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Abstract: Generative adversarial networks have made remarkable achievements in generative tasks.
However, instability and mode collapse are still frequent problems. We improve the framework of
evolutionary generative adversarial networks (E-GANs), calling it phased evolutionary generative
adversarial networks (PEGANs), and adopt a self-attention module to improve upon the disadvan-
tages of convolutional operations. During the training process, the discriminator will play against
multiple generators simultaneously, where each generator adopts a different objective function as
a mutation operation. Every time after the specified number of training iterations, the generator
individuals will be evaluated and the best performing generator offspring will be retained for the
next round of evolution. Based on this, the generator can continuously adjust the training strategy
during training, and the self-attention module also enables the model to obtain the modeling ability
of long-range dependencies. Experiments on two datasets showed that PEGANs improve the training
stability and are competitive in generating high-quality samples.

Keywords: generative adversarial networks; evolutionary computing; deep learning; self-attention
mechanism

MSC: 68T07; 68W50

1. Introduction

Generative adversarial networks (GANs) are generative models originally proposed
by Goodfellow et al. [1], which are mainly used to learn the distribution of real data in
the real world and learn to generate realistic data. The emergence of GANs has set off a
research upsurge in the field of deep learning, which has many successful applications
in style transfer [2,3], image generation [4,5], image super-resolution [6,7], etc. GANs is a
semi-supervised or unsupervised learning technique. Generally speaking, it consists of
two neural networks, a generator and a discriminator, which are used to solve the minimax
optimization problem [1]. The generator’s task is to learn to generate high-quality samples
to deceive the discriminator, and the discriminator’s task is to distinguish whether data are
from the real samples or a sample generated by the generator.

Ideally, through this adversarial training, the generator will be able to fully understand
the distribution of real samples, and then the discriminator will not be able to distinguish
between them, which is called reaching a Nash equilibrium [1]. However, in practice, this
type of adversarial training system is very fragile, and the phenomenon of mode collapse
and gradient disappearance often occurs during the training process [8]. Mode collapse
means that the generator tends to generate samples of only a single mode, rather than
real samples that tend to be diverse. Gradient vanishing refers to the fact that when the
discriminator is stronger than the generator, the discriminator can identify generated sam-
ples as fake samples with high probability, so the generator cannot obtain useful gradient
information for updating. In order to alleviate these problems, researchers have made many
efforts and attempts, including modifying the objective functions [9,10], designing different
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architectures [11,12], and using multiple generators [13] or multiple discriminators [14,15]
for training. The first method aims to make the generator more stable to reach the equi-
librium point by using different objective functions. The second approach is to find a
suitable network architecture for the generator. In order to capture different data patterns,
the third method trains multiple generators. In the case of using multiple discriminators,
the generator can obtain more stable gradient information to stabilize the training process.
In addition, another approach is to use regularization techniques such as normalization or
gradient penalty on the discriminator [16–19].

However, the above methods are limited by fixed training strategies in the training
process, so researchers began to use evolutionary computing techniques to improve the
training stability of GANs. Evolutionary computing techniques, which can automatically
design hyperparameters and network architectures according to practical problems, have
been receiving increasing attention from researchers in deep learning. Wang et al. in-
troduced evolutionary computing technology into GANs [20]. In each iteration, a set of
generators were obtained by using different objective functions as mutation operations,
and a certain evaluation strategy was used to select the best offspring to enter the next
iteration. Through this mutation operation, the adversarial strategy can be dynamically
adjusted in the adversarial training, the characteristics of different objective functions can
be effectively utilized, and the problems of gradient disappearance and mode collapse
can be alleviated to a certain degree. Furthermore, Chen et al. injected the mutation op-
eration into the evolution of the discriminator, and simultaneously evolved the generator
and discriminator [21]. However, the traditional evolutionary GANs method adopts the
mutation algorithm in each iterative step, and this frequent mutation causes the gradient
direction to be unstable and reduces the training efficiency. Therefore, inspired by the
evolutionary GANs, this paper proposes the idea of phased evolution and incorporates
the self-attention mechanism. In addition, we apply the gradient normalization to further
stabilize the training of GANs. The contributions of this paper are as follows.

(1) For the sake of overcoming the problem of a single training strategy and the low effi-
ciency of evolutionary GANs, we propose a more superior training algorithm, namely
the phased evolutionary algorithm, which more effectively combines the advantages
of gradient descent and evolutionary algorithms, and improves the training efficiency
and stability.

(2) The self-attention mechanism and gradient normalization technology are introduced
into the improved evolutionary algorithm, which effectively stabilizes the discrim-
inator during training and retains the best offspring through the phased evolution
mechanism, and dynamically adjusts the adversarial strategy during training, effec-
tively improving the training stability.

(3) Experiments are conducted on several large datasets, and the results show that our
proposed optimization method outperforms existing models of the same architecture.
Our code is available at: https://github.com/xueyunuist/PEGANs (accessed on
1 July 2022).

The rest of this paper is organized as follows: Section 2 presents related work of GANs,
Section 3 presents our method, and Section 4 experimentally validates the performance of
our method and designs comparative experiments. Section 5 summarizes the research and
describes some prospects for the future.

2. Related Work

Researchers have performed a great deal of exploration to develop the performance of
GANs and try to make the training of GANs more stable. In this section, we present some
overview of these explorations from different aspects.

The training strategy of the original GANs was the minimax strategy, but as this
strategy has the problems of slow training speed and frequent gradient disappearance,
a non-saturation heuristic strategy was proposed in [1], which alleviated the problem
of slow convergence to a certain extent. However, the unsaturated heuristic strategy is

https://github.com/xueyunuist/PEGANs
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prone to gradient instability and reduces the diversity of generated samples, so Mao et al.
used least squares as the objective function [9]. The authors theoretically proved that least
squares can make the generated samples close to the decision boundary and maintain
a certain balance between diversity and quality. However, Arjovsky et al. theoretically
analyzed the convergence and training problems of GANs, and proposed to apply the
Wasserstein-1 distance as the objective function to measure the two distributions, and fixed
the discriminator at the Lipschitz constant K [8,16]. However, because the of way in which
it restricts the discriminator is weight clipping, that is, restricting the weight to [−c, c], this
can easily lead to an unbalanced weight distribution. Therefore, Gulrajani et al. proposed a
gradient penalty term, which calculates its gradient norm as a gradient penalty term by
sampling from a certain distribution [17]. Additionally, Miyato et al. adopted the spectral
normalization to directly normalize the weights without sampling by dividing the weight
matrix of the discriminator by its largest singular value [18], which improves training
speed. However, when the neural network becomes deeper, the performance of spectral
normalization will be degraded. For this reason, Wu et al. proposed gradient normalization,
which constrains the entire model and is non-sampling [19].

Some studies have attempted to introduce multiple generators or multiple discrimina-
tors into the framework of GANs. Hoang et al. adopted the strategy of training multiple
generators [13]. In addition to distinguishing whether a sample is real or generated,
the discriminator also needs to determine which generator generates the generated sam-
ples. By maximizing the Jensen–Shannon distance between generators, the mode collapse
problem is overcome to a certain extent. Ghosh et al. also used multiple generators for
training [22]. The difference is that they extract the feature vectors of the latent space of the
generated samples and maximize the distance between the vectors so that different genera-
tors capture different data patterns. Nguyen et al. used two discriminators for training,
essentially combining KL (Kullback–Leibler) divergence with inverse KL divergence to
capture different data patterns more efficiently [15].

Wang et al. designed an evolutionary generative adversarial network framework [20].
By applying different objective functions as mutation strategies, a certain number of genera-
tor individuals are generated, and the generators are continuously evolved through fitness
evaluation and selection strategies. Chen et al. unified the generator and the discriminator
into the evolutionary framework by integrating the evolution of the discriminator into the
adversarial framework, and proposed a soft mechanism to assist the evolution of the gener-
ator population and the discriminator population [21]. Lin et al. introduced differentiable
architecture search into the evolutionary adversarial framework [23].

3. Materials and Methods
3.1. Revisiting GANs

In GANs, taking the noise z that is sampled from a certain random distribution as
the input of the generator, and the generator will output the new data G(z). Taking the
real data or the generated data x as the input, the discriminator will output a value D(x).
In general, the training objective function for GANs is:

min
G

max
D

VGAN(D, G) = Ex∼preal [log D(x)] +Ez∼pz [log(1− D(G(z)))] (1)

3.2. PE-GANs Framework

Inspired by the success of the evolutionary algorithm and the successful application
of different objective functions to improve inherent problems of GANs, we proposed
phased evolutionary GANs to further improve it. To further enhance the performance of
PEGANs, we used a self-attention mechanism to obtain a large degree of improvement at
very little cost. Essentially, to take advantage of different objective functions, our method is
to take an evolutionary approach to training the generator and employ different objective
functions at different training stages. The framework of PEGANs is shown in Figure 1.
Different objective functions are used as different mutation operators. First, a parent
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generator G is initialized, and then a certain number of offspring are generated according
to different mutation strategies. The number of offspring is consistent with the number
of mutation operators. Each of these offspring takes a different variation operator as its
objective function. During the process of updating, the discriminator needs to play against
multiple generator individuals with different variation operators. After each p steps of
adversarial training, the generator descendants are evaluated, that is, the advantages and
disadvantages of different variation operators are evaluated, and according to their scores
in the current environment, the survival of the fittest strategy is adopted to retain the
offspring, and the winning offspring will enter the next round of iterations as the parent.
Through this algorithm, the generator can dynamically adjust its training strategy according
to the needs of different environments during the training process.
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Figure 1. The framework of PEGANs. A generator will produce some offspring that will use different
objective functions as update strategies. The discriminator needs to play against several generators at
a time. At every certain training interval, the fitness of the generator offspring is evaluated, and the
outstanding individuals will be retained and enter the next round of evolution.

3.2.1. Mutations in PEGANs

We used three objective functions that are complementary in performance as variation
operators: G-Heuristic mutation, G-Minimax mutation, and G-Wasserstein mutation.

MHeuristic
G = −Ez∼pz [log D(G(z))] (2)

MMinimax
G = Ez∼pz [log(1− D(G(z)))] (3)

MWasserstein
G = Ez∼pz [D(G(z))] (4)

When the discriminator has a stronger ability, that is, when it has a higher probability
to set the generated data as a fake sample, the objective function of the minimax mutation
has a very small gradient at this time. However, in this case a heuristic mutation can pro-
vide a large gradient, as illustrated in Figure 2. For the generator to obtain larger gradient
information for updating, the generator tends to choose heuristic mutation as its own
objective function, but the heuristic mutation may have difficulty to obtain enough gradient
information when the generator can fool the discriminator when generating high-quality
samples. At this time, the minimax mutation can provide a larger gradient, and the genera-
tor is more inclined to choose the minimax mutation. In some cases, a compromise solution
is needed. At this time, it can be confirmed from the figure that the Wasserstein mutation
can provide more stable gradient information, at this time the generator will choose the
Wasserstein mutation. For more details about the objective function and theoretical analysis,
please refer to [8].
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Figure 2. Function graphs for different objective functions.

During each training step, the discriminator D is updated to further distinguish
between real data and fake data generated by the generators guided by different objective
functions. The objective function of the discriminator is:

LD = Ex∼pdata [log D(x)]−
3

∑
i=1

Ez∼pz [log(1− D(Gi(z)))] (5)

where Gi represents the ith generator offspring. We use the above three mutation operators,
so three generator individuals will be created in the training.

3.2.2. Evaluation and Selection

After training p steps of offspring generated by different mutation operators, we
evaluate the individual’s ability, and the evaluation function is consistent with the generator
objective. The fitness evaluation function of the generator individual is:

F = Ez∼pz [D(G(z))] (6)

In traditional EGANs [20], the fitness evaluation function considers the diversity of
samples, that is, they believe that there is a positive correlation between the gradient norm
of D and the diversity of generated samples. However, lin et al.proved it is unscientific [24].
For this reason, we abandon the evaluation of diversity and return the problem to the
original goal.

3.2.3. Gradient Normalization

Wu et al. originally proposed gradient normalization to limit the gradient of the
discriminator within a certain range [19]. By using this method, one can constrain the
Lipschitz constant of the model. Compared to other normalization techniques, gradient
normalization has no additional hyper-parameter and does not require sampling data from
a distribution. Gradient normalization was formulated as:

D̂ :=
D(x)

‖∇xD(x)‖+ |D(x)| (7)

where ‖∇xD(x)‖ represents the norm of the gradient of D with respect to the input x. The
details of PEGANs’ algorithm can be seen in Algorithm 1.
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Algorithm 1 PEGANs. Default Values: α = 0.0002, β1 = 0, β2 = 0.9, MG = 128,
MD = 64, p = 10, m = 3

Require: the batch size of generators MG. the batch size of discriminator MD. the number
of offspring of the generator m. Adam hyper-parameters α, β1, β2. the hyper-parameter
p of the number of interations between each evaluation. the number of total iterations N.
discriminator’s parameters ω. generators’ parameters θ1, θ2, ..., θm.
D̂ := D(x)/(‖∇xD(x)‖+ |D(x)|)
for step = 1 to N do

Sample a batch of
{

x(i)
}MD

i=1
∼ pdata (real samples), and

{
z(i)
}MD

i=1
∼ pz (noise samples)

gω ← ∇ω

[
1

MD
∑MD

i=1 log
(

D̂
(

x(i)
)]

+ 1
MD

∑MD/m
i=1 ∑m

j=1 log
(

1− D̂
(

Gj
(

z(i)
)))

ω ← Adam(gω, ω, α, β1, β2)
for j = 1 to m do

gθ j ← ∇θj
1

MG
Mj
(

∑MG
i=1 D̂

(
Gj
(

z(i)
)))

θ j ← Adam
(

gθ j , ω, α, β1, β2
)

end for
if step %p == 0 then

for j = 1 to m do

Sample a batch of
{

z(i)
}MG

i=1
∼ pz

F j ← 1
MG

∑MG
i=1 D

(
Gj
(

z(i)
))

end for{
F j1 ,F j2 , . . .

}
← sort

({
F j})

θ1, θ2, . . . , θm ← θbest
end if

end for

3.2.4. Self-Attention Module

The convolution operation has strong local information processing ability, but it
needs to rely on deep convolutions or large convolution kernels when processing global
information. This inevitably leads to low computational efficiency. Therefore, it is difficult
for GANs that rely solely on convolution operations to deal with the relationship between
details and the whole. Therefore, we adopt the non-local modules with self-attention
mechanism [25,26] to introduce into our PEGANs framework, enabling the model to gain
the ability to process global information more efficiently. As shown in Figure 3, the input x
for the module is the feature map (i.e., x ∈ RC×H×W).
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Figure 3. Self-attention module. The tensor shapes of the intermediate variable are annotated next to
them. “⊕” represents the element-wise sum, and ”⊗” represents matrix multiplication.
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First flatten the input feature map x as x and map it to three feature spaces, namely
the query space q, the key space k, and the value space v, where q(x) = Wqx, k(x) =
Wkx, v(x) = Wvx.

The attention weight matrix β is calculated by:

β = softmax
(

q(x)Tk(x)
)

(8)

where x ∈ RC×HW , C, H, and W represent the number of channels, height, and width of
the feature map, β ∈ RHW×HW .

The output of self-attention module is formulated as:

o = Whβv(x) (9)

In the above formulation, Wq ∈ RĈ×C, Wk ∈ RĈ×C, Wv ∈ RĈ×C and Wh ∈ RC×Ĉ.
The output of the self-attention module is then multiplied by a learnable scale parame-

ter γ, and it is initialized as 0, and then added to the original input. Thus, the final output
is formulated as:

y = γo+ x (10)

4. Results

In this section, we conduct unconditional generative task experiments on some
datasets. The performance of our method is verified by qualitative and quantitative
methods. Compared with some previous GANs methods, experimental results show that
our proposed PEGANs is competitive in generating performance.

4.1. Implementation Details

Experiments were conducted on two datasets with different resolutions: CIFAR-
10 [27] and STL-10 [28]. The generator and discriminator architectures in the experiment
use the standard CNN architecture to keep consistent with [18,19]. We used the Adam
optimizer [29], and the parameters settings are shown in Algorithm 1. It took about 12 h to
train a model on CIFAR-10 using an RTX3080Ti.

4.2. Evaluation Metrics

In addition to visually showing the generated images, we also quantitatively evaluated
our proposed methods using two popular evaluation methods, Inception Score (IS) [30]
and Fréchet Inception Distance (FID) [31]. Inception Score is positively correlated with
the performance of the generated model. In contrast to Inception scores, FID is inversely
proportional to the generation quality. Please note that FID is more responsive to the quality
of the generated sample than IS, and FID is closer to the human senses. For the sake of
fair comparison, all evaluation metrics were calculated using the official version of 50K
randomly generated samples.

4.3. Experimental Results

The methods in Table 1 all use the standard CNN architecture, the difference is
our optimization method and the use of the self-attention module. Please note that our
experimental results are the average training results using five different random seeds. Our
method outperformed other methods on most metrics. Although the Inception Score of
MGAN on CIFAR-10 was slightly higher than our method, our FID was lower. Compared
with FID, IS reflects the authenticity of the image, while FID can better reflect the diversity
of images, and FID is closer to the human senses as an evaluation metric for generated
images [32]. Moreover, the experimental results reported in MGAN may not be the average
results of multiple experiments. Therefore, we believe that our method has stronger
performance. The randomly generated images are shown in Figure 4.
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Table 1. Comparison of IS and FID with state-of-the-art methods on CIFAR-10 and STL-10 (unsuper-
vised image generation). “-” indicates that no results were reported in the paper.

Method CIFAR-10 STL-10
Inception Score ↑ FID ↓ Inception Score ↑ FID ↓

Real data 11.24 ± 0.12 7.8 26.08 ± 0.26 0
Standard CNN
DCGAN [12] 6.40 ± 0.05 36.9 7.54 -
SNGAN [18] 7.58 ± 0.12 25.5 8.79 43.2
GNGAN-CR [19] 8.04 ± 0.19 22.8 ± 1.5 9.00 ± 0.15 30.18 ± 0.82
WGAN-GP [17] 6.68 ± 0.06 40.2 8.42 ± 0.13 55.1
EGAN-GP [20] 7.34 ± 0.07 27.3 - -
EASGAN [23] 7.45 ± 0.08 22.1 - 38.84
MGAN [13] 8.33± 0.1 26.7 9.22 ± 0.11 -
PEGANs (ours) 8.30± 0.09 17.15± 0.64 9.52± 0.11 26.85± 0.91

(a) CIFAR-10 (b) STL-10

Figure 4. Samples randomly generated by our PEGANs (not cherry-picked).

4.3.1. Training Stability on CIFAR-10

On CIFAR-10, we plotted the FID curves of different methods in training to evaluate the
effectiveness of our proposed PEGANs and the training stability. As shown in Figure 5, our
method exhibits stronger stability and can achieve lower FID scores. The training speeds of
different methods are shown in Figure 6. The abscissa is the training time, the number of
iterations for different methods is the same, and the end of the curve represents the end
of the training. It is obvious that our method is the most time-consuming; because we
use evolutionary computing technology, we need to train more generator individuals and
need to compute attention weights, but we can achieve better IS and FID. In other words,
training is offline, and the inference speed of different methods is almost the same.

2 4 6 8 10 12
Training  terat ons

10

20

30

40

50

60

70

80

90

100

FI
D

x 104

Method
PEGAN(ours)
GNGAN
WGAN
WGAN-GP
SNGAN
DCGAN

Figure 5. Learning curves of FID for different methods on CIFAR-10 (over iteration).
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Figure 6. Learning curves of FID for different methods on CIFAR-10 (over time).

4.3.2. Hyperparameter Analysis

Since our method introduces a new hyperparameter, the evaluation interval p, we
conducted experiments using different p values to test the effect of different evaluation
intervals on the results, and the experimental results are shown in Figure 7. The results of
each evaluation interval p come from five different random seeds. When p = 1, the indi-
vidual generators need to be evaluated in each iteration, and the advantages of different
objective functions are difficult to reflect due to the small magnitude of each update. As the
evaluation interval increases, the training is more stable and the FID value becomes smaller.
However, when the evaluation interval is too large, the difference between different off-
spring generators will be too large, which will easily cause optimization imbalance. When
the evaluation interval p is in a suitable range, the training is more stable. Different evalua-
tion interval p values will also have an impact on the training speed. The more frequent
the evaluation, the slower the training speed, as shown in Table 2 . When the evaluation
interval p is greater than 5, the improvement of training speed is not obvious, because the
evaluation time of generator offspring only accounts for a small part of the training time of
generator and discriminator, and with the increase of evaluation interval, this proportion
is almost negligible. However, according to Figure 7, the training is more stable when p
is about 10. Considering the training speed and performance, we recommend that the
hyperparameter evaluation interval p be 10.

Figure 7. Comparison of FID for different evaluation intervals p on CIFAR-10.

Table 2. Training speed for different values of hyperparameter p.

p 1 5 10 50 100

iterations/s 2.70 3.08 3.16 3.19 3.19
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4.3.3. Ablation Experiment

For the sake of verifying the role of the phased evolutionary algorithm and self-
attention module we proposed, we set GNGAN (no phased evolution and self-attention
module) as baseline, and gradually added the phased evolution algorithm and the self-
attention module to it. Their IS and FID scores are shown in Table 3. The phased evo-
lutionary algorithm effectively combines the advantages of different objective functions
and can improve the IS and FID score of the model. Compared with the traditional evolu-
tionary GANs algorithm, phased evolution also improves the training speed. In addition,
the self-attention module can further improve the performance of the model at little cost
(few additional parameters). Since the self-attention module processes the entire feature
map, the global and local relationships can be obtained.

Table 3. The ablation experiments on CIFAR-10 (the data in the table are only for the generator).

Method Params (Million) GFLOPs IS FID

baseline 3.813 0.406 7.71 ± 0.14 23.52 ± 0.80
+phased evolution 3.813 0.406 8.01 ± 0.11 18.69 ± 0.84

PEGANs with self-attention 3.816 0.408 8.30± 0.09 17.15± 0.64

5. Conclusions and Future Work

In this paper, we improve a method for optimizing generative adversarial networks,
namely phased evolutionary generative adversarial networks. Our proposed PEGANs is
the further development of evolutionary GANs, which further improves the performance
and training speed. Essentially using evolutionary algorithms, the discriminator plays
against multiple generators at the same time, while the individual generators use different
objective functions as mutation strategies. Every time after the specified number of training
iterations, the generator offspring are evaluated, and a strategy of survival of the fittest
is adopted. Therefore, the generator can continuously adjust the adversarial strategy
during adversarial training to take advantage of different objective functions and achieve
the goal of stable training. Additionally, we adopt a self-attention module to improve the
shortcomings of convolution operations, and succeed in obtaining long-range dependencies.
Experimental results show that our proposed PEGANs can obtain convincing performance
in improving generation quality and stability.

However, our method has the problem of being time-consuming, which is inherent
in evolutionary algorithms, and it has not been tested on higher resolutions datasets.
In future work, we will focus on improving training speed and try generative tasks on
high-resolution or complex datasets, such as face generation tasks. In addition, it seems
interesting to study the properties of other different objective functions and combine them
to maximize their potential.
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