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Abstract: Artificial intelligence (AI) is an evolving set of technologies used for solving a wide range
of applied issues. The core of AI is machine learning (ML)—a complex of algorithms and methods
that address the problems of classification, clustering, and forecasting. The practical application of
AI&ML holds promising prospects. Therefore, the researches in this area are intensive. However,
the industrial applications of AI and its more intensive use in society are not widespread at the
present time. The challenges of widespread AI applications need to be considered from both the AI
(internal problems) and the societal (external problems) perspective. This consideration will identify
the priority steps for more intensive practical application of AI technologies, their introduction, and
involvement in industry and society. The article presents the identification and discussion of the
challenges of the employment of AI technologies in the economy and society of resource-based
countries. The systematization of AI&ML technologies is implemented based on publications in these
areas. This systematization allows for the specification of the organizational, personnel, social and
technological limitations. This paper outlines the directions of studies in AI and ML, which will allow
us to overcome some of the limitations and achieve expansion of the scope of AI&ML applications.

Keywords: artificial intelligence; machine learning; deep learning; explainable machine learning;
AI challenges
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1. Introduction

The studies in the field of artificial intelligence (AI) are developed and widely dis-
cussed in the scientific community. These studies consider the theoretical aspects of the AI
technologies and their applications in many areas of our society. The methods of machine
learning (ML) are a group of methods often used in AI, which allow for the prediction
of new properties of data based on known properties discovered from the training data.
One of the specific areas of ML is deep learning (DL). In recent years, there has been an
increased interest in research in this area. It can be illustrated by the number of publications
in scientific databases. The graph presented in Figure 1 shows the number of reviews in AI,
ML, and DL in Scopus in years 2000–2021.

Figure 1. The number of review studies devoted to artificial intelligence (AI), machine learning (ML),
and deep learning (DL) indexed in Scopus.

Methods of AI have many practical applications. The applications, which are most
often discussed in scientific publications, are shown in Figure 2. The dominant areas of AI,
ML, and DL studies are computer science, engineering and mathematics [1–3].

Figure 2. Ranking of the reviews in Scopus according to the areas of application (percentage). Source:
generated by the authors.
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The studies in computer science cover many subjects in this knowledge domain.
These studies are implemented for image processing [4,5], signal analysis [3,6], natural
language processing [7,8], security [9], and the development of intelligent software and
hardware (for example, brain–computer interface) [10,11]. These studies are based on
classification methods [12,13], data clustering [14], visualization [15], and other approaches
of AI, ML, and DP. These approaches are effectively used not only in computer science
but also in other areas of knowledge. According to [4], the use of AI significantly affects
commerce, logistics, automated manufacturing and banking. The authors of the study [16]
also consider the application of AI in various sectors of the economy. However, most of
these researches discuss the possibility of the application of AI. The practical applications
of AI and ML technologies and their introduction to industry and implementation in
daily use have difficulties that we would like to consider in this paper. The identification
and analysis of these difficulties can be implemented based on a systematic analysis
of AI and ML. The provided analysis allows us to consider the classification of AI and
ML technologies, the correlation of AI and ML methods, and opportunities for their
development and application.

The difficulties in AI and ML can be well illustrated by the systematic analysis of AI
and ML, exemplified by the resource-based economies. The application of state-of-the-art
technologies can significantly improve the performance of the economic sectors in these
countries [17,18]. The development of national economies of the countries rich in mineral
resources substantially depends on the extracted minerals. However, their proven reserves
are depleting. The sustainable development concept requires a transition to new methods
and technologies of management, and economic exploitation of other resources of the area
(agricultural products, animal husbandry, new mineral deposits, human reserves, etc.). The
comparatively low rate of usage of contemporary technologies results in decreased produc-
tivity, development of low-value-added industries and underdevelopment of industries
capable of creating the high value added.

For example, the products of the processing industry of Kazakhstan (Kazakhstan is
traditionally considered as a resource-based economy) created a significant share of the
gross national product, and 65% of enterprises operate in industries of low technological
complexity. The share of innovative products is 1.6%, and only 1% of the companies belong
to the high-tech sector [19]. In [20], it is noted that there is a gap in labor productivity
in the economic sectors of Kazakhstan. For instance, compared to countries such as
Australia and Canada, the gap in agriculture reaches 12–15 times, in the mining industry
5–10 times and in the manufacturing industry 2–4 times. Productivity growth is constrained
by insufficient penetration and development of modern technologies, a high level of
depreciation and a low technological level of fixed assets, as a result of decreased gross
fixed capital formation from 30% of GDP in 2007 to 23.3% in 2016. Primary goods account
for 70–75% of exports. According to the index of economic complexity [21], Kazakhstan is
in the 93rd position [22], while the Global Competitiveness Index ranks the country 95th
out of 141 countries according to the index of innovative potential [23].

The successful and economically viable development of traditional and new industries,
increased manufacturing processes and advanced labor productivity require not only
new production technologies, but also the collection, processing and analysis of data
accompanying these processes. Undoubtedly, artificial intelligence (AI) is one of the
most promising tools in this direction. AI demonstrates a significant economic effect in
healthcare [24], commerce, transport, logistics, automated manufacturing, banking, etc. [25].
Many countries are elaborating or have implemented their own strategies for the use and
development of AI [26]. Kazakhstan has identified the advancement and application of AI
technologies as one of its development priorities [27].

This area of technology is a source of high expectations, reflected not only in the growth
in the number of scientific publications, but also publications in the media. The quantitative
indicators of these changes, calculated according to the methodology applied by [28], with
the use of the corpus of texts described in [29], show that the share of publications in the
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media related to AI is growing and currently stands at up to 5% of publications in the
media of Kazakhstan and up to 1% in Russia.

There are promising prospects for the widespread use of AI, but there are also a
number of obstacles, and overcoming these barriers means a new round of technological
development of AI and expansion of the scope of its application.

The goal of this research is systematization in the area of AI, comprising the core
technologies of AI and obstacles to AI implementation in the economies, including the
resource-based ones.

The article consists of the following sections.
Section 1 systematizes the areas of artificial intelligence, machine learning and deep

learning models. The systematization results are used to analyze the intensity of the
researches aimed at overcoming the limitations of AI&ML.

Section 2 discusses and systematizes the obstacles to the implementation of the artificial
intelligence technologies. We divide the whole complex of obstacles into internal obstacles,
inherent in the system of artificial intelligence technologies, and external, those caused by
the preparedness or non-preparedness of organizations and people to use artificial intelli-
gence. The research considers the peculiar limitations for AI in resource-based economies.

In Section 3, we discuss some solutions to overcome the technological limitations of
machine learning, including the need for large amounts of data, long model training times,
and difficulties for end users in understanding how the models work.

We conclude with a summary of the discussion.

2. Artificial Intelligence and Machine Learning Technologies Classification

Artificial intelligence is “the ability of a digital computer or computer-controlled robot
to perform tasks commonly associated with intelligent beings” [30]. It can also be said that
AI includes software and hardware methods that imitate or reproduce human behavior
and thinking. AI is divided into weak AI and strong AI or general artificial intelligence [31],
depending on the “degree of intelligence” of the system compared to a human [32,33]. The
modern practical applications employ weak or soft AI, which demonstrates the ability to
solve individual problems, and that the level of accuracy of these solutions is satisfactory
for practice. The subject of the research [31] is strong or general artificial intelligence.

AI includes several major scientific areas, such as machine learning, natural language
processing (NLP), text and speech synthesis, computer vision, robotics, planning and
expert systems. The AI domains are shown in Figure 3, generated by the authors based
on materials [7,34,35].

A large number of the AI applications are built on the basis of machine learning
methods; these methods implement the fundamental idea of AI [36]. ML is applied to
achieve better results in speech recognition [37] and speech emotions [38]. A wide range of
ML methods are used in economic planning [39] and manufacturing control [40]. Ref. [41]
notes that ML is a powerful tool for data analysis, and it can be used in various expert
systems [42]. Machine learning is currently one of the main areas of the researches in the
field of robotics [10,43].

Machine learning is often used to solve scientific and applied problems. For example,
the ML applicability conditions [44] and the promise of deep learning [45] are considered
for solving problems in the field of chemistry. There are numerous cases of applying ML in
medicine [46,47], especially for medical imaging [5], astronomy [48], computational biol-
ogy [49,50], agriculture [51], municipal economy [52] and industry [53], construction [54],
modeling environmental [55] and geo-ecological processes [56], petrographic studies [12,57]
exploration [58] and forecasting of mining [59], etc. ML is actively used and in fact, it is the
core of modern investigations in the field of natural language processing [8,60,61].
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Figure 3. Subsections of artificial intelligence. Source: generated by the authors.

ML methods are divided into several classes depending on the learning method and
purpose of the algorithm [62] and include the following: supervised learning (SL) [13], unsu-
pervised learning (UL) or cluster analysis [14], dimensionality reduction, semi-supervised
learning (SSL), reinforcement learning (RL) [63], and deep learning (DL) [64].

UL methods solve the task of splitting the set of unlabeled objects into isolated or
intersecting groups by applying the automatic procedure based on the properties of these
objects [65,66]. UL reveals the hidden patterns in data, as well as anomalies and imbalances.

SL methods solve classification or regression issues. Such problems arise when a finite
group of specifically marked objects is allocated in a potentially infinite set of objects. If the
objects are marked by a finite set of integers (class numbers), then the classification problem
is implemented. The classification algorithm, using this group as an example, must mark
the objects, which have not yet been designated, with one of the indicated numbers. If
the objects are marked with real numbers, both integer and fractional, then the problem
of regression recovery is implemented. The algorithm selects a real number for unlabeled
objects based on previously marked objects. In this case, the problems of prediction or
filling the gaps in the data are solved.

DL methods solve the problem of revealing the hidden properties in data arrays
by using neural networks with a large number of hidden layers and networks of a
special architecture.
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In the context of DL, the concept of transfer learning (TF) is frequently mentioned. TF
means improving “a learner from one domain by transferring information from a related
domain” [67]. ML models can be conditionally divided into classical and modern ones
(see Figure 4) [59]. Without claiming to be comprehensive, the classic SL models comprise
the following types: k-nearest-neighbor (k-NN) [68,69], logistic regression [70], decision
tree (DT), support vector machines (SVM) [71] and feed forward artificial neural networks
(ANN) [72]. The classic UL models include the following types: k-means [73] and principal
component analysis (PCA).

Figure 4. Classic and modern ML models. Source: generated by the authors.

The contemporary UL models are as follows: isometric mapping (ISOMAP) [74], lo-
cally linear embedding (LLE) [75, t-distributed stochastic neighbor embedding (t-SNE) [15],
kernel principal component analysis (KPCA) [75], and multidimensional scaling (MDS) [76].
The contemporary SL, SSL, RL, DL models include the ensemble methods (boosting [77],
random forest [78], etc.) and deep learning long short-term memory (LSTM) [79], deep
feed forward neural networks (DFFNN) [80], convolutional neural networks (CNN) [81],
recurrent neural networks (RNN) [82], etc.

Deep learning is the fastest growing AI sub-domain [36]. DL is a set of methods that
employs the so-called deep neural networks, in other words, the networks containing
two or more hidden layers. The main advantage of the deep architectures is related to
the ability to solve the tasks using the end-to-end method. This approach reduces the
requirements towards preliminary data processing, since a signal or image vector is used as
an input to the network, and the network independently identifies the regularities relating
the input vector to the target variable. The network performs the labor-intensive and
complex process of selecting the significant features. This network functioning greatly
simplifies the task of the researcher. However, these advantages appear only with a
sufficiently large amount of training data and correctly chosen neural network architecture.
There are three basic architecture types among the dozens of architectures [83]; the following
various modified models are formed from these three basic types (see Figure 5):

1. Standard feed-forward neural network (FFNN).
2. Recurrent neural network (RNN).
3. Convolutional neural network (CNN).
4. Hybrid architectures, including elements of 1, 2, 3 basic architectures, for example,

Siamese networks and transformers.
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Figure 5. Deep networks. Source: generated by the authors.

Feedforward neural networks (FFNN) are widely used in practice to solve classifica-
tion problems [72,84] and the regression [59].

Recurrent neural networks (RNN) can use signal sequences as input data, including
those of different lengths. Signals x(t) arrive at the moment t and form the internal state of
the network at; the next signal x(t+1) is superimposed on it; thus, the final result ŷ depends
on the entire sequence of signals. The result of the network operation can be either a class
number or a sequence of signals ŷ , ŷ〈1〉 ŷ〈2〉 , . . . , ŷ〈Ty〉.

Depending on the input and output sequences, the recurrent networks are divided into
four main classes. It should be noted that FFNN can be considered as RNN of one-to-one
architecture (see Figure 6).

The one-to-many architecture is used to solve the problems when a relatively small
sequence of input data causes the generation of long sequences of data or signals, for
example, for music generation [85] or text generation [86], when it is enough just to set the
style of a piece of music or the theme of a story.

The many-to-one architecture is used for classification. The emotional coloring of the
text or tonality (sentiment analysis) [87] can serve as an example. The tone of the text,
which can be expressed by class assessment (neutral, negative, positive), is determined not
only by specific words, but also by their combinations. Another task is the recognition of
the named entities [88], such as proper names, days of the week and months, locations,
dates, etc. Gene value in DNA analysis [89] is also determined by the nucleotide sequence.
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Figure 6. Recurrent neural networks. Source: generated by the authors.

The many-to-many architecture is used for machine translation [90] and
speech recognition [91].

The development of the RNN idea turned into the appearance of LSTM [79] and
transformer models, such as BERT (bidirectional encoder representations from transform-
ers) [92], ELMO [93], GPT (generative pre-trained transformer) and generative adversarial
networks [94–97]. These models have recently become widely used, since they effectively
solve the issues of natural language processing.

Convolutional neural networks (CNNs) make it possible to single out the complex
regularities in the presented data; these regularities are invariant with respect to their
location in the input signal vector. They are exemplified by horizontal or vertical lines,
or other characteristic features in the image. The scheme in Figure 7 shows a case of a
3 × 3 filter that highlights the vertical lines in an image.

The formation of convolutional filters, or to be more precise, the adjustment of the
weights of the neurons modeling such a filter, occurs in the process of network training.
Due to the implementation of the convolution operation, the computational complexity of
the training process remains within the reasonable limits. CNNs have shown exceptional
results in image processing tasks. The development of this architecture of deep neural
networks was initiated by the LeNet model [98], which for the first time used convolutional
filters, pooling and a fully connected neural network (FC) for image classification. The
network contains four convolutional layers and a two-layer fully connected network. The
total number of network parameters is about 60,000 (see Figure 8).
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Figure 7. An example of the performance of a vertical filter for a 6 × 6 pixel image. Source: generated
by the authors.

Figure 8. LeNet network architecture. Source: generated by the authors.

AlexNet [99] is an evolution of the original architecture obtained by increasing the
size of the network and using the maxpool. The network contains about 100 times more
weights than LeNet. VGGnet [100] is another large-scale architecture consisting of unified
elements. GoogleNet is a network that uses the so-called inception module, providing the
parallel paths for convolutional filters of different sizes, which ensures the detection of rare
features [101]. ResNet is a network consisting of 152 layers and employs the so-called resid-
ual modules for solving the problem of the vanishing gradient [102]. Convolutional filters
turned out to be an effective tool for solving the problems of identification and recognition
“in one pass” (Yolo model [103]) and for solving the problem of image segmentation (the
Unet model [104]).

The latest advances in CV tasks are related to the application of the self-attention
mechanism [105] (so-called transformer architecture). Recent models using this approach
that achieved SotA results on certain object classification tasks in recent month are: Flo-
rence [106], Swin Transfomer V2 [107] and DINO [108].

Graph neural networks (GNNs) are one of the most rapidly developing areas of
machine learning in recent years; they are a subclass of deep learning techniques that are
specifically built to carry out inference on graph-based data. They can be considered as a
generalization of convolutional neural networks (which are used on two-dimensional black
and white image data and three-dimensional color image data) to graph-structured data.
They provide the best work in structural scenarios, where the graph structure is explicit in
the applications, such as molecules, physical systems, knowledge graphs, social networks
and so on. However, they also can be successfully used in non-structural scenarios, where
graphs are implicit so that first, it is necessary to build the graph from the task, for example
building a fully-connected “word” graph for text or building a scene graph for an image.
Problems that a GNN can solve can be divided into the following three categories: node
classification, link prediction and graph classification.
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Different variants of graph neural networks, such as the graph convolutional net-
work (GCN [109]), graph attention network (GAT [110]) and graph recurrent network
(GRN [111,112]), have demonstrated outstanding performance in many deep learning
tasks (graph mining [113], physics [114], chemistry [115], text classification [116], image
classification [117] and many others [118]).

The proposed classification of the AI and ML technologies allows us to outline the
opportunities for AI and ML. The proposed classification of AI and ML technologies
permits us to identify their capabilities. The methods of DL based on RNN and CNN are
being intensively developed at the present time [90,101,119]. These and other technologies
mentioned above are most often used to solve problems such as recognition [102,119],
recommendation [88,120], natural language processing [60,61], data processing [121,122],
tracking or monitoring [123,124], personalization [125,126], and learning [127,128]. One of
AI’s opportunities in technologies involves applications for the analysis of uncertain data,
which are often elaborated with the application of fuzzy logic [129], route sets [130], and
possibility conception-based theories [131]. However, the possibilities of AI development
should be considered from different points of view. Moreover, one of the first points
of view may be the areas of use of AI [118]. Most often, AI methods are developed for
medicine [119,126], agriculture [132], and education [133,134]. However, it is supposed
to accelerate the use of AI methods in social applications, the domestic environment,
and art [85,128,135]. AI’s opportunities are closely related to and caused by the trends of
Industry 4.0, in which AI technologies are the background for most applications [136,137]. It
results in the intensive developments and application of AI in safety [131], cyber security [9],
and IoT [138], based on uncertain data with unsupervised methods [14].

3. Limitation and Difficulties in the AI and ML Application

There are promising prospects for the widespread use of AI. In general, the economic
prospects of AI application are highly rated. According to [24], the economic effect in the
European health care system is about 200 billion euros. This effect is associated with saving
time and increasing the number of saved lives. Refs. [16,17] perform the results of AI imple-
mentation in various economic sectors. According to estimates [17,25], a significant effect
from the use of AI is observed in commerce (USD 400 billion), logistics (USD 400 billion),
automated production (USD 300 billion), banking (USD 200 billion). In percentage terms,
the greatest effect (up to 10% of profit growth) is observed in high-tech products. Conse-
quently, the economic impact is higher in developed countries, producing more high-tech
products compared to the resource-based economies. About a quarter of GDP in Kaza-
khstan is formed by the extraction, processing and transportation of resources [18]. Primary
products account for 70–75% of exports. The share of innovative products in GDP is 1.6%
and only 1% of companies are high-tech [19]. Accordingly, the predicted increase in GDP is
associated with the use of AI technologies and can be estimated at 1.5–2%.

Nevertheless, there are a number of obstacles, and overcoming these barriers means
new possibilities for AI implementation in manufacturing, and also a new round of techno-
logical development of AI.

The scientific community identifies the following types of restrictions: organiza-
tional [139], personnel, comprising the fear of new technologies (fear of AI) and shortage
of data scientists [140]), problems with data including data quality and the large volume
of data [141], legal, economic, social issues, etc. [142]. In particular, the authors of [142]
identify the following nine problems: data quality, privacy, and security; data biases and
technical limitations; “black box”, transparency, and predictability; wealth gap and in-
equality; economy of developing countries; job displacement and replacement; trust and
adoption; ethical and morality issues; legal issues and regulation policy. The study [32]
describes the following ten constraints in the process of solving the medical problems:

1. Insufficient amount of posted data.
2. Sample variability, such as variability in tissue and organ samples.
3. Prevalence of non-binary classification problems.
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4. Large image sizes (50,000 × 50,000), while existing deep learning models operate with
substantially smaller images (608 × 608 Yolo), 224 × 224 VGG16 [143].

5. Turing test dilemma. The final assessment is carried out by a human, which is not
always possible.

6. Orientation of weak AI to the solution of one task, which increases the complexity of
training and leads to the associativity problem indicated below.

7. High computational costs mean high costs of AI-based solutions.
8. Instability of solutions of the computer vision systems and their dependence on noise

in problems of medical diagnostics.
9. Lack of transparency and interpretability.
10. Difficulties in applying AI in practice. For example, the difficulties of the Watson

Health project [144] are associated with the complexity of the practical application,
low confidence in the results and high costs.

In terms of strong AI, the study [145] highlights the problem of associativity, by which
they mean the limitedness of the obtained results and the inability of the modern AI systems
to relate the obtained results to the real world. This problem is also related to the single
tasking element of the AI systems, which are good at solving the tasks for which they are
configured, but cannot independently transfer the solution to other similar tasks.

The research [146] states the need to develop new architectures of deep neural net-
works for the specific applications of computer vision on UAV boards. It also mentions
the necessity to prepare the datasets for different applications, for example, for processing
multispectral data [147].

Industrial AI also requires data of high quality, robust and validated machine learn-
ing models and cyber-infrastructure, including remote operations, cybersecurity, privacy
mechanisms and 5G technology [148].

There is also a problem with the data and trust in the results of the AI operations in
the financial sector [149].

By summarizing the list of problems mentioned in the literature, we can identify the
external problems in relation to AI technology, and internal limitations inherent in the
current state of AI technology (see Figure 9).

Figure 9. Constraints hindering the implementation of AI technologies in the economy. Source:
generated by the authors.

A detailed description of the limitations inherent in the current state of AI technologies
is presented in Tables 1 and 2. As a rule, the external problems in AI shown in Table 1
are investigated and considered by engineering and non-engineering specialists. These
limitations can be at different levels of the AI implementation and applications, including
from the government level to the level of a single department. In addition, the decisions
on these problems should be complex because they are closely related. For example, the
social limitations, such as ethical, moral, and legal issues and organizational limitations,
such as lack of strategy of the AI adoption and weak technological infrastructure, are
one of the multifaceted complex problems. In many cases, these limitations should be
considered at the government level as national strategies. An example of such a strat-
egy is the Ethics Guidelines for Trustworthy AI in the EU [150], where one of the first
recommendations for governments is to create an enabling environment for the effective
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implementation of AI development, and elaboration of national strategies for AI-based
applications. An important step in the implementation of such strategies is the creation
of available infrastructure for AI. The creation of this infrastructure has not only external
limitations but also includes internal limitations, such as technologies (see Table 2). First of
all, it includes data collection and safety and cybersecurity [9,151]. At the same time, the
problem of infrastructure development can be decided at the level of one enterprise [151]
or academic organization [152]. Similarly, the personnel problems should be solved both
at the government level and in each specific organization. The personnel’s limitations are
an amalgamation of a few different obstacles—a lack of expertise, a lack of management
buy-in, and the society, insufficiently saturated with the interests and practicalities of AI.
The training of staff for the possibilities of using AI can begin in secondary schools, which
is a government task [133]. Incorporating AI elements into online training courses expands
access to affordable education and improves the quality of education and improves the
employment situation. Nevertheless, the economic constraints are very important among
all the external limitations. This is evidenced by the studies conducted on the relationship
between the economic level of the country development and the readiness to use AI [153].

Table 1. External AI restrictions.

Problems External to AI Technology
Organizational [139] Personnel [140] Economic [142] Social [142]

1. Lack of strategy for
AI adoption.

2. Functional fragmentation that
hinders the integrated use of AI.

3. Lack of leadership and
commitment to
AI development.

4. Weak technological
infrastructure.

5. Difficulties in data collection
and limited usefulness [99].

1. Fear of changes and
new technologies.

2. Shortage of
qualified personnel.

1. The high cost of the
AI-based solutions.

2. Insufficient readiness for
the practical application.

3. Wealth gap and inequality.
4. Economy of

developing countries.

1. Job displacement
and replacement.

2. Trust and adoption.
3. Ethical and morality issues.
4. Legal issues and

regulation policy.

Source: generated by the authors.

Table 2. Internal limitations of AI technology.

Internal Limitations of AI Technology [32,145,148,154]
Data Learning Processes Results Technology

1. Difficulties in data collection
and preliminary processing.

2. Large amounts of data
are required.

3. Lack of labeled data and
time-consuming data labeling.

4. Privacy, “bias” and
data security.

1. Slow learning process.
2. Significant computing

capacities are required.
3. Lack of large image

processing technologies.

1. Lack of transparency
and interpretability.

1. Instability of the existing
solutions obtained, due to
machine learning and their
dependence on noise.

2. Single-tasking element of the
modern machine learning
models and
limited associativity.

3. The need to develop new
machine learning models for
peculiar cases of application
and specific data.

4. The need for cyber
infrastructure for the
industrial
AI&ML applications.

Source: generated by the authors.

The internal limitations of AI technologies (see Table 2) are typically technical problems,
which are often discussed in studies on AI, ML, and DL. Special infrastructures, such as
biobanks, are elaborated for data collection in medicine [155], agriculture [132], and other
areas [138]. The methods of the preliminary transformation are often developed based
on feature extraction and/or dimensional reduction [156,157]. There are investigations in
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learning process improvement [158] and result availability increasing [159]. The limitations
in AI technologies are eliminated by the development of new fuzzy based methods, which
allows us to decrease the result uncertainty [129].

The authors of this research would like to mention the specific restrictions that exist in
resource-based economies to the general limitations in the AI area.

As it has been already mentioned, the biggest share of the GDP of resource-based
economies is formed by the exploitation of the natural resources, mining and processing
the excavated resources. These processes are based on the technologies that are usually
imported. As a result, these economies do not create incentives for the development of
technologies within the national economies, since borrowing them from other countries
requires substantially less efforts. These countries often do not have the necessary con-
ditions (reliable ICT infrastructure, human capital and regulatory framework) to collect
enough data to use the AI algorithms for development. The existing data are often not used
because the data arrive too late or do not appear at all, are not available in a digital format,
or do not have the level of detail required for decision-making and innovation in the field.
Therefore, restrictions on the economic advantages obtained as a result of the use of the
AI should be imposed. According to [17], an increase in the share of high-tech production
can significantly increase the effect of the use of the AI&ML technologies. Agriculture,
healthcare, and education are often cited as development sectors that have made the most
progress in harnessing big data and the analytical power of AI. Therefore, the development
of these sectors should be prioritized in resource-based economies [153,160].

Although there is no way to overcome these problems completely, there are approaches
that provide partial compensation of the weaknesses in the particular cases.

4. Discussion

Despite the significant expectations associated with the use of AI, in many cases,
the current level of technology is a significant obstacle to their implementation in the
manufacturing and service sectors. One must consider the approaches to solving some
internal problems of employing the AI technologies and the evaluation of the prospects for
overcoming these limitations.

Data generation for training deep ML models. The solution of many problems in the
field of deep learning depends on the volume and quality of the data sets (data set—DS).
The labeled image packs, such as ImageNet [161], Open Images [162], COCO Dataset [163]
and FaceNet, are widely used to solve computer vision problems. However, the existing
widely used DS may not be sufficient for solving specific problems, for example, they
provide the recognition of a limited number of objects. Therefore, the problem of data
shortage in the field of computer vision can be solved via using the synthetic DS created
on 3D graphic editors [164], game engines and environments [165–168]. These DS, in
particular, are used for training unmanned vehicles [169]. Synthetic datasets are also
applied in other areas [57]. Generative adversarial networks have been recently used
to generate them [170]. A large-scale review of the approaches to creating the synthetic
datasets is presented in [171].

Speed up learning. In cases when the subject area and the problem are close to the
available solutions, the acceleration of learning is possible if preliminary trained models
are used, according to the transfer learning scheme [67,172]. This means that a neural
network previously trained on a large data set can be supplemented with one or more
layers. Additional layers are adjusted at the final training phase on a specialized data set,
which is usually not large. In this case, all other layers are considered as “frozen”, and their
weights do not change. It is believed that the preliminary trained network retains the basic
patterns that are inherent in a data set of a certain type (faces, landscape, speech, etc.), and
additional layers focus on the features of a specialized data set. The use of transfer learning
not only speeds up the learning process, but also reduces the requirements of the hardware.

Explaining the results of machine learning models. Artificial intelligence (AI) has
recently achieved great success, due to the rapid development of the machine learning



Mathematics 2022, 10, 2552 14 of 25

technologies. Despite this, there are potential risks associated with a “black box” approach
to learning. Unlike some classic machine learning methods, especially decision trees, where
the results of a model can be explained relatively simply, non-linear classification and
especially deep learning models lack transparency, making it difficult to understand how
the model made a particular decision. This is a serious problem that hinders the widespread
use of AI in healthcare [173], banking and many other areas [174].

A complex machine learning model is a “black box”, hiding the mechanism of the
results. The methods that permit the assessment of the influence of input parameters on
the final result are used to turn the “black box” into a “white” or “grey” one.

The existing methods of explanation today can be classified into the following four
areas [175]: explanation target, explanation scope, model type, and data type used to train
the ML model (see Figure 10). It is often desirable that the interpreter does not depend on
the machine learning model, in other words, the interpreter should be agnostic and should
provide the global interpretation along with the local one. The recently appeared methods
such as interpretable model-agnostic (LIME) [176] and SHapley Additive exPlanations
(SHAP) [177] partly solve these problems. However, in the case of complex models with a
significant correlation of properties, their application can be difficult, due to the linear na-
ture of the interpretation (LIME) and the high complexity of the calculations (SHAP) [178].

Figure 10. Classification of methods for interpreting machine learning. Source: generated by
the authors.

In addition, the interpretation of the influence of individual parameters and their
combinations is possible if they are clear. Otherwise, semantically vague parameters would
render such an interpretation as useless.

The implementation of the AI&ML technologies in the economy requires solving the
problems described above; the possible directions of further research are summarized in
Table 3.
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Table 3. Directions of research oriented towards overcoming the limitations of AI&ML usage.

Overcoming the External Limitations of AI&ML

Organizational Unification of the data set formation processes, development of
policies and technologies for the data accumulation and use.

Personnel Training of specialists and explanatory work in the environment of
the applied specialists

Economic Creation of unified solutions suitable for application in many areas.
Development of economic models of AI application.

Social

Social research and the empowerment of explainable machine
intelligence [179]. The researches in the field of artificial emotional

intelligence [180,181] should improve the quality of human–machine
interaction and personalized AI; for example, if AI is employed in the

field of medicine, it should identify the patients’ preferences,
personalize assistance to patients (and their families) in participating

in the care process, personalize “general” therapy plans, and the
information provided to patients [182].

Overcoming the Internal Limitations of AI&ML

Data Unification of the data collection and the data markup processes.
Formation of the data sets in different areas of AI&ML application.

Learning processes
Research in the field of transfer learning.

Research in the field of increasing the computing power and new
technical solutions.

Results

Development of systems for interpreting the results of machine
learning models and simplification of the interaction with the applied
specialists. Although there are similar models, they are intended for

specialists only.

Technologies

Research in the field of improving the stability of the results
generated by the machine learning models [183].

Development of models for specific cases of application of the
machine learning (drones). Research in the field of general or

strong AI.
Research in the field of the human-machine symbiosis oriented
towards the expansion of the human intelligence “intelligence

augmentation”, instead of replacing it [184].

The scientific community is striving to overcome the limitations existing in the AI
technologies at the current level; this trend is reflected in the growth of publication activity.
Although the total number of articles devoted to AI is declining, there is, on the contrary, a
rapid increase [23] in a number of publications in some new scientific areas (Figure 11).

The growth and decrease in the annual number of publications is estimated by cal-
culating the growth rate (D1) and acceleration of growth (D2) of the number of articles
according to the methodology proposed in [185] (Figure 12). The positive values of D1 and
D2 are an indicator of the rapid growth of publication activity. Other possible combinations
of indicator values are interpreted as follows: when D1 is negative and D2 is positive, it
indicates a slowdown in the number of items; when D1 is positive and D2 is negative, it
indicates a slowdown in the growth of the number of items; when both values are negative,
it indicates an accelerated decrease in the number of items. Figure 12 also shows the
normalized value of the number of publications in the considered domains at the end of
2021. The maximum number of publications is 88,000.
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Figure 11. Annual number of publications in deep learning domains related to new neural network
architectures. Source: generated by the authors.

The results show that explainable machine learning models exhibit positive D1 and D2
values in many industries. Industries identified by the terms storehouse, retail, fabrication,
logistics, precision agriculture combined with the term dataset also show high D2 values.
In large scientific domains with a volume of more than 1000, including the term “deep
learning”, the leaders in the growth of articles are sectors such as precision agriculture,
precision farming, supply-chain management, transport, healthcare and manufacturing
(see Figure 12).

It can be concluded that these industries will develop new technologies based on deep
learning models.

Solving at least part of the internal problems of AI technology will lead to an increase
in the economic efficiency of AI in the industry. However, the economic effect associated
with the use of AI depends not only on overcoming the above-mentioned limitations, but
also on the conditions of a particular country and the resources allocated in the research
field. It should be noted that at the present time, in general, the expenditures on research
and development in Kazakhstan are 0.125% of GDP (2018), which is significantly less than
the same indicator in developed countries (Austria—3.172%, Germany—3.094%, Great
Britain—1.724%; Russia—0.99%) [186]. The resource nature of the country’s economy
imposes a limitation on the economic benefits obtained as a result of the application of AI.
According to [4], an increase in the share of high-tech production can significantly increase
the effect of the use of AI&ML technologies.
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5. Conclusions

The fastest growing area of research in the AI field is deep learning. New results, as
well as the ways of application of the previously proposed networks, appear almost daily.
This area of research and application includes a large family of networks dealing with
text recognition, speech recognition, handwriting recognition, networks performing image
transformation and styling and networks for processing time sequences.

Nevertheless, there are obstacles to applying AI&ML, inherent both in the technologies
and in a socio-economic environment, which might not be ready for the rapid changes.
This research presents an attempt to systematize the sections of AI. We also classified the
limitations that make it difficult to implement AI technologies in practice, especially in
resource-based economies. The employment of AI&ML methods is restricted by the internal
limitations inherent in the technology, and by the external factors, such as the organization
of the enterprise’s operations and data collection or psychological issues associated with
the lack of understanding of the operation procedure of machine learning models, etc.

The efforts of the scientific community are aimed at overcoming the technological
limitations, such as lack of data for the deep learning models, improving the AI models, and
accelerating learning. The activity of the researchers, reflected in the number of published
articles, is increasing. It is believed that some technological problems will be solved in the
near future. In particular, the methods for generating data sets, explanation of the results of
machine learning systems, and accelerating learning have already been developed and are
successfully applied in some cases. At the same time, we still need solutions for overcoming
the described limitations for most AI applications. They are especially important for the
industries in which AI usage may lead to a significant economic and social effect.

One of the most important directions may be a combination of remote sensing and
machine learning technologies in assessing soil quality, salinity and increasing agricultural
productivity. In our opinion, future research should be aimed at creating large accessible
data sets, the implementation of existing technologies and developing methods oriented to-
wards solving specific tasks in the field of mining, transport, trade, finance, healthcare, etc.
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