
����������
�������

Citation: Palubeckis, G.; Ostreika, A.;

Platužienė, J. A Variable

Neighborhood Search Approach for

the Dynamic Single Row Facility

Layout Problem. Mathematics 2022,

10, 2174. https://doi.org/10.3390/

math10132174

Academic Editors: Adrian Deaconu,

Petru Adrian Cotfas and Daniel

Tudor Cotfas

Received: 9 May 2022

Accepted: 20 June 2022

Published: 22 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Variable Neighborhood Search Approach for the Dynamic
Single Row Facility Layout Problem
Gintaras Palubeckis * , Armantas Ostreika and Jūratė Platužienė

Faculty of Informatics, Kaunas University of Technology, Studentu 50-408, 51368 Kaunas, Lithuania;
armantas.ostreika@ktu.lt (A.O.); jurate.platuziene@ktu.lt (J.P.)
* Correspondence: gintaras.palubeckis@ktu.lt or gintaras.palubeckis77@gmail.com

Abstract: The dynamic single row facility layout problem (DSRFLP) is defined as the problem of
arranging facilities along a straight line during a multi-period planning horizon with the objective of
minimizing the sum of the material handling and rearrangement costs. The material handling cost is
the sum of the products of the flow costs and center-to-center distances between facilities. In this
paper, we focus on metaheuristic algorithms for this problem. The main contributions of the paper
are three-fold. First, a variable neighborhood search (VNS) algorithm for the DSRFLP is proposed.
The main version of VNS uses an innovative strategy to start the search from a solution obtained by
constructing an instance of the single row facility layout problem (SRFLP) from a given instance of
the DSRFLP and applying a heuristic algorithm for the former problem. Second, a fast local search
(LS) procedure is developed. The innovations of this procedure are two-fold: (i) the fast insertion
and swap neighborhood exploration techniques are adapted for the case of the dynamic version of
the SRFLP; and (ii) to reduce the computational time, the swap operation is restricted on pairs of
facilities of equal lengths. Provided the number of planning periods is a constant, the neighborhood
exploration procedures for n facilities have only O(n2) time complexity. The superiority of these
procedures over traditional LS techniques is also shown by performing numerical tests. Third,
computational experiments on DSRFLP instances with up to 200 facilities and three or five planning
periods are carried out to validate the effectiveness of the VNS approach. The proposed VNS heuristic
is compared with the simulated annealing (SA) method which is the state of the art algorithm for the
DSRFLP. Experiments show that VNS outperforms SA by a significant margin.

Keywords: combinatorial optimization; facility layout; metaheuristics; variable neighborhood search;
local search

MSC: 90B80; 90C27; 90C59; 68R05

1. Introduction

The facility layout problems are concerned with finding an efficient arrangement of
physical facilities (e.g., machines or manufacturing cells) on a planar site. An important
member of this class of problems is the single row facility layout problem (SRFLP). It asks
to arrange the facilities along a straight line so as to minimize the sum of the products of
the flow costs and center-to-center distances between facilities [1]. The objective function
of the SRFLP represents the material handling cost that is a good measure to evaluate the
efficiency of a layout. A feasible solution is a permutation of facilities. It can be noted that
the SRFLP is a static problem, because the material flows between facilities are assumed
to be constant. This assumption, however, may not be always valid in practice. In a
dynamic layout, the flows of material between facilities can change during a planning
horizon. There are many factors that play a role in this, such as the change in the design of
existing products, removing an existing product or adding a new product to the product
line, varying product demand, shortening life cycle of products, the change in the sequence

Mathematics 2022, 10, 2174. https://doi.org/10.3390/math10132174 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10132174
https://doi.org/10.3390/math10132174
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4991-1505
https://orcid.org/0000-0001-5718-3766
https://doi.org/10.3390/math10132174
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10132174?type=check_update&version=2

Mathematics 2022, 10, 2174 2 of 27

of operations, and the introduction of new safety standards. Because of changes in the
layout environment, a multi-period planning horizon is considered. The material flows
between facilities can change from one planning period to the next. When minimizing the
material handling cost, it may happen that the permutation of facilities in period t, t > 1,
is different from the permutation of facilities in period t− 1. In such a case, one or more
facilities are moved (shifted) to new locations at the beginning of period t. The objective
function of the dynamic facility layout problem consists of two parts: the material handling
cost, and the rearrangement costs of facilities.

A dynamic version of the SRFLP, called the dynamic single-row facility layout problem
(DSRFLP) was introduced by Şahin et al. [2]. In their problem formulation, the rearrange-
ment cost for a facility occurs when the center coordinate of this facility in one planning
period is different from that in the preceding or succeeding periods. Figure 1 shows a
layout plan for a DSRFLP instance with seven facilities and three planning periods. Costs
are incurred for the relocation of facilities 3, 4, and 5 at the beginning of period 2 and for
the relocation of facilities 2 and 4 at the beginning of period 3. Notice that facilities 2 and 4
are of equal size and therefore, facility 5 is not moved in period 3.

1 32 54 6 7

t =3

1 32 5 4 6 7

1 3254 6 7

t =1

t =2 5 34

4 2

Figure 1. Example layout with three planning periods.

Let us denote the set of facilities by H, their number by n, and the number of planning
periods by m. A feasible solution of the DSRFLP is an ordered collection p = {p1, . . . , pm}
of m n−element permutations pt = (pt(1), . . . , pt(n)), t = 1, . . . , m, where pt(i) ∈ H,
i ∈ {1, . . . , n}, is the facility in the ith position during period t. We denote the set of all
feasible solutions of the DSRFLP by Πm. Let Ls, s ∈ {1, . . . , n}, stand for the length of
facility s. For convenience, the main notations used in this paper are presented in Table 1.
Mathematically, the DSRFLP can be expressed as follows:

min
p∈Πm

F(p) =
m

∑
t=1

n−1

∑
i=1

n

∑
j=i+1

wtpt(i)pt(j)dt(pt(i), pt(j)) +
m

∑
t=2

∑
s∈I(pt−1,pt)

rts, (1)

where
dt(pt(i), pt(j)) = Lpt(i)/2 + ∑

i<k<j
Lpt(k) + Lpt(j)/2, (2)

wtpt(i)pt(j) = φtpt(i)pt(j)ψpt(i)pt(j), (3)

φtpt(i)pt(j) represents the material flow between facilities pt(i) and pt(j) during period t,
ψpt(i)pt(j) is the cost of transferring a unit of material per distance unit between facilities
pt(i) and pt(j), rts is the rearrangement cost of facility s at the beginning of period t,
and I(pt−1, pt) is the set of facilities whose location during period t differs from that
during period t− 1 (in Figure 1, I(p1, p2) = {3, 4, 5} and I(p2, p3) = {2, 4}). Equation (2)
determines the distance between facilities, and Equation (3) gives the cost of material flow
per distance unit between facilities.

Mathematics 2022, 10, 2174 3 of 27

Table 1. Main notations used in this paper.

Notation Description

H Set of facilities
n Number of facilities (n = |H|)
m Number of planning periods
s, u, v Indices used for facilities (s, u, v ∈ H)
t Index of planning periods
Ls Length of facility s
φtsu Material flow between facilities s and u in period t

ψsu
Cost of transferring a unit of material per distance unit between facilities s
and u

wtsu Material flow cost between facilities s and u in period t
xts Center coordinate of facility s in period t
dt(s, u) Distance between centers of facilities s and u in period t (dt(s, u) = |xts − xtu|)
rts Rearrangement cost of facility s at the beginning of period t

I(pt−1, pt)
Set of facilities whose location during period t differs from that during period
t− 1

w′su Material flow cost between facilities s and u in the SRFLP instance
λ+

uv Half-sum of lengths of facilities u and v
λ−uv Half-difference between lengths of facilities u and v
pt Layout (permutation of facilities) during period t
p = {p1, . . . , pm} Solution (layout plan) of the DSRFLP
Πm Set of all feasible solutions
F(p) Objective function of the DSRFLP
F∗ Objective function value of the best solution
p∗ Best solution
F̄ Average objective function value
Favdev Average deviation of the objective function from the reference value

ctq
Sum of flow costs between the first q facilities and the remaining n− q facilities
during period t

G(u, t, x) Change in rearrangement cost incurred by placing facility u at location x during
period t

xts(l) Center coordinate of facility s when it is inserted at position l in permutation pt
Ñz(p) Interchange neighborhood of depth z of solution p
N(p) Insertion neighborhood of solution p
Tlim Maximum time limit for algorithm execution

1.1. Related Work

If t = 1, then the second term in (1) vanishes, and the problems (1)–(3) becomes
the SRFLP. Many algorithms for solving the SRFLP have been proposed. Several exact
methods have been developed in recent years. They include mixed-integer linear program-
ming [3], cutting plane algorithm [4], branch-and-cut [5], and semidefinite programming
approaches [6,7]. The largest SRFLP instance solved to optimality is of size 42 [7]. To
deal with larger sized SRFLP instances, one common option is to use metaheuristic-based
algorithms. The more recent metaheuristic approaches available in the literature are tabu
search [8,9], genetic algorithms [10–12], a Lin–Kernighan heuristic [13], hybrid estimation
of distribution algorithm [14], scatter search [15], variable neighborhood search (VNS) [16],
greedy randomized adaptive search procedure (GRASP) with path relinking [17], a hybrid
algorithm of VNS and ant colony optimization [18], simulated annealing [19], a cross-
entropy approach [20], a population-based improvement heuristic with local search [21],
GRASP [22], a simplified swarm optimization algorithm [23], differential evolution [24],
and algebraic differential evolution for permutations [25]. Sun et al. [26] used graphics
processing units to solve the SRFLP with the two-opt-based simulated annealing algorithm.
A review of the mathematical models and solution techniques of the SRFLP can be found
in [1,27].

In the literature, there are several other facility layout problems that are akin to the
SRFLP. One of them is the constrained SRFLP in which some facilities need to be placed

Mathematics 2022, 10, 2174 4 of 27

in certain locations or in specified orders. A permutation-based genetic algorithm [28]
and a fireworks algorithm [29] were proposed for solving this problem. Keller [30] de-
veloped three construction heuristics for the SRFLP with machine-spanning clearances.
Amaral [31] and Yang et al. [32] proposed mixed-integer programming models for the par-
allel row ordering problem. Several algorithms were presented to solve the corridor
allocation problem, such as simulated annealing and tabu search [33], a permutation-based
genetic algorithm hybridized with a local search technique [34], and a scatter search al-
gorithm [35]. Recently, attention was attracted to the space-free multi-row facility layout
problem. An exact method for this problem was presented in [36]. An efficient VNS
algorithm for the same problem was developed in [37].

A mixed-integer linear programming model and solution approaches for the DSRFLP
were proposed by Şahin et al. [2]. They used CPLEX to solve the linear model. However,
the solver failed to produce a provably optimal solution for instances of size greater than
10. To find high quality solutions for larger DSRFLP instances, Şahin et al. [2] proposed
two metaheuristic-based approaches: a genetic algorithm (GA) and a simulated annealing
(SA) technique. Their GA is strengthened by integrating a restart strategy and applying
the concept of acceptance probability. The proposed SA algorithm is also enhanced with a
restart strategy. The authors reported computational results on 20 problem instances with
up to 100 facilities and 3 or 5 planning periods. The empirical results demonstrated the
superiority of the SA algorithm over the GA implementation.

There is a vast amount of literature related to the dynamic version of the facility layout
problems. Gong et al. [38] proposed a hybrid algorithm of harmony search for the dynamic
parallel row ordering problem. Their algorithm combines a harmony search technique with
a tabu search heuristic. The authors presented the results of computational experiments
on problem instances with up to 70 facilities. Guan et al. [39] proposed a hybrid evolution
algorithm for solving a dynamic extended row facility layout problem. Both combinatorial
and continuous aspects of the problem were taken into account. However, historically, most
algorithms in the field were developed for the dynamic facility layout problem (DFLP) in
which the layout of each timeframe is modeled as a quadratic assignment problem. The first
such algorithms (dynamic programming-based optimal and heuristic procedures) were
proposed by Rosenblatt [40]. Later, many metaheuristic-based algorithms for the DFLP
were reported. Balakrishnan and Cheng [41] developed a genetic algorithm for solving
this problem. A hybrid GA for the DFLP was proposed in [42]. A simulated annealing
heuristic for this problem was presented in [43]. Ant colony optimization algorithms for the
DFLP were developed in [44,45]. Hybrid ant system heuristics were proposed in [46]. Şahin
and Türkbey [47] presented an algorithm-hybridizing SA with tabu search. Three new
tabu search heuristics for the DFLP were developed by McKendall and Liu [48]. Hosseini-
Nasab and Emami [49] designed a hybrid particle swarm optimization algorithm to solve
the DFLP. Turanoğlu and Akkaya [50] proposed a hybrid algorithm combining SA and a
bacterial foraging optimization technique. The results of the experimental comparison of
a number of different algorithms from the literature were provided in a recent study on
the DFLP by Zouein and Kattan [45]. A review of the recent advances on the DFLP can be
found in [51]. The extensive literature on both static and dynamic versions of the facility
layout problems was reviewed in [52].

1.2. Our Contribution

The analysis of literature shows that there has been considerable interest in developing
algorithms for the dynamic facility layout problems. One of such problems is the DSRFLP.
However, research on the DSRFLP is in its early stages. Considering this observation, our
motivation is to develop a reasonably fast heuristic algorithm that could perform well on
large DSRFLP instances. Our algorithm is based on the VNS metaheuristic. One purpose of
this paper is to design a fast local search (LS) procedure. It takes only O(1) time to compute
the gain of a swap or insertion operation. The procedure plays a central role within the

Mathematics 2022, 10, 2174 5 of 27

VNS framework. Our specific goal is to compare the performance of the VNS technique
with that of the SA algorithm proposed in [2].

The main contributions of this paper are summarized as follows:

• A variable neighborhood search algorithm to solve the DSRFLP. It is one of the first
heuristic approaches proposed to deal with this new problem. The approach uses an
innovative strategy to start the search from a solution obtained by constructing an
instance of the SRFLP from a given instance of the DSRFLP and applying a heuristic al-
gorithm for the former problem. A simpler version of VNS uses a random permutation
of facilities as a starting solution.

• A fast LS procedure. The innovations of the proposed procedure are two-fold: (a) the
fast insertion and swap neighborhood exploration techniques are adapted for the
case of the dynamic version of the SRFLP; and (b) to reduce the computational time,
the swap operation is restricted on pairs of facilities of equal lengths. The superiority
of the fast neighborhood exploration procedures over traditional LS techniques is
shown by performing numerical tests. The importance of the proposed LS method
goes beyond VNS: it may be considered a useful ingredient for designing other
metaheuristic algorithms for the DSRFLP.

• Numerical experimentation on DSRFLP instances of size up to 200 to validate the
effectiveness of the VNS approach. The two versions of VNS are compared with the
SA algorithm of Şahin et al. [2]. Experiments show the excellent performance of the
VNS version that starts with a heuristically constructed initial solution. This VNS
implementation outperforms SA by a significant margin.

• Preparation of a set of publicly available DSRFLP instances. Experiments show that
larger instances in this set are very difficult for both VNS and SA algorithms. To find
improved solutions, a large amount of CPU time may be required. These instances
may be used for evaluating future approaches to dynamic single row facility layout.

The rest of the paper is organized as follows. In the next section, we present our VNS
approach. In Section 3, we give a detailed description of our LS procedure. Section 4 is
devoted to the experimental analysis and comparisons of algorithms. Section 5 provides an
empirical analysis of LS variants. Concluding remarks are given in Section 6.

2. Variable Neighborhood Search

The variable neighborhood search method is a metaheuristic that has been shown to
be very successful in solving many combinatorial optimization problems. The basic idea
of VNS is the systematic change of a neighborhood combined with solution perturbation
and local search procedures. During algorithm execution, the neighborhood of a solution
is explored using a set of predefined neighborhood structures. Since its introduction in
1997 [53], VNS has undergone various modifications and enhancements. A discussion of
the basic concepts and successful applications of VNS can be found in survey papers [54].

Before presenting our algorithm, we need to define neighborhood structures used
in the search process. Let p = (p1, . . . , pm) ∈ Πm represent a solution of the DSRFLP.
For z ∈ {1, . . . , zmax}, we denote by Ñz(p) the set of all solutions that can be obtained
from p by performing z pairwise interchanges of facilities subject to the condition that
each facility changes its position in each permutation pt t ∈ {1, . . . , m} at most once. The
neighborhood structures {Ñz(p) | p ∈ Πm}, z = 1, . . . , zmax, are appropriate in cases where
a permutation-based combinatorial optimization problem is solved [55–57]. We use these
structures in the shaking (solution perturbation) step of the algorithm.

The steps of our implementation of the VNS method are given in Algorithm 1. The
algorithm starts by generating an initial solution, either randomly or by a heuristic pro-
cedure. This step will be discussed later in this section. The initial solution is improved
by applying a local search procedure LS (Line 2). We defer the description of LS to the
next section. The main part of VNS is the “while” loop (Lines 4–14) which executes until
the time condition is satisfied. The search is terminated when the maximum time limit,
Tlim, is reached. The algorithm has three parameters that control the search process. The

Mathematics 2022, 10, 2174 6 of 27

parameter zmin determines the size of the neighborhood the search begins from. The largest
possible size of the neighborhood is defined by zmax = ρn, where ρ is another parameter of
the algorithm. The variable zstep is used to move from the current neighborhood to the next
one. We set zstep = max(bzmax/θc, 1), where the scaling factor θ > 0 is the third parameter
of VNS. The best solution to the algorithm is denoted as p∗ and its value is f ∗. The inner
“while” loop of the algorithm iterates over the following three steps: the perturbation of the
best solution p∗ (procedure shake in Line 7), local search (Line 8), and the selection of the
size of the next neighborhood (procedure neighborhood_change in Line 9). These steps are
executed until z becomes greater than zmax. At the end of each iteration, the termination
condition of VNS is checked (Line 10).

Algorithm 1 Variable neighborhood search

VNS(zmin, zmax, zstep, Tlim)
Input: Instance of the DSRFLP, parameters zmin, zmax, zstep, and Tlim.
Output: Best found solution p∗ and its value f ∗.
// zmin, zmax, and zstep control the size of the neighborhood
// Tlim is the time limit for VNS
1: Generate an initial solution p ∈ Πm

2: f := LS(p)
3: Assign p to p∗ and f to f ∗

4: while time limit Tlim not reached do
5: z := zmin
6: while z 6 zmax do
7: p := shake(p∗, z)
8: f := LS(p)
9: z := neighborhood_change(p, p∗, f , f ∗, z, zmin, zstep)
10: if elapsed time is more than Tlim then
11: Break from the loop
12: end if
13: end while
14: end while
15: Stop with the solution p∗ of value f ∗

The pseudo-code of the shaking procedure and the neighborhood change function
is given in Algorithms 2 and 3, respectively. The aim of shake is to perturb the best
solution p∗ (or, more precisely, its copy p). The parameter z is the total number of pairwise
interchange moves that are executed by the procedure. The number of moves performed
on the permutation pt, t ∈ {1, . . . , m}, is denoted by qt. The procedure uniformly and
randomly chooses an integer in the interval [1, m] z times. The value of qt is equal to the
number of times that the integer t is selected. Further steps of the procedure (Lines 3–10)
are executed for each planning period t with qt > 0. The inner loop (Lines 5–9) starts
by randomly selecting two facilities from the set {pt(i) | i ∈ I}. They are denoted as
pt(k) and pt(l). Then, the permutation pt is updated by swapping the positions of the
selected facilities. The role of the set I in the algorithm is to guarantee that each facility is
selected at most once. The solution returned by shake belongs to the neighborhood Ñz(p∗).
The procedure neighborhood_change either increases the shaking parameter z by zstep or
sets it to the minimum value zmin if an improved solution has been found. The procedure
is responsible for memorizing this solution (Line 2).

Mathematics 2022, 10, 2174 7 of 27

Algorithm 2 Shake function

shake(p∗, z)
Input: Best-so-far solution p∗, parameter z.
Output: Solution p in the neighborhood of p∗.
1: Assign p∗ to p
2: Randomly split z into m nonnegative numbers qt, t = 1, . . . , m
3: for t = 1, . . . , m such that qt > 0 do
4: I := H
5: for qt times do
6: Randomly select k and l 6= k from I
7: Swap positions of facilities pt(k) and pt(l) in pt
8: I := I \ {k, l}
9: end for
10: end for
11: return p = (p1, . . . , pm)

Algorithm 3 Neighborhood change function

neighborhood_change(p, p∗, f , f ∗, z, zmin, zstep)
Input: Current solution p of value f , best-so-far solution p∗ of value f ∗,
parameters zmin and zstep.
Output: Possibly updated p∗ and f ∗, parameter z.
1: if f < f ∗ then
2: Assign p to p∗ and f to f ∗

3: z := zmin
4: else
5: z := z + zstep
6: end if
7: return z

Now, we return to the question of generating an initial solution to the DSRFLP. A
simple way is to randomly generate a permutation of n facilities and assign this permutation
to pt for each t ∈ {1, . . . , m}. We call this configuration of our algorithm VNS1. An
alternative strategy is to apply a heuristic technique. Our choice in this work is to use
a VNS algorithm proposed in [16] for solving the SRFLP. We obtain an instance of the
SRFLP with the flow matrix W ′ = (w′su) from an instance of the DSRFLP with a set of
flow matrices Wt = (wtsu), t = 1, . . . , m, straightforwardly by summing the matrices Wt.
Formally, w′su = ∑m

t=1 wtsu, s, u = 1, . . . , n. Like VNS presented in this paper, the algorithm
in [16] is equipped with a CPU time-based stopping criterion. Therefore, we have to share
the time resources between the generation of an initial solution (Line 1 of Algorithm 1)
and the remaining steps of the VNS. We set the cutoff time for the first step (Line 1) to
βTlim. A suitable value of the parameter β should be chosen experimentally. Intuitively,
β is expected to be less than 0.1. An experiment for selecting β is described in Section 4.
Assume that p̃ is the solution produced by the algorithm in [16] for the SRFLP instance with
the flow matrix W ′. We constructed an initial solution for the DSRFLP by setting pt = p̃
for each t = 1, . . . , m. We refer to this configuration of VNS as VNS2. It can be noticed that
VNS1 is obtained from VNS2 by taking β = 0.

3. Local Search

An important issue in the design of local search algorithms is the choice of a neigh-
borhood structure or structures. Our first priority is to use the insertion neighborhood.
Let us denote this neighborhood for p = (p1, . . . , pm) ∈ Πm by N(p). It consists of all
solutions that can be obtained from p by removing a facility from its current position
in a permutation pt, t ∈ {1, . . . , m}, and inserting it at a different position in the same

Mathematics 2022, 10, 2174 8 of 27

permutation. Given p ∈ Πm, the construction of a solution in the neighborhood N(p)
is called an insertion move. As noted by Schiavinotto and Stützle [55], insertion move
is one of the basic operators in permutation-based optimization problems. Assume that
p′ = (p′1, . . . , p′m) ∈ N(p) is obtained from p by removing facility s = pt(k) from position k
and inserting it at position l. The change in cost between p and p′ is called the move gain.
We denote it by δ(p, k, l) = F(p′)− F(p). The insertion operation is illustrated in Figure 2
for n = 6 and m = 3. Facility 1 is moved at the beginning of planning period 2 from its
current position 3 to position 5. As a result, facilities 2 and 6 are also relocated.

13 2 54 6

t =3

1

t =1

t =2 13 2 54 6

13 2 54 6

13 2 54 6

13 2 54 6

13 2 54 6

11 22 66

Figure 2. Relocating facility 1 from position 3 to position 5 during planning period 2.

To describe methods for computing δ(p, k, l), we need some notations. We denote by
X = (xtu) an m× n matrix whose entry xtu is the center coordinate of facility u during
planning period t. We also define the following two functions:

g1(u, t, x) =


rtu if xtu = xt−1,u 6= x
−rtu if xtu 6= xt−1,u = x

0 otherwise,
(4)

g2(u, t, x) =


rt+1,u if xtu = xt+1,u 6= x
−rt+1,u if xtu 6= xt+1,u = x

0 otherwise.
(5)

We note that xtu, xt−1,u, and xt+1,u are original positions of facility u in periods t, t− 1,
and t + 1, respectively, and x is the position of facility u after the movement during period
t. Clearly, (4) is defined for t ∈ {2, . . . , m} and (5) is defined for t ∈ {1, . . . , m− 1}. Let us
consider the general case of t ∈ {2, . . . , m− 1}. Assume that the center coordinate of facility
u changes from xtu to x when u is moved to a new location at the beginning of period t.
Then, the sum G(u, t, x) = g1(u, t, x) + g2(u, t, x) expresses the change in rearrangement
cost of p′ incurred by this move operation. In Figure 2, this sum is r2,1 − r3,1 for facility 1,
−r3,2 for facility 2, and −r3,6 for facility 6. The above-defined sum reduces to a single term
G(u, t, x) = g2(u, t, x) for t = 1 and G(u, t, x) = g1(u, t, x) for t = m.

Now we return to the computation of δ(p, k, l). Let δ′(p, k, l) denote the change in
material flow cost incurred by the insertion move producing solution p′ from the solution
p. For our purposes, it is convenient to write the move gain as

δ(p, k, l) = δ′(p, k, l) + G(s, t, xts(l)), (6)

where s = pt(k) as before and xts(l) stands for the center coordinate of facility s in the
layout during period t, which is obtained by inserting s at position l in the permutation
pt. The reason for using (6) is to compute both terms at the right-hand side of (6) (more
precisely, δ′(p, k, l) and xts(l)) recursively.

To proceed, suppose that l < k. We note that the insertion move can be reduced to a
sequence of elementary moves in which facility s is interchanged with its left neighbor. The
insertion process starts by interchanging s with facility pt(k− 1). Next s is interchanged
with pt(k− 2), then with pt(k− 3), etc. Eventually, this process is going to end when facility
s reaches position l in the permutation pt. Let us focus on the last step in the described
process: facility s is interchanged with facility v = pt(l). At this point, δ′(p, k, l + 1) and
xts(l + 1) are assumed to be known. The last step of the insertion process is illustrated in
Figure 3. We see that after swapping the positions of facilities s and v, the distance between
facility pt(i) = u, i < l, and s decreases by Lv and that between u and v increases by Ls.

Mathematics 2022, 10, 2174 9 of 27

Similarly, the distance between facility pt(i), i > l, i 6= k, and s increases by Lv and that
between pt(i) and v decreases by Ls. Based on these observations, we can write

δ′(p, k, l) = δ′(p, k, l + 1) +
l−1

∑
i=1

(wtpt(i)vLs − wtpt(i)sLv) +
n

∑
i=l+1,i 6=k

(wtpt(i)sLv − wtpt(i)vLs)+

G(v, t, xtv + Ls).

(7)

The last term in (7) represents the change in the cost resulting from the rearrangement
of facility v. The new center coordinate of facility s is computed as follows:

xts(l) = xts(l + 1)− Lv. (8)

The initial conditions of the recurrence relations (7) and (8) are δ′(p, k, k) = 0 and
xts(k) = xts, respectively.

u v s

i l l+1

u vs

i l l+1

s

s

v

v

Figure 3. Interchanging facility s with its left neighbor v.

If k < l, then (7) and (8) are replaced by the following equations:

δ′(p, k, l) = δ′(p, k, l − 1) +
l−1

∑
i=1,i 6=k

(wtpt(i)sLv − wtpt(i)vLs) +
n

∑
i=l+1

(wtpt(i)vLs − wtpt(i)sLv)+

G(v, t, xtv − Ls),

(9)

xts(l) = xts(l − 1) + Lv. (10)

The initial conditions of (9) and (10) are the same as in the case of l < k.
The approach we have just described, however, is not very efficient. It takes O(n) time to

compute δ′(p, k, l) using (7) or (9). We adopt a method that was proposed in [16] for solving
the SRFLP. We use an m× (n− 1) matrix C = (ctq) with entries ctq = ∑

q
i=1 ∑n

j=q+1 wtpt(i)pt(j),
t = 1, . . . , m, q = 1, . . . , n− 1. Its entry ctq represents the sum of flow costs between the
first q facilities and the remaining n− q facilities during period t. To compute C, we use
two other matrices E1 = (e1

tu) and E2 = (e2
tu) of size m× n, in which e1

tu = ∑
q−1
i=1 wtpt(i)u,

e2
tu = ∑n

i=q+1 wtpt(i)u, and where it is assumed that u = pt(q). The rows of the matrices E1

and E2 are indexed by periods and the columns by facilities. It is not difficult to see that

ctq = ct,q−1 + e2
tpt(q) − e1

tpt(q), t = 1, . . . , m, q = 1, . . . , n− 1, (11)

where by convention ct0 = 0, t = 1, . . . , m. From C, we can build the matrix C− = (c−tq) with
entries c−tq = ctq − ct,q−1 and the matrix C+ = (c+tq) with entries c+tq = ctq + ct,q−1, where
t = 1, . . . , m and q = 1, . . . , n. In these definitions, it is assumed that ctn = 0, t = 1, . . . , m.
An efficient way to compute δ′(p, k, l) is provided by the following formulas.

Proposition 1. Let p ∈ Πm, t ∈ {1, . . . , m}, k ∈ {1, . . . , n}, and s = pt(k). Then, for l =
k− 1, k− 2, . . . , 1,

δ′(p, k, l) = δ′(p, k, l + 1) + Ls(wtsv − c−tl) + Lv(αl + αl+1 + c−tk) + G(v, t, xtv + Ls), (12)

Mathematics 2022, 10, 2174 10 of 27

where v = pt(l), αl = αl+1 + wtsv, and initially δ′(p, k, k) = 0 and αk = 0.
For l = k + 1, k + 2, . . . , n,

δ′(p, k, l) = δ′(p, k, l − 1) + Ls(wtsv + c−tl) + Lv(αl−1 + αl − c−tk) + G(v, t, xtv − Ls), (13)

where v = pt(l), αl = αl−1 + wtsv, and the initial conditions are the same as in (12).

Proof. Consider the case of l < k. Suppose that the facility s is interchanged with its
current left neighbor v = pt(l). Let the resulting change in material handling cost be
denoted by δ′1(p, k, l) and the cost of rearranging facility v be denoted by δ′2(p, k, l). Thus,
δ′(p, k, l) = δ′(p, k, l + 1) + δ′1(p, k, l) + δ′2(p, k, l). Based on Proposition 6 in [16], it can be
concluded that δ′1(p, k, l) is equal to Ls(wtsv− c−tl) + Lv(αl + αl+1 + c−tk). Moreover, from the
definition of the functions g1, g2, and G it is obvious that δ′2(p, k, l) = G(v, t, xtv + Ls).
Taken together, these two observations prove (12). The same line of reasoning applies to
Equation (13).

When facility s is relocated from position k to position l in the permutation pt, the row
of the matrix C− corresponding to period t needs to be updated. Suppose first that l < k.
Then, for each facility v = pt(q), q ∈ {l, . . . , k− 1}, the material flow cost wtsv is added
to e1

tv and e2
ts and subtracted from e2

tv and e1
ts. If l > k, then, for each facility v = pt(q),

q ∈ {k + 1, . . . , l}, wtsv is added to e2
tv and e1

ts and subtracted from e1
tv and e2

ts. This step of
the algorithm also includes updating the tth row of the matrix X and the permutation pt.
Having updated E1 and E2, the new entries in the tth row of C are computed using (11).
This is only performed for q = min(k, l), . . . , max(k, l)− 1. Finally, the tth row of the matrix
C− is updated according to the definition of C−.

To make the search more productive, our LS algorithm also applies the swap operator.
It consists of swapping the positions of two facilities. The obtained solution belongs to the
neighborhood Ñ1 defined in Section 2. To lessen the computational burden, the algorithm
employs a reduced swap neighborhood Ñ′1. For p ∈ Πm, a solution p′ ∈ Ñ1(p) belongs to
Ñ′1(p) if and only if it is obtained by interchanging in pt, t ∈ {1, . . . , m}, two facilities of
equal length. Let these facilities be denoted by s = pt(k) and u = pt(l). Assume w.l.o.g.
that k < l. Since Ls = Lu, the center coordinates of facilities pt(i), i = k + 1, . . . , l − 1,
in p′ are the same as in p. This fact significantly reduces the complexity of computing
the difference between F(p′) and F(p). We call this difference the gain of the swap move,
and denote it by ∆(p, k, l) = F(p′) − F(p). One possible method to compute ∆(p, k, l)
uses a distance matrix. Let us denote this n× n matrix by Dt = (dt(pt(i), pt(j))) where
dt(pt(i), pt(j)) is the distance between the centers of facilities pt(i) and pt(j) during period
t as defined by Equation (2). Assume that the positions of facilities s and u with Ls = Lu
are swapped in the permutation pt. This operation changes the material flow cost between
each facility v ∈ H \ {s, u} and facilities s and u. This change is equal to wtvsdt(v, u)−
wtvsdt(v, s) + wtvudt(v, s)− wtvudt(v, u) = (wtvs − wtvu)(dt(v, u)− dt(v, s)). Therefore, we
can write

∆(p, k, l) =
n

∑
v=1,v 6=s,v 6=u

(wtvs − wtvu)(dt(v, u)− dt(v, s)) + G(s, t, xtu) + G(u, t, xts). (14)

The described method is simple but not very efficient. A good alternative is to adopt
an approach proposed in [16]. To present an expression for ∆(p, k, l), we use the following
matrices: λ+ = (λ+

uv = (Lu + Lv)/2), λ− = (λ−uv = (Lu − Lv)/2), u, v ∈ H, At = (atvj),
v ∈ H, j = 1, . . . , n, t ∈ {1, . . . , m}, with entries

atvj =


∑

q−1
i=j wtvpt(i) if j < q

∑
j
i=q+1 wtvpt(i) if j > q

0 if j = q

Mathematics 2022, 10, 2174 11 of 27

for v = pt(q), and Bt = (btvj), v ∈ H, j = 1, . . . , n, t ∈ {1, . . . , m}, with entries

btvj =


atvjλ

+
vpt(j) + ∑

q−1
i=j+1 atviλ

+
pt(i−1)pt(i)

if j < q

atvjλ
+
vpt(j) + ∑

j−1
i=q+1 atviλ

+
pt(i)pt(i+1) if j > q

0 if j = q

for v = pt(q). Matrices C− and C+ were already defined earlier in this section. With these
matrices, we can provide a formula to calculate the gain ∆(p, k, l).

Proposition 2. For p ∈ Πm, t ∈ {1, . . . , m}, k ∈ {1, . . . , n− 1}, l ∈ {k + 1, . . . , n}, s = pt(k),
and u = pt(l),

∆(p, k, l) = (c−tl − c−tk + 2wtsu)dt(s, u) + 2(bts,l−1 + btu,k+1) + λ−su(c
+
tl − c+tk)+

G(s, t, xtu) + G(u, t, xts).
(15)

Equation (15) follows from Proposition 2 in [16] and the definition of function G.
If l = k + 1, then (15) reduces to the following equation

∆(p, k, l) = (c−tl − c−tk + 2wtsu)dt(s, u) + λ−su(ctl − ct,k−1) + G(s, t, xtu) + G(u, t, xts). (16)

Before starting to use (15) and (16), a number of matrices, including Bt, t = 1, . . . , m,
need to be initialized. To build Bt, first the matrix At should be computed. Consider facility
v = pt(q). By definition, atvq = 0. Other entries in the vth row of At can be iteratively
obtained by setting

atvj = atv,j−1 + wtvpt(j), j > q, (17)

atvj = atv,j+1 + wtvpt(j), j < q. (18)

The corresponding row of the matrix Bt can be constructed by starting with btvq = 0 and
applying the following equations:

btvj = btv,j−1 + atv,j−1λ−vpt(j) + atvjλ
+
vpt(j), j > q, (19)

btvj = btv,j+1 + atv,j+1λ−vpt(j) + atvjλ
+
vpt(j), j < q. (20)

The proof of (17)–(20) can be found in [16].
Suppose that facilities s = pt(k) and u = pt(l), l > k, are interchanged in the per-

mutation pt. Then, the matrices At and Bt need to be updated. This can be easily done
using Equations (17)–(20). For simplicity reasons, we assume that p in these equations
refers to the solution obtained after performing the swap move. Let v = pt(q). If q < k,
then (17) is used for j = k, . . . , l − 1 and (19) for j = k, . . . , n. If q > l, then (18) is used for
j = l, l − 1, . . . , k + 1 and (20) for j = l, l − 1, . . . , 1. If k < q < l, then At is updated by
Equation (17) for j = l, . . . , n and by (18) for j = k, k− 1, . . . , 1. Similarly, Bt is updated by
Equation (19) for j = l, . . . , n and by (20) for j = k, k− 1, . . . , 1. Finally, if q = k (in this case,
v = u) or q = l (in this case, v = s), the vth row of At and Bt is created anew by first setting
atvq = btvq = 0 and then applying Equations (17)–(20).

Our local search algorithm for the DSRFLP explores the reduced swap neighborhood
Ñ′1 and the insertion neighborhood N repeatedly. This fact also implies the need to update
the matrices At and Bt after performing an insertion move. Like in the case of pairwise
interchange of facilities, the matrices are updated using Equations (17)–(20). Assume
that facility s is moved from position k to position l in permutation pt. Let i = min(k, l),
i′ = max(k, l), and consider facility v = pt(q) (here, pt stands for the updated permutation).
If q < i, then atvj, j = i, . . . , i′ − 1, are calculated by Equation (17) and btvj, j = i, . . . , n, are
calculated by Equation (19). Other entries in the vth row of At and Bt remain unchanged. If
q > i′, then (18) is used for j = i′, i′ − 1, . . . , i + 1 and (20) for j = i′, i′ − 1, . . . , 1. If q = l (in
this case, v = s = pt(l)), then first atvl as well as btvl are set to 0 and then Equations (17)–(20)

Mathematics 2022, 10, 2174 12 of 27

are applied. Consider now the remaining case where i 6 q 6 i′ and q 6= l. If k < l, then atvj
is set to atvj = atv,j+1 and btvj is set to btvj = btv,j+1 for j = k, . . . , l − 1. If k > l, then atvj is
set to atvj = atv,j−1 and btvj is set to btvj = btv,j−1 for j = k, k− 1, . . . , l + 1. Moreover, atvj
is calculated by (17) and btvj by (19) for j = j′, . . . , n, where j′ = l if k < l and j′ = k + 1 if
k > l. Furthermore, atvj is calculated by (18) and btvj by (20) for j = j′′, j′′ − 1, . . . , 1, where
j′′ = k− 1 if k < l and j′′ = l if k > l. The step-by-step routines to update the matrices At
and Bt can be found in [16].

Algorithm 4 gives the pseudocode of the LS component of the approach. The in-
put to LS includes the solution p from which the search is started. This solution is
possibly replaced by a better one during the search process. The returned solution p
is locally optimal with respect to two neighborhoods, the reduced swap neighborhood
Ñ′1(p) and the insertion neighborhood N(p). The variable f stores the objective func-
tion value of the solution p. The algorithm starts with the initialization of the matrices
C, C−, C+, X, Dt, and Bt, t = 1, . . . , m. Since Bt depends on the matrix At, the latter,
for each t ∈ {1, . . . , m}, is initialized as well. Then, the algorithm proceeds iteratively.
At each iteration, it first repeatedly explores the reduced swap neighborhood Ñ′1(p) of
the current solution p until a locally optimal solution is reached (Lines 4–8). Then, the
procedure explore_insertion_neighborhood is triggered. It either returns an improved
solution (if ∆∗ < 0) or says that the solution p is locally optimal with respect to the
neighborhood N(p) (if ∆∗ = 0). In the latter case, the algorithm terminates. We apply
the explore_swap_neighborhood procedure first and explore_insertion_neighborhood
second because the number of possible swap moves is expected to be much less than the
number of possible insertion moves. This is because the swap operation is restricted on
pairs of facilities with equal lengths.

Algorithm 4 Local search

LS(p)
Input: Solution p.
Output: Possibly improved solution p and its value f .
1: Initialize data (matrices C, C−, C+, X, Dt, and Bt, t = 1, . . . , m)
2: Compute f = F(p) and set µ := true
3: while µ = true do
4: ∆∗ := −1
5: while ∆∗ < 0 do
6: ∆∗ := explore_swap_neighborhood(p)
7: if ∆∗ < 0 then f := f + ∆∗ end if
8: end while
9: µ := false
10: ∆∗ := explore_insertion_neighborhood(p)
11: if ∆∗ < 0 then
12: f := f + ∆∗

13: µ := true
14: end if
15: end while
16: return f // possibly improved solution p is also returned

The pseudocode of the procedure explore_swap_neighborhood is given in Algorithm 5.
The nested loops in Lines 2–10 implement Formulas (15) and (16). An improving move is
represented by the triplet (t∗, k∗, l∗). If such a move has been detected, then the positions
of the selected facilities are swapped in pt∗ (Line 12). This step is followed by updating the
matrices used in the calculation of the move gain (Line 13). The following statement shows
the efficiency of the procedure.

Mathematics 2022, 10, 2174 13 of 27

Algorithm 5 Swap neighborhood exploration procedure

explore_swap_neighborhood(p)
Input: Solution p.
Output: Best move gain ∆∗ and solution p (improved if ∆∗ < 0).
1: ∆∗ := 0
2: for t = 1, . . . , m do
3: for each pair s = pt(k) ∈ H and u = pt(l) ∈ H such that l > k and Ls = Lu do
4: Compute ∆ := ∆(p, k, l) by (15) if l > k + 1 or by (16) if l = k + 1
5: if ∆ < ∆∗ then
6: ∆∗ := ∆
7: Set t∗ := t, k∗ := k, and l∗ := l
8: end if
9: end for
10: end for
11: if ∆∗ < 0 then
12: Swap positions of facilities pt∗(k∗) and pt∗(l∗) in pt∗

13: Update matrices C, C−, C+, X, Dt∗ , and Bt∗

14: end if
15: return ∆∗

Proposition 3. The computational complexity of the procedure explore_swap_neighborhood
is O(mn2).

Proof. Observe that loops 2–10 run in O(mn2) time. This is implied by the fact that the
time complexity of the ∆ calculation (Line 4) is O(1). Other parts of the procedure have
less complexity. The procedure performs O(n2) operations to update matrices Dt∗ and
Bt∗ , O(n) operations to update matrices C, C−, and C+, and O(1) operations to update
matrix X.

We remark that the computational complexity of Algorithm 5 asymptotically matches
the size of the neighborhood Ñ′1, which is O(mn2). Thus, the neighborhood exploration
is performed in an efficient way. When the number of planning periods m is a constant,
the running time of Algorithm 5 reduces to O(n2). As an alternative to the described
procedure, one might use Equation (14) instead of (15) and (16) in Line 4 of Algorithm 5.
However, the worst case complexity of such an implementation would be O(mn3).

To present our procedure for exploring the insertion neighborhood, we rewrite (12) as
δ′(p, k, l) = δ′(p, k, l + 1) + δ1

l , where

δ1
l = Ls(wtsv − c−tl) + Lv(α + α′ + c−tk) + G(v, t, xtv + Ls), (21)

α = αl , and α′ = αl+1. Similarly, we rewrite (13) as δ′(p, k, l) = δ′(p, k, l − 1) + δ2
l , where

δ2
l = Ls(wtsv + c−tl) + Lv(α

′ + α− c−tk) + G(v, t, xtv − Ls), (22)

α′ = αl−1, and α = αl .
The pseudocode of the procedure explore_insertion_neighborhood is shown in

Algorithm 6. It can be seen that Lines 4–14 implement the first part of Proposition 1
(with (12)) and Lines 15–25 implement the second part of this proposition (with (13)). The
sum ∆ + γ stands for δ(p, k, l) as given by (6). The best move is stored using a triplet
(t∗, k∗, l∗), where t∗ is the selected period and k∗ and l∗ are the current and, respectively, the
target position of the selected facility in permutation pt∗ . If an improving move is found,
then the facility pt∗(k∗) is moved to position l∗ (Line 29). Then, the matrices C, C−, C+, X,
Dt∗ , and Bt∗ are updated in Line 30. The following result is similar to Proposition 3 and
should be clear.

Mathematics 2022, 10, 2174 14 of 27

Proposition 4. The computational complexity of the procedure explore_insertion_neighborhood
is O(mn2).

Algorithm 6 Insertion neighborhood exploration procedure

explore_insertion_neighborhood(p)
Input: Solution p.
Output: Best move gain ∆∗ and solution p (improved if ∆∗ < 0).
1: ∆∗ := 0
2: for t = 1, . . . , m do
3: for k = 1, . . . , n and s = pt(k) do
4: Set ∆ := 0 and α := 0 // α stands for αl in (21)
5: for l = k− 1 to 1 by −1, and v = pt(l) do
6: α′ := α // α′ stands for αl+1 in (21)
7: α := α + wtsv
8: Compute δ1

l by (21) and γ = G(s, t, xts(l))
9: ∆ := ∆ + δ1

l // ∆ stands for δ′(p, k, l) in (12)
10: if ∆ + γ < ∆∗ then
11: ∆∗ := ∆ + γ
12: Set t∗ := t, k∗ := k, and l∗ := l
13: end if
14: end for
15: Set ∆ := 0 and α := 0 // α stands for αl in (22)
16: for l = k + 1 to n by 1, and v = pt(l) do
17: α′ := α // α′ stands for αl−1 in (22)
18: α := α + wtsv
19: Compute δ2

l by (22) and γ = G(s, t, xts(l))
20: ∆ := ∆ + δ2

l // ∆ stands for δ′(p, k, l) in (13)
21: if ∆ + γ < ∆∗ then
22: ∆∗ := ∆ + γ
23: Set t∗ := t, k∗ := k, and l∗ := l
24: end if
25: end for
26: end for
27: end for
28: if ∆∗ < 0 then
29: Move facility pt∗(k∗) to position l∗ in pt∗

30: Update matrices C, C−, C+, X, Dt∗ , and Bt∗

31: end if
32: return ∆∗

We note that the size of the insertion neighborhood is O(mn2). It thus follows that the
procedure takes O(1) time per move. A variant of the procedure can be implemented by
replacing Equations (12) and (13) with (7) and (9). However, such a replacement increases
the time complexity to O(mn3).

4. Computational Results

In this section, we report on the results of computational tests to assess the performance
of the developed variable neighborhood search algorithm for solving the DSRFLP. The
effectiveness of the approach is evaluated by comparing the VNS against the simulated
annealing algorithm proposed by Şahin et al. [2].

4.1. Experimental Setup

The VNS algorithm described in previous sections was coded in the C++ programming
language. For comparison purposes, we also coded the simulated annealing algorithm of
Şahin et al. [2]. These authors used the name SA-R to refer to this algorithm. We keep this

Mathematics 2022, 10, 2174 15 of 27

name. We ran SA-R with the parameter settings used in [2]. However, to be able to apply a
time-based stopping criterion, we implemented SA-R as a multistart algorithm. Each time
SA-R starts with a randomly generated solution. The experiments with VNS and SA-R
were carried out on a PC with an Intel Core i5-9400F CPU running at 2.90 GHz.

Since research on the DSRFLP is in its infancy, there is no available benchmarks in
the literature. Therefore, we performed our experiments on a set of randomly generated
problem instances. The entries of the cost matrix (ψsu) and the material flow matrices
(φtsu), t ∈ {1, . . . , m}, in these instances, are random numbers drawn uniformly between 1
and 5 and between 1 and 10, respectively. The costs associated with rearranging facilities
are randomly and uniformly sampled from the interval [250, 500] if n 6 100 and interval
[1000, 2000] if n > 100. The length of each facility is a random integer number between 1 and
5. The generated instances have from 10 to 200 facilities. The number of planning periods is
either 3 or 5. The dataset is publicly available (https://drive.google.com/file/d/1P36xdv4
QpZxFmROhAa8Z2dOXU9zJOJKl/view?usp=sharing, accessed on 1 May 2022). Here, it
is important to mention that, with the increase in the number of facilities, a more realistic
layout scenario is to place facilities in a multi-row configuration. Our main reason for using
single row layout problem instances with a large number of facilities (with n > 100) was to
more comprehensively evaluate the performance of the described algorithms.

In our computational experiments, we ran both VNS and SA-R 10 times per instance.
Maximum CPU time limits for a run of an algorithm were as follows: 180 s for n 6 20, 600 s
for n = 30, 1800 s for 40 6 n 6 60, and 3600 s for n > 70. To measure the performance of
the algorithms, we use the following statistics: the best objective function value from the 10
independent runs; the average objective function value for 10 runs; and the average time
for reaching the best result.

4.2. Parameter Settings

In Section 2, we described two versions of our VNS implementation, VNS1 and VNS2.
The first of them starts with a randomly generated permutation of facilities. Its parameters
are ρ, zmin, and θ (see Section 2). The second version (VNS2) starts with an initial solution
produced by a VNS heuristic applied on an SRFLP instance. The run time of this heuristic
is controlled through parameter β. Certainly, the parameters ρ, zmin, and θ apply to VNS2,
too.

To find good parameter settings for ρ, zmin, and θ, we examined the performance of
VNS on a training sample consisting of 10 DSRFLP instances with n = 60, 70, 80, 90, and 100
and m = 3 and 5. These instances were randomly generated as described in Section 4.1. Of
course, the training sample is disjoint from the main dataset, which is reserved for the final
testing stage. In each experiment, we ran several configurations of VNS. To evaluate them,
we used the following formula

Favdev = ∑(F− Fmin)/10, (23)

where F denotes the objective function value achieved by the tested configuration and Fmin
represents the minimum objective function value obtained by all configurations. The sum
in (23) is taken over all instances in the sample. During the parameter tuning phase, we set
the cutoff time of VNS to 300 s per instance.

In the stage of preliminary experimentation, we ran VNS1 and VNS2 using various
combinations of the values of the parameters ρ, zmin, and θ. We observed that the per-
formance of VNS1 and VNS2 was not very sensitive to the choice of these parameters.
Therefore, we relied on a simple parameter setting procedure for our algorithm. Based
on early tests, we first identified a range of potential values for each parameter. Then,
we allowed one parameter to take on different values from its range while keeping the
other parameters fixed at reasonable values chosen on the basis of preliminary numerical
experiments.

We started our numerical analysis by investigating the influence of the parameter ρ on the
performance of the VNS algorithm. This parameter is used to define the maximum size of the

https://drive.google.com/file/d/1P36xdv4QpZxFmROhAa8Z2dOXU9zJOJKl/view?usp=sharing
https://drive.google.com/file/d/1P36xdv4QpZxFmROhAa8Z2dOXU9zJOJKl/view?usp=sharing

Mathematics 2022, 10, 2174 16 of 27

neighborhood in the search process. We ran VNS with ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1, 1.5, 2}.
The results are plotted in Figure 4. We see that the best performance of VNS was for ρ 6 0.4,
with a slight edge to ρ = 0.3. Therefore, we fixed ρ at 0.3 for all further experiments with
VNS. We then examined the following five values of the parameter zmin: 1, 3, 5, 10, and 20.
Figure 5 shows that the algorithm was fairly robust to the choice of zmin. We decided to fix
zmin at 3. Furthermore, we investigated the effect of the parameter θ on the performance of
VNS. We ran the algorithm with θ = 1, 2, 3, 4, 5, 7, 10, and 20. From Figure 6, we see that a
bad choice is to set θ = 1. The best values of θ appeared to be 2 and 5. The results were very
similar between VNS configurations with other tested values of θ. Based on the obtained
results, we fixed θ at 5.

0.5

12000

0
1

4000

8000

Parameter ρ

1.5 2

F
a
v
d
e
v

Figure 4. Average deviation Favdev versus parameter ρ.

5

8000

0
10

4000

6000

Parameter z

15 20

F
a
v
d
e
v

2000

min

Figure 5. Average deviation Favdev versus parameter zmin.

5

12000

0
10

4000

8000

Parameter θ

15 20

F
a
v
d
e
v

Figure 6. Average deviation Favdev versus parameter θ.

As we alluded to at the beginning of this section, the VNS2 version of the algorithm
makes use of the time share parameter β. This parameter represents the proportion of time
allotted to a heuristic for providing an initial solution. We tested the values of β from 0 to
0.06 in increments of 0.01. In addition, we ran VNS2 with β = 0.08, 0.1, and 0.2. The results
are displayed in Figure 7. We observe that the best performance of VNS2 was achieved
for β ∈ {0.04, 0.05, 0.06}. We elected to set β to 0.04 for all further experiments with VNS2
reported in this paper.

Mathematics 2022, 10, 2174 17 of 27

0.05

5000

0
0.1

1000

3000

Parameter β

0.15 0.2

F a
v
d
e
v

Figure 7. Average deviation Favdev versus parameter β.

4.3. Computational Results for Smaller Sized Instances

We first report the computational experiments on a set of DSRFLP instances of size up
to 100 facilities. Table 2 compares the best results achieved by VNS1, VNS2, and SA-R. Its
first column contains the instance names. The first integer in the name gives the number of
facilities and the second integer gives the number of planning periods. In the next columns,
F∗ is the objective function value of the best solution out of 10 runs. The average results of
VNS1, VNS2, and SA-R are listed in Table 3. The two columns for each algorithm contain
the average objective function value of 10 solutions, denoted as F̄, and the average time (in
seconds) taken to find the best solution in a run. The bottom row of Tables 2 and 3 shows
the results averaged over all 20 problem instances. The best value of F∗ (in Table 2) and F̄
(in Table 3) for each instance is highlighted in boldface.

Table 2. Best results of VNS1, VNS2, and SA-R for smaller sized instances.

Instance
F∗

SA-R [2] VNS1 VNS2

p-10-3 11,705.04 11,705.04 11,705.04
p-10-5 36,542.40 36,542.40 36,542.40
p-20-3 135,854.28 135,836.72 135,836.72
p-20-5 237,005.63 235,702.67 236,978.68
p-30-3 544,000.65 543,651.77 543,652.57
p-30-5 764,617.91 760,389.18 760,734.14
p-40-3 1,107,986.23 1,105,774.53 1,106,968.57
p-40-5 1,984,973.00 1,977,976.69 1,986,389.10
p-50-3 2,386,487.04 2,383,485.99 2,383,192.05
p-50-5 3,306,923.09 3,298,814.02 3,298,351.85
p-60-3 4,049,420.99 4,044,397.12 4,043,248.10
p-60-5 6,628,448.99 6,618,996.14 6,618,257.45
p-70-3 6,373,466.80 6,367,620.87 6,368,145.96
p-70-5 10,871,763.60 10,846,635.18 10,856,120.03
p-80-3 9,076,332.09 9,068,545.51 9,067,154.61
p-80-5 15,671,590.42 15,647,210.09 15,644,661.53
p-90-3 13,308,092.00 13,293,451.79 13,289,264.47
p-90-5 19,678,980.89 19,642,957.24 19,644,995.21
p-100-3 20,432,892.88 20,406,423.73 20,408,596.84
p-100-5 32,439,455.78 32,376,234.74 32,380,043.46
Average 7,452,326.99 7,440,117.57 7,441,041.94

By analyzing the results in Tables 2 and 3, we find that both VNS versions outper-
formed the SA-R algorithm. It can be observed that, for each instance of size greater than
10, VNS1 showed superior results to SA-R in terms of both performance measures, F∗ and
F̄. Each algorithm found the best solution for the two smallest instances. However, SA-R
produced better average solutions than VNS1 for these instances. We also see that VNS2
obtained better solutions than SA-R for 17 instances, matched the performance of SA-R for
2 instances, and failed in one case (for instance p-40-5). This observation is valid for each

Mathematics 2022, 10, 2174 18 of 27

table. The superiority of VNS over SA-R is also evidenced by the statistics presented in the
last row of the tables, where we show the averaged results for each algorithm.

Table 3. Average results of VNS1, VNS2, and SA-R for smaller sized instances (the time is in seconds).

Instance
SA-R [2] VNS1 VNS2

F̄ Time F̄ Time F̄ Time

p-10-3 11,705.04 4 11,799.45 <1 11,705.04 <1
p-10-5 36,542.40 5 36,733.37 <1 36,542.40 <1
p-20-3 136,171.10 88 135,873.75 23 135,836.72 8
p-20-5 238,345.93 89 236,178.93 42 236,978.68 10
p-30-3 544,574.88 420 544,238.64 98 544,018.00 70
p-30-5 766,188.96 356 761,610.41 269 760,892.22 269
p-40-3 1,109,630.59 1161 1,108,546.91 627 1,107,759.88 922
p-40-5 1,986,043.95 840 1,980,224.46 837 1,986,508.74 1329
p-50-3 2,387,389.06 985 2,385,376.52 691 2,383,939.81 985
p-50-5 3,311,036.01 947 3,303,230.87 1262 3,299,774.87 1429
p-60-3 4,051,257.88 806 4,050,500.71 1244 4,044,226.34 1447
p-60-5 6,632,170.27 1089 6,622,791.04 1392 6,621,988.34 1437
p-70-3 6,374,969.44 1611 6,369,823.46 1646 6,369,592.16 2138
p-70-5 10,875,948.72 1806 10,853,532.66 2662 10,868,110.32 3093
p-80-3 9,079,287.72 1326 9,075,464.00 2553 9,068,322.47 2928
p-80-5 15,675,848.78 2682 15,656,867.55 3172 15,650,223.41 3223
p-90-3 13,316,487.34 1661 13,301,726.25 2830 13,291,835.26 2929
p-90-5 19,687,737.35 1394 19,659,048.67 3263 19,658,507.91 3330
p-100-3 20,437,133.73 1892 20,424,806.76 3004 20,409,215.19 2633
p-100-5 32,448,789.19 1563 32,398,327.96 3511 32,394,880.52 3320
Average 7,455,362.92 1036 7,445,835.12 1456 7,444,042.91 1575

Figure 8 depicts the boxplots of the performance of the tested algorithms on a subset
of DSRFLP instances from Tables 2 and 3. The horizontal lines in each boxplot from bottom
to top show the minimum, lower quartile, median, upper quartile, and maximum objective
function values. As we can see in the figure, our VNS implementations were capable of
delivering solutions of better quality than the SA-R algorithm.

Comparing VNS1 and VNS2, we find that VNS2 exhibits better performance than
VNS1 in terms of F̄, but is slightly worse in terms of F∗. To more rigorously assess the results,
we apply the Wilcoxon signed-rank test. The comparison results are summarized in Table 4.
The first column indicates which objective function values are compared: best solution
values (F∗ in Table 2) in the first row and average solution values (F̄ in Table 3) in the second
row. The next three columns show comparison results: #wins, #ties, and #losses count the
number of instances on which VNS2 found a better, an equally good, or an inferior solution
than VNS1. The p-values from the Wilcoxon test are estimated in the penultimate column.
We use a standard significance level of 0.05 to judge whether a significant difference exists
between the algorithms. The value “Yes” means that the average results of VNS2 are better
than those of VNS1, while “No” means that there is no statistical difference between the
two algorithms when the comparison is based on the F∗ values.

Table 4. Comparison of VNS2 vs. VNS1 for smaller sized instances.

Objective Function Value #wins #ties #losses p-Value Statistical Significance

Best 7 3 10 >0.2 No
Average 17 0 3 <0.025 Yes

The average running time taken by each algorithm to reach the last improvement
in solution quality is shown in Table 3. We see that SA-R took less time to find the best
solution in a run than VNS1 and VNS2. The running times of the latter two algorithms are
quite comparable. Part (a) of Figure 9 shows the convergence speed of the tested algorithms

Mathematics 2022, 10, 2174 19 of 27

for problem instance p-100-5. For each algorithm, a plot of the objective function value
of the best solution versus computational time is provided. The first point plotted for
VNS2 represents the solution generated by a VNS heuristic for the SRFLP and improved
by running LS once. From the figure, we see that SA-R stops improving the best solution
earlier than VNS1 and VNS2.

6370

6375

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

e

6365

VNS1 VNS2SA-R

×10
3

(a)

1566

1568

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

e

1564

VNS1 VNS2SA-R

×10
4

(b)

1330

1332

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

e

1328

VNS1 VNS2SA-R

×10
4

c()

3240

3243

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

e

3237

VNS1 VNS2SA-R

×10
4

(d)

3246

Figure 8. Objective function values achieved by SA-R, VNS1, and VNS2 on four DSRFLP instances
with n 6 100: (a) p-70-3; (b) p-80-5; (c) p-90-3; and (d) p-100-5.

3252

0h

3242

3247

Time

1h

3237O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

e

×10
4

2h

VNS2SA-R VNS1

(a)

1597

0h

1594

1595

Time

2h

1593

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

e

×10
5

5h

VNS2SA-R VNS1

(b)

1596

1h 4h3h

Figure 9. Convergence speed of SA-R, VNS1, and VNS2: (a) p-100-5; and (b) p-200-3.

Mathematics 2022, 10, 2174 20 of 27

4.4. Computational Results for Larger Sized Instances

Our second experiment aimed to assess the performance of algorithms on a set of
DSRFLP instances with the number of facilities ranging from 110 to 200. The results are
reported in Tables 5 and 6. They have the same structure as Tables 2 and 3. The findings
from the experiment slightly differ from those discussed in the previous section. The
differences are not only due to an increase in the size of problem instances. We used slightly
different parameters to generate instances of size n > 100. The rearrangement costs for
these instances are four times higher than in the case of instances of a size up to 100 (see
Section 4.1).

Perhaps the main observation from Tables 5 and 6 is the overwhelming superiority of
VNS2 over the other two algorithms. Basically, VNS2 dominated SA-R and VNS1 across
all the 20 problem instances. By contrasting the penultimate column of Table 6 with the
second and third columns of Table 5, we can see that the average result of VNS2 is better
than the best SA-R (or VNS1) result for all instances except p-130-3. Comparing SA-R
with VNS1, it can be noticed from the bottom rows of the tables that VNS1 found better
“best” solutions (Table 5) and SA-R produced better solutions on the average (Table 6). The
boxplots for the four DSRFLP instances with n > 100 are shown in Figure 10. They confirm
the effectiveness of VNS2 in comparison with the other evaluated algorithms.

Table 5. Best results of VNS1, VNS2, and SA-R for larger-size instances.

Instance
F∗

SA-R [2] VNS1 VNS2

p-110-3 24,426,599.17 24,412,874.74 24,352,004.50
p-110-5 44,394,528.07 44,394,371.91 44,219,359.24
p-120-3 32,482,176.39 32,492,680.33 32,396,003.86
p-120-5 51,521,726.72 51,584,284.77 51,323,374.62
p-130-3 43,120,283.15 43,112,625.52 43,087,223.83
p-130-5 67,282,522.47 67,318,731.00 67,042,244.45
p-140-3 52,320,015.69 52,301,770.34 52,248,995.04
p-140-5 80,707,509.29 80,793,212.05 80,397,730.12
p-150-3 66,670,525.25 66,685,317.12 66,523,798.21
p-150-5 110,264,451.42 110,259,943.20 109,963,594.81
p-160-3 75,165,009.15 75,141,439.40 74,998,806.00
p-160-5 143,801,397.84 143,699,497.42 143,375,603.20
p-170-3 90,472,044.23 90,527,250.24 90,356,544.17
p-170-5 140,374,941.98 140,448,285.02 140,007,379.91
p-180-3 100,099,923.84 100,029,906.48 99,830,173.50
p-180-5 187,124,398.15 186,995,144.87 186,599,842.96
p-190-3 129,442,600.58 129,392,623.33 129,243,420.34
p-190-5 223,475,308.22 223,303,403.18 222,881,668.11
p-200-3 159,575,676.04 159,458,326.81 159,332,994.59
p-200-5 256,724,704.71 256,210,522.64 256,019,625.59
Average 103,972,317.12 103,928,110.52 103,710,019.35

Table 7 summarizes comparison results between SA-R and VNS1. Regarding the
average quality of solutions, the Wilcoxon signed-rank test demonstrated a statistically
significant difference in favor of SA-R. However, there was no significant difference between
the results of SA-R and VNS1 in the case of the best solutions.

In Table 6, we also report the average running time of the tested algorithms. We see
that SA-R found the best solution in a run earlier than the VNS configurations. We notice
that VNS2, and especially VNS1, obtained an improved solution in a situation where the
time limit of 1 h on a run was close to expiring. In part (b) of Figure 9, we compare the
convergence speed of the algorithms for the problem instance p-200-3. We increased the
cutoff time for a run to 5 h. However, as we can see from the figure, after 3 h of execution,
the improvement in solution quality was very marginal.

Mathematics 2022, 10, 2174 21 of 27

Table 6. Average results of VNS1, VNS2, and SA-R for larger-size instances (the time is in seconds).

Instance
SA-R [2] VNS1 VNS2

F̄ Time F̄ Time F̄ Time

p-110-3 24,438,826.09 1369 24,463,207.92 3531 24,357,516.47 3176
p-110-5 44,421,154.10 1626 44,472,395.59 3532 44,247,884.94 3278
p-120-3 32,498,608.51 1658 32,539,824.79 3525 32,427,541.45 3381
p-120-5 51,551,795.94 1235 51,656,799.26 3554 51,361,807.61 3394
p-130-3 43,137,728.60 1739 43,193,211.39 3543 43,129,976.04 3299
p-130-5 67,299,514.49 1496 67,404,238.70 3565 67,102,663.67 3379
p-140-3 52,348,807.27 1624 52,416,130.51 3509 52,255,781.98 3269
p-140-5 80,760,725.04 1928 80,875,690.25 3546 80,425,261.19 3509
p-150-3 66,695,736.62 1763 66,739,463.80 3546 66,549,419.06 3367
p-150-5 110,327,901.90 2040 110,406,239.53 3569 110,076,167.87 3346
p-160-3 75,188,758.41 2226 75,216,760.29 3518 75,057,013.61 3380
p-160-5 143,875,834.70 1459 143,886,630.77 3562 143,565,705.90 3396
p-170-3 90,533,129.91 2125 90,602,175.38 3547 90,386,770.54 3299
p-170-5 140,422,925.58 1657 140,499,276.62 3553 140,057,222.24 3219
p-180-3 100,119,474.17 2367 100,173,614.69 3570 99,907,725.90 3443
p-180-5 187,200,857.72 2420 187,149,490.63 3559 186,717,534.74 3425
p-190-3 129,490,670.18 1919 129,535,688.36 3525 129,380,952.41 3214
p-190-5 223,579,637.94 1709 223,546,537.36 3557 223,003,189.23 3456
p-200-3 159,609,830.84 1799 159,576,299.00 3561 159,434,020.05 3044
p-200-5 256,817,931.64 1475 256,646,600.68 3559 256,200,019.90 3214
Average 104,015,992.48 1782 104,050,013.78 3546 103,782,208.74 3324

5150

5170

O
b
je

ct
iv

e
fu

n
ct

io
n
 v

al
u
e

5130

VNS1 VNS2SA-R

×10
4

(a)

6670

6690

O
b
je

ct
iv

e
fu

n
ct

io
n
 v

al
u
e

6650

VNS1 VNS2SA-R

×10
4

(b)

1869

1872

O
b
je

ct
iv

e
fu

n
ct

io
n
 v

al
u
e

1866

VNS1 VNS2SA-R

×10
5

c()

1595

O
b
je

ct
iv

e
fu

n
ct

io
n
 v

al
u
e

1593

VNS1 VNS2SA-R

×10
5

(d)

1597

Figure 10. Objective function values achieved by SA-R, VNS1, and VNS2 on four DSRFLP instances
with n > 100: (a) p-120-5; (b) p-150-3; (c) p-180-5; and (d) p-200-3.

Mathematics 2022, 10, 2174 22 of 27

Table 7. Comparison of SA-R vs. VNS1 for larger sized instances.

Objective Function Value #wins #losses p-Value Statistical Significance

Best 7 13 >0.2 No
Average 16 4 <0.025 Yes

We finalized this section with a couple of remarks concerning the performance of the
tested algorithms. We experimentally compared our two algorithms (VNS1 and VNS2)
for the DSRFLP. The results clearly indicate that VNS2 is our key algorithm in this study.
We compared VNS2 with the simulated annealing algorithm (SA-R) from the literature.
Experiments showed that the performance of VNS2 was superior to that of SA-R.

5. Analysis of Local Search Variants

To demonstrate the computational efficiency of our LS component of the algorithm, we
experimentally compared it with alternative local search implementations. One idea was
to abandon the use of the swap operator and base the search entirely on insertion moves.
Other attempts were directed towards simplifying the gain calculation process by replacing
the use of Propositions 1 and 2 with Equations (7), (9), and (14). Each of the resulting
procedures, however, should not be considered as an independent algorithm. Basically,
these procedures can be treated as modifications of VNS2. They are obtained by making
small changes to the LS part of VNS2. We investigated alternative LS implementations in
order to justify various design choices made in the construction of the VNS2 algorithm.
To assess the performance of the variable neighborhood search algorithm with alternative
LS approaches, we used the main VNS2 variant (described in Sections 2 and 3) as a reference
method.

5.1. Usefulness of Swap Moves

We numerically analyzed the performance of a VNS2 version in which the LS proce-
dure does not employ the swap neighborhood structure. We refer to this version as VNS2a.
Basically, VNS2a is obtained from VNS2 by deleting Lines 4–8 in Algorithm 4.

To avoid unnecessarily long computations, we performed the comparison between
VNS2 and VNS2a on a set of DSRFLP instances of Section 4.1 with n 6 100. The comparison
results are shown in Figure 11. On the x axis, FVNS2a − FVNS2 represents the difference in
the F∗ values between VNS2a and VNS2 in the bars labeled “Best”, and the difference
in the F̄ values between VNS2a and VNS2 in the bars labeled as “Average”. We provide
results for problem instances of a size of at least 40. For smaller instances, the two versions
of VNS2 either obtained the same solution or the difference between the objective function
values was relatively small. We see in the figure that VNS2a found a better solution than
VNS2 for p-40-5. The objective function value achieved by VNS2a for this instance is
1,982,841.80. This value, however, is bigger than that reported by VNS1 (see Table 2). We
also observed that, for all problem instances of size greater than 40, VNS2 produced better
solutions than VNS2a. The difference FVNS2a − FVNS2 averaged over all 20 instances was
8486.30 in the case of the F∗ values and 11,322.90 in the case of the F̄ values. From the
figure, we can conclude that the swap neighborhood exploration procedure (Algorithm 5)
is an important component of the approach. This helps significantly improve the quality of
solutions produced by VNS.

Mathematics 2022, 10, 2174 23 of 27

p-40-3

p-40-5

p-50-3

p-50-5

p-60-3

p-60-5

p-70-3

p-70-5

p-80-3

p-80-5

p-90-3

p-90-5

p-100-3

p-100-5

0 10000 4000020000

Difference FVNS2a FVNS2-

30000 50000

Best Average

Figure 11. Difference in the solution values between VNS2a (that is, VNS2 with no swap operator)
and the VNS2 algorithm.

5.2. Benefit of Fast Neighborhood Exploration

The purpose of this section is to show that our idea to calculate the move gain in
constant time is fruitful. To this end, we consider the following variations of the VNS2
algorithm:

• VNS2b obtained from VNS2 by replacing the equations of Proposition 1 with
Equations (7) and (9);

• VNS2c obtained from VNS2 by replacing Equation (15) with Equation (14);
• VNS2d obtained from VNS2 by replacing the equations of Propositions 1 and 2 with

Equations (7), (9), and (14).

Since the VNS2 algorithm employs fast neighborhood exploration procedures, it was
expected that the above-listed alternative VNS2 versions could not improve the results
obtained by VNS2. Our experiment confirmed this expectation. As in Section 5.1, we
ran the algorithm on problem instances of size n 6 100. The results of solving these
instances are reported in Figures 12 and 13. The differences shown in these figures for
each VNS2 version were obtained similarly to those in Figure 11. We note that all versions
of VNS2 managed to find the best solution for the first five instances in the dataset and
therefore the results are only provided for p-30-5 and all instances with n > 40. Figure 12
depicts the performance differences calculated for the F∗ values and Figure 13 shows
the performance differences obtained for the F̄ values. As it is obvious from the figures,
VNS2 produced better solutions than VNS2b, VNS2c, and VNS2d for all problem instances.
The average values of FVNS2b − FVNS2, FVNS2c − FVNS2, and FVNS2d − FVNS2 in Figure 12
are 1146.54, 1305.63, and 1580.42, respectively, and those in Figure 13 are 1045.29, 1322.69,
and 1686.44, respectively. As expected, VNS2d obtained worse solutions than VNS2b
and VNS2c. In general, it can be concluded that the use of the proposed neighborhood
exploration procedures has a large impact on improving the performance of the variable
neighborhood search method for solving the DSRFLP.

Mathematics 2022, 10, 2174 24 of 27

50000 10000 15000

FVNS2b FVNS2- FVNS2d FVNS2-FVNS2c FVNS2-

p-30-5

p-40-3

p-40-5

p-50-3

p-50-5

p-60-3

p-60-5

p-70-3

p-70-5

p-80-3

p-80-5

p-90-3

p-90-5

p-100-3

p-100-5

Difference

Figure 12. Difference in solution values between the VNS2 algorithm and VNS2 variations VNS2b,
VNS2c, and VNS2d: the case of the F∗ values.

40000 5000 7000

FVNS2b FVNS2- FVNS2d FVNS2-FVNS2c FVNS2-

p-30-5

p-40-3

p-40-5

p-50-3

p-50-5

p-60-3

p-60-5

p-70-3

p-70-5

p-80-3

p-80-5

p-90-3

p-90-5

p-100-3

p-100-5

Difference

1000 3000 60002000

Figure 13. Difference in solution values between the VNS2 algorithm and VNS2 variations VNS2b,
VNS2c, and VNS2d: the case of the F̄ values.

Mathematics 2022, 10, 2174 25 of 27

6. Concluding Remarks

In this paper, we developed a variable neighborhood search algorithm for solving the
dynamic single row facility layout problem. The effectiveness of this algorithm strongly
depends on the quality of the adopted LS strategy. The main contribution of this work is an
LS algorithm based on the fast neighborhood exploration procedures developed for swap
and insertion neighborhood structures. Provided that the number of planning periods is a
constant, these procedures have O(n2) time complexity. In one version of VNS, a starting
solution is generated by performing the short run of a VNS procedure for solving the SRFLP.
An instance of the latter is constructed from an instance of the DSRFLP. Another version of
VNS starts with a randomly generated solution.

Both VNS versions were numerically compared against the SA approach of Şahin et al. [2],
which is the state-of-the-art algorithm for the DSRFLP. Computational experiments were
conducted on problem instances of size up to 200 facilities and 3 or 5 planning periods. The
results indicate that VNS with a heuristically constructed initial solution outperformed the
SA algorithm. The superiority of VNS over SA is more pronounced for DSRFLP instances
of a size greater than 100.

Additional experiments were carried out to show the effectiveness of the proposed LS
procedure. A conclusion was reached that it is advantageous to explore the swap neighbor-
hood, and not to restrict LS to performing insertion operations only. Another conclusion is
that our methods to calculate the move gain largely outperformed traditional techniques.

As a general conclusion, we may note that the DSRFLP is a very difficult combinatorial
optimization problem. It is much harder than the SRFLP. We experience that, for large-size
instances in our test suite, the best solutions obtained are likely not the best possible. To
find improved solutions using VNS, a big amount of CPU time may be required. An
obvious direction for further research is to develop new powerful metaheuristic-based
algorithms for solving the DSRFLP. One idea is to combine SA and VNS into a single
approach. This hybridization strategy was successfully applied to several permutation-
based problems, for example, for solving the profile minimization problem [58]. Another
promising idea seems to be developing evolutionary algorithms for the DSRFLP. Such
algorithms may use the proposed LS procedure as a means for search intensification. In
general, due to its complexity and simplicity in formulation, the DSRFLP can serve as a
good candidate problem for the performance evaluation of newly introduced metaheuristic
optimization methods.

Another possible area of future research is to design and implement metaheuristic
algorithms for dynamic versions of some other facility layout problems. In particular,
a research effort could be devoted to developing such algorithms for a dynamic formulation
of the multi-row facility layout problem. Loop layout problems are another example for
which dynamic models can be considered. Finally, the research can also be directed towards
the development of new optimization techniques for dynamic parallel row ordering.

Author Contributions: Conceptualization, G.P.; methodology, G.P. and A.O.; software, G.P. and
J.P.; validation, G.P., A.O. and J.P.; formal analysis, J.P.; investigation, G.P. and J.P.; resources, A.O.;
writing—original draft preparation, G.P., A.O. and J.P.; writing—review and editing, G.P., A.O. and
J.P.; supervision, G.P.; project administration, A.O. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2022, 10, 2174 26 of 27

References
1. Keller, B.; Buscher, U. Single row layout models. Eur. J. Oper. Res. 2015, 245, 629–644. [CrossRef]
2. Şahin, R.; Niroomand, S.; Durmaz, E.D.; Molla-Alizadeh-Zavardehi, S. Mathematical formulation and hybrid meta-heuristic

solution approaches for dynamic single row facility layout problem. Ann. Oper. Res. 2020, 295, 313–336. [CrossRef]
3. Amaral, A.R.S. An exact approach to the one-dimensional facility layout problem. Oper. Res. 2008, 56, 1026–1033. [CrossRef]
4. Amaral, A.R.S. A new lower bound for the single row facility layout problem. Discret. Appl. Math. 2009, 157, 183–190. [CrossRef]
5. Amaral, A.R.S.; Letchford, A.N. A polyhedral approach to the single row facility layout problem. Math. Program. 2013, 141,

453–477. [CrossRef]
6. Anjos, M.F.; Vannelli, A. Computing globally optimal solutions for single-row layout problems using semidefinite programming

and cutting planes. INFORMS J. Comput. 2008, 20, 611–617. [CrossRef]
7. Hungerländer, P.; Rendl, F. A computational study and survey of methods for the single-row facility layout problem. Comput.

Optim. Appl. 2013, 55, 1–20. [CrossRef]
8. Samarghandi, H.; Eshghi, K. An efficient tabu algorithm for the single row facility layout problem. Eur. J. Oper. Res. 2010, 205,

98–105. [CrossRef]
9. Kothari, R.; Ghosh, D. Tabu search for the single row facility layout problem using exhaustive 2-opt and insertion neighborhoods.

Eur. J. Oper. Res. 2013, 224, 93–100. [CrossRef]
10. Datta, D.; Amaral, A.R.S.; Figueira, J.R. Single row facility layout problem using a permutation-based genetic algorithm. Eur. J.

Oper. Res. 2011, 213, 388–394. [CrossRef]
11. Ozcelik, F. A hybrid genetic algorithm for the single row layout problem. Int. J. Prod. Res. 2012, 50, 5872–5886. [CrossRef]
12. Kothari, R.; Ghosh, D. An efficient genetic algorithm for single row facility layout. Optim. Lett. 2014, 8, 679–690. [CrossRef]
13. Kothari, R.; Ghosh, D. Insertion based Lin-Kernighan heuristic for single row facility layout. Comput. Oper. Res. 2013, 40, 129–136.

[CrossRef]
14. Ou-Yang, C.; Utamima, A. Hybrid estimation of distribution algorithm for solving single row facility layout problem. Comput.

Ind. Eng. 2013, 66, 95–103. [CrossRef]
15. Kothari, R.; Ghosh, D. A scatter search algorithm for the single row facility layout problem. J. Heuristics 2014, 20, 125–142.

[CrossRef]
16. Palubeckis, G. Fast local search for single row facility layout. Eur. J. Oper. Res. 2015 246, 800–814. [CrossRef]
17. Rubio-Sánchez, M.; Gallego, M.; Gortázar, F.; Duarte, A. GRASP with path relinking for the single row facility layout problem.

Knowl. Based Syst. 2016, 106, 1–13. [CrossRef]
18. Guan, J.; Lin, G. Hybridizing variable neighborhood search with ant colony optimization for solving the single row facility layout

problem. Eur. J. Oper. Res. 2016, 248, 899–909. [CrossRef]
19. Palubeckis, G. Single row facility layout using multi-start simulated annealing. Comput. Ind. Eng. 2017 103, 1–16. [CrossRef]
20. Ning, X.; Li, P. A cross-entropy approach to the single row facility layout problem. Int. J. Prod. Res. 2018, 56, 3781–3794. [CrossRef]
21. Atta, S.; Sinha Mahapatra, P.R. Population-based improvement heuristic with local search for single-row facility layout problem.

Sādhanā 2019, 44, 222. [CrossRef]
22. Cravo, G.L.; Amaral, A.R.S. A GRASP algorithm for solving large-scale single row facility layout problems. Comput. Oper. Res.

2019, 106, 49–61. [CrossRef]
23. Yeh, W.-C.; Lai, C.-M.; Ting, H.-Y.; Jiang, Y.; Huang, H.-P. Solving single row facility layout problem with simplified swarm

optimization. In Proceedings of the 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge
Discovery (ICNC-FSKD), Guilin, China, 29–31 July 2017; pp. 267–270. [CrossRef]

24. Krömer, P.; Platoš, J.; Snášel, V. Solving the single row facility layout problem by differential evolution. In Proceedings of the
2020 Genetic and Evolutionary Computation Conference (GECCO ’20), Cancún, Mexico, 8–12 July 2020; ACM: New York, NY,
USA, 2020. [CrossRef]

25. Di Bari, G.; Baioletti, M.; Santucci, V. An experimental evaluation of the algebraic differential evolution algorithm on the single
row facility layout problem. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion (GECCO
’20 Companion), Cancún, Mexico, 8–12 July 2020; ACM: New York, NY, USA, 2020. [CrossRef]

26. Sun, X.; Chou, P.; Koong, C.-S.; Wu, C.-C; Chen, L.-R. Optimizing 2-opt-based heuristics on GPU for solving the single-row
facility layout problem. Future Gener. Comput. Syst. 2022, 126, 91–109. [CrossRef]

27. Anjos, M.F.; Vieira, M.V.C. Layout on a single row. In Facility Layout. EURO Advanced Tutorials on Operational Research; Springer:
Cham, Switzerland, 2021. [CrossRef]

28. Kalita, Z.; Datta, D. A constrained single-row facility layout problem. Int. J. Adv. Manuf. Technol. 2018, 98, 2173–2184. [CrossRef]
29. Liu, S.; Zhang, Z.; Guan, C.; Zhu, L.; Zhang, M.; Guo, P. An improved fireworks algorithm for the constrained single-row facility

layout problem. Int. J. Prod. Res. 2021, 59, 2309–2327. [CrossRef]
30. Keller, B. Construction heuristics for the single row layout problem with machine-spanning clearances. INFOR Inf. Syst. Oper.

Res. 2019 57, 32–55. [CrossRef]
31. Amaral, A.R.S. A parallel ordering problem in facilities layout. Comput. Oper. Res. 2013 40, 2930–2939. [CrossRef]
32. Yang, X.; Cheng, W.; Smith, A.E.; Amaral, A.R.S. An improved model for the parallel row ordering problem. J. Oper. Res. Soc.

2020, 71, 475–490. [CrossRef]

http://doi.org/10.1016/j.ejor.2015.03.016
http://dx.doi.org/10.1007/s10479-020-03704-7
http://dx.doi.org/10.1287/opre.1080.0548
http://dx.doi.org/10.1016/j.dam.2008.06.002
http://dx.doi.org/10.1007/s10107-012-0533-z
http://dx.doi.org/10.1287/ijoc.1080.0270
http://dx.doi.org/10.1007/s10589-012-9505-8
http://dx.doi.org/10.1016/j.ejor.2009.11.034
http://dx.doi.org/10.1016/j.ejor.2012.07.037
http://dx.doi.org/10.1016/j.ejor.2011.03.034
http://dx.doi.org/10.1080/00207543.2011.636386
http://dx.doi.org/10.1007/s11590-012-0605-2
http://dx.doi.org/10.1016/j.cor.2012.05.017
http://dx.doi.org/10.1016/j.cie.2013.05.018
http://dx.doi.org/10.1007/s10732-013-9234-x
http://dx.doi.org/10.1016/j.ejor.2015.05.055
http://dx.doi.org/10.1016/j.knosys.2016.05.030
http://dx.doi.org/10.1016/j.ejor.2015.08.014
http://dx.doi.org/10.1016/j.cie.2016.09.026
http://dx.doi.org/10.1080/00207543.2017.1399221
http://dx.doi.org/10.1007/s12046-019-1203-0
http://dx.doi.org/10.1016/j.cor.2019.02.009
http://dx.doi.org/10.1109/FSKD.2017.8393199
http://dx.doi.org/10.1145/3377930.3389839
http://dx.doi.org/10.1145/3377929.3398130
http://dx.doi.org/10.1016/j.future.2021.07.022
http://dx.doi.org/10.1007/978-3-030-70990-7_2
http://dx.doi.org/10.1007/s00170-018-2370-6
http://dx.doi.org/10.1080/00207543.2020.1730465
http://dx.doi.org/10.1080/03155986.2017.1393729
http://dx.doi.org/10.1016/j.cor.2013.07.003
http://dx.doi.org/10.1080/01605682.2018.1556570

Mathematics 2022, 10, 2174 27 of 27

33. Ahonen, H.; de Alvarenga, A.G.; Amaral, A.R.S. Simulated annealing and tabu search approaches for the corridor allocation
problem. Eur. J. Oper. Res. 2014, 232, 221–233. [CrossRef]

34. Kalita, Z.; Datta, D.; Palubeckis, G. Bi-objective corridor allocation problem using a permutation-based genetic algorithm
hybridized with a local search technique. Soft Comput. 2019, 23, 961–986. [CrossRef]

35. Zhang, Z.; Mao, L.; Guan, C.; Zhu, L.; Wang, Y. An improved scatter search algorithm for the corridor allocation problem
considering corridor width. Soft Comput. 2020, 24, 461–481. [CrossRef]

36. Fischer, A.; Fischer, F.; Hungerländer, P. New exact approaches to row layout problems. Math. Program. Comput. 2019, 11, 703–754.
[CrossRef]

37. Herrán, A.; Colmenar, J.M.; Duarte, A. An efficient variable neighborhood search for the space-free multi-row facility layout
problem. Eur. J. Oper. Res. 2021, 295, 893–907. [CrossRef]

38. Gong, J.; Zhang, Z.; Liu, J.; Guan, C.; Liu, S. Hybrid algorithm of harmony search for dynamic parallel row ordering problem. J.
Manuf. Syst. 2021, 58, 159–175. [CrossRef]

39. Guan, C.; Zhang, Z.; Zhu, L.; Liu, S. Mathematical formulation and a hybrid evolution algorithm for solving an extended row
facility layout problem of a dynamic manufacturing system. Robot. Comput.-Integr. Manuf. 2022, 78, 102379. [CrossRef]

40. Rosenblatt, M.J. The dynamics of plant layout. Manage. Sci. 1986 32, 76–86. [CrossRef]
41. Balakrishnan, J.; Cheng, C.H. Genetic search and the dynamic layout problem. Comput. Oper. Res. 2000, 27, 587–593. [CrossRef]
42. Balakrishnan, J.; Cheng, C.H.; Conway D.G.; Lau C.M. A hybrid genetic algorithm for the dynamic plant layout problem. Int. J.

Prod. Econ. 2003, 86, 107–120. [CrossRef]
43. McKendall, A.R.; Shang, J.; Kuppusamy S. Simulated annealing heuristics for the dynamic facility layout problem. Comput. Oper.

Res. 2006, 33, 2431–2444. [CrossRef]
44. Baykasoglu, A.; Dereli, T.; Sabuncu I. An ant colony algorithm for solving budget constrained and unconstrained dynamic facility

layout problems. Omega 2006, 34, 385–396. [CrossRef]
45. Zouein, P.P.; Kattan, S. An improved construction approach using ant colony optimization for solving the dynamic facility layout

problem. J. Oper. Res. Soc. 2021. [CrossRef]
46. McKendall, A.R.; Shang, J. Hybrid ant systems for the dynamic facility layout problem. Comput. Oper. Res. 2006, 33, 790–803.

[CrossRef]
47. Şahin, R.; Türkbey, O. A new hybrid tabu-simulated annealing heuristic for the dynamic facility layout problem. Int. J. Prod. Res.

2009, 47, 6855–6873. [CrossRef]
48. McKendall, A.R.; Liu, W.-H. New tabu search heuristics for the dynamic facility layout problem. Int. J. Prod. Res. 2012, 50,

867–878. [CrossRef]
49. Hosseini-Nasab, H.; Emami, L. A hybrid particle swarm optimisation for dynamic facility layout problem. Int. J. Prod. Res. 2013,

51, 4325–4335. [CrossRef]
50. Turanoğlu, B.; Akkaya, G. A new hybrid heuristic algorithm based on bacterial foraging optimization for the dynamic facility

layout problem. Expert Syst. Appl. 2018, 98, 93–104. [CrossRef]
51. Zhu, T.; Balakrishnan, J.; Cheng C.H. Recent advances in dynamic facility layout research. INFOR Inf. Syst. Oper. Res. 2018, 56,

428–456. [CrossRef]
52. Hosseini-Nasab, H.; Fereidouni, S.; Fatemi Ghomi, S.M.T.; Fakhrzad, M.B. Classification of facility layout problems: A review

study. Int. J. Adv. Manuf. Technol. 2018, 94, 957–977. [CrossRef]
53. Mladenović, N.; Hansen, P. Variable neighborhood search. Comput. Oper. Res. 1997, 24, 1097–1100. [CrossRef]
54. Hansen, P.; Mladenović, N.; Moreno Pérez, J.A. Variable neighbourhood search: Methods and applications. 4OR 2008, 6, 319–360.

Erratumn in Ann. Oper. Res. 2010, 175, 367–407. [CrossRef]
55. Schiavinotto, T.; Stützle, T. A review of metrics on permutations for search landscape analysis. Comput. Oper. Res. 2007, 34,

3143–3153. [CrossRef]
56. Baioletti, M.; Milani, A.; Santucci, V. Variable neighborhood algebraic differential evolution: An application to the linear ordering

problem with cumulative costs. Inf. Sci. 2020, 507, 37–52. [CrossRef]
57. Zaefferer, M.; Stork, J.; Bartz-Beielstein, T. Distance measures for permutations in combinatorial efficient global optimization.

In Lecture Notes in Computer Science, Proceedings of the Parallel Problem Solving from Nature—PPSN XIII, Ljubljana, Slovenia, 13–17
September 2014; Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J., Eds.; Springer: Cham, Switzerland, 2014; Volume 8672,
pp. 373–383. [CrossRef]

58. Palubeckis, G. A variable neighborhood search and simulated annealing hybrid for the profile minimization problem. Comput.
Oper. Res. 2017, 87, 83–97. [CrossRef]

http://dx.doi.org/10.1016/j.ejor.2013.07.010
http://dx.doi.org/10.1007/s00500-017-2807-0
http://dx.doi.org/10.1007/s00500-019-03925-4
http://dx.doi.org/10.1007/s12532-019-00162-6
http://dx.doi.org/10.1016/j.ejor.2021.03.027
http://dx.doi.org/10.1016/j.jmsy.2020.11.014
http://dx.doi.org/10.1016/j.rcim.2022.102379
http://dx.doi.org/10.1287/mnsc.32.1.76
http://dx.doi.org/10.1016/S0305-0548(99)00052-0
http://dx.doi.org/10.1016/S0925-5273(03)00027-6
http://dx.doi.org/10.1016/j.cor.2005.02.021
http://dx.doi.org/10.1016/j.omega.2004.12.001
http://dx.doi.org/10.1080/01605682.2021.1920345
http://dx.doi.org/10.1016/j.cor.2004.08.008
http://dx.doi.org/10.1080/00207540802376323
http://dx.doi.org/10.1080/00207543.2010.545446
http://dx.doi.org/10.1080/00207543.2013.774486
http://dx.doi.org/10.1016/j.eswa.2018.01.011
http://dx.doi.org/10.1080/03155986.2017.1363591
http://dx.doi.org/10.1007/s00170-017-0895-8
http://dx.doi.org/10.1016/S0305-0548(97)00031-2
http://dx.doi.org/10.1007/s10288-008-0089-1
http://dx.doi.org/10.1016/j.cor.2005.11.022
http://dx.doi.org/10.1016/j.ins.2019.08.016
http://dx.doi.org/10.1007/978-3-319-10762-2_37
http://dx.doi.org/10.1016/j.cor.2017.06.002

	Introduction
	 Related Work
	 Our Contribution

	Variable Neighborhood Search
	Local Search
	Computational Results
	 Experimental Setup
	 Parameter Settings
	 Computational Results for Smaller Sized Instances
	 Computational Results for Larger Sized Instances

	Analysis of Local Search Variants
	 Usefulness of Swap Moves
	 Benefit of Fast Neighborhood Exploration

	Concluding Remarks
	References

