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Abstract: The research background is the elastic ring squeeze film damper. Four contact pressure
models were established by analyzing the structural characteristics and movement, combined with
the sliding bearing theory, including structural parameters and eccentricities. Multi-structure and
multi-interval dynamic boundary conditions were selected by analyzing actual structures. Simpson,
polynomial, and integrated parameters methods extended Booker formulas. By combining existences
and forms of the solution and mean-value theories, approximate analytical solutions of the finite
length bearing were obtained under different contacts. Combined with the short and long bearing,
general structures and expressions of analytical solutions of oil film pressures and forces under three
approximation theories were obtained. The oil film characteristics of the dynamic equilibrium state
were obtained, and the correctness was verified by theoretical comparison. Numerical simulations
analyzed the relationship among relevant parameters. It provided a theoretical basis upon which
to study the geometric form, motion state, and the approximate analytical solution of the ERSFD
dynamic model, and increased its research ability.

Keywords: multi-structure and multi-interval dynamic π boundary conditions; oil film force;
different contacts

MSC: 37; 37M05

1. Introduction

To reduce the nonlinear characteristics’ influence of the traditional squeeze film
damper (SFD) in large eccentricity, the elastic ring was installed in the bearing cham-
ber between the damper journal and clearance, equivalent to designing the elastic support
inside the damper, which was the elastic ring squeeze film damper (ERSFD). Because of
its compact structure, small footprint, noticeable frequency modulation, vibration reduc-
tion, and high system stability, it has been used in many aero-engines. However, there
were still some deficiencies in studying the oil film characteristics of complex structures
and frequency modulation and vibration reduction mechanisms. Therefore, studying the
geometric form, motion state, and related models of the ERSFD has a high significance in
analyzing the structural design of the damper and the ERSFD-rotor system.

Many research groups have researched the ERSFD. In terms of solving the approximate
analysis of oil film forces, the traditional short and long bearing approximation theory,
the Zhang W. model [1], Yang J.F. model [2], Capone model [3], finite difference and
finite element methods [4,5] and databases [6] were mainly used. Wang [7,8] adopted the
whole oil film hypothesis and separation of variables theories, Vignolo [9] used the regular
perturbation method, and Chasalevris [10] used the variational principle to obtain the
oil film force’s analytical solution without considering the cavity effect [11]. Sfyris [12]
applied the separation of variables theory and the power series method and got the oil film
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pressure under zero-pressure boundary conditions, and Li [13] derived it and combined
the non-zero differential pressure boundary conditions and the clearance flow. Zhang [14]
obtained the pressure distribution based on the variational principle and determined
the start–end positions in the circumferential direction under the continuity condition.
Gustafsson [15] considered the approximation solutions with an uncertain film thickness
and carried out high-order discrete numerical solutions in spatial and random domains
through the random Galerkin finite element method. Zhang [16] researched the nonlinear
phenomenon of oil film forces considering the axial diameter ratio of 0.8–1.0.

In terms of the structure and dynamics of ERSFD, Zhou [17] established the double oil
film models of the ERSFD using the element method and analyzed the oil characteristics.
Cao [18] studied the elastic ring and no-end sealing on the ERSFD rotor system. Zhang [19]
examined the deformation and contacts at the bosses’ position using the fluid–structure
coupling method. Han [20] calculated the elastic deformation using the FEM.

Zhang [21] proposed an optimal scheme for the squirrel cage design using the cellular
mapping method and experiments. Meeus [22] advanced quasi-static bearing simulations
and explained the reason for the nonlinear phenomena. Jeung [23] estimated the force
coefficients of an end sealed in a short bearing. Shoyama [24] compared the damping
coefficients between the single-clearance and double-clearance extruded film damper.
Wang [25] established a lumped mass model of the active floating SFD and calculated the
system responses using the combination of explicit and implicit Newmark-β.

However, most of the research is on the single-state theoretical model of the ERSFD.
These lack the analysis of four contacts (the suspension, the inner-bosses contact, the outer-
bosses contact, and the inner–outer bosses contact) [6], dynamic transformation processes
of different contacts, and the structure and expression of analytical solutions of the finite-
length bearing. Therefore, it is worth further study to establish oil film pressure models
that were more consistent with actual structures according to fundamental theories and
effectively applied to analyze dynamic characteristics and obtain approximate analytical
solutions of oil film forces.

In this study, from geometrical structures and motion states, generalized models of
the oil film pressure were established by dynamic pressure oil theories and generalized
Reynolds equations of sliding bearings, including four contact conditions. Second, reason-
able boundary conditions were selected and constructed according to the actual structures
and working conditions. Booker’s formulas were improved and extended. Third, the ap-
proximate analytical oil film pressures of the finite length bearing approximate theory were
obtained by making the special and general solution of the partial differential equation
and mean-value theories. Next, general structures and expressions of oil film pressures
and forces under three approximate theories were given. The theoretical derivation’s
rationality, correctness, and universality were compared with existing conclusions. Finally,
the relationships between the relevant structural parameters under different contacts were
discussed through numerical simulations. Based on the essence of the problem, the model
construction and theoretical derivation were studied in-depth to provide a theoretical basis
for relevant dynamics models in this study.

2. Oil Film Pressure Model

The ERSFD design ideal was that the elastic ring was added to the inner and outer
ring of the traditional SFD. The double surfaces of the elastic ring were processed using
staggered and evenly distributed bosses. The bosses on the inner surface were matched
to the outer surface of the damper journal. The bosses on the outer surface were matched
to the bearing seat. During the precession and rotation process, the damper journal was
driven and subjected to varying the oil film supporting forces and the elastic ring variable
supporting forces. This reduced vibration. Figure 1 shows the ERSFD structure. The oil film
and bearing seat were conducted from the inside to the outside of the structure in Figure 1a,
including the journal, bearing, slide oil film, damper journal, inner oil film, elastic ring,
outer oil film, and shaft block. The inner oil film, the elastic ring, and the outer oil film are
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the research topics in this study. The elastic ring contains a boss and an oil hole, as shown in
Figure 1b. The simplified assumptions were made [6,18,26]: (1) Only the velocity gradient
of the oil film thickness direction was considered; (2) The incompressible flow conformed
to Newton’s viscosity law; (3) The temperature effect and the journal curvature effect were
not considered.

Figure 1. Structure diagram of ERSFD. (a) Composite structure. (b) Elstic ring structure.

2.1. Basic Equations

According to the geometric structures and motion states of the ERSFD, this section
took the basic theory (the dynamic pressure lubrication theory and Reynolds equation
of sliding bearings [18]) as the starting point. First, the single-layer oil film is analyzed,
as shown in Figure 2. In the analysis process, the inner oil film of the damper journal and
the elastic ring is taken as an example for analysis, and their structure is shown in Figure 2a
and Figure 2b. The position is the inner oil film part in Figure 1a, and the elastic ring is
shown in Figure 1b. The pressure equation of the single-layer oil film was established.
Then, it was gradually generalized and extended to the multi-layers model. The oil film
force models of the inner and outer oil film were established.

Figure 2. Motion State of ERSFD. (a) Elevation view. (b) Motion state of the inner oil film.

According to the construction methods of the Reynolds equation of sliding bearings,
the precession speeds of the inner oil film ring and the damper journal were U1 and U2,
respectively. Z was the axial direction along the damper journal. The partial speeds of the
circular X and the normal Y of the circular surface on the damper were u and v, respectively.
The flow outward through the upper surface Y = 0 and the lower surface Y = h was at
the static speed vd, which was the pore, gap, porous material, or other outward seepage
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speed. To the cylindrical coordinate X = Rθ, the generalized Reynolds equation of the
in-compressible flow in the traditional polar coordinate form was:

1
R2

∂

∂θ

(
h3 ∂p

∂θ

)
+

∂

∂Z

(
h3 ∂p

∂Z

)
= 6(U1 + U2)

1
R

∂h
∂θ

+ 12µ(V2 −V1) + 12µvd. (1)

Considering the precession motion of the center Oj of the damper journal around
the center O f of the inner oil film, the precession angular speed was Ω, and U1 = ωb,
U2 = ωj. Select ∂h

∂t = V2 − V1, h = c + e cos θ, ė = Cε̇, U1 ≈ Rbωb ≈ Rjωb, and U2 =
Rjωj + ė sin θ − eΩ sin θ, Equation (1) was approximately converted to:

1
R2

∂

∂θ

(
h3 ∂p

∂θ

)
+

∂

∂Z

(
h3 ∂p

∂Z

)
= 6(ωb + ωj − 2Ω)

∂h
∂θ

+ 12µ
∂h
∂t

+ 12µvd. (2)

Neither the inner oil film ring nor the damper journal in the elastic ring extruded oil
film damper rotates, ωb = ωj = 0. When the damper journal only performed the circular
precession around the center of the oil film, Equation (2) was simplified as [27]:

1
R2

∂

∂θ

(
h3 ∂p

∂θ

)
+

∂

∂Z

(
h3 ∂p

∂Z

)
= −12Ω

∂h
∂θ

+ 12µ
∂h
∂t

+ 12µvd. (3)

Similarly, the outer oil film pressure can be derived [19]. The outer oil film pressure
model was derived with Equations (2) and (3). In addition, the above transformation
process in which the oil film pressure model of Equation (2) extruded oil film damper
included various motion states of sliding bearings and had the precession speed of the
elastic ring and the damper journal. Equation (3) was more consistent with the ERSFD
geometric structures and actual working conditions, conducive to the subsequent study of
four contact models of the elastic ring.

2.2. ERSFD Models

According to motion contacts and forces of the ERSFD, this section took the suspension
model and the inner–outer bosses contact model as primary research objects, and then
analogized the model construction ideas to complete four different contact models.

As shown in the above and following figures, R1 is the journal Oj radius. R2 is the
elastic ring O f radius. R3 is the bearing seat Ob radius. According to actual problems as in
Equations (1)–(3), R could select R1, R2, and R3. Owing to the existence of the eccentricity
during installation or movement, it is assumed that the eccentricity of Oj and O f relative
to the center of Ob are e1 and e2, respectively. The eccentricity of Oj and O f is e3. µ
denotes the viscosity coefficient. vd is the flow rate. h00 represents the boss height. h01
represents the boss thickness. The damper journal speed and the ERSFD speed are Ω1 and
Ω2, respectively.

1. Suspension. The bosses did not contact the damper journal or bearing seat in the sus-
pension. This state was similar to the motion state of the floating ring of the FRSFD [26],
as shown in Figure 3. By analyzing motion states of the floating ring of the FRSFD and
pressure equations [26,28], pressure equations in the suspension [29] were deduced as
follows, combined with the geometric position relation of the ERSFD structures.



1
R2

1

∂

∂θ1

(
h3

1
∂p1

∂θ1

)
+

∂

∂Z

(
h3

1
∂p1

∂Z

)
= 12µe11sin θ1 + 12µe12sin θ1 + 12µvd,

1
(R2 + h01 + h00δ)2

∂

∂θ2

(
h3

2
∂p2

∂θ2

)
+

∂

∂Z

(
h3

2
∂p2

∂Z

)
= 12µe21sin θ2

+ 12µe22sin θ2 + 12µvd,

(4)

where Equation (4) describes the inner and outer pressure equations, respectively. p1
and p2 denote the inner and outer pressures, respectively. θ1 and θ2 include angles
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from the maximum thickness, respectively, which are positive counterclockwise.
Considering the height of the bosses, δ = 0, otherwise, δ = 1. C1 = R2 − h00δ− R1 is
the inner gap, and h1 = C1 + e3cos θ1 is the inner thickness, and C2 = R3− (R2 + h01 +
h00δ) is the outer gap, and h2 = C2 + e2cos θ2 is the outer thickness. The eccentricities
are e21 = e2Ω2, e22 = ė2,

e11 = Ω1
e2

1+e2
3−e2

2
2e3

− ė1
e1

√
4e2

1e2
3−(e2

1+e2
3−e2

2)
2

2e3
+ Ω2

e2
2+e2

3−e2
1

2e3
− ė2

e2

√
4e2

2e2
3−(e2

2+e2
3−e2

1)
2

2e3
.

e12 = Ω1

√
4e2

1e2
3−(e2

1+e2
3−e2

2)
2

2e3
+ ė1

e1

e2
1+e2

3−e2
2

2e3
−Ω2

√
4e2

2e2
3−(e2

2+e2
3−e2

1)
2

2e3
+ ė2

e2

e2
2+e2

3−e2
1

2e3
.

Figure 3. Suspension.

2. Inner–outer bosses contact. The inner bosses contact the damper journal and the outer
bosses contact the bearing seat in the inner–outer bosses contact. This contact was
similar to the motion state of the single-structure ring of the ERSFD [17], as shown in
Figure 4. By studying the single-structure ring of the ERSFD [17,18], oil film pressure
equations [29] were deduced as follows.

1
R2

1

∂

∂θ3

(
h3

3
∂p3

∂θ3

)
+

∂

∂Z

(
h3

3
∂p3

∂Z

)
= 12µe31sin θ3 + 12µe32sin θ3 + 12µvd,

1
(R2 + h01 + h00δ)2

∂

∂θ4

(
h3

4
∂p4

∂θ4

)
+

∂

∂Z

(
h3

4
∂p4

∂Z

)
= 12µvd,

(5)

where Equation (5) describes the inner and outer pressure equations. θ3 and θ4 are
the included angles from the maximum thickness, respectively, which are positive
counterclockwise. C3 = R2 − h00δ − R1 is the inner gap, and h3 = C2 + e2cos θ3
is the inner thickness, and C4 = R3 − R2 − h01 − h00δ is the outer gap, and h4 =
R3 − R2 − h01 − h00δ is the outer thickness. The eccentricity are e31 = e2Ω2, e32 = ė2.

Figure 4. Inner-outer bosses contact.
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3. Inner-bosses contact and Outer-bosses contact. The inner bosses were contacted
with the damper journal in the inner-bosses contact, as shown in area B of Figure 5.
The outer bosses were contacted with the bearing seat in the outer bosses contact,
as shown in area C of Figure 5. The pressure models of contact areas and the oil
film areas were deduced from the different combinations of Equations (4) and (5),
respectively [30]. According to the relationship between the two combination types
of models and their corresponding parameter selection adjustment, the inner-bosses
contact and the outer-bosses contact are further described [30].

(1) The oil film force model for the inner-bosses contact is the suspension’s outer
oil film pressure model and the inner oil film pressure model of the inner-outer
bosses contact.

(2) The oil film force model of the outer-bosses contact is the suspension’s inner
oil film pressure model and the outer oil film pressure model of the inner-outer
bosses contact.

Figure 5. Inner-bosses contact and Outer-bosses contact.

Furthermore, it was compared with the typical squeeze film dampers of SFD, PSFD,
and FRSFD.

(1) The transient pressure model of the oil film of the squeeze film damper (SFD) with oil
film alone

1
R2

∂

∂θ

(
h3 ∂p

∂θ

)
+

∂

∂Z

(
h3 ∂p

∂Z

)
= −12µΩ

∂h
∂θ

+ 12µ
∂h
∂t

(2) The transient pressure model of the oil film of the porous squeeze film damper (PSFD)
included the fluid amount of the oil hole Qy

1
R2

∂

∂θ

(
h3 ∂p

∂θ

)
+

∂

∂Z

(
h3 ∂p

∂Z

)
= −12µΩ

∂h
∂θ

+ 12µ
∂h
∂t

+ Qy

(3) The transient pressure models of the inner and outer oil film of the floating ring
squeeze film damper (FRSFD).
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

1
R1

1

∂

∂θ

(
h3

1
∂p1

∂θ

)
+

∂

∂Z

(
h3

1
∂p1

∂Z

)
= 6

(
e1Ω1 sin β1 + ė1 cos β1 − e2Ω2 cos β2

+ ė2 sin β2

) 1
R

∂h
∂θ

+ 12
(

e2Ω2 sin β2 + ė2 cos β2

+ e1Ω1 cos β1 − ė1 sin β1

)
.

1
R2

2

∂

∂θ

(
h3

2
∂p2

∂θ

)
+

∂

∂Z

(
h3

2
∂p2

∂Z

)
= −12µΩ2

∂h2

∂θ
+ 12µė2 cos θ,

where, p, p1, and p2 describe the pressure. β1 and β2 are included angles from the
maximum thickness, respectively. The precession speed of the journal damper was
Ω1, and the precession speed of the elastic ring was Ω2. h1 and h2 are the thickness of
the inner and outer oil film.

Compared with the above typical oil film pressure models, it can be seen that the
analytical thinking and mathematical models of the ERSFD are consistent with those of the
squeeze film dampers in SFD, FSFD, and PSFD, if the thickness of the elastic ring and convex
platform are not considered. Equations (4) and (5) contained the thickness, height, width,
flow rate, other relevant geometric parameters, and actual motion states of the ERSFD,
damper journal, and bearing seat, such as static and dynamic eccentricities. The elastic
deformation of the ERSFD could also be described by selecting different oil film clearances,
such as the misalignment and its variability [31]. Moreover, the transformation process of
various contacts was described by adjusted parameters, which were more consistent with
the actual structures and working conditions.

In summary, oil film pressure models of four different contacts were constructed in
this study, which improved the oil film pressure models of the ERSFD proposed by Russian
scholars. Moreover, this also described two situations during installing dampers in real
aero-engines. The first was that the initial installation state was the inner–outer bosses
contact. The damper journal precessed and extruded staggered layout bosses during the
initial process. The ERSFD and the flowing oil film played supporting and damping effects
between the oil holes, as shown in Figure 4 and the deformation area A. As the platform
was damaged, Figures 3 and 5 show that this contact gradually evolved into the suspension.
Second, the original installation state was the suspension. The inner and outer bosses
existed when the journal precession amplitude was too large, as shown in the contact areas
B and C in Figure 5. This condition was more common, and the construction idea of the oil
film pressure model of four contacts proposed in this study was to describe the dynamic
transformation process of different contacts under this condition.

Therefore, it is beneficial to analyze the structure of the SFD from the aspects of the
design and principle by studying systems and oil film pressure models.

3. Approximate Analytical Solutions

The approximate solutions of oil film pressure models were generally obtained by
the short and long bearing approximate theories. The circumferential pressure was far
less than the axial pressure when the axial radius ratio was small (the short bearing).
The circumferential pressure was ignored. On the contrary, the axial pressure was ignored
when the axial ratio was large (the long bearing). According to the Aero-engine Design
Manual, the axial radius ratio of standard engine dampers was between 0.05 and 0.31.
Moreover, from the mechanism perspective, the finite-length bearing approximate theory
had a better effect. Therefore, this section analyzed and deduced the approximate analysis
based on structural characteristics and actual working conditions of the ERSFD.
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3.1. Determination of Boundary Conditions

The oil film boundary conditions (the rupture and second form boundaries) depend on
the geometry and movement parameters of the bearing, the roughness of the section, state
parameters of the oil (surface tension, points of the containing gas air-pocket pressures),
physical properties, and dynamic effects of the Reynolds number. In this section, the logical
relations of static conditions (Sommerfeld, Gumball, Reynolds, Floberg, and continuous
static conditions), local dynamic conditions (Hahn and continuous dynamic boundary
conditions), and attached boundary conditions were discussed [6,13,14,32]. Combined
with the geometric structure, actual working condition, the derivation process, and using
the finite coverage theorem, the boundary constraint condition of the multi-structure and
multi-interval dynamic π oil film suitable was:

p
(

θ,− L
2

)
= p10, p

(
θ, L

2

)
= p20, p(θ1, Z) = p(θ1 + 2π, Z),

θ1 = arctan
(
− ε̇

εΩ
)
, θ2 = θ1 + ∆θ, [θ1, θ2] = ∪k∈(i,j)(θik, θik),

(6)

where the multi-structure refers to bosses, oil holes, and other structures. The multi-interval
refers to the interval between bosses and the gap between adjacent bosses (θik, θik) and
k∈(i, j), where i and j represent the number of boss clearances and bosses, respectively.
According to the finite coverage theorem, the division between regions was reasonable
and the interval set existed. Dynamic π refers to overall interval length ∆θ ≈ π [14].
ε is the eccentricity. ε̇ = 0 can be regarded as a circular motion. ε̇ 6=0 can be regarded as an
elliptical motion or other motions.

3.2. Finite Length Bearing

The oil film pressure model is a two-dimensional nonlinear partial differential equation
with second-order variable coefficients and three independent variables, which is very
difficult to solve. From the boundary conditions of existing ideas and the form of the
Reynolds equation, the oil film pressure expressions are adopted by the short bearing,
long bearing, variational, small parameter, and separation variables methods [13,19,33,34].
Considering the existence and structure of solutions of differential equations, it is necessary
to select the appropriate solution structure to facilitate solving the analytical solution
expression. For example, the experimental pressure function p(θ, z) = Bg(z)r(θ, ρ) was
based on the variation theory. The function p(θ, z) = f (z)g(θ) was selected in the ‘Rotor
Dynamics’ and the ‘Aero-engine Rotor Dynamics’. p(θ, z) = f (z) + p(θ) was selected in
the ‘Aeroengine Design Manual’. The different oil film pressure equations of four contacts
are solved using the structure and existence theories of the partial differential equation (the
adding and multiplying form) [11–13] in this section.

The right side of Equations (4) and (5) were briefly described as a function of the
eccentricity, precession velocity, and rotation angle. The general oil film pressure equation
was transformed,

1
R2

∂

∂θ

(
h3 ∂p f

∂θ

)
+

∂

∂Z

(
h3 ∂p f

∂Z

)
= G(e, Ω, θ), (7)

where G(e, Ω, θ) = 12µe∗1 sin θ + 12µe∗2 cos θ + 12µvd. e∗1 , e∗2 , R, h = c + e cos θ, p f , and θ are
determined by Equations (4) and (5). In other words, Equation (7) realizes the general
description of oil film pressure models with different contacts mentioned above, conducive
to subsequent analysis and discussion. The eccentricities are e1 = e2 = e3 = e, and the
precession speeds are Ω1 = Ω2 = Ω.

As the relevant theory of the partial differential equation, the solutions of Equation (7)
exist, corresponding to the sum of the particular solution P(θ, Z) = f1(θ) + g1(Z) of
the inhomogeneous equation and the general solution P∗(θ, Z) = f2(θ)g2(Z) of the ho-
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mogeneous equation, which can be obtained by substituting P(θ, Z) and P∗(θ, Z) into
Equation (7) [12,13],

d2 f1(θ)

dθ2 − 3e sin θ

c + e cos θ

d f1(θ)

dθ
+ R2 d2g1(Z)

dZ2 =
R2

(c + e cos θ)3 G(e, Ω, θ),

g2(Z)
R2

d2 f2(θ)

dθ2 − 3e sin θ

c + e cos θ

g2(Z)
R2

d f2(θ)

dθ
+ f2(θ)

d2g2(Z)
dZ2 = 0.

(8)

Considering that the extruded oil film damper has seals at both ends, the boundary
conditions of the inhomogeneous equation and homogeneous equations are:

P
(

θ,− L
D

)
= f1(θ) + p10, P

(
θ,

L
D

)
= f1(θ) + p20, g1

(
− L

D

)
= p10, g1

(
L
D

)
= p20,

P∗
(

θ,− L
D

)
= − f1(θ), P∗

(
θ,

L
D

)
= − f1(θ), g2

(
L
D

)
= 1, g2

(
− L

D

)
= 1,

f1(θ1) = f1(θ2), f2(θ) = − f1(θ), f2(θ1) = f2(θ2),

where L was the length of the journal. D was its diameter. The positive pressure area is
(θ1, θ2), and the local interval (θik, θik) is selected when considering oil film pressures at the
boss and between two bosses.

The inhomogeneous Equation (8) is split into four differential equations.

d2 f1(θ)

dθ2 − 3e sin θ

c + e cos θ

d f1(θ)

dθ
=

R2G(e, Ω, θ)

(c + e cos θ)3 ,

d2g1(θ)

dZ2 = 0,

d2g2(θ)

dZ2 + Tg2(Z) = 0,

d2 f2(θ)

dθ2 − 3e sin θ

c + e cos θ

d f2(θ)

dθ
− TR2 f2(θ) = 0.

(9)

So,

f1(θ) =
12µR2

c3

(
e∗1 I01

3 + e∗3 I10
3 + vd Iθ

3

)
+

1
c3 C f 1 I00

3 + C f 2. (10)

From boundary conditions, we obtained:

g1(Z) =
p20 − p10

2
D
L

Z +
p20 + p10

2
, C f 2 = 0,

C f 1 = −12µR2

e∗1
I01
3 |

θ2
θ1

I00
3 |

θ2
θ1

+ e∗2
I10
3 |

θ2
θ1

I00
3 |

θ2
θ1

+ vd
Iθ
3 |

θ2
θ1

I00
3 |

θ2
θ1

.

Furthermore, the specific situation can be given by the actual research scope. Accord-
ing to the conditions of separating variables, f2(θ) = − f1(θ) is selected and substituted,

T = 1
R2

(
e∗1 I10

3 + e∗2 I01
3 + vd I00

3
)[

e∗1

(
I01
3 −

I01
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3

)
+ e∗2

(
I10
3 −

I10
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3

)

+vd

(
Iθ
3 −

Iθ
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3

)]−1

.

(11)
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According to the value range of T [11–13], we obtained:

g2(θ, Z) =



cos(kZ)

cos
(

k L
D

) , T > 0, k =
√

T,

1, T = 0,

ekZ + e−kZ

ek L
D + e−k L

D
, T < 0, k =

√
−T.

(12)

The oil film pressure in different contacts is derived as:

p f (θ, Z) = p20−p10
2

D
L Z + p20+p10

2 + 12µR2

c3 [1− g2(θ, Z)]

[
e∗1

(
I01
3 −

I01
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3

)

+e∗2

(
I10
3 −

I10
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3

)
+ vd

(
Iθ
3 −

Iθ
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3

)]
.

(13)

The radial and circumferential oil film forces in different contacts are:

Ff r = −R
∫ L

2
− L

2

∫ θ2
θ1 p f (θ, Z) cos θ dθdZ = − p20+p10

2 LR(sin θ2 − sin θ1)

− 12µR3

c3

∫ θ2
θ1

{[
− e∗1

(
I01
3 −

I01
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3

)
+ e∗2

(
I10
3 −

I10
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3

)

+vd

(
Iθ
3 −

Iθ
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3

)]
cos θ

∫ L
2
− L

2
[1− g2(θ, Z)] dZ

}
dθ

(14)

Ff t = −R
∫ L

2
− L

2

∫ θ2
θ1 p f (θ, Z) sin θ dθdZ = − p20+p10

2 LR(cos θ1 − cos θ2)

− 12µR3

c3

∫ θ2
θ1

{[
− e∗1

(
I01
3 −

I01
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3

)
+ e∗2

(
I10
3 −

I10
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3

)

+vd

(
Iθ
3 −

Iθ
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3

)]
sin θ

∫ L
2
− L

2
[1− g2(θ, Z)] dZ

}
dθ,

(15)

where I00
3 (θ), I01

3 (θ), I11
3 (θ), I10

3 (θ), Iθ
3 (θ), and their related operations can be obtained from

Booker integral formulas [35] and the following Appendix A.

3.3. Method of Approximate Solution Expressions

There were two difficulties in obtaining approximate analytic expressions of
Equations (14) and (15). Because the flow term vd of permeability oil holes is considered,
Iθ
3 (θ) =

∫
θ

(1+ε cos θ)3 dθ is introduced and its reintegration with cos θ, sin θ, arccos
(

ε+cos θ
1+ε cos θ

)
,

and θ. This solution is relatively complex. The next is that g2(θ, Z) is not easy to double inte-
grate. The difficulty of solving the above two equations was far beyond the derivation and
the solution idea of the original Booker formulas. Therefore, most literature avoided this
particular term by simplifying the geometric structure [1,3,12,19,21], or directly adopting
numerical calculation methods without analytic forms [10,14], which has been problematic
for many years.

Based on basic Booker formulas, the separation, integration by parts, recursive adap-
tive Simpson, polynomial fitting, variable integral upper and lower limit, integrand function
with parameters, integral median value theorems, and other strategies were used to solve
the approximate analytic solution of the corresponding simple form.
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1. Iθ
3 (θ). Using separation of variables, integration by parts, and other methods to

propose a semi-analytical and semi-numerical solution and derive the integral formula,
including parameters. The specific analysis was as follows. Get:

Iθ
3 =

∫
θ

(1+ε cos θ)3 dθ = − εθ sin θ+1+ε cos θ
2(1−ε2)(1+ε cos θ)2 − 3ε

2(1−ε2)2
θ sin θ

1+ε cos θ

− 3
2(1−ε2)2 ln(1 + ε cos θ) + (2+ε2)δθ

2(1−ε2)
5
2

arccos
(

ε+cos θ
1+ε cos θ

)
− (2+ε2)δ

2(1−ε2)
5
2

∫
arccos

(
ε+cos θ

1+ε cos θ

)
dθ.

(16)

In combination with Equations (14) and (15), it was necessary to discuss the integral
terms of formulas ln(1 + ε cos θ) and

∫
arccos

(
ε+cos θ

1+ε cos θ

)
dθ . According to the idea of

the function transformation and integrand function with parameters, the above two
expressions were respectively regarded as functions of ε.

(1) Combination with the range of the ERSFD, get θ1 ≈ π, and other situations were
similar. Select:

Iln(ε) =
∫ 2π

π
ln(1 + ε cos θ) dθ, (17)

because, Iln(0) = 0 and

dIln(ε)
dε =

∫ 2π
π

∂
∂ε ln(1 + ε cos θ) dθ =

∫ 2π
π

cos θ
1+ε cos θ dθ = 1

ε

(
π −

∫ 2π
π

1
1+ε cos θ dθ

)
= 1

ε

[
π − 1√

1−ε2 limθ→2π+ arctan
(√

1−ε
1+ε tan θ

2

)]
= 1

ε

(
π − π√

1−ε2

) (18)

Iln(θ) =
∫ ε

0
1
ε

(
π − π√

1−ε2

)
dθ = π ln

(
1 +
√

1− ε2
)
|0ε = π ln 1+

√
1−ε2

2 . (19)

(2) Select:

I∗(ε) =
∫ θ2

θ1

arccos
(

ε + cos θ

1 + ε cos θ

)
dθ (20)

dI∗(ε)
dε

=
∫ θ2

θ1

∂

∂ε
arccos

(
ε + cos θ

1 + ε cos θ

)
dθ

=
1√

1− ε2

∫ θ2

θ1

sin θ

1 + ε cos θ
dθ =

1√
1− ε2

I10
1 |

θ2
θ1

(21)

The solution of Equation (21) was related to θ ∈ (θ1, θ2). When θ ∈ (π, 2π), it
was converted to:

dI∗(ε)
dε

|2π
π =

1

ε
√

1− ε2
ln

1− ε

1 + ε
(22)

I∗(ε) =
∫ ε

0

ln(1− t)
t
√

1− t2
dt −

∫ ε

0

ln(1 + t)
t
√

1− t2
dt. (23)

However, the corresponding integral Equation (23) was also very difficult to
compute analytically. Therefore, the recursive adaptive Simpson method was
used to calculate the integral and obtain the numerical solution of ε ∈ (0, 1).
Then the polynomial fitting method was used to select the appropriate func-
tion expression within the allowed error range. Moreover, the value of static
eccentricity was generally between 0.1 and 0.35, in which Equations (20) and
(23) were approximately linear. To simplify the calculation, the linear expression
I∗(ε) ∝ 2εδ was selected. It should be noted that the numerical calculation
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method was not suitable for directly solving Equation (20), and sometimes there
were imaginary roots, which were not conducive to subsequent analysis.
Based on the above solution ideas and methods, this study improved and ex-
panded the Booker formulas, as shown in the Appendix A, which tried to propose
a semi-analytical and semi-numerical way to solve this problem.

2. g2(Z). It contains T(θ) and Z, and this kind of problem was encountered in solving
oil film forces by other methods [11], such as, the function r(θ, ρ) mentioned in the
variational method. The integral mean value theorem was used to improve in this
section. Select:

φ1_ f = e∗1

(
I01
3 −

I01
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3

)
+ e∗2

(
I10
3 −

I10
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3

)
+ vd

(
Iθ
3 −

Iθ
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3

)
,

φ2_ f = 1− g2(Z).
(24)

(1) If φ2_ f was continuous on the interval
[
− L

2 , L
2

]
, there was at least one point ξ,

so that: ∫ L
2

− L
2

φ2_ f (θ, z) dz = φ2_ f (θ, ξ)L (25)

If φ1,2_ f (θ, z) = φ1_ f (θ)φ2_ f (θ, z), so

∫ θ2
θ1

∫ L
2
− L

2
φ1,2_ f (θ, z) dzdθ =

∫ θ2
θ1

φ1_ f (θ) dθ
∫ L

2
− L

2
φ2_ f (θ, z) dz

= L
∫ θ2

θ1
φ1_ f (θ)φ2_ f (θ, ξ) dθ;

(26)

(2) If φ2_ f was continuous on bounded closed region D:
[
− L

2 , L
2

]
× [θ1, θ2] , and σ0

was the area of D, then there existed at least a point (ξ, η) in D , such that∫ θ2
θ1

∫ L
2
− L

2
φ2_ f (θ, z) dzdθ = φ2_ f (ξ, η)σ0,

∫ θ2
θ1

∫ L
2
− L

2
φ1,2_ f (θ, z) dzdθ =

∫ θ2
θ1

∫ L
2
− L

2
φ1_ f (θ, z)φ2_ f (θ, z) dzdθ

= φ2_ f (ξ, η)σ0
∫ θ2

θ1

∫ L
2
− L

2
φ1_ f (θ, z) dzdθ.

(27)

The feasibility of the simplified method was discussed theoretically, and the solv-
ing process was similar to Equations (14) and (15) and can be simplified; a reasonable
approximate analytical solution can also be obtained.

3.4. General Expressions

The improved and extended Booker formulas and approximate solution methods
were extended to the short and long bearing approximate theories, and related forces
were obtained.

1. Short Bearing.

ps =
12µR2

c3

[
e∗1

sin θ
(1+cos θ)3 + e∗2

cos θ
(1+cos θ)3 + vd

1
(1+cos θ)3

](
1
2

Z2

R2 − 3
8

L2

R2

)
+Z

L (p20 − p10) +
1
2 (p20 + p10).

(28)

Fsr =
12µR3

c3

[
e∗1 I11

3 |
θ2
θ1
+ e∗2 I02

3 |
θ2
θ1
+ vd I01

3 |
θ2
θ1

]
L3

12R2 −
p10 + p20

2
LR sin θ|θ2

θ1
(29)
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,
12µR3

c3

[
e∗1

2ε

(1− ε2)2 + e∗2
(2ε2 + 1)π

2(1− ε2)
5
2
+ vd

3επ

2(1− ε2)
5
2

]
L3

12R2 , θ1 = π. (30)

Fst =
12µR3

c3

[
e∗1 I20

3 |
θ2
θ1
+ e∗2 I11

3 |
θ2
θ1
+ vd I10

3 |
θ2
θ1

]
L3

12R2 −
p10 + p20

2
LR cos θ|θ2

θ1
(31)

, 12µR3

c3

[
e∗1

π

2(1−ε2)
3
2
+ e∗2

2ε
(1−ε2)2 + vd

2
(1−ε2)2

]
L3

12R2

+LR(p10 + p20), θ1 = π.

(32)

2. Long Bearing.

pl =
12µR2

c3

[
− e∗1

I01
3 −

I01
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3

+ e∗2

I10
3 −

I10
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3


+ vd

Iθ
3 −

Iθ
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3

] (33)

Flr = −
12µR2

c3

∫ θ2
θ1

[
− e∗1

(
I01
3 −

I01
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3

)
+ e∗2

(
I10
3 −

I10
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3

)

+vd

(
Iθ
3 −

Iθ
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3

)]
cos θ dθ

(34)

, − 12µR2

c3

{
e∗1

2ε
(1−ε2)2 + e∗2

{
επ

2(1−ε2)
3
2
+

4[2−(1−ε2) ln 1−ε
1+ε ]

ε(1−ε2)
3
2 (2+ε2)π

}

+vd

{
− 9ε2−3ε4

8(1−ε2)2 +
2ε+ε2

4(1−ε2)
5
2
+

[
1

2ε(1−ε2)
3
2
+ 2+ε2

2ε(1−ε2)

]
π

}
, θ1 = π.

(35)

Flt = −
12µR2

c3

∫ θ2
θ1

[
− e∗1

(
I01
3 −

I01
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3

)
+ e∗2

(
I10
3 −

I10
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3

)

+vd

(
Iθ
3 −

Iθ
3 |

θ2
θ1

I00
3 |

θ2
θ1

I00
3

)]
sin θ dθ

(36)

, − 12µLR3

c3

{
− e∗1

(2−2ε2+9ε3)π

2ε2(1−ε2)
5
2

+ e∗2
−ε7+12ε5−44ε4+15ε3+28ε2−26ε+22

2ε(2+ε2)(1−ε2)3

+vd

{
3

(1−ε2)2 − 11ε5+16ε4+11ε3−32ε2−22ε+22

4(1−ε2)
7
2

+ 2−(1−ε2)
1
2

4ε(1−ε2)
3
2

π

−
[

2+7ε2

4ε(1−ε2)2 − 15ε4−30ε2+24

2ε(1−ε2)
7
2

]
π2 + 3ε3+4ε2−1

2ε3(1−ε2)2 ln(1 + ε)

+ 3ε3−4ε2+1
2ε3(1−ε2)2 ln(1− ε)

}}
, θ1 = π

(37)

3. General expressions of oil film pressures and oil film forces were:

p =
12µR2

c3 φ1(Ω, ε, θ)φ2(Z) + φ3(p10, p20, Z) (38)
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F = −12µR3

c3 ψ1(Ω, ε, θ)ψ2(Z) + ψ3(p10, p20, Z), (39)

where φ1(Ω, ε, θ) includes φ1_s_1, φ1_s_2, φ1_l , and φ1_ f . φ2(Z) includes φ2_s_1, φ2_s_2,
φ2_l , and φ2_ f . φ3(p10, p20, Z) includes φ3_s_1, φ3_s_2, φ3_l , and φ3_ f . ψ1(Ω, ε, θ) in-
cludes ψ1_sr_1, ψ1_st_1, ψ1_sr_2, ψ1_st_2, ψ1_lr, and ψ1_lt. ψ2(Z) includes ψ2_sr_1, ψ2_st_1,
ψ2_sr_2, ψ2_st_2, ψ2_lr, and ψ2_lt. ψ3(p10, p20, Z) includes ψ3_sr_1, ψ3_st_1, ψ3_sr_2, ψ3_st_2,
ψ3_lr, ψ3_ f r, and ψ3_ f t. ψ1,2_ f r and ψ1,2_ f t are the function ψ1(Ω, ε, θ)ψ2(Z), and F con-
sists of the radial force Fr and the circumferential force Ft. The related formulas are
obtained from the corresponding formulas of (13)–(15) and (28)–(37).

Moreover, oil film pressures or oil film forces can be analyzed from three parts: the
structure, motion state (Ω, ε, θ), and sealing state (p10, p20, Z). The general expressions for
three approximate theories in arbitrary intervals (θ1, θ2) and θ1 ≈ π were given and further
discussed. Without considering vd and its corresponding simplified formula, the expression
in this study was consistent with that [11,12]. When e∗i (i = 1, 2) selects the functions corre-
sponding to functions in [32,33,36,37], the oil film force expressions of various simplified
cases involved were the same. It also proved that this section’s oil film force expression was
correct. The method of solving the equation and improving Booker formulas was reason-
able and correct in this study. The next step mainly focused on the engineering application
and analyzed the relationship between relevant parameters in different contacts.

3.5. Analysis of Oil Film Characteristics

The above solution methods and improved Booker formulas supplemented the rele-
vant research work [28]. This section further analyzed and studied the general expressions
of the stiffness and damping provided by oil film forces in the dynamic equilibrium state
so that it was more practical in the practical engineering and the rotor system dynamics
Equation (1).

3.5.1. Oil Film Characteristics

According to the dynamic equilibrium theory, the damper journal precesses around the
elastic ring with a certain eccentricity at the constant speed, and the elastic ring precesses
around the bearing seat with another certain eccentricity at the consistent speed. When the
damper journal may cause a small initial displacement or velocity due to some external
disturbance, eight general equations for dynamic characteristic coefficients of oil films were
obtained from transient oil film force equations [17],

Krr =
∂Fr

c∂ε
|ε0 , Krt =

∂Ft

∂(cε)
=

∂Ft

∂e
|ε0 , Ktr =

∂Ft

c∂ε
|ε0 , Ktt =

∂Fr

∂(cε)
=

∂Fr

∂e
|ε0 ,

drr =
∂Fr

c∂ε̇
|ε0 , drt =

∂Fr

c∂(Ωε)
|ε0 , dtr =

∂Ft

c∂ε̇
|ε0 , dtt =

∂Ft

c∂(Ωε)
|ε0 .

3.5.2. Solution Methods of Characteristic Expression

Four contacts described by Equations (4) and (5) were affected by factors such as the
eccentricity of different states, clearance and thickness of oil film, and rotational speed of
damper journal and elastic ring. e∗1 , e∗2 , e∗3 , and e∗4 have e1, e2 and e3, and as its composition
functions, ε1 = e3

C1
, ε2 = e2

C2
, ε3 = e2

C3
. Each Booker item Ilm

n in each contact has different
meanings of ε. So, the derivative of ε and ε̇ cannot be taken directly, and the derivative
concerning e1, e2, and e3 cannot be substituted. Equations (38) and (39) were also not easy
to obtain. Here, the partial solution strategies based on geometric structure and separation
of variables were as follows.
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(1) Conversion.
In Equation (4), e3 = C1ε1 and ε̇ = C1ε̇1. However, ė3 is not in the original expression.
According to the geometric structure and vector solution,

ė3 = ė1 + ė2, ė1 = C1ε̇11, ė2 = C1ε̇12.

Get:

ė3 = ė1 + ė2 = C1ε11 + C1ε12 = C1ε̇1, ε̇1 = ε̇11 + ε̇12, e2 = C2ε2, ė2 = C2ε̇2.

In Equation (5), e2 = C3ε3 and ė2 = C3ε̇3.
In others, the oil film thickness can be adjusted according to the actual situation to
describe the elastic ring deformation without conversion;

(2) ε and ε̇ were regarded as two independent variables, and the oil film force was
decomposed into two parts, including ε and ε̇. This section contains only ε without ε̇ .
The variables of Equations (35) and (36) were separated first, and then the derivative was
obtained by parts. However, the inner oil film force in the suspension was complicated.
In this case, drr and dtr should be differentiated concerning ε̇11 and ε̇12, respectively,
and then summed up as the overall derivative result with the respect to ε̇1;

(3) The rotational angular speed of the damper journal and the elastic ring were derived.

Taking the synchronous motion under the semi-oil film theory as an example, e1 =
e2 = e3 = e and Ω1 = Ω2 = Ω were the assumption of Section 3.2. The simplified
Equations (28)–(37) can be analyzed without considering the elastic ring compared to
theoretical conclusions.

(1) Short bearing.

Ks =

(
Ks_rr Ks_rt
Ks_tr Ks_tt

)
=

µRL3

c3 Ω


4ε0(1+ε2

0)

(1−ε2
0)

3
π

2(1−ε2
0)

3
2

π(1+2ε2
0)

2(1−ε2
0)

5
2

4ε0

2(1−ε2
0)

2

,

Cs =

(
Cs_rr Cs_rt
Cs_tr Cs_tt

)
=

µRL3

c3


π(1+2ε2

0)

2(1−ε2
0)

5
2

2ε0

(1−ε2
0)

2

2ε0

(1−ε2
0)

2
π

2(1−ε2
0)

3
2

;

.

(2) Long bearing.

Kl =

(
Kl_rr Kl_rt
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,
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(
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π
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4
(1+ε0)(1−ε2

0)
2π

(2+ε2
0)(1−ε2

0)
1
2

;

.

(3) Finite length bearing. These were obtained by the approximate function of
Equations (14) and (15), which was between the short and the long bearing.

Based on the above, the stiffness and damping of four different contacts can be obtained
by substituting the relevant parameters of different contacts (the clearance and thickness),
which were simplified to find the equivalent stiffness and damping in the steady-state.

Moreover, the oil film characteristics of sliding bearings and more cases were further
obtained according to (1)–(3), and the relevant theories in [1,6,23,29,32] were also improved
and corrected.
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4. Discussion and Analysis

The structural parameters of the ERSFD were as follows. The length of the jour-
nal was L = 22.5 × 10−3 m. Its diameter was D = 80 × 10−3 m, and its radius was
R1 = 40× 10−3 m. The inner radius of the elastic ring was R2 = 45× 10−3 m. The inner
radius of the bearing seat was R3 = 50× 10−3 m. The thickness of the elastic ring was
h00 = 2× 10−3 m. The height of the bosses was h01 = 2× 10−3 m. The width of the bosses
was h02 = 2× 10−3 m. The precession speed of the journal was Ω = 1000π rad/s. Due to
the synchronous precession between the journal and the elastic ring, it can be considered to
describe the motion of the center of the circle in the stable state with the same fixed value of
each eccentricity or to describe other movements in the unstable state with different values.
In this study, the relatively simple case is considered for analysis, and the principle of other
issues is the same. It is assumed that the damper journal and the elastic ring move syn-
chronously. The eccentricities among the elastic ring, damper journal was e = 1× 10−3 m
and the rate of eccentricity was ε̇ = 0 and the number of bosses was n = 8.

In this part, the approximate analytical solutions of oil film pressures and oil film forces
of the ERSFD under three approximate theories were analyzed from general structures and
motion states of the ERSFD. The elastic deformation of the ERSFD could be described by
selecting different oil film clearances.

4.1. Structural Parameters and Motion States

Figure 6 shows the relationship between φ1(Ω, ε, θ) and φ2(Z) functions under three
approximation theories is further analyzed. Figure 6a,c,e describes φ1(Ω, ε, θ).

In the pressure expression of the short and long bearings, (Ω, ε, θ) and the function
of Z are independent of each other. The finite length bearing considers the length of the
journal, and φ1,2_ f = φ1_ f φ2_ f is a mixed function of (Ω, ε, θ) and Z. Under the condition of
no-end seal, when the pressure at both ends are zero, φ2_s_1 = φ2_s_2 is a quadratic function
of Z under the short bearing, as shown in Figure 6b. Under the finite length approximation
theory, the value of φ2_ f _1 is the fixed value of L, as shown in Figure 6d. Under the finite
length bearing, the compound function of φ2_ f = 1− g2(Z) equals Z is related to (Ω, ε, θ)
and Z, as shown in Figure 6f.

This is related to the basic assumptions. φ1(Ω, ε, θ) is related to the state of motion
and φ2(Z) is related to the assumption of the length of the journal. Moreover, φ2_ f in the
finite length bearing lies between φ2_s and φ2_c.

4.2. Relationship of Different Oil Film Pressures

Figure 7 shows oil film pressures under three approximate theories. Compared with
the difference method [26,36], the variation trend obtained in this study is consistent,
indicating that the approach adopted is feasible and lays a foundation for subsequent
research. Figure 7a–c points out that the pressure of the short bearing is minimum, and the
pressure of the long bearing is maximum. Putting the three figures together, the expression
of the finite-length bearing is between the pressures of the short and long bearings, as shown
in Figure 7d. Moreover, as the axis ratio increases, the pressure of the finite bearing becomes
closer to that under the long bearing.

Figure 8 shows the variations and pressures of the finite length bearing. Theoretically,
suppose that the short and long bearings are regarded as the two ends of the pressure
function and force function, there should be some value in the middle (the corresponding
value under the finite length hypothesis), as shown in Figure 8a,b.
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Figure 6. Graphic of φ1(Ω, ε, θ) and φ2(Z). (a) φ1_s_1 (φ1_s_2) of the short bearing. (b) φ2_s_1 (φ2_s_2)
of the short bearing. (c) φ1_c of the long bearing. (d) φ2_c of the long bearing. (e) φ1_ f of the finite
length bearing. (f) φ2_ f of the finite length bearing.

Figure 7. Graph of the oil film pressure under three approximation theories. (a) Short bearing.
(b) Long bearing. (c) Finite length bearing. (d) Three approximation theories.
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Figure 8. Graph of variation and oil film pressure under finite length bearing. (a) Variation of oil film
pressure. (b) Variation of φ2_ f .

Furthermore, Equations (24)–(27) can be solved. From the process analysis of the
short, long, and finite-length bearings, under the background of the practical engineering
research, it is necessary to seek analytical relations of approximate functions closer to actual
working conditions, which can be obtained from basic Booker formulas, the improved
solution methods, and the formulas of this study in the Appendix A.

4.3. End Sealings

The approximate theory generally selects the pressure at both ends of the journal
seal as zero. In reality, the journal ends the sealing and needs to consider its sealing.
However, the oil film pressure formula has no end-seal pressure term based on the long
bearing. Therefore, Figures 9 and 10 show that the end sealing is considered in the short
and finite-length bearing.

Figure 9. Influence of the pressure function. (a) End sealing under the short bearing. (b) No-end
sealing under the finite length bearing.

Figure 10. Oil film pressure of end seal on the pressure function. (a) Short bearing. (b) Finite length
bearing.
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The influence of the short bearing is more significant than that of the pressure term
(φ3_s_1 and φ3_ f ) under the long bearing. Figure 9a,b shows that the main reason is that the
bearing radius affects the finite length bearing.

If sealing pressures at both ends are equal, the oil film pressure under the short bearing
is an overall and downward translation. A crossover phenomenon occurs when the sealing
pressure at both ends is different, as shown in Figure 10a. The finite length bearing is
less affected by different pressures at both ends and is generally translated up and down,
as shown in Figure 10b.

4.4. Motion State

Figure 11 shows the thickness changes in the synchronous motion. Three design cases
about the bosses structure, elastic ring without bosses I (keeping its thickness unchanged),
and elastic ring without bosses II (the overall thickness is the boss height and original
thickness of the elastic ring) were analyzed.

There was a significant difference in the thickness at bosses and that between adjacent
bosses, as shown in Figure 11a. With an increase in eccentricity, the thickness changes at
different positions, and the trends are also different, as shown in Figure 11b. The inner and
outer thicknesses exhibited opposite changes in the same angle interval, which was mainly
determined by the layout position of bosses, as shown in Figure 11c,e,g,h. As the eccentricity
increased, the thickness gradually decreased in the first interval and progressively increased
in the second interval, as shown in points A, B, C, and D in Figure 11d,f. When the
eccentricity reached the maximum state, the contacts changed, Figure 11g,h shows that the
thickness at the boss decreased to 0, and the oil film thickness between bosses remained
the same. If the elastic ring does not contain bosses I, the difference in the thickness is
consistent with the difference between the two bosses. The elastic ring does not contain
bosses II, and the thickness change is consistent with the change in the bosses. The oil film
thickness of bosses varied between them.

It was verified that the design of the ERSFD can effectively improve the oil film
performance. Because the thickness function selected in this study is relatively simple,
although a slight improvement in the thickness between two bosses is shown in Figure 11h,
its trend transformation is affected by the elastic deformation and the flow rate. Thus,
the related function formula can be improved for a more reasonable description.

4.5. Oil Film Forces

Figure 12 analyzed the oil film force about four different contacts under the finite
length to describe the fundamental structural characteristics. Overall, the oil film forces of
the boss and its region varied significantly, but the trend of each part remained unchanged.
Journal extrusion decreases the thickness with increased eccentricity, and the double oil
film forces gradually increase.

The force of
(
θ, θ + π

2
)

is higher than that of
(
θ + π

2 , θ + π
)

because the thickness
increases the angle gradually, and the force decreases accordingly. The outer oil film is
close to zero in

(
θ + π

2 , θ + π
)

and even has a negative value when the static eccentricity is
small, indicating that no force is generated. It is generally zero, as shown in Figure 12a,b.
Similarly, Figure 12c,d explains that the double oil film forces gradually increased with the
rotational speed. In structural, with a decrease in the length of the journal and the diameter
of the axle becoming smaller, the force under the finite length bearing tends from the long
to the short bearing, as shown in Figure 12e,f.

4.6. Oil Film Characteristics

The principal radial stiffness and circumferential principal damping in the suspension
were used to analyze oil film characteristics, as shown in Tables 1 and 2.
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Figure 11. Oil film pressure of end seal on the pressure function. (a) Thickness variation in the
suspension. (b) Thickness variation with eccentricity in the suspension. (c) Inner thickness in
the suspension. (d) Inner thickness with eccentricity in the suspension. (e) Outer thickness in
the suspension. (f) Outer thickness with eccentricity in the suspension. (g) Inner thckness in the
inner-outer contact. (h) Outer thickness in the inner-outer contact.

Other conditions were similar to in the study. In Tables 1 and 2, oil film characteristics
at 0.25, 0.5, and 0.75 of the axial diameter ratio of the boss, the clearance of bosses, and the
interval of the semi-oil film were given, and the stiffness and damping of the transient oil
film at each segment point and interval were solved. If the short term was not considered,
it could be converted to the equivalent oil film characteristics of the damper or sliding
bearing. Tables 1 and 2 list that the oil film characteristics of bosses were higher than those
of the boss due to the permeability and oil film flow. Moreover, with the axial radius ratio
increased, the oil film stiffness and damping gradually increased, and the characteristics of
the finite length bearing were close to those of the long bearing.

According to the stiffness and damping formula in Section 3.5, in the steady-state of
circular motion, the circumferential damping does not change with the precession velocity,
and the radial stiffness increases with the increase of precession velocity. There are complex
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nonlinear relations between the damping and stiffness and the eccentricity. It is consistent
with the conclusion [14,37].

Figure 12. Oil film pressure of end seal on the pressure function. (a) Inner oil film force with eccentric.
(b) Outer oil film force with eccentric. (c) Inner oil film force with speed. (d) Outer oilf film force with
speed. (e) Inner oil film force with journal length. (f) Outer oil film force with journal length.

Table 1. Stiffness (103 N/m) and Damping (Ns/m) of the inner oil film of the ERSFD in the suspension.

Ratio Boss1 Clearance1 Boss2 Clearance2 Short Finite Length Long

0.25 1.0959 2.6767 0.5385 0.8264 1.4501 2.0142 18.725
0.50 4.3836 14.707 2.1539 3.3058 3.2798 24.057 37.450
0.75 9.8631 33.090 4.8462 44.380 11.069 54.128 56.176

Table 2. Damping (Ns/m) of the inner oil film of the ERSFD in the suspension.

Ratio Boss1 Clearance1 Boss2 Clearance2 Short Finite Length Long

0.25 0.0897 1.4229 0.3452 1.2984 0.8305 1.2632 5.9604
0.50 0.1052 2.2555 0.7744 2.6583 1.0440 6.7373 11.9208
0.75 0.2501 5.3568 1.8393 6.3134 3.5235 16.0011 17.8812
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5. Conclusions

Considering structural parameters, oil film pressure models of the ERSFD under four
different contacts were constructed. The multi-structure and multi-interval dynamic π
boundary conditions were selected.The general expression solutions of three bearings’
inner and outer oil film forces were analyzed using the Simpson, Polynomial, integrated
parameters, and mean values methods.

(1) Four different pressure models of the ERSFD were established by analyzing structural
characteristics and motion states. A semi-analytical and semi-numerical method was
proposed to improve and expand Booker formulas. The structures and expressions of
analytical solutions of oil film forces under three approximate theories were obtained.
The rationality and correctness of the theoretical derivation in this study were verified
by comparing with the expressions in the existing literature;

(2) Three oil film forces conversion relationships of the short, long, and finite-length
bearings are pointed out. Moreover, the thickness and force of bosses or the boss
part have apparent changes, but the changing trend of each element is consistent.
Moreover, with the eccentricity increased, the thickness decreased and the forces
increased gradually. The inner and outer forces gradually increased as the precession
speed increased. It was verified that the design of the ERSFD can effectively improve
performance. The circumferential damping and radial stiffness decrease with the
increase of eccentric moment. These have specific reference and application values for
constructing relevant dynamic mathematical models;

In this study, the oil film force of the ERSFD under different contacts was taken
as the starting point. The relationship between the ERSFD structure and mechanical
parameters was obtained by theoretical derivation and numerical analysis, including the
effective length of the damper, journal radius, oil film gap, viscosity coefficient, and oil
film pressure, force, stiffness, and damping, which provides theoretical support for the
optimization and analysis of mechanical parameters. The average method, transfer matrix,
and incremental harmonic balance methods have been combined in the concentrated mass
rotor system. Next, the semi-numerical and semi-analytical solutions will be explored
by combining experiments or real machines. It has a reference and application value to
optimize mechanical parameters and analyzes the correlation dynamics model.
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Nomenclature

Ui the precession speed, i = 1, 2.
Oj the center of the damper journal.
O f the center of the elstic ring.
Ob the center of the bearing seat.
Ri the radius of the damper journal, i = 1, 2, 3.
pi the oil film pressure, i = 1, 2, 3, 4.
θi the included angle, i = 1, 2, 3, 4.
Ci the oil film clearance, i = 1, 2, 3, 4.
hi the oil film thickness, i = 1, 2, 3, 4.
ei the eccentricity, i = 1, 2, 3, 11, 12, 21, 22, 31, 32.
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h00 the height of the boss.
h01 the thickness of the elastic ring.
ωb the angular rotation speed of the inner oil film ring.
ωj the angular rotation speed of the damper journal.
vd the permeability oil holes.
u the partial speed of X-direction.
v the partial speed of Y-direction.
L the effective length.
µ the viscosity coefficient.
Z the axial direction along with the damper journal.
Ω the precession angular speed.
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