α 0 0 0
0 0 0 0 α 0 a
0 0 0 0 0 α b
0 0 0 0 0 0 α


.

Then R is a non-commutative centrally essential ring by Example 10. Let eα = E7, ea, eb, ec,
ed, ee, e f be matrices, in which only non-null entry with value 1 in places α, a, b, c, d, e, f ,
respectively. We consider the semiring S = {eα, ea, eb, ec, ed, ee, e f } ∪ {θ}, where {θ} acts as zero.
ThenR ∼= F0S, where F0S is the compressed semigroup algebra of the semigroup S over the field F.
Since FS ∼= F

⊕
F0S (see [39] [Corollary 4.9]), then FS is a centrally essential semigroup algebra

as a direct sum of centrally essential algebras.

Theorem 13.

a. Let S be a cancellative semigroup and let F be a field. The semigroup F-algebra FS is centrally
essential if and only if the group of fractions GS of the semigroup S exists and the group
algebra FGS of the group GS is a centrally essential group algebra.

b. There exist non-commutative centrally essential semigroup algebras over fields of characteristic
zero (in addition, it is known that centrally essential group algebras over fields of characteristic
0 are commutative).
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Proof.

a. Let FS be a centrally essential ring and let 0 6= a ∈ FGS, a = ∑n
i=1 αigi, where

αi ∈ F, gi ∈ GS. It is known that GS = SZ(S)−1; see [39] [Proposition 9.8(iv)].
Then a = ∑n

i=1 αisit−1
i for some si ∈ S, ti ∈ Z(S), i = 1, .

. ots, n. We set a′ =
α1s1t2

.
. otstn + .

. ots + αnsnt1
.

. otstn−1 ∈ FS. We note that a′ 6= 0; it is sufficient
to verify that s1t2

.
. otstn, .

. ots, snt1
.

. otstn−1 are distinct elements in FS. Indeed,
if sit1

.
. otst̂i

.
. otstn = sjt1

.
. otst̂j

.
. otstn for i 6= j, then we multiply this relation by

(t1
.

. otstn)−1 and obtain sit−1
i = sjt−1

j , i.e., gi = gj. This is a contradiction. By assump-
tion, 0 6= a′c′ = d′ for some c′, d′ ∈ Z(FS). Then 0 6= ac′′ = d′, where c′′ = t1

.
. otstnc′

and d′ are central elements in FS which remain central in FGS; see [39] [Corollary
9.11(i)].
Conversely, let 0 6= a ∈ FS, a = ∑ αisi, where αi ∈ F, si ∈ S. By assumption,
0 6= ac = d for some c, d ∈ Z(FGS), c = ∑n

i=1 βigi, d = ∑m
j=1 γjhj, where gi, hj ∈ GS.

Let gi = xiy−1
i , hj = zjt−1

j , xi, zj ∈ S, yi, tj ∈ Z(S), i = 1, .
. ots, n, j = 1, .

. ots, m. We
set y = y1

.
. otsyn, t = t1

.
. otstm, c′ = cyt ∈ Z(FS). Then

ac′ = (ac)yt = dyt ∈ Z(FS).

It remains to be verified that ac′ 6= 0. We have

dyt = γ1z1yt2
.

. otstm + .
. ots + γmzmyt1

.
. otstm−1.

If i 6= j and ziyt1
.

. otst̂i
.

. otstm = zjyt1
.

. otst̂j
.

. otstm, then zit−1
i = zjt−1

j and gi = gj;
this is a contradiction.

b. The assertion follows from Example 6.

Example 7. Let S = 〈x, y, z | z ∈ Z(S), z2 = 1, xy = zyx〉. It is directly verified that S
is a cancellative semigroup which has the group of fractions GS = 〈x, y, z| z ∈ Z(GS), z2 =
1, x−1y−1xy = z〉. Since z is a central involution and x2, y2 ∈ Z(GS), we have that the unique
non-trivial commutator in GS is x−1y−1xy. Therefore, the commutant G′S =< z >. We have
Z(GS) =< x2, y2, z >. Let H = G′S = {1, z}, Ĥ = 1 + z, char F = 2 and 0 6= α ∈ FGS. If
α(1 + z) = 0, then α ∈ FGS Ĥ; see [30] [Lemma 3.1.2]. Since GS is the class 2 nilpotent group,
then H ⊆ Z(GS) and for g1, g2 ∈ G we have:

[g1, g2Ĥ] = [g1, g2]Ĥ = g1g2(1− g−1
2 g−1

1 g2g1)Ĥ = 0.

Thus, α ∈ Z(FGS). If α1 = α(1 + z) 6= 0, then α1(1 + z) = 0 and α(1 + z) = α1 ∈
Z(FGS)\{0}. Consequently, the group algebra FGS is centrally essential. By Theorem 13, the semi-
group algebra FS is centrally essential, as well.

Example 8. Let S = 〈x, y, z | z ∈ Z(S), xy = zyx〉. The semigroup S has the group of fractions
GS which is a free nilpotent group of nilpotence class 2; see [39] [Example 21]. It follows known
that if the group does not contain of elements of order p, then centrally essential group algebra is
commutative; see [3] [Proposition 1]. Therefore, the group algebra FGS is not centrally essential. By
Theorem 13, the semigroup algebra FS also is not centrally essential.

Lemma 8. Let FS be a centrally essential semigroup algebra of the cancellative semigroup S. Then
for every non-zero divisor b ∈ FS, there exists a non-zero divisor z ∈ FS such that bz ∈ Z(FS).

Proof. It follows from [30] [Lemma 4.4.4] that there exists a non-zero divisor x ∈ FGS
such that bx = y ∈ Z(FGS). If x = ∑n

i=1 αisit−1
i , where αi ∈ F, si ∈ FS, ti ∈ Z(FS)

(i = 1, 2, .
. ots, n), then the element z = xt1

.
. otstn is a non-zero-divisor in FS and bz ∈

Z(FS).
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Proposition 23. If FS is a centrally essential semigroup algebra of the cancellative semigroup S,
then FS has the classical ring of fractions.

Proof. The assertion follows from Proposition 18, Lemma 8 and the property that their
left-side analogues are true.

The following theorem extends Theorem 12 to semigroup algebras of cancellative semi-
groups.

Theorem 14. A semigroup algebra of a cancellative semigroup is centrally essential if and only if it
has the right classical ring of fractions which is a centrally essential ring.

Proof. Let FS be a centrally essential ring and 0 6= as−1 ∈ Qcl(FS), where s is a non-zero
divisor in FS. Let a non-zero divisor γ ∈ FS be such that sγ = t ∈ Z(FS). Then s−1 = γt−1

in the ring Qcl(FS). By assumption, for the element aγ ∈ FS, there exist non-zero elements
c, d ∈ Z(FS) such that 0 6= (aγ)c = d ∈ Z(FS). Then

(as−1)c = (aγt−1)c = (aγc)t−1 = dt−1 6= 0,

where dt−1 ∈ Z(Qcl(FS)). Consequently, Qcl(FS) is a centrally essential ring.
Conversely, let 0 6= s ∈ FS. By assumption, there exist elements t, r ∈ Z(Qcl(FS))

such that 0 6= st = r. We note that Z(Qcl(FS)) ⊆ Qcl(Z(FS)); cf. [30] [Theorem 4.4.5].
Indeed, let ρ ∈ Z(Qcl(FS)), ρ = αβ−1, where α, β ∈ FS and β is a non-zero divisor . Then
αβ = βα and αβ−1 = β−1α. By Lemma 8, there exists a non-zero divisor γ ∈ FS such that
βγ ∈ Z(FS). By denoting ε = βγ and η = αγ, we obtain

ηε−1 = αγγ−1β−1 = αβ−1 = ρ.

In addition, ε, η ∈ Z(Qcl(FS)). By considering the above, we have t = cd−1, r = mn−1

for some c, d, m, n ∈ Z(FS). Then

s(cn) = (sc)n = (mn−1d)n = md ∈ Z(FS),

and md 6= 0, since d is a non-zero-divisor in FS.

Problem 2.

a. Is it true the assertion of Remark 17(a) provided the subgroup ∆+(G) of the group G is
infinite?

b. Is it true that every centrally essential ring has the right classical ring of fractions?
c. Is it true that a centrally essential ring with right classical ring of fractions also has the left

classical ring of fractions?

4.4. Construction of One Centrally Essential Ring

The main results of this subsection are proved in [12].
Let X be a countable set and let F = Z〈X〉 be the free ring with free generator set

X. A classical identity (in the sense of Rowen) is an identity with integral coefficients,
i.e., element of the free ring F contained in the kernel of any homomorphism from F
into the ring R. A classical identity is called a polynomial identity if it is multilinear and
has 1 as one its coefficients; a ring with polynomial identity is called a PI ring (see [40]
[Definitions 1.1.12, 1.1.17]).

Let R be a ring with center C = Z(A). An element r ∈ R is said to be algebraic
(respectively, integral) over the center if for some n ∈ N, there exist c0, .

. otscn ∈ C such
that cn is a non-zero divisor in R (respectively, invertible element in R) and

cnrn + cn−1rn−1 + .
. ots + c1r + c0 = 0. (7)
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We denote by n1(r) (respectively, n2(r)) the least integer n which satisfies this condition.
A ring R is said to be algebraic (respectively, integral) over its center if any element r ∈ R
is algebraic (respectively, integral) over its center. We set m1(R) = max{n1(r) | r ∈ R} and
m2(R) = max{n2(r) | r ∈ R}; it is possible that m1(R) = ∞, m2(R) = ∞.

Finite rings and finite-dimensional algebras over fields are examples of rings R such
that m1(R) = m2(R) < ∞.

Example 9 (Example of a Ring Which Is Algebraic over Center of the Ring and Is Not

Integral over The Center). Let R =

{(
a b
0 z

)
: a, b ∈ Q, z ∈ Z

}
. It is clear that the center of

the ring R is of the form ZE, where E is the identity matrix.

We note that the ring R is not integral over its center. Indeed, if r =
( 1

2 0
0 0

)
, then the relation

rn + cn−1rn−1 + .
. ots + c0E = 0,

where n ∈ N and c0, .
. otscn−1 ∈ Z, implies relations c0 = 0 and

− 1
2n =

cn−1

2n−1 + .
. ots +

c1

2
; this is impossible.

On the other hand, if r =
(

a b
0 z

)
∈ R, then na ∈ Z for some n ∈ N, trace (nr) = na + nz

and det(nr) = na · nz are integers. Therefore, nr is a root of the polynomial x2 − trace (nr)x +
det(nr) ∈ Z[x] by the Hamilton–Cayley theorem.

We note that classes of centrally essential rings, PI rings, and rings, which are algebraic
or integral over its center, properly contain all commutative rings.

The main result of this subsection is Theorem 16.
For the proof of Theorem 16, we need the following familiar result.

Theorem 15 ([30] [Theorem 5.3.9(ii)]). Let F be a field of characteristic p > 0. If the group
algebra FG satisfies a polynomial identity of degree d, then there exists a subgroup H in G such
that [G : H] · |H′| < g(d), where g(d) is some function integer d.

Theorem 16. For any prime integer p and every field F of characteristic p, there exists a centrally
essential F-algebra which is not a PI ring and is not algebraic over its center.

Proof. We fix a prime integer p and the field F of characteristic p. We denote by Z(G) the
center of the group G.

For any positive integer n, we construct the group G = G(n), see below. Let A = 〈a〉,
B = 〈b〉 and C = 〈c〉 be three cyclic groups such that |A| = |B| = |C| = pn. We consider the
automorphism α ∈ Aut (B× C) defined on generators by relations α(b) = bc and α(c) = c.
It is clear that αn the identity automorphism; therefore, we have such a homomorphism
ϕ : A → Aut (B× C) that ϕ(a) = α. This homomorphism corresponds to the semidirect
product G = (B× C)n A, which can be considered the group generated by elements a, b, c
which satisfy relations apn

= apn
= cpn

= 1, bc = cb, ac = ca and aba−1 = bc. It follows
from these relations that c ∈ Z(G). It is directly verified that for any integers x, y, z, x′, y′, z′,
we have

[byczax, by′cz′ ax′ ] = byaxby′ ax′ a−xb−ya−x′b−y′

= by(axby′ a−x)(ax′b−ya−x′)b−y′ = (8)

= by(by′cxy′)(b−yc−yx′)b−y′ = cxy′−yx′ .

Therefore, Z(G) = G′ = 〈c〉 and G is a group of nilpotence class 2.
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Now let H be any subgroup of the group G. We prove that

[G : H] · |H′| ≥ pn. (9)

We note that [G : HZ(G)] ≤ [G : H] and (HZ(G))′ = H′; consequently, it is sufficient
to prove the inequality (9) in the case where H ⊇ Z(G). We set Ḡ = G/Z(G) and denote
by ā, b̄, H̄ the images a, b, H under the canonical homomorphism G onto the group Ḡ. We
also set B̄ = 〈b̄〉. We have [G : H] = [Ḡ : H̄]. It follows from the standard isomorphism
(H̄B̄)/B̄ ∼= H̄/(H̄ ∩ B̄) that H̄/(H̄ ∩ B̄) is a cyclic group which is isomorphic to some
subgroup of the group 〈ā〉. The group H̄ ∩ B̄ is cyclic, as well. Consequently, the group
H̄ is generated by two elements of the form b̄pm

and āpk
b̄l for some non-negative integers

k, l, m. Therefore,

[Ḡ : H̄] = [Ḡ : H̄B̄][H̄B̄ : H̄] = [〈ā〉 : 〈āpk 〉][〈b̄〉 : 〈b̄pm〉] =

pk pm = pm+k.

If m + k ≥ n, then the inequality (9) holds. If m + k < n, then it follows from
(8) and the property that elements apk

bl and bpm
are contained in the subgroup H, that

[apk
bl , bpm

] = cpm+k ∈ H′. Therefore, |H′| ≥ |〈cpm+k 〉| = pn−m−k and we have

[G : H] · |H′| ≥ pm+k · pn−m−k = pn,

i.e., (9) holds in this case.
Now it is sufficient to take the direct product of the group algebras FG(n), n ∈ N,

as the ring R. We note that the direct product of any set of rings is centrally essential if and
only if every factor is a centrally essential ring. Therefore, ring R is centrally essential by
Theorem 11(b). However, if algebra R satisfies some polynomial identity of degree d, then
for any n ∈ N, the inequality pn < g(d) follows from (9) and Theorem 15; this is impossible.

Now we prove that the constructed ring is not algebraic over its center.
It is well known (e.g., see [40] [Proposition 1.1.47] or [41]) [Lemma 5.2.6] that R satisfies

the polynomial identity of degree d(m) =
m(m + 1)

2
+ m provided m1(R) = m < ∞.

We note that for any m ∈ N, there exists an integer nm such that pnm > g(d(m));
in addition, we can take integers n1, n2, .

. ots such that these integers form an ascending
sequence. By the definition of d(m), there exists an element r′m ∈ FG(nm) which does
not satisfy any relation of the form (7) of degree m. Now we consider the element r =

∏∞
n=1 rn ∈ ∏∞

n=1 FG(n), where rn ∈ FG(n), rn = r′m provides n = nm for some m ∈ N and
rn = 0 otherwise. It is clear that if r satisfies to some relation of the form (7) of degree m,
then every element rn satisfies the relation of the same degree; this is impossible by the
choice of the element r′m.

4.5. Centrally Essential Rings R with Non-Commutative R/J(R)

Proposition 24. Let {Rα}α∈A be an arbitrary set of rings, R = ∏α∈A Rα, and let f (x1, .
. ots, xn)

belong to the free ring Z〈X〉 with countable set of free generators. If for any m ∈ N, there exists in-
finitely many subscripts α ∈ A such that the ring Rα does not satisfy the identity f (x1, .

. ots, xn)m,
then the ring R/K(R) does not satisfy the identity f (x1, .

. ots, xn).

Proof. By assumption, for any m ∈ N, there exists a subscript α = αm ∈ A such that
f (r(m)

1 , .
. ots, r(m)

n )m 6= 0 for some r(m)
1 , .

. ots, r(m)
n ∈ Rα and all subscripts αm, m ∈ N can be

chosen pairwise distinct.
For any i = 1, .

. ots, n, we set si = ∏α∈A s(i)α , where

s(i)α =

{
r(m)

i for α = αm for some m ∈ N,
0, otherwise.

(10)
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Then f (s1, .
. ots, sn) = ∏α∈A f (s(1)α , .

. ots, s(n)α ). It follows from (10) that for any
m ∈ N, there exists a subscript α ∈ A such that f (s(1)α , .

. ots, s(n)α )m 6= 0; therefore,
f (s1, .

. ots, sn)m 6= 0 and, consequently, f (s1, .
. ots, sn) /∈ K(R).

Proposition 25. Under the conditions of Proposition 24, the ring R[t]/J(R[t]) does not satisfy
the identity f (x1, .

. ots, xn).

Proof. For an arbitrary ring R, it follows from the Amitsur theorem [42] that J(R[t]) = I[t]
for some nil ideal I of ring R. Therefore, we have J(R[t]) ⊆ K(R)[t]. However, for our
purposes, it is sufficient to use the following elementary remark: if r ∈ J(R[t]) ∩ R, then
the element 1− rt is invertible. We write (1− rt)(a0 + a1t + a2t2 + .

. ots + amtm) = 1 and
compare coefficients of degrees t. We obtain that a0 = 1, ai = ri for i = 1, .

. ots, m and
rm+1 = 0, i.e., r is a nilpotent element. Therefore, R ∩ J(R[t]) ⊆ K(R). However, the ring
R/K(R) does not satisfy the identity f (x1, .

. ots, xn). Therefore, the ring R[t]/J(R[t]) does
not satisfy this identity.

We fix a prime integer p and the field F of characteristic p. Next, let Z(G) be the center
of the group G.

In the proof of Theorem 17 below, the results on centrally essential group rings of
Section 4.2 are used for constructing a centrally essential ring R such that the rings R/J(R)
and R/N(R) are not PI rings (and, in particular, R/J(R) and R/N(R) are not commutative).

Theorem 17. There exists a centrally essential ring R such that the ring R/J(R) is not a PI ring.
Consequently, the ring R/N(R) is not a PI ring, as well; in particular, the rings R/J(R) and
R/N(R) are not commutative.

Proof. We use the sequence of rings from Theorem 16.
We note that a direct product of any set of rings is centrally essential if and only

if every direct factors of the product is a centrally essential ring. Therefore, the ring
R = ∏n∈N FG(n) is centrally essential by the first assertion of Theorem 16.

For any polynomial identity f (x1, .
. ots, xn) of degree d and every integer m ∈ N,

there exists an infinite set of integers k ∈ N such that the identity f (x1, .
. ots, xn)m does not

hold in the ring FG(k). If the ring FG(k) satisfies the identity f (x1, .
. ots, xn)m, then it also

satisfies the polynomial identity of degree dm obtained by the linearization of this identity.
By the second assertion of Theorem 16, this is impossible for infinite sets of integers k. It
follows from Proposition 25 that R[t]/J(R[t]) is not a PI ring.

It remains to be noted that the polynomial ring in one variable over a centrally essential
ring is centrally essential by Remark 13c.

4.6. Local Sublgebras of Triangular Algebras

This subsection is based on [5]. In this subsection, we consider not necessarily unital
rings and study local centrally essential subalgebras of the algebra Tn(F) of all upper
triangular matrices, where F is a field of characteristic 6= 2. Such subalgebras are of interest,
since, for F = Q, they are quasi-endomorphism algebras of strongly indecomposable
torsion-free Abelian groups of finite rank n. Quasi-endomorphism algebras of all such
groups are local matrix subalgebras of algebra Mn(Q) of all matrices of order n over a field
Q, e.g., see [28] [Chapter I, §5].

We note that the algebra QE is the quasi-endomorphism algebra of a strongly inde-
composable Abelian torsion-free group of prime rank p if and only if QE is isomorphic
to a local subalgebra of the algebra Tp(Q). Indeed, QE/J(QE) ∼= Q in this case; see [43]
[Theorem 4.4.12], where J(QE) is the Jacobson radical; it is nilpotent, since QE Artinian. It
follows from the Weddenburn–Malcev theorem (for example, see [44] [Theorem 6.2.1]) that
QE ∼= QEp

⊕
J(QE), where Ep is the identity matrix. It is known that every nilpotent sub-

algebra of the matrix algebra Mn(F) over an arbitrary field F is transformed by conjugation
into nil-triangular subalgebra; see [45] [Chapter 2, Theorem 6]. Since diagonal matrices
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of a local matrix algebra have equal elements on the main diagonal, they are transformed
to themselves under conjugation. Consequently, quasi-endomorphism algebras of such
Abelian groups are realized as matrix subalgebras if and only if these subalgebras are
conjugated with some local subalgebra of the algebra Tp(Q). Necessary information on
Abelian groups is contained in [27,28].

Let F be a field and let A be a finite-dimensional F-algebra. For the nil-algebra A,
the maximal nilpotence index ν(A) of its elements is called the nil-index. If Ak = (0) and
Ak−1 6= (0), then k is the nilpotence index of the algebra A, and this algebra is called an
algebra of nilpotence index k.

Next, A denotes a local subalgebra of the algebra Tn(F) and Nn(F) denotes the subal-
gebra of nilpotent matrices in A (i.e., algebra of properly upper triangular matrices). We
note that any matrix A ∈ A is of the form

A =


λ a12

.
. ots a1n

0 λ
.

. ots a2n
...

...
. . .

...
0 0 .

. ots λ

.

We denote by Eij the matrix unit, i.e., the matrix with 1 on the position (i, j) and zeros
on remaining positions; Ek denotes the identity k× k matrix. For a subset S of a vector
space, the linear hull of S is denoted by 〈S〉.

Proposition 26. Let A be a local subalgebra of the algebra Tn(F) with Jacobson radical J(A). The
algebra A is centrally essential if and only if J(A) is a centrally essential algebra.

Proof. Let we have a matrix A ∈ J(A) with A /∈ Z(J(A)). Since A is a centrally essential
algebra, there exists a matrix B ∈ Z(A) such that 0 6= AB = C ∈ Z(A). Since J(A) is an
ideal, we have C ∈ Z(J(A)). If B /∈ J(A), then A = CB−1 ∈ Z(J(A)); this contradicts the
choice of the matrix A.

Conversely, let A = FEn
⊕

J(A). Since FEn ⊂ Z(A), we have

Z(J(A)) ⊂ Z(A). (11)

If 0 6= A ∈ A and A ∈ Z(A), then 0 6= AEn ∈ Z(A). Let A /∈ Z(A) and A ∈ J(A).
Then there exists a matrix B ∈ Z(J(A)) such that 0 6= AB = C ∈ Z(J(A)). It follows from
relation (11) that B ∈ Z(A) and C ∈ Z(A).

Let A /∈ J(A). Then A = A′ + A′′, where 0 6= A′ ∈ FEn, A′′ ∈ J(A). If A′′ = 0, then
A ∈ Z(A). Otherwise, 0 6= A′′B ∈ Z(J(A)) for some B ∈ Z(J(A)). Then

AB = A′B + A′′B = BA′ + BA′′ = BA.

Since A′B, A′′B ∈ Z(J(A)), we have AB ∈ Z(J(A)) ⊂ Z(A). We note that AB 6= 0,
since the matrix A is invertible.

It follows from Proposition 26 that the problem of constructing local centrally essential
subalgebras of the algebra Tn(F) is equivalent to the problem of constructing centrally
essential subalgebras of the algebra Nn(F).

Let A be a subalgebra of the algebra Nn(F) of nilpotence index n. We assume that
ν(A) = n. There exists a matrix A ∈ A such that An−1 6= 0. We transform A to the Jordan
normal form,

A = E12 + E23 +
.

. ots + E(n−1)n,

and pass to the corresponding conjugated subalgebra Ac. We denote by Cen(A) the
centralizer of the matrix A in Ac. Since the minimal polynomial of the matrix A coincides
with its characteristic polynomial, we have Cen(A) = F[A], where F[A] is the ring of
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all matrices which can be presented in the form f (A), f (x) ∈ F[x]; see [45] [Chapter 1,
Theorem 5]. For B ∈ Cen(A), we have

B = f (A) = α0En + α1 A + .
. ots + αn−1 An−1.

In addition, α0 = 0, since the matrix B is nilpotent.

Remark 19. If Z(Ac) = Cen(A), then the algebra Ac is commutative.

Proof. Indeed, if A′ /∈ Cen(A), then AA′ 6= A′A. However, A ∈ Cen(A) = Z(Ac). This is
a contradiction.

Remark 20. Let Ac be a centrally essential algebra and Z(Ac) = 〈An−1〉. Then the algebra Ac
is commutative.

Proof. Indeed, if Ac is not commutative and the matrix A′ is not in Z(Ac), then we have
BA′ = 0 for any matrix B ∈ Z(Ac).

Remark 21. If F is a field of characteristic 6= 2, then every centrally essential subalgebra of the
algebra N3(F) is commutative.

Proof. Every matrix A ∈ N3(F) is of the form

A =

0 a b
0 0 c
0 0 0

.

Let A be a non-commutative centrally essential subalgebra of the algebra N3(F) of
nilpotence index 3. Then ν(A) = 3. Let the matrix A ∈ A have the nilpotence index 3.
We transform A to the Jordan normal form: A = E12 + E23. Now if B ∈ Cen(A), then
B = α1 A + α2 A2. We note that Z(Ac) ⊆ Cen(A); in addition, ν(Z(Ac)) = 3 by Remark 20.
However, Z(Ac) = Cen(A), and algebra Ac is commutative by Remark 19. This is a
contradiction.

Remark 22. It follows from Remark 21 that all centrally essential endomorphism rings of strongly
indecomposable Abelian torsion-free groups of rank 3 are commutative.

Proposition 27. Any centrally essential subalgebra A of the algebra N4(F) is commutative.

Proof. If the algebra A is of nilpotence index 2, then it is commutative. Let the nilpotence
index of the algebra A be equal to 4. There exists a matrix A ∈ A such that A3 6= 0. Indeed,
the algebra A contains three matrices S = (sij), T = (tij), P = (pij) with s12 6= 0, t23 6= 0,
p34 6= 0. Otherwise, the nilpotence index A is less than 4. As the required matrix, we can
take a matrix A = (aij) such that ai(i+1) 6= 0, i = 1, 2, 3. We transform A to the Jordan
normal form,

A = E12 + E23 + E34,

and pass to the corresponding conjugated subalgebra Ac. For the matrix B ∈ Cen(A),
we have

B = α1 A + α2 A2 + α3 A3,
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where α1, α2, α3 ∈ F. It follows from Remarks 19 and 20 that Z(Ac) 6= Cen(A) and
Z(Ac) 6=< A3 > if algebra Ac is not commutative. Then any matrix C ∈ Z(Ac) is of
the form

C =


0 0 c13 c14
0 0 0 c13
0 0 0 0
0 0 0 0

.

SinceAc is a centrally essential algebra, we have that for a non-zero matrix D /∈ Z(Ac),
there exists a matrix C ∈ Z(Ac) such that 0 6= DC ∈ Z(Ac). Since the matrix D is nilpotent,
we have trD = 0. In addition, Ac is local; therefore, all elements on the main diagonal of
the matrix D are equal to zero. In this case, it is directly verified that

D =


0 d12 d13 d14
0 0 d23 d24
0 0 0 d12
0 0 0 0

.

If d12 = 0 and D /∈ Z(Ac), then DC = 0 for any matrix C ∈ Z(Ac); this is a contradic-
tion. Let d12 6= 0 and DF 6= FD for some matrix F = ( fij) ∈ Ac. We take an element λ ∈ F
such that f12 = λd12. We set G = λD− F, G = (gij). Then

FG = F(λD− F) = λFD− F2,

GF = (λD− F)F = λDF− F2.

Therefore, G /∈ Z(Ac) and g12 = 0. It follows from the obtained contradiction that
algebra Ac is commutative.

Let the nilpotence index of algebra A be equal to 3. Then ν(A) = 3, i.e., A contains
a matrix A such that A2 6= 0. Indeed, we assume the contrary, A2 = 0 for all A ∈ A.
If A /∈ Z(A), then 0 6= AB ∈ Z(A) for some matrix B ∈ Z(A). Then

(A + B)2 = A2 + 2AB + B2 = 2AB = 0.

Therefore, AB = 0. This is a contradiction.
We transform the matrix A to a Jordan normal form,

A = E12 + E23.

In the corresponding conjugated subalgebra Ac, the centralizer Cen(A) consists of
matrices B of the form

B =


0 b12 b13 b14
0 0 b12 0
0 0 0 0
0 0 b43 0

; (12)

see [45] [Chapter 3, §1]. In addition, if C ∈ Z(Cen(A)), then we have

C =


0 c12 c13 0
0 0 c12 0
0 0 0 0
0 0 0 0

. (13)

Let Z(Ac) have the nilpotence index 3. Then we can take a matrix in Z(Ac) as the
matrix A; see [45] [Chapter 1, Proposition 5, Corollary]. In this case, all matrices in Ac
are contained in Cen(A). Then Ac consists of matrices of the form (12) and matrices in
Z(Ac) of the form (13). If B = (bij) /∈ Z(Ac) and b12 = 0, then BC = 0 for all C ∈ Z(Ac).
Then Ac is not a centrally essential algebra. Let b12 6= 0 and BD 6= DB for some matrix
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D = (dij) ∈ Ac. Let d12 = λb12 and F = λB− D, F = ( fij). Then f12 = 0 and F /∈ Z(Ac).
This is a contradiction.

Let Z(Ac) be of nilpotence index 2. Then for C ∈ Z(Ac), we obtain

C =


0 0 c13 0
0 0 0 0
0 0 0 0
0 0 0 0

.

It follows from relation AC = CA for A ∈ Ac that

A =


0 a12 a13 a14
0 0 a23 a24
0 0 0 0
0 a42 a43 0

.

However, AC = 0 for any matrix C ∈ Z(Ac). Consequently, if Ac is a centrally
essential algebra, then Ac is commutative.

Remark 23. In Theorem 7, it is proved that the Grassmann algebra Λ(V) over a field F of
characteristic 6= 2 is a centrally essential algebra if and only if the dimension of the space V is odd.
By considering the regular matrix representation of the algebra Λ(V), we obtain that for an odd
positive integer n > 1, there exists a non-commutative centrally essential subalgebra of the algebra
N2n(F); also see Example 11 below. Therefore, the minimal order of matrices of non-commutative
centrally essential Grassmann of the algebra is equal to 8.

We recall that for a right ideal I of the ring R, any right ideal J in R which is maximal
with respect to the property I ∩ J = 0, is said to be ∩-complement for I.

Example 10. There exists a non-commutative centrally essential algebra of 7× 7 matrices which
has a closed right ideal which is not an ideal.

We consider the subalgebra A in N7(F) consisting of matrices A of the form

A =



0 a b c d e f
0 0 0 b 0 0 d
0 0 0 0 0 0 e
0 0 0 0 0 0 0
0 0 0 0 0 0 a
0 0 0 0 0 0 b
0 0 0 0 0 0 0


.

Let for A′ ∈ A, we have a′ = a + 1 and the remaining components coincide with the
corresponding components of the matrix A. Then AA′ 6= A′A if a 6= 0 and b 6= 0. Therefore,
the algebra A is not commutative. It is easy to see that Z(A) consists of matrices C of the form

C =



0 0 0 c d e f
0 0 0 0 0 0 d
0 0 0 0 0 0 e
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

If 0 6= A /∈ Z(A), then 0 6= AC ∈ Z(A) for some matrix C ∈ Z(A). Consequently, A is a
centrally essential algebra.
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We consider the right ideal I in A consisting of matrices of the form

B =



0 0 b 0 0 0 f
0 0 0 b 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 b
0 0 0 0 0 0 0


.

It is directly verified that I is not an ideal of A. In addition, I is a closed right ideal. Indeed,
the ideal of A, which has only the element c as a non-zero component, is a ∩-complement for I.

At the same time, the closed left ideal J in A whose elements are matrices

D =



0 a 0 0 0 0 f
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 a
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

is not an ideal. The ideal, which has only element c as the non-zero component, is a ∩-complement,
also for J.

Theorem 18. For any field F of characteristic 6= 2 and an arbitrary positive integer n ≥ 7, there
exists a local non-commutative centrally essential subalgebra of the algebra Tn(F) of the upper
triangular n× n matrices.

Proof. In Nn(F), we consider the subalgebra A of matrices A of the form

A =



0 a12 a13 a14 a15
.

. ots a1n−2 a1n−1 a1n
0 0 0 a13 0 .

. ots 0 0 a1 n−2
0 0 0 0 0 .

. ots 0 0 a1 n−1
0 0 0 0 0 .

. ots 0 0 0
.

. ots .
. ots .

. ots .
. ots .

. ots .
. ots .

. ots .
. ots .

. ots
0 0 0 0 0 .

. ots 0 0 0
0 0 0 0 0 .

. ots 0 0 a12
0 0 0 0 0 .

. ots 0 0 a13
0 0 0 0 0 .

. ots 0 0 0


.

We note that the algebra A is not commutative; also see Example 10. If B ∈ Z(A), then

B =



0 0 0 b14 b15
.

. ots b1n−2 b1n−1 b1n
0 0 0 0 0 .

. ots 0 0 b1n−2
0 0 0 0 0 .

. ots 0 0 b1n−1
0 0 0 0 0 .

. ots 0 0 0
.

. ots .
. ots .

. ots .
. ots .

. ots .
. ots .

. ots .
. ots .

. ots .
. ots

0 0 0 0 0 .
. ots 0 0 0

.

For A = (aij) /∈ Z(A), we have a12 6= 0, a13 6= 0. Let B = (bij) ∈ Z(A) and b1n−2 =
a12, b1n−1 = a13. Then 0 6= AB ∈ Z(A). Indeed, let AB = C = (cij), BA = D = (dij). Then
cij = dij = 0 for all i 6= 1, j 6= n. In addition, c1n = d1n = a2

12 + a2
13. Therefore, A is a

centrally essential algebra.
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4.7. Endomorphism Rings of Abelian Groups

In this subsection, we study Abelian groups A with centrally essential ring, and
endomorphism ring End A. The subsection is based on [1].

We denote by End A the endomorphism ring of an Abelian group A. If A =
⊕

p∈P Ap
is a decomposition of a torsion Abelian group A into a direct sum of p-components, then
supp A = {p ∈ P | Ap 6= 0}. We use the following notation: Zpk (respectively, Zpk ) is

the residue ring (respectively, the additive group modulo pk); Q (respectively, Q) is the
ring (respectively, the additive group) of rational numbers; Zp∞ is a quasi-cyclic Abelian
p-group; Ẑp is the ring of p-adic integers.

An Abelian group A is said to be divisible if nA = A for any positive integer n.
An Abelian group is said to be reduced if it does not contain non-zero divisible subgroups
and non-reduced otherwise.

A subgroup B of an Abelian group A is said to be pure if the equation nx = b ∈ B,
which is solvable in the group A, also is solvable in B.

Remark 24. Let A be an Abelian group which is either a torsion group or a non-reduced group
and let the endomorphism ring End A be centrally essential. We prove below that the ring End A is
commutative. Therefore, only reduced torsion-free groups and reduced mixed groups are of interest
under the study of Abelian groups with non-commutative centrally essential endomorphism rings.

Theorem 20(c) below contains an example of an Abelian torsion-free group of finite rank with
centrally essential non-commutative ring endomorphism ring. In Example 13 below, we give other
examples of non-commutative centrally essential endomorphism rings of some Abelian torsion-free
groups of infinite rank.

Let A be an Abelian torsion-free group. A pseudo-socle PSoc A of the group A is the
pure subgroup of the group A generated by all its minimal pure fully invariant subgroups.

Lemma 9. Let A be a module and let A =
⊕

i∈I Ai be the direct decomposition of the module A.
The endomorphism ring EndA is centrally essential if and only if for every i ∈ I, all rings EndAi
are centrally essential and all Ai are fully invariant submodules in A.

Proof. Let End A = E be a centrally essential ring. If Ai is not a fully invariant submodule
for some i ∈ I, then there exists a subscript j ∈ I, j 6= i, such that Hom (Ai, Aj) = ejEei 6=
0, where ei and ej are projections from the module A onto the submodules Ai and Aj,
respectively. In addition,

ei · ejEei = 0 6= ejEei = ejEei · ei,

i.e., the idempotent ei is not central; this contradicts Proposition 3
If Ai is a fully invariant submodule in A, i ∈ I, then End A ∼= End Ai × End Ai, where

Ai is a complement direct summand for Ai. It is clear that if the ring End Ai is not centrally
essential, then and End A is not centrally essential.

We assume that for any i ∈ I, the ring EndAi is centrally essential and Ai is a fully
invariant submodule in A. Then End A ∼= ∏i∈I End Ai and all rings End Ai are centrally
essential. It is clear that End A is centrally essential, as well.

Lemma 10. For a divisible Abelian group A, the endomorphism ring of A is centrally essential if
and only if A ∼= Q or A ∼= Zp∞ .

Proof. Let A = F(A)
⊕

T(A), where 0 6= F(A) is the torsion-free part and 0 6= T(A) is the
torsion part of the group A. Then the subgroup F(A) in A is not fully invariant (see [27]
[Theorem 7.2.3]) and, by Lemma 9, the ring End A is not centrally essential. Hypothetically,
F(A) or T(A) is the direct sum of groups Z∞

p or Q. It is clear that if the number of summands
exceeds 1, then End A has a non-central idempotent; this is a contradiction.
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Let A =
⊕

p∈P Ap be the decomposition of the torsion Abelian group A into a direct
sum of primary components of A. It follows from of Lemma 9 that End A is a centrally
essential ring if and only if every ring End Ap is centrally essential.

Lemma 11. The endomorphism ring of a primary Abelian group Ap is centrally essential if and
only if Ap ∼= Zpk or Ap ∼= Zp∞ .

Proof. If the group Ap is not indecomposable, then it has a cocyclic direct summand;
see [27] [Corollary 5.2.3]. By considering [27] [Theorems 7.1.7–7.2.3], we see that this
summand and complement summands of it are fully invariant in A. Consequently, Ap ∼=
Zpk or Ap ∼= Zp∞ . The converse is obvious, since the rings Zpk and Ẑp are commutative.

Theorem 19. Let A = D(A)
⊕

R(A) be a non-reduced Abelian group, where 0 6= D(A) and 0 6=
R(A) are the divisible part and the reduced part of the group A, respectively. The endomorphism ring
of the group A is centrally essential if and only if A = D(A)

⊕
R(A), where R(A) =

⊕
p∈P′ Zpk

and D(A) ∼= Q or D(A) ∼=
⊕

p∈P′′ Zp∞ ; P′, P′′ are subsets of distinct prime numbers with
P′ ∩ P′′ = ∅.

Proof. Let End A be a centrally essential ring. We verify that D(A) and R(A) are fully
invariant of the subgroup in A. Indeed, it is well known that Hom (D(A), R(A)) = 0.
If R(A) is a torsion-free group, then Hom (R(A), D(A)) 6= 0 (see [27] [Theorem 7.2.3]); this
contradicts Lemma 9. In addition, it is clear that Hom (R(A), D(A)) 6= 0 if R(A), D(A) are
torsion groups and supp R(A) ∩ supp D(A) 6= ∅. It follows from Lemma 11 that R(A) is
the direct sum of its cyclic p-components and it follows from Lemma 10 that D(A) ∼= Q or
D(A) ∼=

⊕
p∈P Zp∞ .

The converse assertion follows from Lemmas 9–11.

Corollary 6. The endomorphism ring of a non-reduced Abelian group is centrally essential if
and only if the ring is commutative. In other words, only reduced Abelian groups can have non-
commutative centrally essential endomorphism rings.

Proof. Indeed, it follows from Theorem 19 that the centrally essential endomorphism ring
of an arbitrary non-reduced Abelian group is a direct product of rings which can be only of
the ring Zpk , Q and Ẑp.

Let A and B be two Abelian torsion-free groups. One says that A is quasi-contained
in B if nA ⊆ B for some positive integer n. If A is quasi-contained in B and B is quasi-
contained in A (i.e., if nA ⊆ B and mB ⊆ A for some n, m ∈ N), then one says that
A is quasi-equal to B (one writes A .

= B). A quasi-relation A .
=
⊕

i∈I Ai is called a
quasi-decomposition (or a quasi-direct decomposition) of the Abelian group A; these sub-
groups Ai are called quasi-summands of the group A. If the group A does not have
non-trivial quasi-decompositions, then A is said to be strongly indecomposable. The
ring Q ⊗ End A is called the quasi-endomorphism ring of the group A. It is denoted
by QEnd A; see details in [28] [Chapter I, §5]. Elements of the ring Q⊗ End A are called
quasi-endomorphisms of the group A. We note that

QEnd A = {α ∈ EndQ(Q⊗ A) | (∃n ∈ N)(nα ∈ End A)}.

It is well known ([28] [Proposition 5.2]) that the correspondence

A .
= e1 A

⊕ .
. ots

⊕
ek A→ QEnd A =

= QEnd Ae1
⊕ .

. ots
⊕

QEnd Aek
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between finite quasi-decompositions of the torsion-free group A and finite decompositions
of the ring QEnd A in direct sum of left ideals, where {ei | i = 1, .

. ots, k} is a complete
orthogonal system idempotent of the ring QEnd A, is one to one.

Proposition 28. For an Abelian torsion-free group A, the endomorphism ring E of A is centrally
essential if and only if the quasi-endomorphism ring QE of A is centrally essential.

Proof. Let 0 6= ã ∈ QE. For some n ∈ N, we have nã = a ∈ E and there exist x, y ∈ Z(E)

with ax = y 6= 0. In this case, ãx̃ = ỹ, where x̃ = x, ỹ =
1
n
· y ∈ Z(QE), i.e., QE is a centrally

essential ring.
Conversely, for every 0 6= a ∈ E, there exist non-zero x̃, ỹ ∈ Z(QE) with ax̃ = ỹ.

In addition, there exist n, m ∈ N such that nx̃ ∈ Z(E) and mỹ ∈ Z(E). Then ax = y, where
x = mnx̃, y = mnỹ ∈ Z(E).

Let A .
=
⊕n

i=1 Ai = A′ be a decomposition of the Abelian torsion-free group A of finite
rank into a quasi-direct sum of strongly indecomposable groups (e.g., see [28] [Theorem
5.5]). By using Lemma 9 and Proposition 28, we obtain that the ring End A is centrally
essential if and only if all subgroups Ai are fully invariant in A′, and every ring End Ai
is centrally essential. Therefore, the problem of describing Abelian torsion-free groups of
finite rank with centrally essential endomorphism rings is reduced to a similar problem for
strongly indecomposable groups.

Proposition 29. Let A be a strongly indecomposable Abelian group and A = PSoc A. If the ring
End A is centrally essential, then the ring End A is commutative.

Proof. If A = PSoc A, then End A is a semiprime ring (e.g., see [28] [Theorem 5.11]). By
Theorem 1, the ring End A is commutative.

Example 11. We take centrally essential endomorphism rings of strongly indecomposable Abelian
torsion-free groups of rank 2 and 3.

If A is a strongly indecomposable group of rank 2, then the ring End A is commutative (e.g.,
see [43] [Theorem 4.4.2]). Consequently, End A is a centrally essential ring. Let A be a strongly
indecomposable group of rank 3. Then the algebra QEnd A is isomorphic to one of the following
Q-algebras ([46] [Theorem 2]):

K ∼=


x 0 z

0 x 0
0 0 x

∣∣∣∣∣∣x, z ∈ Q

, R ∼=


x y z

0 x 0
0 0 x

∣∣∣∣∣∣x, y, z ∈ Q

,

S ∼=


x y z

0 x ky
0 0 x

∣∣∣∣∣∣x, y, z ∈ Q, 0 6= k ∈ Q, k = const

,

T ∼=


x y z

0 x t
0 0 x

∣∣∣∣∣∣x, y, z, t ∈ Q

.

The rings K, R, S are commutative; consequently, they are centrally essential. The ring T is
not commutative (in addition, PSoc A has the rank 1). We have

J(T) =


0 y z

0 0 t
0 0 0

∣∣∣∣∣∣y, z, t ∈ Q

,
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Z(T) =


x 0 z

0 x 0
0 0 x

∣∣∣∣∣∣x, z ∈ Q

,

M =


0 0 0

0 0 t
0 0 0

∣∣∣∣∣∣t ∈ Q

,

where M is a minimal right ideal of the ring T. We note that the ring T/J(T) is commutative but
Z(T) ∩M = 0. It follows from Remark 25(a) that the ring T is not centrally essential. As a result,
we obtain that endomorphism rings of strongly indecomposable groups of rank 2 or 3 are centrally
essential if and only if they are commutative.

Remark 25. Let R be a local Artinian ring with center Z(R) = C, and R is not a division ring.

a. If R is centrally essential, then R/J(R) is commutative and C ∩M 6= 0 for every minimal
ideal M.

b. If R/J(R) is commutative, Soc (RC) = Soc (RR) and C ∩M 6= 0 for every minimal ideal
M, then R is centrally essential.

Proof.

a. Let R be centrally essential. By Theorem 2, the ring R/J(R) is commutative. Since R
is Artinian, the ideal J(R) is nilpotent; let k be the nilpotence index J(R). We note that
if M is a minimal ideal of R, then MJ(R) = 0.
We assume that C ∩M = 0 for some minimal ideal M. By assumption, for 0 6= a ∈ M,
there exist x, y ∈ Z(R) such that ax = y 6= 0. Since x /∈ J(R) (otherwise ax = 0),
the element x is invertible in R and a = x−1y ∈ C; this is a contradiction.

b. Let C ∩M 6= 0 for every minimal ideal M. We verify that M ⊆ C. Let C ∩M = K.
By assumption, R/J(R) is commutative. Therefore, rs− sr ∈ J(R) for all r, s ∈ R. Then
k(rs− sr) = 0 for every k ∈ K. In addition, since k ∈ C, we have (kr)s = ksr = s(kr)
and kr ∈ C. Similarly, rk ∈ C. In addition, kr ∈ M and rk ∈ M. Therefore, K is an
ideal. Since the ideal M is minimal, we have that K = M or K = 0. However, K 6= 0,
whence K = M and M ⊂ C. Therefore, Soc RC = Soc RR ⊆ C. By Theorem 1.4.1(b),
the ring R is centrally essential.

Example 12. Let V be a vector Q-space with basis e1, e2, e3 and let Λ(V) be the Grassmann algebra
of the space V, i.e., Λ(V) is an algebra with operation ∧, generators e1, e2, e3 and defining relations

ei ∧ ej + ej ∧ ei = 0 for all i, j = 1, 2, 3.

Then Λ(V) is a Q-algebra of dimension 8 with basis

{1, e1, e2, e3, e1 ∧ e2, e2 ∧ e3, e1 ∧ e3, e1 ∧ e2 ∧ e3}

and Λ(V) is a non-commutative centrally essential ring; see Example 2. We consider the regular
representation Λ(V). If x ∈ Λ(V) and

x = q0 · 1 + q1e1 + q2e2 + q3e3 + q4e1 ∧ e2 + q5e2 ∧ e3 + q6e1 ∧ e3 + q7e1 ∧ e2 ∧ e3,
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then the matrix Ax ∈ Mat8(Q) is of the form

q0 q1 q2 q3 q4 q5 q6 q7
0 q0 0 0 −q2 0 −q3 q5
0 0 q0 0 q1 −q3 0 −q6
0 0 0 q0 0 q2 q1 q4
0 0 0 0 q0 0 0 q3
0 0 0 0 0 q0 0 q1
0 0 0 0 0 0 q0 −q2
0 0 0 0 0 0 0 q0


.

We denote by R the corresponding subalgebra in Mat8(Q). It is clear that the radical J(R)
consists of properly upper triangular matrices in R and Ax ∈ Z(R) if and only if q1 = q2 = q3 = 0.
In addition, Soc RR = {Ax = (aij) ∈ R | aij = 0, i 6= 1, j 6= 8} and Soc RC = {Ax = (aij) ∈
Z(R) | aii = 0}. Since Soc (RC) 6= Soc RR, the corresponding condition of Remark 25(b) is
not necessary.

Theorem 20. Let A be a strongly indecomposable Abelian torsion-free group of finite rank, QEnd A
be the quasi-endomorphism algebra, and let A 6= PSoc A.

a. If QEnd A is a centrally essential ring, then the ring QEnd A/J(QEnd A) is commutative
and Z(QEnd A) ∩M 6= 0 for every minimal right ideal M of the ring QEnd A.

b. Let the ring QEnd A/J(QEnd A) be commutative,

Soc (QEnd AQEnd A) = Soc (QEnd AZ(QEnd A))

and Z(QEnd A) ∩M 6= 0 for every minimal right ideal M of the ring QEnd A. Then the
ring QEnd A is centrally essential.

c. Let n > 1 be an odd integer. There exists a strongly indecomposable Abelian torsion-free
group A(n) of rank 2n such that its endomorphism ring is a non-commutative centrally
essential ring.

Proof.

a,b. It is known that the ring QEnd A is a local Artinian ring (e.g., see [28] [Corollary 5.3]).
It remains to use Remark 25.

c. By Theorem 7, the Grassmann algebra Λ(V) over a field F of characteristic 0 or p 6= 2
is a centrally essential ring if and only if the dimension of the space V is odd. We set
F = Q. It is known (e.g., see [47]) that every Q-algebra of dimension n can be realized
as the quasi-endomorphism ring of an Abelian torsion-free group of rank n. Therefore,
we consider Example 25 and Proposition 28 and obtain the required property.

Under the conditions of Theorem 20, if the rank of the group A is square free, then
the ring QEnd A/J(QEnd A) is commutative [43] [Lemma 4.2.1]. By considering Proposi-
tion 28, we obtain Corollary 7.

Corollary 7. Let A be a strongly indecomposable Abelian torsion-free group of finite rank, A 6=
PSoc A, and let the rank of the group A be square-free.

a. If the endomorphism ring End A of the group A is centrally essential, then Z(QEnd A)∩M 6= 0
for every minimal right ideal M of the ring QEnd A.

b. If for every minimal right ideal M of the ring QEnd A, we have Soc (QEnd AQEnd A) =
Soc (QEnd AZ(QEnd A)) and Z(QEnd A)∩M 6= 0, then the ring End A is centrally essential.
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Example 13. Let R = Z[x, y] be the polynomial ring in two variables x and y. We use the
construction described in [20] [Proposition 7]. We consider the ring

T(R) =


 f d1( f ) g

0 f d2( f )
0 0 f

∣∣∣∣∣∣ f , g ∈ Z[x, y]

,

where d1, d2 are two derivations of the ring Z[x, y], d1 =
∂

∂x
, d2 =

∂

∂y
. The ring T(R) is not

commutative and J(R) = e13R ⊆ Z(T(R)), where e13 is the matrix unit; ([20], Corollary 8).
If 0 6= a ∈ T(R) \ Z(T(R)), then 0 6= ae13 ∈ Z(T(R)). Therefore, T(R) is centrally essential.
Since T(R) is a countable ring with reduced additive torsion-free group, it follows from the familiar
Corner theorem (e.g., see ([28], Theorem 29.2)) that the ring T(R) contains M of Abelian groups
Ai such that End Ai

∼= T(R) and Hom (Ai, Aj) = 0 for all i 6= j, where M is an arbitrary
predetermined cardinal number; see [48,49]. We note that the endomorphism ring of a direct sum of
such groups is a non-commutative centrally essential ring, as well.

5. Distributive and Uniserial Rings
5.1. Uniserial Artinian Rings

This subsection is based on [14].
The following fact is well known and is directly verified.

Lemma 12. Let R be a ring with Jacobson radical J = J(R). If J is nilpotent of nilpotence index n,
then the following conditions are equivalent.

(a) Jk−1/Jk is a simple left R-module for all k = 1, .
. ots, n (we assume that J0 = R).

(b) R is a left uniserial, left Artinian ring.
(c) R is a local ring and J is a principal left ideal of R.

Lemma 13. Let R be a left uniserial, left Artinian ring, J = J(R) = Rπ, D = R be a division
ring, and let σ : D → D be the mapping defined by the relation

σ(r) = a, where aπ = πr. (14)

Then σ is a homomorphism from the division ring D into itself.

Proof. First, we note that the mapping σ is well defined. Indeed, the existence of the
element a from (14) follows from the property that Rπ is a two-sided ideal. If r, r′ ∈ R,
πr = aπ, πr′ = a′π, and r = r′, then (a − a′)π = π(r − r′) ∈ J2. However, J/J2 is an
one-dimensional linear space over the division ring R generated by the element π + J2;
therefore, a− a′ = 0 and a = a′.

Second, for any two elements r1, r2 ∈ R, we have

σ(r1 + r2)(π + J2) = π(r1 + r2) + J2 =
= πr1 + πr2 + J2 = (σ(r1) + σ(r2))(π + J2),

σ(r1r2)(π + J2) = πr1r2 + J2 =
= σ(r1)(πr2 + J2) = σ(r1)σ(r2)(π + J2).

Therefore, σ is a ring homomorphism.

Remark 26. Without using special links, we often use the property that for any centrally essential
local ring R, the division ring R is a field by Theorem 2. In particular, this is the case if R is a left or
right uniserial centrally essential ring.

Proposition 30. Let R be a left uniserial, left Artinian, centrally essential ring, C = Z(R), and let
J = J(R). Then the homomorphism σ from Lemma 13 is the identity automorphism.
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Proof. Let c be an element of the center of the ring R with cπ ∈ C \ {0}. Let r be any
element of the ring R. We have c = aπk + b, where b ∈ Jk+1 and a 6= 0. It follows from the
relation rc = cr that a(r− σk(r)) = 0; then we have cπ = aπk+1 + bπ and it follows from
the relation r(cπ) = (cπ)r that a(r− σk+1(r)) = 0. Since Ker (σ) = 0, it follows from the
relation σk(r) = σk+1(r) that r = σ(r).

Corollary 8. If a left uniserial, left Artinian ring R is centrally essential, then R is a right uniserial,
right Artinian ring.

Proof. If J(R) = Rπ for some element π ∈ J(R), it follows from Proposition 30 that
J(R) = πR + J(R)2 and J(R) = πR by the Nakayama lemma. It remains to be noted that
the right-sided analogue of condition c) of Lemma 12 holds.

We recall that for a ring R, we denote by `R(S) = {r ∈ R | rS = 0} the left annihilator
of an subset S of R. The right annihilator rR(S) is similarly defined.

Proposition 31. Let R be a left Artinian, left uniserial ring with center C = Z(A) and Jacob-
son radical J and let n be the nilpotence index of the ideal J. If J[n/2] ⊆ C, then the ring R is
centrally essential.

Proof. First, we note that `R(Jk) = rR(Jk) = Jn−k for any k = 0, 1, .
. ots, n. In particular,

`R(J[n/2]) ⊆ J[n/2].

Let 0 6= r ∈ R. If r ∈ J

[n
2

]
, then r ∈ C. If r 6∈ J

[n
2

]
, then it remarked above that

r 6∈ `R(J

[n
2

]
). Therefore, rJ[n/2] 6= 0 and rJ(R)

[n
2

]
⊆ J(R)[n/2] ⊆ C. In both cases, we have

rC ∩ C 6= 0.

Problem 3. Is it true that the assertion, which is converse to Proposition 31, holds?

Now we prove that there exists a non-commutative uniserial centrally essential ring.
For this purpose, we use the construction which is similar to the one described in [20].

For a field F, we recall that a derivation of F is an arbitrary endomorphism of the
additive the group (F,+) which satisfies the relation δ(ab) = aδ(b) + δ(a)b for any two
elements f , b ∈ F. General properties of derivations are given, e.g., in [50] [§II.17]. Any
field has the trivial derivation F → 0. An example of a non-trivial derivation is the ordinary
derivation on the field of rational functions.

For a ring R, we denote by [a, b] the commutator ab− ba of two elements a, b of the
ring R and we denote by [A, b] the ideal of R generated by the set {[a, b] | a ∈ A, b ∈ B},
where A, B are any two subsets of R. For any three elements a, b, c ∈ R, we have the
following well-known properties of commutators: [a, b] = −[b, a], [ab, c] = a[b, c] + [a, c]b.

Example 14. Let F be a field with non-trivial derivation δ. Then there exists a non-commutative
Artinian uniserial centrally essential ring R with R/J(R) ∼= F.

We consider a mapping f : F → M3(F) from the field F into the ring of 4× 4 matrices over F
defined by the relation

∀a ∈ F, f (a) =


a 0 0 0
0 a 0 0

δ(a) 0 a 0
0 0 0 a

.
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It is directly verified that f is a ring homomorphism. We set

x =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

.

We consider the subring R of the ring M3(F) generated by the set f (F)∪ {x}. It is easy to see
that x f (a) = f (a)x + f (δ(a))x3 for any a ∈ A. Therefore, Rx = xR, (Rx)4 = 0 and R/Rx ∼= F.
It follows from Lemma 12 that R is a uniserial Artinian ring.

Since Rx2 ⊆ Z(R), it follows from Proposition 31 that ring R is centrally essential.
Finally, if a ∈ R and δ(a) 6= 0, then [x, f (a)] = f (δ(a))x3 6= 0, therefore, ring R is not

commutative.

Proposition 32. Let R be a uniserial Artinian ring with radical J = Rπ such that R is a field and
[r, π] ∈ J2 for any r ∈ R. If ring R is not commutative, then field F has a non-trivial derivation.

Proof. Let γ : R→ R be an arbitrary mapping such that γr = r for any r ∈ R; in other words,
γ(r) is a fixed representative of the coset r + J. Without loss of generality, we can assume that
γ(0) = 0. We set Γ = γ(R). Then any element r ∈ R is uniquely represented as the sum

r =
n−1

∑
i=0

giπ
i, (15)

where gi ∈ Γ for all i = 0, 1, .
. ots, n− 1 (we assume that π0 = 1). Indeed, r− g0 ∈ J for the

unique element g0 = r. Next, if g0, .
. ots, gk−1 are already defined with s = r−∑k−1

i=0 giπ
i ∈

Jk, where 0 < k < n, then the next coefficient is uniquely defined as γ(λ) from the relation

s + Jk+1 = λ(πk + Jk+1), λ ∈ R.

For k = n− 1, we obtain the required representation.
First, we assume that π 6∈ Z(R). By (15), we have [Γ, π] 6= 0. Let n(R) be the

nilpotence index of J(R). Then [Γ, π] = Jk for some integer k with 2 ≤ k < n(R). By the
induction on the positive integer m, we prove that [Γ, πm] ⊆ Jm−1+k for any m > 0. Indeed,
this is true for m = 1 by the choice of k. Further for any g ∈ Γ, we have

[g, πm+1] = π[g, πm] + [g, π]πm ∈ J Jm−1+k + Jkπm ⊆ Jm+k.

Thus, for any g, h ∈ Γ, we have [g, [h, π]] = [g, xπk] for some x ∈ R. Therefore,

[g, [h, π]] = [g, x]πk + x[g, πk] ∈ Jπk + J2k−1 ⊆ Jk+1,

Since k ≥ 2. It follows that [hg, π] = h[g, π] + [h, π]g =

= h[g, π] + g[h, π]− [g, [h, π]] ∈ h[g, π] + g[h, π] + Jk+1. (16)

Since Jk/Jk+1 is a simple left module, it is an one-dimensional left vector space over
the field R with a basis consisting of one element v = πk + Jk+1. We define a mapping
δπ : R→ R by the rule

[γ(r), π] + Jk+1 = δπ(r)v for any r ∈ R.
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If r ∈ Rπm for some m > 0, we have that the coefficients g0, .
. ots, gm−1 of the

representation (15) are equal to 0; therefore, [r, π] = ∑n−1
i=m[gi, π]πi ∈ Jk+m. Therefore,

for any r, s ∈ R, we have

[γ(r)γ(s), π] + Jk+1 = [γ(rs), π] + Jk+1 = δπ(rs)v.

On the other hand, it follows from (16) that

[γ(r)γ(s), π] = γ(r)[γ(s), π] + [γ(r), π]γ(s) + Jk+1 =

= (rδπ(s) + sδπ(r))v;

Therefore, δπ(rs) = rδπ(s)+ sδπ(r). The relation δπ(r+ s) = δπ(r)+ δπ(s) is similarly
verified. Consequently, δπ is a non-trivial derivation of the field R.

Now we assume that π ∈ Z(R). Then [Γ, Γ] = Jk where 1 ≤ k < n(R). We choose an
element f ∈ Γ such that [Γ, f ] 6⊆ Jk+1 and define a new mapping δ f : R→ R by the rule

[γ(r), f ] + Jk+1 = δ f (r)v for any r ∈ R,

where v = πk + Jk+1. We verify that δ f is a derivation. First, we note that [J, Γ] ⊆ Jk+1,
since, for r ∈ J, we have g0 = 0 in the representation (15) and

[r, g] =
n−1

∑
i=1

[gi, g]πi ∈
n−1

∑
i=1

Jkπi = Jk+1

for any g ∈ Γ. It follows that for any r, s ∈ R, we have

[γ(r)γ(s), f ] + Jk+1 = [γ(rs), f ] + Jk+1 = δ f (rs)v.

On the other hand, for any r, s ∈ R, we have

[γ(r)γ(s), f ]=γ(r)[γ(s), f ] + [γ(r), f ]γ(s)
=γ(r)[γ(s), f ] + γ(s)[γ(r), f ]− [γ(s), [γ(r), f ]
∈γ(r)[γ(s), f ] + γ(s)[γ(r), f ] + [Γ, J]
⊆γ(r)[γ(s), f ] + γ(s)[γ(r) + Jk+1

=(rδ f (s) + sδ f (r))v.

Consequently δ f (rs) = rδ f (s) + sδ f (r). The relation δ f (r + s) = δ f (r) + δ f (s) is
similarly verified. It follows that δ f is a non-trivial derivation of the field R.

For a field F, it is well known (e.g., see [50] [§II.17]) that F does not have a non-trivial
derivation, provided that F is a separable algebraic extension of its prime subfield (all
finite fields and all fields of algebraic numbers are such fields) or F is a perfect field (i.e.,
charF = p > 0 and Fp = F).

Theorem 21. A field F does not have a non-trivial derivation if and only if any left uniserial, left
Artinian, centrally essential ring R with R/J(R) ∼= F is commutative.

Proof. Theorem 21 follows from Proposition 32 and Proposition 30.

For a ring R and any element r (respectively, a subset S) of the ring R, we set r =
r + J(R) ∈ R/J(R) (respectively, S = {s | s ∈ S}). In particular, R = R/J(R).

Theorem 22.

a. Every finite, left uniserial, centrally essential ring R is commutative.
b. There exists a non-commutative uniserial Artinian centrally essential ring.
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Proof.

a. For the finite local ring R, the division ring R is a field by the Wedderburn theorem [22]
[Theorem 3.1.1]. In addition, this field does not have a non-zero derivation. Then the
ring R is commutative by Theorem 21.

b. The assertion follows from Example 14.

5.2. Uniserial Noetherian Rings

This subsection is based on [14,16].

Remark 27.

a. It is directly verified that the ring A is a right (respectively, left) uniserial, right (respectively,
left) Noetherian ring if and only if R is a local principal right (respectively, left) ideal ring.

b. It follows from a and Theorem 1 that centrally essential uniserial Noetherian semiprime rings
coincide with commutative local principal right ideal domains.

c. There exist right uniserial, right Noetherian rings, which are neither prime rings nor right
Artinian rings, e.g., see [26] [Example 9.10(3)].

For convenience, we give brief proofs of the following two well-known assertions.

Remark 28.

a. Let A be a right uniserial ring and B a completely prime ideal of A. Then B = aB for every
a ∈ A \ B.

b. Let A be a commutative domain which has a non-zero finitely generated divisible torsion-free
A-module M. Then A is a field.

Proof.

a. Let a ∈ A \ B. Since aA 6⊆ B, we have B ⊆ aA. Therefore, for every x ∈ B, there exists
an element b ∈ A with x = ab. Since B is a completely prime ideal, b ∈ B and x ∈ aB.

b. Let us assume the contrary. Then A has a non-zero maximal ideal m and M naturally
turns into a non-zero finitely generated module over the local ring Rm with radical
J = mRm. Since the module M is divisible, we have that MJ ⊇ Mm = M and M = 0
by the Nakayama lemma. This is a contradiction.

Lemma 14. Let A be a local ring and let J(A) = πA for some element π ∈ A of nilpotence index
n (maybe, n = ∞). For any two integers k, ` and each a, b ∈ A such that k, ` ≥ 0, k + ` < n,
a ∈ πk A \ πk+1 A and b ∈ πl A \ π`+1 A, we have ab ∈ πk+`A \ πk+`+1 A.

Proof. It follows from the inclusion Aπ ⊆ πA that ab ∈ πk+`A. If πm ∈ πm+1 A for some
m ≥ 0, then it is clear that πm(1− πt) = 0 for some t ∈ A and πm = 0 since 1− πt ∈ A∗.
We set a = πkr and b = π`s for some r, s ∈ A \ J(A). Then r, s ∈ A∗, since the ring A is
local and rπ` ∈ πl A \ π`+1 A. Consequently, rπ = πr′ for some r′ ∈ A∗ and ab = πk+`r′s.
It remains to be remarked that ab 6∈ πk+`+1 A since r′s ∈ A∗ and πk+` 6= 0.

Lemma 15. A right uniserial, right Artinian, centrally essential ring is a left uniserial, left
Artinian ring.

Proof. Let A be a right uniserial, right Artinian, centrally essential ring, N = J(A), and let
n be the nilpotence index of the ideal N. If n = 1, then the ring A is commutative by
heorem 1.2.2; there is nothing to prove in this case. Any right uniserial ring is a local
ring; therefore, every element of A \ N is invertible. Let n > 1, i.e., N 6= 0. Since a right
Noetherian (e.g., a right Artinian) right uniserial ring is a principal right ideal ring, N = πA
for some element π ∈ N. There exist two elements x, y ∈ Z(A) with πx = y 6= 0. Let
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x ∈ Nk \ Nk+1 for some k, 0 ≤ k < n. Then y ∈ Nk+1, whence k + 1 < n. If [a, π] 6∈ N2,
then it follows from Lemma 14 that [a, π]x 6∈ Nk+2; consequently, [a, π]x 6= 0. However,
[a, π]x = [a, πx] = [a, y] = 0. This is a contradiction; therefore, [a, π] ∈ N2 for every a ∈ A.
Consequently, N = Aπ + N2, whence N/Aπ = N(N/aπ) = .

. ots = Nn(N/Aπ) = 0,
i.e., N = Aπ. It follows from the left-side analogue of Lemma 14 that every left ideal of the
ring A coincides with one of the ideals A, N, N2, .

. ots, Nn−1, {0}, i.e., A is a left uniserial,
left Artinian ring.

Theorem 23. For a ring A, the following conditions are equivalent.

(a) A is a right uniserial, right Noetherian, centrally essential ring.
(b) A is a left uniserial, left Noetherian, centrally essential ring.
(c) A is a commutative local principal ideal domain or a uniserial Artinian ring.

Proof. It is sufficient to prove the equivalence of conditions (a) and (c).
(c)⇒ (a). The implication is directly verified.
(a)⇒ (c). We set N = Sing AA. The ideal N is nilpotent, e.g., see [26] [9.2]. It follows

from Proposition 1(c,d) that the ideal N is completely prime and contains all zero-divisors
of the ring R and the ring A/N is a commutative domain.

Therefore, the proposition is true for N = 0. Now let N 6= 0. We denote by n the
nilpotence index of the ideal N. Then 0 6= Nn−1 ⊆ `A(N). It follows from Proposition 1(e)
that Nn−1 ⊆ Z(A). Next, for every a ∈ A \ N, we have N = aN by Remark 28(a), whence
Nn−1 = aNn−1 = Nn−1a. Consequently, Nn−1 is a divisible right (A/N)-module and
Nn−1 is a torsion-free (A/N)-module since all zero-divisors of the ring A are contained
in N. By Remark 28(b), the ring A/N is a field and each of the cyclic (A/N)-modules
(Nk−1/Nk) for k = 1, .

. ots, n is a simple module. Consequently, the right uniserial ring A
is right Artinian. By Lemma 15, A is a uniserial Artinian ring.

Example 15. Let F be a field and let D1, D2 : F → F be two derivations of the field F with
incomparable kernels (for example, we can take the field of rational functions Q(x, y) in two
independent variables as F and set D1 = ∂/∂x, D2 = ∂/∂y).

Then for every positive integer n ≥ 2, there exists a non-commutative uniserial, Artinian,
centrally essential ring A such that A/J(A) ∼= F and the nilpotence index of J(A) is equal to n.

Proof. We use a construction which is similar to the one described in [20]. Let N = 2n− 1,
R = MN(F) be the matrix ring of order N over the field F, let ei,j denote the matrix unit for
any i, j ∈ {1, .

. ots, N}, and let f : F → R be the mapping defined by the rule

f (α) = αE + D1(α)e1,N−1 + D2(α)eN−1,N

for every α ∈ F, where E is the identity matrix. Let A be the subring of the ring R generated
by the set f (F) and the matrix π = ∑n−1

i=1 e2i−1,2i+1. It is directly verified that πn = 0,
πn−1 = e1,N , f (α)π = π f (α) = απ and

[ f (α), f (β)] = (D1(α)D2(β)− D1(β)D2(α))π
n−1

for any α, β ∈ F. It follows from these relations that πA = Aπ = J(A), J(A)k = πk A =
Aπk for all k = 1, .

. ots, n− 1 and πA ⊆ Z(A). It is clear that A is a uniserial Artinian
ring. If a ∈ A \ {0} and a ∈ πA, then a ∈ Z(A); otherwise, aπn−1 ∈ Z(A) \ {0} and
Xn−1 ∈ Z(A). Consequently, the ring A is centrally essential.

Finally, if α ∈ Ker D2 \Ker D1 and β ∈ Ker D1 \Ker D2, then

[ f (α), f (β)] = D1(α)D2(β)Xn−1 6= 0,

i.e., the ring A is not commutative.
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Remark 29. Until the end of Section 5.2, we assume that A is a non-simple ring and ϕ : A→ A
is an injective homomorphism from the ring A into itself such that ϕ(A \ {0}) ⊆ A∗.

We denote by Ar[[x, ϕ]] the right skew power series ring in the sense of [26] [9.8]; this
ring consists of all formal series ∑+∞

k=0 xkak, ak ∈ A, the addition of series is component-wise
and the multiplication is naturally defined with the use of the rule axk = xk ϕk(a).

Lemma 16. Let A be a non-simple ring, R = Ar[[x, ϕ]], and let I be a non-zero two-sided ideal of
R. Then I = xmB + xm+1R for some n ≥ 0 and some non-zero right ideal B of A, which is a left
ϕm(A)-module (we assume that ϕ0 is the identity mapping).

Proof. Let 0 6= I C R. Since
⋂∞

i=0 xmR = 0, there exists an integer m ≥ 0 such that I ⊆ xmR
and I 6⊆ xm+1R. Let f ∈ I \ xm+1R, then it follows from [26] [9.9(3)] (there is a misprint in
the text of [26] [9.9(3)]: the correct relation is M ⊆ N ⇔ either m > n or m = n and D ⊆ E.)
that f R = xmDR for some non-zero principal right ideal D of the ring A; in addition, we set
E = R, n = m + 1 and obtain f R ⊇ xnR. It remains to set B = {b ∈ A | xmb + xm+1R ⊆ I}.
We multiply the elements of I from the left and right by elements of the ring A and obtain
that B is a (ϕm(A), A)-sub-bimodule in A.

Lemma 17. Let A be a non-simple ring, R = Ar[[x, ϕ]], and let Z(A) 6⊆ A∗ ∪ {0}. Then
xR ∩ Z(R) = 0.

Proof. We choose a ∈ Z(A) \ (A∗ ∪ {0}). Let f = ∑∞
i=1 xi fi ∈ xR ∩ Z(R). Then it follows

from the relation [a, f ] = 0 that ϕi(a) fi = fia = a fi for any i > 0. The relation a = ϕi(a) is
impossible for i > 0, since a 6∈ A∗ ∪ {0} and the ring A is a domain; therefore, fi = 0 for all
i > 0, i.e., f = 0.

Proposition 33. Let A be a non-simple PI ring, R = Ar[[x, ϕ]], and let I be an ideal of R. Then
R/I is a PI ring if and only if I 6= 0.

Proof. Let I 6= 0. By Lemma 16, we have that I ⊇ xnR = (xR)n for some n > 0.
If f (x1, .

. ots, xt) is an admissible identity of the ring A = R/xR, then the admissible identity

f (x1, .
. ots, xt) f (xt+1, .

. ots, x2t)
.

. ots f (x(n−1)t+1, .
. ots, xnt)

holds in the ring R/I.
Let R/I be a PI ring. We have to prove that R is not a PI ring under the conditions of

the proposition. The rings A and R are domains; see [26] [9.9(1)].
We need the following well-known fact (∗); see [51] [Theorem 2].
If S is a semiprime PI ring, and I is a non-zero two-sided ideal of the ring S, then

Z(S) ∩ I 6= 0.
By applying (∗) to the proper non-zero ideal B of the ring A, we obtain that 0 6=

Z(A) ∩ B 6⊆ A∗. By Lemma 17, xR ∩ Z(R) = 0; in addition, xR is a non-zero two-sided
ideal of the semiprime ring R. We again use (∗) and see that R cannot be a PI ring.

Proposition 34. Let A be a commutative non-simple ring, R = Ar[[x, ϕ]], and let I be an ideal of
the ring R. Then the following conditions are equivalent.

(a) I ⊇ xR.
(b) R/I is a commutative ring.
(c) The ring R/I is centrally essential.

Proof. The implications (a)⇒ (b)⇒ (c) are directly verified. Let us assume that (c) holds.
Since the ring A is not simple (in the commutative case, this means that A is not a field),
we have A = Z(A) 6⊆ A∗ ∪ {0}, whence xR ∩ Z(R) = 0 by Lemma 17; this is impossible in
a centrally essential ring. Consequently, I 6= 0.
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By Lemma 16, we have I = xmB + xm+1R, where B is a non-zero ideal of the ring
A. If m = 0, then a holds. We assume that m > 0. For any element r ∈ R, we set
r̂ = r + I ∈ R̂ = R/I. Since I ⊆ xR, we can identify the elements a and â for any a ∈ A.
Then any element of the ring R̂ can be considered the sum f = f0 + x̂1 f1 +

.
. ots + x̂m fm,

where fi ∈ A, i = 0, 1, .
. ots, m, the coefficients f0, .

. ots, fm−1 are uniquely defined and
fm is determined up to a summand which is an arbitrary element of B. Let f ∈ Z(R̂).
It follows from the relation [a, f ] = 0 (where a ∈ A) that ϕi(a) fi = fia = a fi for any
i = 0, 1, .

. ots, m − 1. If a is a non-zero non-invertible element of the ring A, we obtain
a 6= ϕi(a) for i > 0, whence f1 = .

. ots = fm−1 = 0. By c), there exist two elements
c, d ∈ Z(R̂) such that x̂c = d 6= 0. We set c = c0 + x̂mcm. Then d = x̂c = x̂c0, since
x̂m+1 = 0. First, we assume that m > 1. Then it follows from the inclusion d ∈ Z(R̂)
that c0 = 0 and d = 0; this is a contradiction. Thus, m = 1. Let c = c0 + x̂c1 ∈ Z(R̂).
For b ∈ B \ {0}, it follows from the relation [c, b] = 0 that x̂(c1b− c1 ϕ(b)) = 0; therefore,
c1b− c1 ϕ(b) ∈ B and c1 ϕ(b) ∈ B and we have c1 ∈ B, since ϕ(b) is invertible, i.e., c = c0.
We assume that B is a proper ideal of the ring A. Then x̂ 6= 0 and for some c0 ∈ Z(R̂),
we have d = x̂c0 ∈ Z(R̂) \ {0}. Similar to the above case with c, it follows from the
relation [d, b] = 0 that c0 ∈ B, i.e., d = 0. This contradiction shows that B = A and
I = xA + x2R = xR.

Example 16. There exists a right uniserial, right Noetherian, non-semiprimary PI ring R̂ with
prime radical N̂ and Jacobson radical M̂ such that R̂ is not centrally essential, and R̂ is not left
Noetherian or left uniserial, R̂/N̂ is a commutative discrete valuation domain, N̂ is a minimal right
ideal, and N̂ = M̂N̂ 6= N̂M̂ = 0.

Proof. Let A be a non-simple ring and R = Ar[[x, ϕ]]. We use the example [26] [9.10],
where N = xR and 0 6= NM 6= N. Then R̂ = R/(NM) is a PI ring by Proposition 33;
however, it is not a centrally essential ring by Proposition 34.

Remark 30. With the use of the above results of Section 5.2, it is easy verified that Jn−1 ⊆ C
under the conditions of Example 16. On the other hand, the following example shows that the

inclusion J

[n
2

]
+1
⊆ C does not necessarily imply that the left uniserial, left Artinian ring R is

centrally essential.

Example 17. Let F = GF(4), F0 = GF(2) ⊆ F, and let σ : x 7→ x2 be the Frobenius automor-
phism of the field F. We consider the skew polynomial ring S = F[X, σ] and its factor ring
R = S/(X3). Then R is a left and right uniserial ring, left and right Artinian ring, J(R) is a

nilpotent ideal of nilpotence index 3, and J(R)

[
3
2

]
+1
⊆ Z(R); however, R is not centrally essential.

Proof. It is clear that F = F0[θ], where θ is a root of the irreducible polynomial t2 + t + 1 ∈
F0[t]. We denote by x the image of the variable X under the canonical homomorphism
from the ring S onto R and identify the elements of the field F with their images in R. It is
directly verified that J(R) = (x), n = 3 is the nilpotence index of the ideal J = J(R) and
the left (and right) modules J/J2 and J2 are one-dimensional vector spaces over F = R/J.
Consequently, R is a left and right uniserial, left and right Artinian ring by Lemma 12. We
consider the element r = a0 + a1x + a2x2. It follows from the relation x3 = 0 that

[r, x] = rx− xr = (a0 − σ(a0))x + (a1 − σ(a1)x2 and

[r, θ] = (a1σ(θ)− a1θ)x + (a2σ2(θ)− θa2)x2 = a1x,

since σ2 is the identity automorphism and σ(θ) = θ + 1. Therefore, Z(R) = F0 + Fx2

since x and θ generate the ring R (as a ring). It remains to be noted that Z(R)x = F0x and
F0x ∩ (F0 + Fx2) = 0.
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5.3. Rings with Flat Ideals

The results of this subsection based on [52].
For a ring R, we write w.gl.dim. R ≤ 1 if R is a ring of weak global dimension at most one,

i.e., R satisfies the following equivalent (the equivalence of the conditions is well known;
e.g., see [26] [Theorem 6.12]) conditions.

• For every finitely generated right ideal X of R and each finitely generated left ideal Y
of R, the natural group homomorphism X⊗R Y → XY is an isomorphism.

• Every finitely generated right (respectively, left) ideal of R is a flat (a right R-module
X is said to be flat if for any left R-module Y, the natural group homomorphism
X⊗Y → XY is an isomorphism) right (respectively, left) R-module.

• Every right (respectively, left) ideal of R is a flat right (respectively, left) R-module.
• Every submodule of any flat (right or left) R-module is flat.

Since every projective module is a flat module, any right or left (semi)hereditary
(a module M is said to be hereditary (respectively, semihereditary) if all submodules
(respectively, finitely generated submodules) of M are projective, the ring is of weak global
dimension, at most one. We also recall that ring R is of weak global dimension zero if
and only if R is a von Neumann regular ring, i.e., r ∈ rRr for every element r of R. Von
Neumann regular rings are widely used in mathematics; see [53,54].

Theorem 24 ([55] [Theorem]). A commutative ring R is a ring of weak global dimension of at
most one if and only if R is an arithmetical semiprime ring.

It is clear that a commutative ring is right (respectively, left) distributive if and only if
the ring is arithmetical.

Example 18. There exists a right hereditary ring R, which is neither right distributive nor
semiprime; in particular, the right hereditary ring R is of weak global dimension at most one.

Let F be a field and let R be the 5-dimensional F-algebra consisting of all 3 × 3 matri-

ces of the form

 f11 f12 f13
0 f22 0
0 0 f33

, where fij ∈ F. Ring R is not semiprime, since the set
 0 f12 f13

0 0 0
0 0 0

 is a non-zero nilpotent ideal of R. Let e11, e22 and e33 be ordinary matrix

units. The ring R is not right or left distributive since every idempotent of a right or left distributive
ring is central, see [56], but the matrix unit e11 of R is not central. To prove that the ring R is right
hereditary, it is sufficient to prove that RR is a direct sum of hereditary right ideals. We have that
RR = e11R⊕ e22R⊕ e33R, where e22R and e33R are projective simple R-modules; in particular,
e22R and e33R are hereditary R-modules. Any direct sum of hereditary modules is hereditary; see
[57] [39.7, p.332]. Therefore, it remains to show that the R-module e11R = e11F + e12F + e13F is
hereditary, which is directly verified.

The following lemma is well known, e.g., see [26] [Assertion 6.13].

Lemma 18. Let R be a ring whose principal right ideals are flat. If r and s are two elements of R
with rs = 0, then there exist two elements a, b ∈ R such that a + b = 1, ra = 0, and bs = 0.

Lemma 19. There exists a right and left uniserial prime ring R, which has a non-flat principal
right ideal.

Proof. There exists a right and left uniserial prime ring R with two non-zero elements
r, s ∈ R such that rs = 0; see [58] [p. 234, Corollary]. The uniserial ring R is local; therefore,
the non-invertible elements of R form the Jacobson radical J(R) of R. The ring R is not a
ring whose principal right ideals are flat. Indeed, let us assume the contrary. By Lemma 18,
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there exist two elements a, b ∈ R such that a + b = 1, ra = 0, and bs = 0. We have that
either aR ⊆ bR or bR ⊆ aR; in addition, aR + bR = R = Ra + Rb. Therefore, at least one of
the elements a, b of the local ring R is invertible; in particular, this invertible element is not
a right or left zero divisor. This contradicts the relations ra = 0 and bs = 0.

Lemma 20. Let R be a centrally essential ring whose principal right ideals are flat. Then the ring
R does not have non-zero nilpotent elements.

Proof. Indeed, let us assume that there exists a non-zero element r ∈ R with r2 = 0.
Since the ring R is centrally essential, there exist two non-zero central elements x, y ∈ R
with rx = y. Since r2 = 0, we have that y2 = (rx)2 = r2x2 = 0. Since y2 = 0, it
follows from Lemma 18 that there exist two elements a, b ∈ R such that a + b = 1, ry = 0,
and by = yb = 0. Then y = y(a + b) = ya + yb = 0. This is a contradiction.

Theorem 25. For a centrally essential ring R, the following conditions are equivalent.

a R is a ring of weak global dimension at most one.
b R is a right (respectively, left) distributive semiprime ring.
c R is an arithmetical semiprime ring

Proof. a⇒ b. Since R is a centrally essential ring of weak global dimension at most one,
it follows from Lemma 20 that the ring R does not have non-zero nilpotent elements.
By Theorem 1, the centrally essential semiprime ring R is commutative. By Theorem 24,
R is an arithmetical semiprime ring. Any commutative arithmetical ring is right and
left distributive.

The implication b⇒ c follows from the property that every right or left distributive
ring is arithmetical.

c⇒ a. Since R is a centrally essential semiprime ring, it follows from Theorem 1
that the ring R is commutative; in particular, R is centrally essential. In addition, R is
arithmetical. By Theorem 24, the ring R is of weak global dimension of at most one.

Remark 31. It follows from Lemma 19 that the implication b⇒ c of Theorem 25 is not true for
arbitrary rings.

Corollary 9. A ring R is a right (respectively, left) hereditary, right (respectively, left) Noetherian,
centrally essential ring if and only if R is a finite direct product of commutative Dedekind domains.
Consequently, a ring R is a right (respectively, left) hereditary, right (respectively, left) Noetherian,
indecomposable, centrally essential ring if and only if R is a commutative Dedekind domain.

Proof. Since the right or left Noetherian ring R is a finite direct product of right or left
Noetherian rings, we can assume that R is a right or left Noetherian indecomposable
ring. In this case, it well known that R is a commutative hereditary ring if and only if R
is a commutative Dedekind domain. Now we can use Theorem 25 and the well-known
property that every flat module over a Noetherian ring is projective.

5.4. Distributive Noetherian Rings

The results of this subsection are based on [59].

Proposition 35. A ring R is a right (respectively, left) distributive, right (respectively, left) Noethe-
rian, semiprime, centrally essential ring if and only if R is a finite direct product of commutative
Dedekind domains.

Consequently, a ring R is a right (respectively, left) distributive, right (respectively, left) Noethe-
rian, indecomposable, centrally essential ring if and only if R is a commutative Dedekind domain.
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Proof. The assertion follows from Corollary 9 and the following well-known property: a
commutative ring is a Dedekind domain if and only if R is a commutative distributive
Noetherian domain.

Definition 1 (The Notation .
. in Lemmas 21–23). Let A be a ring, X be a right A-module,

and let X1, X2 be two subsets in X.
We denote by (X1

.
. X2) the subset {a ∈ A | X1a ⊆ X2} of the ring A. If X2 is a submodule

in X, then (X1
.

. X2) is a right ideal of the ring A. If X1 and X2 are two submodules in X, then
(X1

.
. X2) is an ideal in A.

We use some familiar properties of distributive modules and rings. For the conve-
nience of readers, these properties are gathered in Lemmas 21–23.

Lemma 21 ([56]). Let A be a ring and let X be a distributive right A module.

a. For any two elements x, y ∈ X, there exist elements a, b ∈ A such that a + b = 1 and xaA +
ybA ⊆ xA ∩ yA. Consequently, A = (x .

. yA) + (y .
. xA) for any elements x, y ∈ X.

In particular, if xA ∩ yA = 0, then there exist elements a, b ∈ A such that a + b = 1 and
xaA = ybA = 0.

b. Hom (Y, Z) = 0 for any submodules Y, Z of the module X such that Y ∩ Z = 0.
c. All idempotents of the ring End M are central.

In particular, all idempotents of any right distributive ring are central. Therefore, the right
distributive ring A is indecomposable into the ring direct product if and only if A does not
have non-trivial idempotents.

d. If the ring A is local, then M is a uniserial module.
In particular, right distributive local rings coincide with right uniserial rings.

e. If M is a Noetherian module, then M is an invariant (a module M is said to be invariant if
every submodule of M is fully invariant in M) module.
In particular, any right distributive right Noetherian ring is right invariant.

Proof.

a. Since (x + y)A = (x + y)A ∩ xA + (x + y)A ∩ yA, there exist elements c, d ∈ A such
that x + y = xc = yd. Then x(1− c)A + y(1− d)A ∈ xA ∩ yA.
We set T = xA ∩ yA. Since (x + y)A = (x + y)A ∩ xA + (x + y)A ∩ yA, there exist
elements b, d ∈ A such that

(x + y)b ∈ xA, (x + y)d ∈ yA, x + y = (x + y)b + (x + y)d.

Therefore, yb = (x + y)b− xb ∈ T and xd = (x + y)d− yd ∈ T. We set a = 1− b and
z = a− d = 1− b− d. Then

1 = a + b, (x + y)z = (x + y)− (x + y)b− (x + y)d = 0,

xa = xd + xz = xd + (x + y)z− yz = xd− yz,

yz = −xz ∈ T, xa ∈ T.

b. Let f ∈ Hom (Y, Z), y ∈ Y and z = f (y) ∈ Z. By (a), there exists an element a ∈ A
such that

yaA + z(1− a)A ⊆ yA ∩ zA ⊆ Y ∩ Z = 0,

ya = z(1− a) = 0, z = za = f (y)a = f (ya) = f (0) = 0.

Therefore, f ≡ 0 and Hom(X, Y) = 0.
c. With the use of (b), the assertion is directly verified.
d. Let x, y ∈ X. It is sufficient to prove that the submodules xA and yA are comparable

with respect to inclusion. By (a), there exist elements a, b, c, d ∈ A such that 1 = a + b
and xaA + ybA ⊆ xA ∩ yA. Since the ring A is local and 1 = a + b, at least one of the
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right ideals aA, bA coincides with A. Therefore, at least one of inclusions xA ⊆ yA,
yA ⊆ xA holds.

e. The assertion is proved in [56].

The following Lemma 22 is a direct corollary of Lemma 21(d) and [60] [Proposition 2].

Lemma 22 ([60] [Proposition 2]). A is a right distributive, right Noetherian, semiprime ring if
and only if A is a finite direct product of right distributive, right Noetherian, right invariant domains.

Lemma 23 ([61] [Lemma 20]). Let A be a right invariant ring and let M be a distributive right
A-module.

a. A = (Y .
. X) + (X .

. Y) for any finite generated submodules X, Y of the module M.
b. For any submodule Z′ of an arbitrary finitely generated submodule Z of the module M, there

exists an ideal A′ of the ring A such that ZA′ = Z′.
c. If M is a finite generated module, then M is an invariant module.

Proof.

a. Since X + Y is a finitely generated module, there exists a positive integer n and elements
xi ∈ X, yi ∈ Y, 1 ≤ i ≤ n such that X + Y = (x1 + y1)A + · · ·+ (xn + yn)A. Since the
module M is distributive, (X + Y)

⋂
Z = (X

⋂
Z) + (Y

⋂
Z) for any submodule Z in M.

Let y ∈ Y. For any 1 ≤ i ≤ n, we have

(xi + y)A = (xi + y)A
⋂
(X + Y) =

= [(xi + y)A
⋂

X] + ((xi + y)A
⋂

Y].

Therefore, there exist elements a ∈ A and z ∈ Y such that

(xi + y)a ∈ X, xi + y = (xi + y)a + z.

Therefore, xi(1− a) ∈ Y and ya ∈ X. Consequently,

A = (yA .
. X) + (xi A

.
. Y), 1 ≤ i ≤ n.

Therefore,
A = (yA .

. X) + [(x1 A .
. Y)

⋂
· · ·

⋂
(xn A .

. Y)] =

= (yA .
. X) + (X .

. Y).

In particular,
A = (yi A

.
. X) + (X .

. Y) (1 ≤ i ≤ n).

Therefore,
A = [(y1 A .

. X)
⋂
· · ·

⋂
(yn A .

. X)] + (X .
. Y) =

= (Y .
. X) + (X .

. Y).

b. Let Z be an n-generated module, n ∈ N. We use the induction on n. For n = 1, we can
identify the cyclic A-module Z over the right invariant ring A with the right invariant
factor ring A/rA(Z) of the ring A. In this case, the assertion is directly verified.
Now we assume that the assertion is true for all k-generated submodules of the module
M for k < n. We can assume that Z = X + Y, where X is a cyclic module and Y is an
(n− 1)-generated module. By the induction hypothesis, there exist ideals B and C of
the ring A such that X ∩Y = XB = YC. Therefore, X

⋂
Y = X(X .

. Y) = Y(Y .
. X) By

(a), A = (Y .
. X) + (X .

. Y). Therefore,

X = X((Y .
. X) + (X .

. Y)) =
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= X(Y .
. X) + X(X .

. Y) = X(Y .
. X) + Y(Y .

. X) = ZB,

where B = (Y .
. X). Similarly Y = ZC, where C = (X .

. Y).
Let Z′ be a submodule in Z = X + Y. We have to prove that there exists an ideal H of
the ring A such that Z′ = (X + Y)H. By assumption, Z′ = X ∩ Z′ + Y

⋂
Z′. By the

induction hypothesis, there exist ideals D and E of the ring A such that Z′
⋂

X = XD
and Z′

⋂
Y = YE. In addition, X = ZB and Y = ZC. Therefore,

Z′ = X
⋂

Z′ + Y
⋂

Z′ = XD + YE =

= ZBD + ZCE = Z(BD + CE)

and BD + CE is the required ideal A′ of the ring A.

Lemma 24 ([61] [Proposition 2]). For a ring A, the following conditions are equivalent.

(a) A is a right distributive, right Noetherian, left finite-dimensional semiprime ring.
(b) A is a left distributive, left Noetherian, right finite-dimensional semiprime ring.
(c) A is a finite direct product of invariant hereditary Noetherian domains.

Lemma 25. Let A be a right distributive, right Noetherian semiprime ring such that every non-zero
left ideal of A contains a non-zero central element. Then A is a finite direct product of invariant
hereditary Noetherian domains.

Proof. By Lemma 24, it is sufficient to prove that the ring A is left finite dimensional. We
assume the contrary. Then the ring A contains a left ideal B, which is a countable direct
sum of non-zero left ideals Bk, k = 1, . . . ,+∞. By assumption, every left ideal Bk contains
non-zero central element ck, where the sum of all ideals Ack = ck A is a direct sum. This
contradicts the property that the ring A is right finite-dimensional.

Proposition 36. Let A be a right distributive right Noetherian indecomposable ring with the prime
radical M. Then the ring A is right invariant, A/M is a right distributive, right invariant, Noethe-
rian domain, M is a completely prime Noetherian nilpotent right ideal. In addition, the following
assertions are true.

a. M = xM for any element x ∈ A \M.
b. For any submodule N of the module MA, there exists an ideal D of the ring A such that

N = MD = xN for any element x ∈ A \M.
c. If M contains a non-zero central element m, then A is a right uniserial right Artinian ring

with radical M.
d. If every non-zero left ideal of the ring A contains a non-zero central element, then either A is

an invariant hereditary Noetherian domain or A is a right uniserial, right Artinian ring.

Proof. By Lemma 21(c), the ring A is right invariant. Since M is the prime radical of the
right Noetherian ring A, the nil-ideal M is nilpotent. Since M is a nil ideal, the idempotents
of the factor ring A/B are lifted to idempotents of the ring A. By Lemma 21(a), the inde-
composable ring A does not have non-trivial idempotents. Therefore, the factor ring A/M
does not have non-trivial idempotents. By Lemma 22, A/B is a right distributive, right
invariant, right Noetherian domain. Therefore, the Noetherian nilpotent right ideal M is
completely prime.

a. Let x ∈ A \M and let y be an arbitrary element of the ideal M. By Lemma 1, there
exist two elements a, b ∈ A such that a + b = 1, xa ∈ yA and yb ∈ xA. The ideal
M is completely prime, x ∈ A \M and xa ∈ M. Therefore, a ∈ M and element a is
nilpotent. Therefore, the element b = 1− a is invertible; in addition, yb ∈ xA. Then
y = xz for some z ∈ A. Since the element xz is contained in the completely prime
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ideal M and x ∈ A \M, we have that z ∈ M and y = xz ∈ xM. Since the element
y ∈ M is arbitrary, we have M = xM.

b. Let N be a submodule of the module MA and let x ∈ A \M. By Lemma 23, there
exists an ideal D of the ring A with MD = N. In addition, M = xM. Therefore,
N = xMD = xN.

c. Let M contain a non-zero central element m. Since the ring A is right invariant and m is
a non-zero central element, there exists a maximal ideal X of the ring A such that A/X
is a division ring and the ideal mA properly contains the ideal (mA)X = X(mA).
If X = M, then the ring A is local. By Lemma 21(b), A is a right uniserial ring.
In addition, A is a right Noetherian ring with nilpotent Jacobson radical M. Therefore,
A is a right uniserial right Artinian ring.

d. If the completely prime ideal M is equal to the zero, then A is a domain and A is
an invariant hereditary Noetherian domain, by Lemma 25. We assume that M 6= 0.
By assumption, the ideal M contains a non-zero central element. It follows from c that
A is a right uniserial right Artinian ring.

Theorem 26. A centrally essential ring A is a right distributive, right Noetherian ring if and only
if A = A1 × · · · × An, where every ring Ak is either a commutative Dedekind domain or a (not
necessarily commutative) Artinian uniserial ring.

Proof. Let A be a centrally essential ring. If A = A1 × · · · × An, where every ring Ak
is either a commutative Dedekind domain or a (not necessarily commutative) Artinian
uniserial ring, then the assertion follows from Lemma 24.

Now let A be a right distributive, right Noetherian ring. Without loss of generality, we
can assume that A is an indecomposable ring. Since the ring A is centrally essential, every
non-zero left or right ideal of the ring A contains a non-zero central element. It follows from
Proposition 36(d) that either A is a right uniserial, right Artinian ring or A is an invariant
hereditary Noetherian domain. If A is a right uniserial, right Artinian ring, then A is a
uniserial Artinian ring, by Lemma 15. If A is a domain, then A is a commutative Dedekind
domain by Proposition 35.

6. Centrally Essential Semirings

In Section 6, we consider only unital semirings and rings, i.e., semirings and rings
with 1.

In this section, we consider centrally essential semirings. Some semiring notions are
defined below. Another required information on semirings is contained in ref. [62].

6.1. General Information

By a semiring, we mean a structure that differs from an associative ring, possibly,
by the irreversibility of the additive operation. In a semiring S, the zero is multiplicative by
definition: we have 0s = s0 = 0 for every s ∈ S.

For a semiring S, the center of S is the set Z(S) = {s ∈ S : ss′ = s′s for all s′ ∈ S}. This
set is not empty since it contains 0 and 1; we also have that Z(S) is a subsemiring in S.

A semiring S is said to be centrally essential if either S is commutative or for every
non-zero element s ∈ S, there are non-zero central elements x, y with sx = y.

It is clear that any centrally essential associative ring is a centrally essential semiring.
A semiring S is said to be reduced if x = y for all x, y ∈ S with x2 + y2 = xy + yx. If S

is a ring, this is equivalent to the property that S has no non-zero nilpotent elements.
An element a of a semiring S is said to be left (respectively, right) zero-divisor if ab = 0

(respectively, ba = 0) for some 0 6= b ∈ S. Similar to Proposition 1(a), it can be proved that
one-sided zero divisors are two-sided zero divisors in a centrally essential semiring.
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A semiring S without nilpotent ideals is said to be semiprime. A semiring S is said
to be semisubtractive if for all a, b ∈ S with a 6= b, there exists an element x ∈ S such that
a + x = b or b + x = a.

A semiring S is said to be additively cancellative if the relation x + z = y + z is
equivalent to the relation x = y for all x, y, z ∈ S.

A ring D(S) is called the ring of differences of the semiring if S is a subsemiring in
D(S) and every element a ∈ D(S) is the difference x− y of some elements x, y ∈ S.

Remark 32. It is well known that a semiring S can be embedded in the ring of differences D(S) if
and only if S is additively cancellative.

The class of additively cancellative semirings contains all rings. The ring of differences is
unique up to isomorphism over S; see [62] [Chapter II] for details.

By Proposition 3, the idempotents of centrally essential rings are central. For semirings,
a similar result is not true; see Example 19 below.

For a semiring S, an idempotent e of S is said to be complemented if there exists an
idempotent f ∈ S with e + f = 1.

Proposition 37. In an additively cancellative centrally essential semiring S, any complemented
idempotent is central.

Proof. Let e2 = e and e + f = 1 for some f ∈ S. Since S is an additively cancellative
semiring, it follows from e = e + f e that f e = 0. Similarly, we have e f = 0. Let x ∈ S and
xe 6= 0. Then x = ex + f x and xe = exe + f xe.

First, we assume that f xe = 0, i.e., xe = exe. Since x = xe+ x f , we have ex = exe+ ex f .
If ex f 6= 0, then there are c, d ∈ Z(S) with (ex f )c = d 6= 0. Then

0 6= d = ed = de = (ex f c)e = (exc) f e = 0;

this is a contradiction. Therefore, ex f = 0 and ex = xe = exe.
Now let f xe 6= 0. Then 0 6= ( f xe)c = d for some non-zero elements c, d ∈ Z(S). In

this case,
0 6= d = de = ed = e f (xec) = 0;

this is a contradiction.

Remark 33. If S is an additively cancellative semiring, then the semiring Mn(S) of all matrices
and the semiring Tn(S) of all upper triangular matrices over S is not centrally essential for n ≥ 2.

Proof. For the identity matrices of the above semirings, we have E = E11 +
.

. ots + Enn,
where E11, .

. ots, Enn are matrix units. It follows from [63] [Example 4.19] that Mn(S) is
an additively cancellative semiring. The idempotents E11, .

. ots, Enn are non-central com-
plemented idempotents. Consequently, the semirings Mn(S) and Tn(S) are not centrally
essential.

6.2. Examples, Constructions and Remarks

Proposition 38. Let S be an additively cancellative semisubtractive centrally essential semiring
with center C = Z(S). The following conditions are equivalent.

• S is a semiprime semiring.
• C is a semiprime semiring.
• S does not have non-zero nilpotent elements.
• S is a commutative semiring without non-zero nilpotent elements.
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Proof. By Remark 32, the semiring S can be embedded in the ring of differences D(S).
In addition, the relation D(S) = −S ∪ S holds if and only if S is a semisubtractive semiring;
see [62] [Chapter II, Remark 5.12]. Then the assertion follows from Theorem 1.

Example 19. We consider a semigroup (M, ·) with multiplication table.

· 1 a b c
1 1 a b c
a a a a c
b b b b c
c c c c c

.

For a quick test of associativity, it is convenient to use the Light’s associativity test; see [38] [p. 7] .
Let S = 2M be the set of all subsets of the semigroup M. For any A, B ∈ S, operations

A + B = A∪ B and AB = {ab | a ∈ A, b ∈ B} are defined. Then, S is a semiring with zero ∅ and
the identity element 1 = 1M; see [63] [Example 1.10].

We have |S| = 24 = 16. We note that S does not contain zero sums, i.e., the relation
A + B = ∅ implies the relation A = B = ∅. In addition, S is additively idempotent and
multiplicatively idempotent. The center Z(S) is of the form

Z(S) = {∅, {1}, {c}, {1, c}}.

If A ∈ S\Z(S), then ∅ 6= A · {c} ∈ Z(S). Consequently, S is a non-commutative centrally
essential semiring.

Remark 34. It follows from Example 19 that the assertion of Proposition 38 is not true without the
assumptions of additive cancellativity and semisubtractivity.

Example 20. We consider the semiring S generated by the matricesα a b
0 α c
0 0 α

,

0 0 b
0 0 0
0 0 0

,

0 0 0
0 0 0
0 0 0

,

α 0 0
0 α 0
0 0 α

,

where α, a, b, c ∈ Z+. Let A = (aij) and B = (bij), where a12 = b23 = a, b12 = a23 = c, a 6= c,
and the remaining components are equal to each other. Then AB 6= BA, i.e., S is a non-commutative
semiring. It is directly verified that the center Z(S) consists of matrices of the formα 0 b

0 α 0
0 0 α

,

where α, b ∈ Z+ ∪ {0}. Since 0 6= AD ∈ Z(S), where 0 6= A ∈ S\Z(S), 0 6= D ∈ Z(S)
with α = 0, we have that S is a non-commutative centrally essential semiring. However, the ring
of differences D(S) = M3(Z) is not a centrally essential ring since the ring has non-central
idempotents. In addition, by Remark 21, any centrally essential subalgebra of a local triangular
3× 3 matrix algebra is commutative.

We give an example of a centrally essential ring R, which is the ring of differences for
two proper subsemirings S1 and S2 of R such that S1 is not a centrally essential semiring
and S2 is a centrally essential semiring.
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Example 21. Let R be a ring consisting of matrices of the form

α a b c d e f
0 α 0 b 0 0 d
0 0 α 0 0 0 e
0 0 0 α 0 0 0
0 0 0 0 α 0 a
0 0 0 0 0 α b
0 0 0 0 0 0 α


(17)

over the ring Z of integers. In Example 10, it is proved that R is a non-commutative centrally
essential ring. Let S1 be a semiring generated by matrices of the form (∗) over Z+ and scalar
matrices with α ∈ Z+ ∪ {0} and zeros on the remaining positions. Since Z(S1) consists of scalar
matrices, S1 is not a centrally essential semiring. We note that S1 is a semiring without zero-divisors.
At the same time, the semiring S2 of matrices of the form (17) over the semiring Z+ ∪ {0} is a
centrally essential semiring.

Proposition 39. Let S be a centrally essential semiring without zero divisors. If the ring D(S)
does not contain zero divisors, the semiring S is commutative.

Proof. Let 0 6= a = x− y ∈ D(S). By assumption, 0 6= xc = d and 0 6= y f = g for some
c, d, f , g ∈ Z(S). Then

a(c f ) = (x− y)c f = (xc) f − (y f )c = d f − gc.

We need the following familiar property [62] [Chapter II, Theorem 5.13]: in any
semiring S with ring of differences D(S), any central element of S is contained in the center
of D(S).

Therefore,c, d, f , g ∈ Z(D(S)) and ac′ ∈ Z(D(S)), where c′ = c f . In addition, ac′ 6= 0
since D(S) does not contain zero-divisors. Then D(S) is a commutative ring by Theorem 1

We recall that the upper central series of a group G is the chain of subgroups

{e} = C0(G) ⊆ C1(G) ⊆ .
. ots,

where Ci(G)/Ci−1(G) is the center of the group G/Ci−1(G), i ≥ 1. For the group G,
the nilpotence class of G is the least positive integer n with Cn(G) = G provided such an
integer n exists.

Proposition 40 (cf. Proposition 16). Let G be a finite the group of nilpotence class n ≤ 2 and let
S be a commutative semiring without zero divisors or zero sums. Then SG is a centrally essential
group semiring.

Proof. If n = 1, then the group G is Abelian and SG is a centrally essential group semiring;
see Theorem 4(a).

Let n = 2. Similar to the case of the group rings (e.g., see [30] [Part 2]), the center
Z(SG) is a free S-semimodule with basis{

∑
K
|Kare the conjugacy classes in the group G

}
.

It is sufficient to verify that SG ∑Z(G) ⊆ Z(SG), where Z(G) is the center of the group
G. Indeed, if g, h ∈ G, then

(gh)−1hg ∑
Z(G)

= ∑
Z(G)

,

since h−1g−1hg ∈ G′ ⊆ Z(G).
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In Example 22 below, a non-commutative centrally essential semiring without zero-
divisors is constructed; this semiring is additively cancellative but is not semisubtractive.

Example 22. Let Q8 be the quaternion the group, i.e., the group with two generators a, b and
defining relations a4 = 1, a2 = b2 and aba−1 = b−1; e.g., see, [19] [Section 4.4]. We have

Q8 = {e, a, a2, b, ab, a3, a2b, a3b},

the conjugacy classes of Q8 are

Ke = {e}, Ka2 = {a2}, Ka = {a, a3}, Kb = {b, a2b}, Kab = {ab, a3b},

and the center Z(Q8) is {e, a2}. We consider the group semiring SQ8, where S = Q+ ∪ {0}. Since
Q8 is a group of nilpotence class 2, it follows from Proposition 5.2.8 that SQ8 is a centrally essential
group semiring. To illustrate the above, we have

a ∑
Z(Q8)

= ∑
Ka

, b ∑
Z(Q8)

= ∑
Kb

,

ab ∑
Z(Q8)

= ∑
Kab

, a3 ∑
Z(Q8)

= ∑
Ka

,

a2b ∑
Z(Q8)

= ∑
Kb

, a3b ∑
Z(Q8)

= ∑
Kab

.

The the group ring of differences QQ8 is a reduced ring; see [64]. Then SQ8 is a reduced
semiring . Indeed, if x2 + y2 = xy + yx and x 6= y, then x2 + y2 − xy− yx = (x − y)2 = 0
in the ring QQ8; this is not true. Thus, SQ8 is a non-commutative reduced centrally essential
semiring without zero-divisors. We note that the ring QQ8 is not centrally essential, since centrally
essential reduced rings are commutative.

Theorem 27. There exists a non-commutative additively cancellative reduced centrally essential
semiring without zero-divisors. An additively cancellative reduced semiring S is commutative if
and only if the ring of differences of S is a centrally essential ring.

Proof. It follows from Example 22 that there exists a non-commutative additively cancella-
tive reduced centrally essential semiring without zero-divisors.

If a semiring S is commutative, then D(S) is a commutative ring, i.e., D(S) is centrally
essential. Conversely, let D(S) be a centrally essential ring. Since S is a reduced semiring,
D(S) is a reduced ring. Indeed, let 0 6= a = x − y ∈ D(S). If a2 = 0, then x2 + y2 =
xy + yx. Therefore, x = y, a = 0, and we have a contradiction. Then the ring D(S)
is commutative, since D(S) is a reduced centrally essential ring. Consequently, S is a
commutative semiring.

An element x of a semiring is said to be left (respectively, right) multiplicatively cancellative
if y = z for all y, z ∈ S with xy = xz (resp., yx = zx). A semiring S is said to be left (respec-
tively, right) multiplicatively cancellative if every element x ∈ S \ {0} is left (respectively,
right) multiplicatively cancellative. A left and right multiplicatively cancellative semiring
is said to be multiplicatively cancellative, e.g., see, [62] [Chapter I].

Remark 35. A left (respectively, right) multiplicatively cancellative centrally essential semiring S
is commutative.

Proof. Let a and b be two non-zero elements of the semiring S. Since S is a centrally essen-
tial semiring, there exists an element c ∈ Z(S) with 0 6= ac ∈ Z(S). A left multiplicatively
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cancellative semiring does not contain left zero-divisors; see [62] [Chapter I, Theorem 4.4].
Therefore, acb 6= 0. Then

(ac)b = c(ab) = (ca)b = b(ca) = c(ba),

whence ab = ba. A similar argument is true for right multiplicatively cancellative semirings.

A semiring with division, which is not a ring, is called a division semiring.
A commutative division semiring is said to be semifield.
Any centrally essential division semiring is a semifield. Indeed, it follows from [62]

[Chapter I, Theorem 5.5] that a division semiring with at lest two elements is multiplicatively
cancellative. Therefore, our assertion follows from Remark 35.

7. Non-Associative Rings

In this section, the considered rings are not necessarily associative.
We use notation and terminology from [41]; also see [65].

7.1. Types of Centers and Central Essentiality

In this subsection, we consider rings which are not necessarily unital or associative.
Let R be a ring. We denote by R1 the union of R with adjoint external unit.
The associator of three elements a, b, c of the ring R is the element (a, b, c) = (ab)c−

a(bc) and the commutator of two elements a, b ∈ R is the element [a, b] = ab− ba.
For a ring R, the associative center, commutative center and center of R (in the sense

of [41] [§7.1]) are the sets

N(R) = {x ∈ R : ∀a, b ∈ R, (x, a, b) = (a, x, b) = (a, b, x) = 0},
K(R) = {x ∈ R : ∀a ∈ R, [x, a] = 0},
Z(R) = N(R) ∩ K(R),

respectively. It is clear that N(R) and Z(R) are subrings in R and the ring R is a unitary
(left and right) N(R)-module and Z(R)-module.

For ring R, we denote by Ẑ(R) the centroid of R, i.e., the set of endomorphisms of
the additive the group (R,+), which commute with the left and right multiplications by
elements of R.

It is clear that R can be considered a left or right module over the associative commu-
tative ring Z(R); R can be also considered a unitary module over the unital associative
commutative ring Z(R)1 and as a unitary module over the centroid Ẑ(R).

Remark 36. The associative center N(R), the commutative center K(R) and the center Z(R) of
the ring R are Ẑ(R)-submodules in R.

Proof. Let n ∈ N(R) and c ∈ Ẑ(R). For any a, b ∈ R, we have

(c(n), a, b) = c(n)a · b− c(n) · ab = c(na)b− c(n · ab) =

= c((n, a, b)) = 0,

(a, c(n), b) = ac(n) · b− a · c(n)b = c(an)b− ac(nb) =

= c((a, n, b)) = 0,

(a, b, c(n)) = ab · c(n)− a · bc(n) = c(ab · n)− c(a · bn) =

= c((a, b, n)) = 0.

Consequently, c(n) ∈ N(R).
Similarly, if k ∈ K(R), then for any a ∈ R, we have

[c(k), a] = c(k)a− ac(k) = c(ka)− c(ak) = c([k, a]) = 0.
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Consequently, c(k) ∈ K(R).
Finally, the assertion about the center Z(R) directly follows from two previous asser-

tions, since Z(R) = N(R) ∩ K(R) by definition.

Definition 2. A ring R with center C = Z(R) is said to be centrally essential if Cr ∩ C 6= 0 for
any non-zero element r ∈ R (equivalently, K ∩ C 6= 0 for any non-zero submodule K of the module
RC, i.e., C is an essential submodule of the module CR).

A ring R with the center C = Z(R) is said to be strongly centrally essential (resp., weakly
centrally essential) if Cr ∩ C 6= 0 (resp., Ẑ(R)r ∩ C 6= 0) for any non-zero element r ∈ R.

In the definition of a strongly centrally essential ring, we can formally replace Z(R) by N(R);
in this case, the ring R is called a left N-essential ring ring).

A ring R is said to be left K-essential if K(R)r ∩ K(R) 6= 0 for any non-zero element r ∈ R,
i.e., K = K(R) is an essential submodule of the module KR.

The following proposition is well known in the associative case.

Proposition 41. Let R be a ring with the center C = Z(R).

a. Any strongly centrally essential ring R is centrally essential.
b. Any centrally essential ring R is weakly centrally essential.
c. Any unital ring R is strongly centrally essential if and only if R is centrally essential, if and

only if R is weakly centrally essential.

Proof.

a. Since C is a subring in C1, we obtain the assertion.
b. It is sufficient to note that multiplications by central elements and multiplications by

integers belong to the centroid of R.
c. It follows from a and b that it is sufficient to verify that if R is a weakly essential

ring with the identity element 1, then R is strongly centrally essential. Let R be
weakly centrally essential and r ∈ R \ {0}. There exists an element ĉ ∈ Ẑ(R) with
ĉ(r) ∈ Z(R) \ {0}. Then

0 6= ĉ(r) = ĉ(1 · r) = ĉ(1)r ∈ Z(R)r,

since ĉ(1) ∈ Z(R) by Remark 36. Thus, Z(R)r ∩ Z(R) 6= 0. Therefore, R is strongly
centrally essential.

We give Examples 23 and 24 which show that the classes of strongly centrally essential,
centrally essential and weakly centrally essential rings are distinct in the general case.

Example 23. Any non-zero ring R with zero multiplication is a centrally essential ring which is
not strongly centrally essential. Indeed, R = Z(R) and for any non-zero element r ∈ R, we have
r ∈ R1r ∩ R but Z(R)r = 0.

For the next example, we need Remark 37.

Remark 37. Let R be a ring such that R · R2 = R2 · R = 0 and let ϕ : R→ R be an endomorphism
of the group (R,+) such that

ϕ(R) ⊆ R2 ⊆ Ker ϕ.

Then ϕ ∈ Ẑ(R). Indeed, ϕ(ab) = 0 for any two elements a, b ∈ R, since ab ∈ R2; we also have
aϕ(b) = ϕ(a)b = 0, since aR2 = R2b = 0.

Example 24. Let F = Z/3Z be the field of order 3, Λ(F2) be the Grassmann algebra of the
two-dimensional linear space over F. Let e1, e2 be a basis of the space F2 and let R be the subalgebra
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of the algebra Λ(F2) with basis e1, e2, e1 ∧ e2. Let r = α1e1 + α2e2 + α3e1 ∧ e2 be an arbitrary
element of the ring R. It is easy to see that r ∈ Z(R) if and only if α1 = α2 = 0, i.e., Z(R) = R2

and Z(R)1r = Fr for any r ∈ R. In particular, Z(R)1e1 = Fe1 and Fe1 ∩ R2 = 0; therefore,
the ring R is not centrally essential. Now let r 6= 0. If r ∈ Z(R), then r ∈ Ẑr ∩ Z(R), since
Ẑ(R) contains the identity automorphism of the group (R,+). Let π : R→ R/R2 be the canonical
homomorphism. If r 6∈ Z(R), then π(r) is a non-zero element of the two-dimensional space R/R2

and there exists a linear mapping ψ : R/R2 → R2, for which ψ(π(r)) 6= 0. If ϕ = ψπ, then
ϕ ∈ Ẑ(R) by Remark 37 and 0 6= ϕ(r) ∈ Ẑ(R)r ∩ R2 = Z(R). Consequently, R is a weakly
centrally essential ring.

7.2. Reduced and Semiprime Rings

A ring is said to be reduced if it does not contain non-zero elements with zero square. We
note that associative reduced rings are exactly the rings without non-zero nilpotent elements.

A ring R is said to be semiprime if R does not contain a non-zero ideal with zero
multiplication; see [41] [§8.2].

Theorem 28. Let R be a weakly centrally essential ring such that its center C = Z(R) is a
reduced ring.

a. R is a strongly centrally essential ring.
b. R is an associative ring.
c. R is a commutative ring.

Proof.

a. Let r ∈ R \ {0}, ϕ ∈ Ĉ and ϕ(r) = d ∈ C \ {0}. Then 0 6= d2 = dϕ(r) = ϕ(dr) =

ϕ(d)r. By Remark 36, ϕ(d) ∈ C. It is also clear that d2 ∈ C. Consequently, 0 6= ϕ(d)r ∈
Cr ∩ C, i.e., R is a strongly centrally essential ring.

b. By (a), R is a strongly centrally essential ring. We assume that the ring R is not
associative and some elements x, y, z of the ring R have the non-zero associator
(x, y, z) = (xy)z− x(yz). Then, there exist two elements c, d ∈ C such that

d = (x, y, z)c ∈ C \ {0}.

We note that xd 6= 0; otherwise, d2 = (x, y, z)c · d =

= (x, y, z) · cd = (x, y, z) · dc = ((xy · z)d− (x · yz)d)c =

= (d(xy · z)− d(x · yz))c = ((dx · y)z− dx · yz)c = 0,

which is impossible. Therefore, there exists an element b ∈ C such that xd · b =
x · db ∈ C \ {0}. We consider the set I = {c ∈ C : cx ∈ C}. It is clear that db ∈ I. Now
we assume that dI = 0. Then

d(db) = 0, (db)2 = db · db = (db · d)b = (d · db)b = 0, db = 0,

a contradiction. Therefore, di 6= 0 for some i ∈ I. However,

di = (xy · z− x · yz)c · i = c((xi · y)z− xi · yz) = 0;

this is a contradiction. Thus, R is an associative ring.
c. We assume that the ring R is not commutative and we have two elements x, y ∈ R

with xy− yx 6= 0. Then there exist two elements c, d ∈ C such that d = (xy− yx)c ∈
C \ {0}. We note that xd 6= 0, otherwise,

d2 = (xy− yx)cd = c((xd)y− y(xd)) = 0;
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this is impossible. Therefore, there exists an element z ∈ C such that xdz ∈ C \ {0}.
We consider the set I = {c ∈ C | cx ∈ C}. It is clear that dz ∈ I. Now we assume that
dI = 0. Then

d(dz) = 0, (dz)2 = 0, dz = 0,

a contradiction. Therefore, di 6= 0 for some i ∈ I. However,

di = (xy− yx)ci = c((xi)y− y(xi)) = 0;

this is a contradiction. Thus, R is a commutative ring.

Remark 38. It is clear that the center of a semiprime ring is a reduced ring; the converse is not
always true since the ring of upper triangular matrices over a field is a non-semiprime ring with
reduced center.

Remark 39. Let R be a centrally essential associative ring. In Propositions 3 and 8, it is proved
that all idempotents of the ring R are central and the ring R is commutative if R is semiprime.
In the introduction, examples of finite non-commutative centrally essential associative unital rings
are constructed.

A ring R is said to be right alternative (respectively, left alternative) if (ab)b = a(bb)
(respectively, (aa)b = a(ab)) for any elements a, b ∈ R.

Right and left alternative rings are called alternative rings. A ring R is alternative if
and only if (a, a, b) = (a, b, b) for any elements a, b ∈ R, where (a, b, c) denotes associator
(a, b, c) = (ab)c− a(bc) of elements a, b, c of the ring R.

By the Artin theorem [41] [Theorem 2.3.2], the ring R is alternative if and only if any
two elements of R generate the associative subring.

In connection to Remark 39, we prove Theorem 29.

Theorem 29. Let R be a centrally essential ring.

a. If the center Z(R) of the ring R is semiprime, then the ring R is commutative and associative.
b. If the ring R is alternative and e is an idempotent of the ring R, then e ∈ Z(R).

Proof.

a. It follows from Theorem 28 and Remark 38 that any weakly centrally essential
semiprime ring is associative and commutative.

b. If R is a weakly centrally essential alternative ring and e is an idempotent of the ring
R, then we have to prove that e ∈ Z(R).
Let r be an arbitrary element of R. Further, we use several times the associativity of
the subring generated by two elements e and r in the alternative ring R. If c ∈ Ẑ(R) is
an element of the centroid of the ring R such that c(ere− re) = d ∈ Z(R), then

de = c(ere− re)e = c((ere− re)e) = c(ere− re) = d.

On the other hand,

ed = ec(ere− re) = c(e(ere− re)) = c(0) = 0.

Therefore, d = 0 and Ẑ(R)(ere− re) ∩ Z(R) = 0. Since the ring R is weakly centrally
essential, we have ere− re = 0. It can be similarly verified that ere− er = 0, whence
re = er.
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Problem 4.

a. Is it true that any N-essential (See Definition 2) ring is associative? Our assumption: It is
not true.

b. Is it true that any semiprime N-essential ring is associative?

The following example shows that analogous questions for K-essential Definition 2
rings have negative answers.

Example 25. Let F beanarbitrary fieldand let R be thealgebraover F withbasis {e, f , x1, y1, x2, y2, .
. ots}

such that and its multiplication is defined on basis elements by the relations

e2 = e, f 2 = f , e f = x1, f e = y1,
exi = xie = xi, yj f = f yj = yj,
xixj = xi+j, yiyj = yi+j,
xi f = f xi = yje = eyj = xiyj = yjxi = 0 for all i, j ∈ N.

We set x = x1, y = y1. It is easy to verify that K(R) = F[x]x + F[y]y. Indeed,
if r = ae + b f + s, where a, b ∈ F and s ∈ F[x]x + F[y]y, then [r, e] = b(y − x) and
[r, f ] = a(x− y). Therefore, K(R) ⊆ F[x]x + F[y]y; the converse inclusion follows from the
definition of the multiplication in R.

Now we note that K(R) is an ideal in R and the ring K(R) ∼= F[x]x ⊕ F[y]y is reduced.
Therefore, if r ∈ K(R) \ {0}, then r2 ∈ K(R)r \ {0}. If r /∈ K(R), then

r = ae + b f +
∞

∑
i=1

aixi +
∞

∑
i=1

biyi,

where a, b, ai, bi ∈ F for all i ∈ N and a 6= 0 or b 6= 0. If a 6= 0, then xr = ax + ∑∞
i=1 aixi+1 ∈

(K(R)r ∩ K(R)) \ {0}; similarly, if b 6= 0, then

yr = by +
∞

∑
i=1

biyi+1 ∈ (K(R)r ∩ K(R)) \ {0}.

Thus, R is K-essential. We have that R/K(R) ∼= F ⊕ F and K(R) are associative reduced
rings. Therefore, r = 0 for any element r ∈ R with r2 = 0. Especially, R does not have a non-zero
ideal with zero multiplication, i.e., R is semiprime. In the same time, e and f are non-central
idempotents of R; this is impossible in any associative semiprime weakly centrally essential ring.

Remark 40. If R is an alternative ring without elements of order 3 in the additive the group, then R
is K-essential if and only if R is centrally essential, since 3K(R) ⊆ N(R) [41] [Corollary 7.1.1].

7.3. Cayley-Dickson Process and Associative Centers

Let R be a ring, M a left R-module, and S a subset of M. Then AnnR(S) denotes the
annihilator of S in R, i.e., AnnR(S) = {r ∈ R | rS = 0}. We denote by [A, A] the ideal of the
ring A generated by commutators of all elements in A.

The following definition slightly generalizes the definition of the Cayley–Dickson
process given in [41] [§2.2], see [66].

Definition 3 (The Cayley–Dickson Processand the Rings (A, α)). Let A be a ring with involu-
tion ∗ (we recall that the ring anti-endomorphism is called an involution if its double application
is the identity mapping) and α an invertible symmetrical element of the center of the ring A. We
define a multiplication operation on the Abelian group A⊕ A as follows:

(a1, a2)(a3, a4) = (a1a3 + αa4a∗2 , a∗1 a4 + a3a2) (18)

for any a1, .
. ots, a4 ∈ A. We denote the obtained ring by (A, α).



Mathematics 2022, 10, 1867 65 of 74

The subset in (A, α) consisting of elements in (A, α) of the form (a, 0) (a ∈ A) is a subring in
(A, α) which is isomorphic to the ring A; we identify the elements with the corresponding elements
of A. We set ν = (0, 1) ∈ (A, α). Then a ∗ ν = (0, a) = νa for any a ∈ A and ν2 = α. Thus,
(A, α) = A + Aν.

Note that many works were devoted to the study of the structure and the properties
of rings and algebras obtained by this process, for instance, [65,67–72].

The following properties are directly verified with the use of the above relation (18).

a. ν2 = α and νa = a∗ν for any element a ∈ A.
b. (1, 0) is the identity element of the ring (A, α).
c. The set {(a, 0) | a ∈ A} is a subring of the ring (A, α), which is isomorphic to the ring

A.
d. The mapping (a, b) 7→ (a∗,−b), a, b ∈ A, is an involution of the ring (A, α).

Up to the end of Section 7.3, we fix a ring A and an element α, which satisfy the
conditions of the Cayley–Dickson process from Definition 3; we also set R = (A, α).

Lemma 26. An element (x, y) ∈ R belongs to the ring N(R) if and only if for any elements
u, v ∈ A, the following relation systems hold:

(xu)v = x(uv), (ux)v = u(xv), (uv)x = u(vx),
v(ux) = x(vu), (xu)v = u(vx), (vu)x = (xv)u,
v(xu) = (vu)x, v(ux) = (vx)u, x(uv) = u(xv),
(ux)v = (uv)x, v(xu) = (xv)u, x(vu) = (vx)u;

(19)

(uy)v = y(vu), (uy)v = (yv)u, y(vu) = u(yv),
v(yu) = y(uv), (yu)v = (vy)u, y(uv) = (vy)u,
v(uy) = (uv)y, v(uy) = u(vy), (vu)y = u(vy),
(yu)v = (vu)y, v(yu) = u(yv), (uv)y = (yv)u.

(20)

Proof. Let (x, y) ∈ R. Since associators are linear, (x, y) ∈ N(R) if and only if for any two
elements u, v ∈ A, we have

((x, y)(u, 0)(v, 0)) = ((u, 0), (x, y), (v, 0)) =

= ((u, 0), (v, 0), (x, y)) = 0,

((x, y)(u, 0)(0, v)) = ((u, 0), (x, y), (0, v)) =

= ((u, 0), (0, v), (x, y)) = 0, (21)

((x, y)(0, u)(v, 0)) = ((0, u), (x, y), (v, 0)) =

= ((0, u), (v, 0), (x, y)) = 0,

((x, y)(0, u)(0, v)) = ((0, u), (x, y), (0, v)) =

= ((0, u), (0, v), (x, y)) = 0.
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By calculating associators from (21), we obtain the following system consisting of
12 relations

((xu)v, v(uy)) = (x(uv), (uv)y),
((ux)v, v(u∗y)) = (u(xv), u∗(vy)),
((uv)x, (v∗u∗)y) = (u(vx), u∗(v∗y)),
(αv(y∗u∗), (u∗x∗)v) = (α(u∗v)y∗, x∗(u∗v)),
(αv(y∗u), (x∗u∗)v) = (αu(vy∗), u∗(x∗v)),
(αy(v∗u), x(u∗v)) = (αu(yv∗), u∗(xv)),
(α(uy∗)v, v(x∗u)) = (α(vu)y∗, x∗(vu)),
(α(yu∗)v, v(xu)) = (α(vy)u∗, (xv)u),
(αy(u∗v∗), x(vu)) = (α(v∗y)u∗, (vx)u),
(αv(u∗x), α(yu∗)v) = (αx(vu∗), α(vu∗)y),
(αv(u∗x∗), α(uy∗)v) = (α(x∗v)u∗, α(vy∗)u),
(α(vu∗)x, α(uv∗)y) = (α(xv)u∗, α(yv∗)u).

By equating components of equal elements of the ring R and considering that the
element α is invertible, we obtain the following equivalent system:

(xu)v = x(uv), v(uy) = (uv)y), (ux)v = u(xv), v(u∗y) = u∗(vy),

(uv)x = u(vx), (v∗u∗)y = u∗(v∗y), v(y∗u∗) = (u∗v)y∗,

(u∗x∗)v = x∗(u∗v), v(y∗u) = u(vy∗), (x∗u∗)v = u∗(x∗v),

y(v∗u) = u(yv∗), u∗(xv) = x(u∗v), (uy∗)v = (vu)y∗,

v(x∗u) = x∗(vu), (yu∗)v = (vy)u∗, v(xu) = (xv)u,

y(u∗v∗) = (v∗y)u∗, x(vu) = (vx)u, v(u∗x) = x(vu∗),

(yu∗)v = (vu∗)y, v(u∗x∗) = (x∗v)u∗, (uy∗)v = (vy∗)u,

(vu∗)x = (xv)u∗, (uv∗)y = (yv∗)u.

We replace the equations, both parts of which contain x∗ or y∗, by relations of conjugate
elements. We note that either u or u∗ stands in every equation. Therefore, we can put u
instead of u∗, since A∗ = A. Similarly, we replace v∗ by v. By choosing equations containing
x, we obtain (19), the remaining equations form the system (20).

Lemma 27. Let x ∈ A. The relations (19) hold for all u, v ∈ A if and only if x ∈ Z(A).

Proof. Let x ∈ A and let relations (19) hold for all u, v ∈ A. The first three relations mean
that x ∈ N(A). It follows from the fourth relation for u = 1 that x ∈ K(A). Consequently,
x ∈ Z(A).

Conversely, if x ∈ Z(A), then each of the relations in (19) is transformed into one of the
true relations x(uv) = x(uv) or x(vu) = x(vu), i.e., relations (19) hold for all u, v ∈ A.

Lemma 28. Let y ∈ A. The relations (20)
hold for all u, v ∈ A if and only if y ∈ AnnZ(A)([A, A]).

Proof. Let y ∈ A and let relations (20) hold for all u, v ∈ A. First of all, we note that for
v = 1, the first equation of (20)

turns into the equation uy = yu; this is equivalent to the inclusion y ∈ K(A), since the
element u of A is arbitrary.
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We verify that y ∈ N(A). For any two elements u, v ∈ A, we have

(yu)v 1
= (vy)u 2

= y(uv),

(uy)v 1
= y(vu) 3

= u(yv)

(uv)y = y(uv) 4
= v(yu) = v(uy) 8

= u(vy).

In these transformations, the number over the relation sign is the number of used
equation in (20) (equations are numbered in rows from the left to right beginning with the
first row). The number underscore denotes that, instead of the given equation, we use the
equivalent equation obtained by the permutation of the variables u, v.

Consequently, y ∈ N(A) ∩ K(A) = Z(A).
Finally, we take into account the proven to see that already the first equation of (20)

implies that y[u, v] = 0 for any u, v ∈ A, i.e., y ∈ AnnC([A, A]).
Conversely, if y ∈ AnnZ(A)([A, A]), then each of the relations (20) is transformed into

the true relation y(uv) = y(vu), i.e., relations (20) hold for all u, v ∈ A.

Theorem 30. Let A be a ring with center C = Z(A), I = AnnC([A, A]), R = (A, α). Then
N(R) = {(x, y) : x ∈ C, y ∈ I}.

Proof. The assertion follows from Lemmas 26–28.

Remark 41. Theorem 30 implies the following classical result (cf. [41] [Exercise 2.2.2(a)]): the
ring R = (A, α) is associative if and only if the ring A is associative and commutative.

7.4. Cayley-Dickson Process and Central Essentiality

Theorem 31. Let B be a subring of the center of the ring A and I an essential ideal of B. If B is an
essential B-submodule of the module B A, then I is an essential B-submodule of the module BR.

Proof. If r is a non-zero element of the ring R, then there exists an element b ∈ B with 0 6=
br ∈ B. Therefore, there exists an element d ∈ B such that 0 6= dcr ∈ I and Br ∩ I 6= 0.

Theorem 32. Let A be a ring with center C = Z(A), I = AnnC([A, A]), R = (A, α). The
ring R is left (resp., right) N-essential if and only if A is centrally essential and I is an essential
ideal in C.

Proof. Let the ring A and the element α satisfy the conditions of Definition 3 (the Cayley–
Dickson process). It is obvious that C∗ = C, I∗ = I, αC = C and αI = I.

Let the ring R = (A, α) be N-essential. Then for any non-zero element a ∈ A, there
exists an element (x, y) ∈ N(R) such that (x, y)(a, 0) = (xa, ay) ∈ N(R) \ {0}. By Theo-
rem 30 , x ∈ C and y ∈ I. If xa 6= 0, then xa ∈ C \ {0}; otherwise, ya ∈ C \ {0}. In the both
cases, Ca ∩ C 6= 0. Thus, A is centrally essential.

We prove that I is an essential ideal of C. Let c ∈ C \ {0}. If Ic 6= 0, then Ic ⊆ I
and Cc ∩ I 6= 0. Let Ic = 0. We consider the element (0, c). There exists an element
(x, y) ∈ N(R) such that (x, y)(0, c) = (αcy, x∗c) ∈ N(R) \ {0}. Since αy ∈ I, αcy = 0, we
have that x∗c 6= 0 and x∗c ∈ I by Theorem 30. Consequently, Cc ∩ I 6= 0, which is required.

Conversely, let us assume that A is a centrally essential ring and I is an essential ideal
in C.

Let (x, y) ∈ R \ {0}. There exists an element c ∈ C such that cx ∈ C \ {0}. Since
(c, 0) ∈ N(R), we have

0 6= (c, 0)(x, y) = (cx, c∗y) ∈ N(R)(x, y).

If c∗y = 0, then
0 6= (cx, 0) ∈ N(R)(x, y) ∩ N(R).
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If c∗y 6= 0, then by Lemma 31 (for B = C), there exists an element d ∈ C such that
dc∗y ∈ I \ {0}. Then

(d∗, 0)(c, 0)(x, y) = (d∗, 0)(cx, c∗y) =

= (d∗cx, dc∗y) ∈ N(R)(x, y) ∩ N(R) \ {0}.

Thus, the ring R is N-essential.

Remark 42. Up to the end of this subsection, we fix a ring A with center, C = Z(A), and an
element α, which satisfy Definition 3 (the Cayley–Dickson process).

We set R = (A, α),

I = AnnC([A, A]), B = {a ∈ C : a = a∗},
J = AnnB({a− a∗ | a ∈ A}).

We note that the sets B and J are invariant with respect to the involution and are closed by the
multiplication by α.

Theorem 33. Z(R) = {(x, y) | x ∈ B, y ∈ I ∩ J}.

Proof. Let (x, y) ∈ Z(R). Since Z(R) ⊆ N(R), it follows from Theorem 30 that x ∈ C and
y ∈ I. The relations (0, 1)(x, y) = (x, y)(0, 1) imply the relations αy = αy∗ and x = x∗.
Consequently, x ∈ B and y ∈ B ∩ I. Next, the relation (a, 0)(x, y) = (x, y)(a, 0) (a ∈ A)
implies the relations ax = xa and ay = a∗y. The first relation holds for any x ∈ C and the
second relation means that y(a− a∗) = 0, i.e., y ∈ J. Consequently, y ∈ I ∩ J.

Conversely, if x ∈ B and y ∈ I ∩ J, then (x, y) ∈ N(R) and for any a, b ∈ A we have

(x, y)(a, b) = (xa + αby∗, x∗b + ay) = (xa + αyb, xb + ay),
(a, b)(x, y) = (ax + αyb∗, a∗y + xb) = (ax + αyb, xb + ay)

Thus, (x, y) ∈ K(R), whence (x, y) ∈ Z(R).

Theorem 34. A ring R = (A, α) is centrally essential if and only if B is an essential B-submodule
of the ring R and J′ = J ∩ I is an essential ideal of the ring B.

Proof. Let the ring R = (A, α) be centrally essential. Then for any a ∈ A \ {0}, there exists
an element (x, y) ∈ Z(R) such that (x, y)(a, 0) = (xa, ay) ∈ Z(R) \ {0}. By Theorem 33,
x, xa ∈ B and y, ay = ya ∈ J′. If xa 6= 0, then xa ∈ B \ {0}; otherwise, ya ∈ B \ {0}. In the
both cases, we have Ba ∩ B 6= 0. Thus, B is an essential submodule of the module B A.

We prove that J′ = is an essential ideal of the ring B. Let b ∈ B \ {0}. If J′b 6= 0, then
J′b ⊆ J′ and Bb ∩ J′ ⊇ J′b ∩ J′ 6= 0. Let J′b = 0. We consider element (0, b). There exists an
element (x, y) ∈ Z(R) such that (x, y)(0, b) = (αby, x∗b) ∈ Z(R) \ {0}. Since αy ∈ J′ and
αby = 0, we have that x∗b 6= 0, x ∈ B and x∗b = xb ∈ J′, by Theorem 33. Consequently,
Bb ∩ J′ 6= 0, which is required.

Conversely, let us assume that B is an essential B-submodule of the ring R and J′ is an
essential ideal of the ring B.

Let (x, y) ∈ R \ {0}. First, we assume that x 6= 0. There exists an element b ∈ B such
that bx ∈ B \ {0}. Since (b, 0) ∈ Z(R), we have 0 6= (b, 0)(x, y) = (bx, b∗y) ∈ Z(R)(x, y).
If b∗y = 0, then 0 6= (bx, 0) ∈ Z(R)(x, y) ∩ Z(R). If b∗y 6= 0, then by Lemma 6.4.1 (for
I = J′) there exists an element d ∈ B such that db∗y ∈ J′ \ {0}. Then

(d∗, 0)(b, 0)(x, y) = (d∗, 0)(bx, b∗y) =

= (d∗bx, db∗y) ∈ Z(R)(x, y) ∩ Z(R) \ {0}.
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Now let x = 0. Then y 6= 0, and there exists an element d ∈ B such that dy ∈ J′ \ {0}.
We obtain

(d∗, 0)(0, b) = (0, db) ∈ Z(R) \ {0}, (d∗, 0) ∈ Z(R).

Thus, the ring R is centrally essential.

7.5. Quaternion and Octonion Algebras

Remark 43. Let K be a commutative associative ring with the identity involution and a an invertible
element of the ring R. We consider the ring A1 = (K, a). Then A1 is a commutative associative
ring, since B = C = I = J = K, under the notation of Section 7.4. It is natural to write elements
of the ring A1 in the form x + yi, where x, y are elements of the ring K, i = (0, 1). On the ring
A1, an involution is defined by the relation (x + yi)∗ = x− yi for any x, y ∈ K. We choose an
invertible element b ∈ K. Then b is an invertible symmetrical element of the center of the ring A1
and we can construct the ring A2 = (A1, b). We consider the K-basis of the algebra A2, which is
formed by the elements 1 = (1, 0), i = (i, 0), j = (0, 1) and k = (0,−i). The relations

i2 = a, j2 = b, ij = −ji = k, ik = −ki = aj, kj = −jk = bi

are directly verified. Consequently, the obtained ring is the generalized quaternion algebra
(

a, b
K

)
.

It is well known (and also follows from Theorem 30) that the ring A2 is associative (e.g., see [41]
[Example 7.2.III]). The center of the ring A2 is of the form K+ Ni+ Nj+ Nk, where N = AnnK(2)
(see [73] [Lemma 2(b)]). Let B, I, J be defined by equations in Remark 42 for A = A2. It is easy to
verify that

B = C = Z(A2), I = J = N + Ni + Nj + Nk.

Lemma 29. Under the above notation, the ideal I is an essential ideal in B if and only if N is an
essential ideal in K.

Proof. Let I be an essential ideal in B. If x ∈ K \ {0}, then there exists an element y ∈ B
such that xy ∈ I \ {0}. We set

y = y1 + y2i + y3 j + y4k, where y1 ∈ K, y2, y3, y4 ∈ N.

If xy1 6= 0, then xK ∩ N 6= 0. Otherwise, at least one of the elements xy2, xy3, xy4 is
not equal to 0, and each of them belong to the ideal N, whence xK ∩ N 6= 0 in this case too.

Conversely, if N is an essential ideal in K and

x = x1 + x2i + x3 j + x4k ∈ I \ {0},

then x2, x3, x4 ∈ N. If x1 6= 0, then there exists an element y ∈ K with yx1 ∈ N \ {0}. Then
yx ∈ Bx ∩ I \ {0}. If x1 = 0, then x = 1 · x ∈ Bx ∩ I. Thus, I is an essential ideal of the
ring B.

From the above argument, we obtain the following

Proposition 42. The quaternion algebra ((K, a), b) is a non-commutative centrally essential ring
if and only if AnnK(2) is a proper essential ideal of the ring K.

Now we consider an arbitrary invertible element c ∈ K and the ring A3 = (A2, c).
We set

f1 = i, f2 = j, f3 = k, f4 = l = (0, 1),

f5 = (0,−i), f6 = (0,−j), f8 = (0,−k).

It can be directly verified that the basis {1, f1, f2, .
. ots, f7} of the K-module A3 satisfies

the relations from [70] for basis elements of the generalized octonion algebra O(α, β, γ) (for
α = −a, β = −b, γ = −c).
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Similar to Proposition 42, we obtain Proposition 43.

Proposition 43. The octonion algebra (((K, a), b), c) is a non-associative centrally essential ring
if and only if AnnK(2) is a proper essential ideal of the ring K.

Example 26. Let K = Z4 and R = (((K, 1), 1), 1). We prove that R is a non-associative non-
commutative centrally essential ring.

Indeed, AnnK(2) = 2K is an essential proper ideal in K. Therefore, the non-commutativity of
the ring ((K, 1), 1) (and the non-commutativity of the ring R containing ((K, 1), 1)) follows from
Proposition 42 and the non-associativity of the ring R follows from Proposition 43.

We note that R = (((K, 1), 1), 1) is an alternative ring and the ring (R, 1) is not even right
alternative, i.e., (R, 1) does not satisfy the identity (x, y, y) = 0 [41] [Exercise 7.2.2]. Thus, there
are alternative non-associative finite centrally essential rings and non-alternative finite centrally
essential rings.

Problem 5.

a. Is it true that there exists a left N-essential ring which is not right N-essential?
b. Is it true that there exists a commutative N-essential (equivalently, centrally essential) non-

associative ring?
c. Is it true that there exists a right alternative centrally essential or N-essential non-alternative

ring?
d. How can we generalize the obtained results to the case of non-unital rings and the case, where

the element α in Definition 3 is not supposed to be invertible?
e. Since the Cayley–Dickson process gives non-associative division algebras (see, e.g., [67,68]), it

seems natural to state the following question:
what can be said about N-essentiality of these division rings?

Note that centrally essential semiprime rings are commutative, but it is not known whether N-
essential semiprime rings are associative.
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Symbols
`R(S) and rR(S) left and right annihilators of the subset S 4
Sing M singular submodule of the module M 4
ΣS element ∑x∈S x of the group ring AG 15
supp (r) support {g ∈ G|ag 6= 0} of the element r 15
gG class of conjugate elements containing the element g 17
QEnd A quasi-endomorphism ring of the group A 38
Z(S) or C(S) center of a semiring or the group S 55
(X .

. Y) subset {a ∈ A |Xa ⊆ Y} of the right A-module 52
R1 union of the ring R with adjoint external unit 60
(a, b, c) = (ab)c− a(bc) associator of elements a, b, c of the ring R 60
N(R) associative center of the not necessarily associative ring R 60
K(R) commutative center of the not necessarily associative ring R 60
Z(R) = N(R) ∩ K(R) center of the non-associative ring R 60
Ẑ(R) centroid of the not necessarily associative ring R 60
[A, A] ideal generated by commutators of all elements of A 64
(A, α) ring from the Cayley–Dickson process 64
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Index
additively cancellative semiring 56
alternative ring 63
annihilator 4
arithmetical ring 3
Artinian module 3
associative center 60
associator 60
Cayley–Dickson process 64
CE ring 1
center of a non-associative ring 60
center of a semiring 55
centrally essential non-associative ring 61
centrally essential ring 1
centrally essential semiring 55
centroid 60
classical identity 28
classical ring of fractions 4
closed submodule 3
commutative center of a non-associative ring 60
commutator 43
complemented idempotent 56
derivation 43
distributive module 3
divisible Abelian group 37
division semiring 60
domain 3
element algebraic over the center 28
essential extension 3
essential submodule 3
FC-group 17
finite-dimensional module 3
flat module 50
generalized anticommutative ring 11
graded ring 11
hereditary module 3
homogeneously faithful ring 11
integrality over the center 29
invariant module 52
invariant ring 3
involution 64
K-essential ring 61
large center 25
local ring 8
multiplicatively cancellative semiring 59
N-essential ring 61
nil index 32
nilpotence class 17
nilpotence index 32
Noetherian module 3
non-reduced Abelian group 37
non-singular module 7
non-zero-divisor 3
perfect ring 9
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PI ring 28
polynomial identity 28
prime ring 3
projective module 3
pseudo-socle 37
pure subgroup 37
quasi-contained the group 38
quasi-decomposition of an Abelian group 38
quasi-endomorphism 38
quasi-endomorphism ring 38
quasi-equal groups 38
reduced Abelian group 37
reduced semiring 55
reduced non-associative ring 62
regular element 3
ring algebraic over the center 29
ring of differences 56
S-graded ring 11
semi-Artinian module 9
semifield 60
semihereditary module 50
semilocal ring 9
semiperfect ring 8
semiprime ring 3
semiprime non-associative ring 62
semiprime semiring 56
semiring 55
semisubtractive semiring 56
singular ideal 4
singular submodule 4
socle 3
strongly centrally essential ring 61
strongly indecomposable group 38
support 15
T-nilpotent ideal 9
uniform module 4
uniserial module 3
upper central series 17
von Neumann regular ring 50
weak global dimension 50
weakly centrally essential ring 61

References
1. Lyubimtsev, O.V.; Tuganbaev, A.A. Centrally essential endomorphism rings of abelian groups. Commun. Algebra 2020, 48,

1249–1256. [CrossRef]
2. Lyubimtsev, O.V.; Tuganbaev, A.A. Centrally essential torsion-free rings of finite rank. Beitr. Algebra Geom. 2021, 62, 615–622.

[CrossRef]
3. Lyubimtsev, O.V.; Tuganbaev, A.A. Centrally essential group algebras and classical rings of quotients. Lobachevskii J. Math. 2021, 2,

2890–2894. [CrossRef]
4. Lyubimtsev, O.V.; Tuganbaev, A.A. Centrally Essential Semirings. Lobachevskii J. Math. 2022, 43, 1405–1410.
5. Lyubimtsev, O.V.; Tuganbaev, A.A. Local Centrally Essential Subalgebras of Triangular Algebras. Linear Multilinear Algebra 2020.

doi: 10.1080/03081087.2020.1802402. [CrossRef]
6. Lyubimtsev, O.V.; Tuganbaev, A.A. Centrally Essential Semigroup Algebras. arXiv 2022, arXiv:2204.10518.
7. Lyubimtsev, O.V.; Tuganbaev, A.A. Ideals and Factor Rings of Centrally Essential Rings. arXiv 2022, arXiv:2204.10507.
8. Markov, V.T.; Tuganbaev, A.A. Centrally essential group algebras. J. Algebra 2018, 518, 109–118. [CrossRef]

http://doi.org/10.1080/00927872.2019.1677698
http://dx.doi.org/10.1007/s13366-020-00529-0
http://dx.doi.org/10.1134/S1995080221120246
http://dx.doi.org/10.1080/03081087.2020.1802402
http://dx.doi.org/10.1016/j.jalgebra.2018.07.009


Mathematics 2022, 10, 1867 73 of 74

9. Markov, V.T.; Tuganbaev, A.A. Centrally essential rings. Discret. Math. Appl. 2019, 29, 189–194. [CrossRef]
10. Markov, V.T.; Tuganbaev, A.A. Rings essential over their centers. Commun. Algebra 2019, 47, 189–194. [CrossRef]
11. Markov, V.T.; Tuganbaev, A.A. Centrally essential rings which are not necessarily unital or associative. Discret. Math. Appl. 2019,

29, 215–218. [CrossRef]
12. Markov, V.T.; Tuganbaev, A.A. Rings with Polynomial Identity and Centrally Essential Rings. Beiträge Algebra Geom. 2019, 60,

657–661. [CrossRef]
13. Markov, V.T.; Tuganbaev, A.A. Cayley-Dickson Process and Centrally Essential Rings. J. Algebra Appl. 2019, 18, 1950229. [CrossRef]
14. Markov, V.T.; Tuganbaev, A.A. Uniserial Artinian Centrally Essential Rings. Beiträge Algebra Geom. 2020, 61, 23–33. [CrossRef]
15. Markov, V.T.; Tuganbaev, A.A. Constructions of Centrally Essential Rings. Commun. Algebra 2020, 48, 198–203. [CrossRef]
16. Markov, V.T.; Tuganbaev, A.A. Uniserial Noetherian Centrally Essential Rings. Commun. Algebra 2020, 48, 149–153. [CrossRef]
17. Markov, V.T.; Tuganbaev, A.A. Distributive Noetherian Centrally Essential Rings. J. Algebra Its Appl. 2023, Online Ready. [CrossRef]
18. Tuganbaev, A.A. Centrally Essential Rings. Lobachevskii J. Math. 2020, 41, 136–144. [CrossRef]
19. Hall, M. The Theory of Groups; Macmillan: New York, NY, USA, 1959.
20. Jelisiejew, J. On commutativity of ideal extensions. Commun. Algebra 2016, 44, 1931–1940. [CrossRef]
21. Bourbaki, N.; Algebra, I. Chapters 1–3; Springer: Berlin, Germany, 1989.
22. Herstein, I. Noncommutative Rings; Mathematical Association of America: Washington, DC, USA, 2005.
23. Lam, T.Y. A First Course in Noncommutative Rings; Springer: Berlin/Heidelberg, Germany, 2001.
24. Lambek, J. Lectures on Rings and Modules; AMS Chelsea Publishing: Rochester, NY, USA, 2009.
25. Rowen, L.H. Ring Theory I; Academic Press: New York, NY, USA, 1988.
26. Tuganbaev, A.A. Semidistributive Modules and Rings; Springer Netherlands (Kluwer): Dordrecht, The Netherlands ; Boston, MA,

USA ; London, UK, 1998; 352p.
27. Fuchs, L. Abelian Groups; Springer Monographs in Mathematics: Berlin/Heidelberg, Germany, 2015.
28. Krylov, P.A.; Mikhalev A.V.; Tuganbaev A.A. Endomorphism Rings of Abelian Groups; Springer Netherlands (Kluwer): Dordrecht,

The Netherlands ; Boston, MA, USA; London, UK, 2003.
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