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Abstract: This paper focuses on dealing with the problem of co-designing a fuzzy-basis-dependent
event generator and an asynchronous filter of fuzzy Markovian jump systems via event-triggered
non-parallel distribution compensation (non-PDC) scheme. The introduction of the event-triggered
non-PDC scheme can reduce the number of real-time filter gain design operations with a large
computational load. Furthermore, to perform an effective relaxation process, several kinds of time-
varying parameters in filter design conditions are simultaneously relaxed by utilizing two zero
equalities of transition probabilities and mismatch errors. In addition, to improve the considered
performance, the event generation function is established based on fuzzy-basis-dependent event
weighting matrices.
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1. Introduction

As is well known, the Markovian jump system model has the advantage that it
is very suitable for characterizing dynamic hybrid systems with abrupt parameters or
structural changes (see [1–4]). Furthermore, it has also been recognized that the T-S fuzzy
system model has an excellent ability to represent nonlinear systems by blending local
linear systems (refer to [5–11]). In this context, fuzzy Markovian jump systems (FMJSs)
have become quite popular because these systems can systematically fuse the unique
features of the above two system models. Accordingly, the FMJSs have been actively
utilized in various application systems where nonlinearity and system mode change must
be considered, for example in fields such as robotic, communication, network control,
economic system, and power system [12–18]. In particular, as reported in [19–21], the
introduction of the non-PDC scheme offers the advantage of decreasing the conservatism
of the controller or filter design conditions. Thus, in light of the non-PDC scheme, Ref. [22]
developed the robust mode-independent state-feedback controller for homogeneous FMJSs,
and Ref. [23] designed the super-twisting controller for descriptor homogeneous FMJSs via
integral sliding modes. In addition, Ref. [24] addressed the problem of synchronous mode-
dependent observer-based control for fractional-order fuzzy systems with homogeneous
Markov process via the non-PDC scheme. Most recently, using the non-PDC scheme,
Ref. [25] addressed the problem of dissipative controller design for nonhomogeneous
FMJSs with dual modes.

However, one noteworthy point is that further investigation is still needed to consider
the asynchronism and nonhomogeneity when designing filters of FMJSs according to the
non-PDC scheme.

Moreover, an event-triggered mechanism has received considerable attention in re-
cent years due to its advantages of reducing the transmitted data throughput and/or
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computation times. In fact, since the non-PDC scheme requires more computational load
compared to the PDC scheme due to inverse matrix operations, performing such operations
every time acts as a factor that reduces the efficiency of hardware resources. For this
reason, the number of times to update the fuzzy filter gains also needs to be reduced by
automatically activating the non-PDC and fuzzy basis function (FBF) modules according
to an event-triggered mechanism. To realize this, two additional design requirements
must be considered along with the filter design problem: (i) one is that the current system
operation mode cannot be precisely used for filter operation, and (ii) the other is that the
current premise variables of FBF cannot be accurately obtained real-time. In [26], a study
of event-triggered and reduced-order filtering for homogeneous FMJSs was performed
with consideration of asynchronous filter modes. In addition, Ref. [27] addressed the adap-
tive event-triggered finite-time filtering problem for interval type-2 homogeneous FMJSs
with asynchronous modes, and Ref. [28] investigated the event-triggered asynchronous
filtering problem of semi-FMJSs subject to deception attacks. Besides, under imperfect
premise matching, Ref. [29] addressed the networkedH∞ fuzzy filtering problem of homo-
geneous FMJSs. Indeed, all of the above studies provide successful results in designing
event-triggered and networked filters under practical constraints. However, it is also true
that more attention needs to be paid to simultaneously meet the above requirements in the
non-PDC filtering problem of nonhomogeneous FMJSs.

To compensate for the shortcomings of the previous studies, this paper aims to co-
design a fuzzy-basis-dependent event generator and an asynchronous filter of nonhomoge-
neous FMJSs via an event-triggered non-PDC scheme. To this end, this paper provides a
method to transform the nonconvex form of filter design conditions into the parameterized
linear matrix inequality (PLMI)-based form by utilizing the congruence transformation and
the matrix inequality-based decoupling method. After that, based on the proposed relax-
ation process, the PLMI-based conditions are transformed into the LMI-based conditions in
a less conservative manner. The detailed contributions of this paper can be summarized
as follows.

• In contrast to other studies based on the PDC scheme, to enhance the performance
improvement, this paper uses a non-PDC scheme when designing asynchronous
mode-dependent fuzzy filter gains. In addition, the mode- and fuzzy-basis-dependent
event weighting matrices are employed to construct the event generation function.

• By taking the design requirements (i) and (ii) into account, this paper proposes a
method such that at the moment when the event generation condition is satisfied,
the system mode can be transmitted to the filter side, and the non-PDC and FBF
modules can be activated. In particular, the problem of mismatched fuzzy basis
functions, caused by using the event-triggered outputs as the source of premise
variables on the filter side, is effectively addressed by considering their errors from
the original.

• The relaxation of the PLMI-based conditions is effectively performed (i) by simultane-
ously addressing three types of time-varying parameters, i.e., transition probabilities,
fuzzy basis functions, and mismatched fuzzy basis functions, and (ii) by reflecting
two zero equalities of transition probabilities and mismatch errors in the relaxation
process so that less conservative LMIs can be derived from PLMIs.

Notations: Nn denotes the set {1, 2, · · · , n}. P ≥ 0 (P > 0) means that P is real symmetric
and positive semidefinite (definite). In symmetric block matrices, the asterisk (∗) is used
as an ellipsis for terms induced by symmetry. E{·} denotes the mathematical expectation;
diag(·) stands for a block-diagonal matrix; col(v1, v2, ..., vn) = [vT

1 vT
2 · · · vT

n ]
T ; He{X} =

X + XT ; and In is the n × n-dimensional identity matrix. Λn =
{

col(λ1, · · · , λn) ∈
Rn

∣∣ λ1 + · · · + λn = 1, λi ≥ 0, i ∈ Nn
}

denotes the n − 1 dimensional standard sim-
plex. For S = {s1, s2, · · · , sn}, the following notations are used:[

Qi
]T

i∈S =
[
QT

s1
· · · QT

sn

]
,
[
Qi
]d

i∈S = diag
(
Qs1 , · · · ,Qsn

)
,
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where Q(·) denotes a real submatrix or a scalar value.

2. System Description and Preliminaries

For a given probability space (Ω,F , Pr), let us consider the following FMJS with the
system mode φ(k) ∈ Nα = {1, 2, · · · , α}:

x(k + 1) = A(θ(k), φ(k))x(k) + B(θ(k), φ(k))w(k),
y(k) = C(θ(k), φ(k))x(k) + D(θ(k), φ(k))w(k),
z(k) = E(θ(k), φ(k))x(k),

(1)

where x(k) ∈ Rnx , w(k) ∈ Rnw , y(k) ∈ Rm, and z(k) ∈ Rnz denote the state, the disturbance
input that belongs to L2[0, ∞), the measurement output, and the performance output;
φ(k) is characterized by a discrete-time Markov chain operating according to πgh(k) =
Pr(φk+1 = h|φk = g); and for φ(k) = g,

A(θ(k), φ(k)) =
r

∑
i=1

θi(η(k))Agi, B(θ(k), φ(k)) =
r

∑
i=1

θi(η(k))Bgi,

C(θ(k), φ(k)) =
r

∑
i=1

θi(η(k))Cgi, D(θ(k), φ(k)) =
r

∑
i=1

θi(η(k))Dgi,

E(θ(k), φ(k)) =
r

∑
i=1

θi(η(k))Egi,

in which θ(k) = col(θ1(η(k)), θ2(η(k)), · · · , θr(η(k))) denotes the normalized fuzzy ba-
sis (or called fuzzy weighting) function vector goverend by the premise variable η(k);
and r denotes the number of IF-THEN fuzzy rules. Specifically, in (1), θ(k) and πg(k) =
col(πg1(k), πg2(k), · · · , πgα(k)) satisfy θ(k) ∈ Λr and πg(k) ∈ Λα. Furthermore, to con-
sider realistic situations, the mode set of h ∈ Nα is classified into two subsets such that
Nα = Hg

⋃
H̃g:

Hg =
{

h ∈ Nα | πgh(k) is time-invariant as πgh and completely known
}

,

H̃g =
{

h ∈ Nα | πgh(k) is bounded as ∈ [πgh, πgh]
}

, (2)

where H̃g contains the set {h ∈ Nα | πgh(k) is completely unknown} because the transition
probability essentially satisfies πgh(k) ∈ [0, 1].

Next, let us consider the following output error between the current and transmitted
outputs, caused by the event-triggered mechanism:

ȳ(k) = y(k)− y(sp), (3)

where sp indicates the last transfer time instance and p ∈ {0, 1, 2, · · · } represents the
corresponding index number. Based on the output error, the event-triggered mechanism
operates according to the following fuzzy-basis-dependent event generation function:

f (y(k), y(sp)) = ȳT(k)Sg(θ(k))ȳ(k)− yT(k)
(
ΓgSg(θ(k))

)
y(k), (4)

where Sg(θ(k)) > 0 denotes the fuzzy-basis-dependent event weighting matrix to be
determined later, and Γg = diag(γg1, γg2, · · · , γgm) denotes the given event threshold
matrix with γgi ∈ [0, 1] for all i ∈ Nm. In other words, the transmission of both output and
system mode is triggered at the following time instance:

sp+1 = inf
k

{
k > sp

∣∣ f (y(k), y(sp)) > 0
}

. (5)
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As shown in Figure 1, this paper aims to design a filter that estimates the perfor-
mance output z(k) using the measured output y(k) under an event-triggered mechanism.
The event-triggered mechanism is operated through the event generator and the trans-
mitter, where the event generator outputs an ENT signal to the transmitter at the mo-
ment (5) holds (i.e., at k = sp), and the transmitter is activated by the ENT signal and
sends the measured output signal y(sp) and system mode φ(sp) to the next modules. In
particular, the FBF module is used to construct the event-triggered fuzzy basis function
θ(sp) = col(θ1(sp), θ2(sp), · · · , θr(sp)) from the transmitted output y(sp), and the non-PDC
module calculates the θ̃-dependent filter gains using the inverse operation.

Figure 1. Block diagram of the entire system under our consideration.

Remark 1. The event generator performs calculations (3) and (4), and then generates an ENT
signal at the moment (5) holds. With a cascade connection, the transmitter is activated by the
ENT signal and sends the measured output y(sp) and system mode φ(sp) to the filter and the
FBF module.

Remark 2. As can be seen from Figure 1, the role of the ENT signal can be specifically divided
into two categories. The first is to determine the timing at which the transmitter is activated.
When the transmitter is activated, the triggered output signal y(sp) and φ(sp) can be sent to the
next modules. The second is to activate the filter gain update process consisting of the FBF module
and the non-PDC module. Ultimately, the ENT-based update process can reduce the number of
inverse operations to be driven in the non-PDC module.

Constraint 1. To reduce data throughput, this paper proposes a protocol that allows the system
mode φ(k) to be transmitted to the filter side at time instance k = sp. Thereupon, the filter mode is
maintained at φ(sp) for k ∈ [sp, sp+1), which becomes asynchronous with the system mode φ(k)
for that time interval. In this regard, as a form of representing the asynchronism between φ(k) and
φ(sp), this paper employs the following conditional probability:

Pr
(
φ(sp) = ` | φ(k) = g

)
= vg`, ∀g, ` ∈ Nα, (6)

which satisfies vg = col(vg1, vg2, · · · , vgα) ∈ Λα. In practice, one can utilize the relative
frequency distribution method [30] to construct vg` from data for (φ(k), φ(sp)) pairs.

Constraint 2. In the considered protocol, since the output signal is transmitted to the filter side
only at k = sp, the fuzzy basis function must be constructed using the transmitted output y(sp) via
the FBF module in Figure 1, and the fuzzy-basis-dependent filter has no choice but to be designed
on the basis of θ(sp) = col(θ1(η(sp), · · · , θr(η(sp))) ∈ Λr via the non-PDC module in Figure 1.
Meanwhile, since the mismatched fuzzy basis function θ(sp) is given from θ(k), the following
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properties still hold: ∑r
i=1 θi(sp) = 1 and 0 ≤ θi(sp) ≤ 1, for all i ∈ Nr. Thus, the mismatch error

δi(k) = θi(k)− θi(sp) satisfies

r

∑
i=1

δi(k) = 0,
∣∣δi(k)

∣∣ ≤ δ̄i ≤ 1, ∀i ∈ Nr. (7)

where δ̄i is introduced as a tunable upper bound to improve filtering performance. In practice,
the setting of δ̄i will be verified via the transient responses of θi(k) and θi(sp).

Remark 3. Since the fuzzy basis function of filter, i.e., θ(sp), corresponds to an instantaneous
value of θ(k) at k = sp, it still follows the fundamental properties of θ(k), that is, ∑r

i=1 θi(sp) = 1
and 0 ≤ θi(sp) ≤ 1, for all i ∈ Nr.

By considering (2)–(7), subject to Constraints 1 and 2:{
x̃(k + 1) = F(θ(sp), φ(sp))x̃(k) + G(θ(sp), φ(sp))y(sp),
z̃(k) = H(θ(sp), φ(sp))x̃(k),

(8)

where x̃(k) ∈ Rnx̃ and z̃(k) ∈ Rnz denote the filter state and the estimated performance
output, respectively; φ(sp) stands for the asynchronous filter mode; and the filter gains
F(θ(sp), φ(sp)), G(θ(sp), φ(sp)), and H(θ(sp), φ(sp)) are obtained later according to the
non-PDC scheme [20].

Remark 4. In comparison to PDC, the non-PDC scheme demands more computational burden
to calculate the fuzzy filter gains. Thus, based on (8), this paper proposes a method such that z̃(k)
follows z(k) even if the filter gains are updated only when the output is transmitted (i.e., at time
instance k = sp.

Before going ahead, for the sake of simplicity, we use the following notations hereafter:
θ = θ(k), θi = θi(η(k)), θ+ = θ(k + 1), θ+i = θi(k + 1), θ̃ = θ(sp), θ̃i = θi(sp), δ = δ(k),
δi = δi(k), and Og(θ) = O(θ(k), φ(k) = g) = ∑r

i=1 θiOgi for any matrix O(θ(k), φ(k)).
In addition, we define π̃gh = (πgh + πgh)/2 and ε̄gh = (πgh − πgh)/2 to represent the
transition probability of (2) as follows:

πgh(k) = π̃gh + εgh(k), εgh(k) ∈
[
−ε̄gh, ε̄gh

]
, ∀h ∈ H̃g. (9)

As a result, letting

x̄T(k) =
[

xT(k) x̃T(k)
]
∈ R(nx+nx̃),

z̄(k) = z(k)− z̃(k),

we can obtain the following filtering error system from (1) and (8):
x̄(k + 1) = Ag`(θ, θ̃)x̄(k) + G`(θ̃)ȳ(k) + Bg`(θ, θ̃)w(k),
y(k) = Cg(θ)x̄(k) + Dg(θ)w(k),
z̄(k) = Eg`(θ, θ̃)x̄(k),

(10)
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where

Ag`(θ, θ̃) =

[
Ag(θ) 0

G`(θ̃)Cg(θ) F`(θ̃)

]
, G`(θ̃) =

[
0

−G`(θ̃)

]
∈ R(nx+nx̃)×m, (11)

Bg`(θ, θ̃) =

[
Bg(θ)

G`(θ̃)Dg(θ)

]
, Cg(θ) =

[
Cg(θ) 0

]
∈ Rm×(nx+nx̃), (12)

Eg`(θ, θ̃) =
[

Eg(θ) −H`(θ̃)
]
. (13)

Lemma 1 ([31]). Let us consider the fuzzy-basis-dependent matrix M(θ) = ∑r
i=1 ∑r

j=1 θiθjMij.
Then, M(θ) < 0 holds if it holds that

0 > Mii, ∀i ∈ Nr,

0 >
1

r− 1
Mii +

1
2
(Mij + Mji), ∀i, j( 6= i) ∈ Nr.

Definition 1 ([32]). For any initial condition, system (10) with w(k) ≡ 0 is stochastically stable
if it holds that

E

{
∞

∑
k=0

∥∥x̄(k)
∥∥2
∣∣∣ x̄(0), φ(0)

}
< ∞. (14)

Definition 2 ([33]). For the zero initial condition, suppose the energy supply function J satisfies
that for a given scalar β > 0 and any T > 0,

J =
T

∑
k=0

E
{
W(z̄(k), w(k))

}
> β

T

∑
k=0

E
{
‖w(k)‖2}, (15)

with the following quadratic energy supply rate:

W(·) = z̄T(k)Qz̄(k) + z̄T(k)Sw(k) + wT(k)ST z̄(k) + wT(k)Rw(k), (16)

where Q = QT < 0 (i.e., −Q = Q1QT
1 ), S , and R = RT are given real matrices. Then,

system (10) is said to be strictly dissipative, and β denotes the dissipativity performance level.

3. Asynchronous Mode-Dependent Filter Design

Let us choose a mode- and fuzzy-basis-dependent Lyapunov function candidate of
the following form:

V(k) = V(x̄(k), φ(k) = g) = x̄T(k)Pg(θ)x̄(k), (17)

where Pg(θ) > 0.
The following lemma presents the stochastic stability and strict (Q,S ,R)-β-dissipativity

condition of (10) subject to (5).

Lemma 2. The filtering error system (10) is stochastically stable and strictly (Q,S ,R)-β-dissipative
if it holds that

0 > E
{

∆V(k)− f (y(k), y(sp))
}
+ β||w(k)||22 − E

{
W(z̄(k), w(k))

}
. (18)

Proof of Lemma 2. First, let us consider the case of w(k) ≡ 0. Then, since the event-
triggered mechanism allows f (y(k), y(sp)) < 0 on the basis of (5), condition (18) ensures

0 > E
{

∆V(k)− f (y(k), y(sp))
}
− E{z̄T(k)Qz̄(k)} > E

{
∆V(k)

}
, (19)
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which can be represented as E{∆V(k)} ≤ −ε||x̄(k)||2 with a sufficiently small scalar ε > 0.
Thus, for w(k) ≡ 0, it follows that

E{V(T + 1)} −V(0) ≤ −εE

{
T

∑
k=0
||x̄T(k)||2

∣∣ x̄(0), φ(0)

}
. (20)

As a result, since it is satisfied that

E

{
T

∑
k=0
||x̄T(k)||22 | x̄(0), φ(0)

}
≤ 1

ε
V(0) < ∞,

the filtering error system (10) is stochastically stable in the absence of disturbances according
to Definition 1.

Next, let us consider the case where w(k) 6= 0 and x̄(0) ≡ 0 (i.e., V(0) ≡ 0).
Then, since (18) ensures

0 > E
{

∆V(k)
}
+ β||w(k)||22 − E

{
W(z̄(k), w(k))

}
, (21)

it is obvious that

0 > E
{

V(T + 1)
}
+ β

T

∑
k=0
||w(k)||2 −J

> β
T

∑
k=0
||w(k)||2 −J , (22)

which means that the filtering error system (10) is strictly (Q,S ,R)-β-dissipative according
to Definition 2.

The following lemma presents the stochastic stability and strict (Q,S ,R)-β-dissipativity
condition of (10) subject to (5), formulated in terms of multi-parameterized linear matrix
inequalities (MPLMIs).

Lemma 3. For prescribed Γg ∈ Rm×m and Υ =
[
Inx̃ 0

]T ∈ Rnx×nx̃ , suppose that there
exist a scalar β > 0 and matrices F̆`(θ̃) ∈ Rnx̃×nx̃ , Ğ`(θ̃) ∈ Rnx̃×m, H`(θ̃) ∈ Rnz×nx̃ ,
0 < Sg(θ) ∈ Rm×m,

0 < Pg(θ) =

[
P(1)

g (θ) P(2)
g (θ)

(∗) P(3)
g (θ)

]
∈ R(nx+nx̃)×n, (23)

0 < Wg`(θ) =

 W(1)
g` (θ) W(2)

g` (θ)

(∗) W(3)
g` (θ)

 ∈ R(nx+nx̃)×n, (24)

Ug`(θ̃) =

 U(1)
g` (θ̃) ΥU(3)

` (θ̃)

U(2)
g` (θ̃) U(3)

` (θ̃)

 ∈ R(nx+nx̃)×n, (25)
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such that for all g and ` ∈ Nα, it holds that

0 >



−I 0 0 0 Ψ(1)
14 Ψ(2)

14 0 0

0 −ΓgSg(θ) 0 0 Ψ(1)
24 0 0 ΓgSg(θ)Dg(θ)

0 0 Ψ(1)
33 Ψ(2)

33 Ψ(1)
34 Ψ(2)

34 Ψ(1)
35 Ψ(1)

36

0 0 (∗) Ψ(3)
33 Ψ(3)

34 Ψ(4)
34 Ψ(2)

35 Ψ(2)
36

(∗) (∗) (∗) (∗) Ψ(1)
44 Ψ(2)

44 0 Ψ(1)
46

(∗) 0 (∗) (∗) (∗) Ψ(3)
44 0 Ψ(2)

46
0 0 (∗) (∗) 0 0 −Sg(θ) 0
0 (∗) (∗) (∗) (∗) (∗) 0 −R+ βI


, (26)

0 < Pg(θ)−
α

∑
`=1

vg`Wg`(θ), (27)

where

Ψ(1)
14 = Q1Eg(θ), Ψ(2)

14 = −Q1H`(θ̃),

Ψ(1)
24 = ΓgSg(θ)Cg(θ), Ψ(1)

33 = P(1)
g (θ+)−He

{
U(1)

g` (θ̃)
}

,

Ψ(2)
33 = P(2)

g (θ+)− ΥU(3)
` (θ̃)−U(2)T

g` (θ̃), Ψ(3)
33 = P(3)

g (θ+)−He
{

U(3)
` (θ̃)

}
,

Ψ(1)
34 = U(1)

g` (θ̃)Ag(θ) + ΥĞ`(θ̃)Cg(θ), Ψ(2)
34 = ΥF̆`(θ̃),

Ψ(3)
34 = U(2)

g` (θ̃)Ag(θ) + Ğ`(θ̃)Cg(θ), Ψ(4)
34 = F̆`(θ̃),

Ψ(1)
35 = −ΥĞ`(θ̃), Ψ(2)

35 = −Ğ`(θ̃),

Ψ(1)
36 = U(1)

g` (θ̃)Bg(θ) + ΥĞ`(θ̃)Dg(θ), Ψ(2)
36 = U(2)

g` (θ̃)Bg(θ) + Ğ`(θ̃)Dg(θ),

Ψ(1)
44 = −W(1)

g` (θ), Ψ(2)
44 = −W(2)

g` (θ), Ψ(3)
44 = −W(3)

g` (θ),

Ψ(1)
46 = −ET

g (θ)S , Ψ(2)
46 = HT

` (θ̃)S .

Then the filtering error system (10) is stochastically stable and strictly (Q,S ,R)-β-dissipative,
and the fuzzy filter gains F`(θ̃) and G`(θ̃) are designed via the non-PDC scheme as follows:

F`(θ̃) =
(

U(3)
` (θ̃)

)−1
F̆`(θ̃), G`(θ̃) =

(
U(3)
` (θ̃)

)−1
Ğ`(θ̃).

Proof of Lemma 3. In order to facilitate the later discussion, let us define

ηT(k) =
[

x̄T(k) ȳT(k)
]
,

η̄T(k) =
[

x̄T(k) ȳT(k) wT(k)
]
=
[

ηT(k) wT(k)
]
.

Then, the filtering error system (10) can be rewritten as follows:

x̄(k + 1) = Φg`(θ, θ̃)η(k) + Bg`(θ, θ̃)w(k)

= Φ̄g`(θ, θ̃)η̄(k), (28)

where

Φg`(θ, θ̃) =
[

Ag`(θ, θ̃) G`(θ̃)
]
,

Φ̄g`(θ, θ̃) =
[

Φg`(θ, θ̃) Bg`(θ, θ̃)
]

=
[

Ag`(θ, θ̃) G`(θ̃) Bg`(θ, θ̃)
]
.
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Furthermore, based on (17) and (28), it is valid that

E{∆V(k)}

= E
{

V(x̄(k + 1), φ(k + 1) = h)
∣∣ φ(k) = g, φ(sp) = `

}
−V(x̄(k), g)

= E
{

x̄T(k + 1)Ph(θ
+)x̄(k + 1)

∣∣ φ(k) = g, φ(sp) = `
}
− x̄T(k)Pg(θ)x̄(k)

= E
{

η̄T(k)Φ̄T
g`(θ, θ̃)Ph(θ

+)Φ̄g`(θ, θ̃)η̄(k)
}
− x̄T(k)Pg(θ)x̄(k)

= η̄T(k)

(
α

∑
`=1

vg`Φ̄
T
g`(θ, θ̃)Pg(θ

+)Φ̄g`(θ, θ̃)

)
η̄(k)− x̄T(k)Pg(θ)x̄(k), (29)

where

Ph(θ
+) = P(θ(k + 1), φ(k + 1) = h),

Pg(θ
+) =

α

∑
h=1

πgh(k)Ph(θ
+).

Accordingly, from (27) and (29), it follows that

E
{

∆V(k)
}
< η̄T(k)

α

∑
`=1

vg`

(
Φ̄T

g`(θ, θ̃)Pg(θ
+)Φ̄g`(θ, θ̃)− diag

(
Wg`(θ), 0, 0

))
η̄(k). (30)

Continuing, (4) and (16) lead to

• E
{

f (y(k), y(sp))
}
= E

{
ȳT(k)Sg(θ)ȳ(k)− yT(k)

(
ΓgSg(θ)

)
y(k)

}
= η̄T(k)

α

∑
`=1

vg`

(
diag

(
0, Sg(θ), 0

)
−
[

Cg(θ) 0 Dg(θ)
]TΓgSg(θ)

[
Cg(θ) 0 Dg(θ)

])
η̄(k), (31)

• β||w(k)||2 − E
{
W(z̄(k), w(k))

}
= η̄T(k)

α

∑
`=1

vg`

 ET
g`(θ, θ̃)QT

1Q1Eg`(θ, θ̃) 0 −ET
g`(θ, θ̃)S

0 0 0
(∗) 0 βI −R

η(k).

(32)

Thus, combining (30)–(32) results in

E
{

∆V(k)− f (y(k), y(sp))
}
+ β||w(k)||2 − E

{
W(z̄(k), w(k))

}
< η̄T(k)

(
α

∑
`=1

vg`T̄

)
η̄(k),

where

T̄ = Φ̄T
g`(θ, θ̃)Pg(θ

+)Φ̄g`(θ, θ̃)

+
[

Cg(θ) 0 Dg(θ)
]TΓgSg(θ)

[
Cg(θ) 0 Dg(θ)

]
+
[
Q1Eg`(θ, θ̃) 0 0

]T[ Q1Eg`(θ, θ̃) 0 0
]

+

 −Wg`(θ) 0 −ET
g`(θ, θ̃)S

0 −Sg(θ) 0
(∗) 0 −R+ βI

. (33)
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As a result, the condition T̄ < 0 ensures the stochastic stability and strict dissipativity
condition (18) in Lemma 2, and the Schur complement of T̄ < 0 is formulated as follows:

0 >



−I 0 0 Q1Eg`(θ, θ̃) 0 0
0 −ΓgSg(θ) 0 ΓgSg(θ)Cg(θ) 0 ΓgSg(θ)Dg(θ)

0 0 −P−1
g (θ+) Ag`(θ, θ̃) G`(θ̃) Bg`(θ, θ̃)

(∗) (∗) (∗) −Wg`(θ) 0 −ET
g`(θ, θ̃)S

0 0 (∗) 0 −Sg(θ) 0
0 (∗) (∗) (∗) 0 −R+ βI


. (34)

In what follows, note that (23) leads to

0 < Pg(θ
+)

=
α

∑
h=1

πgh(k)

[
P(1)

h (θ+) P(2)
h (θ+)

(∗) P(3)
h (θ+)

]

=

[
P(1)

g (θ+) P(2)
g (θ+)

(∗) P(3)
g (θ+)

]
. (35)

Thus, since (26) implies

0 >

[
Ψ(1)

33 Ψ(2)
33

(∗) Ψ(3)
33

]

>

[
−He

{
U(1)

g` (θ̃)
}
−ΥU(3)

` (θ̃)−U(2)T
g` (θ̃)

(∗) −He
{

U(3)
` (θ̃)

}
]

= He
{
−Ug`(θ̃)

}
,

the nonsingular matrix Ug`(θ̃) in (25) can be used for a congruence transformation on (34),

and U(3)
` (θ̃) is also invertible.

Pre- and post-multiplying (34) by diag(I, I, Ug`(θ̃), I, I, I) and its transpose and by
using −Ug`(θ̃)P−1

g (θ+)UT
g`(θ̃) ≤ Pg(θ+)−He{Ug`(θ̃)}, it is given that

0 >



−I 0 0 Ψ14 0 0
0 −ΓgSg(θ) 0 Ψ24 0 ΓgSg(θ)Dg(θ)
0 0 Ψ33 Ψ34 Ψ35 Ψ36
(∗) (∗) (∗) −Wg`(θ) 0 Ψ46
0 0 (∗) 0 −Sg(θ) 0
0 (∗) (∗) (∗) 0 −R+ βI


, (36)

where Ψ14 = Q1Eg`(θ, θ̃), Ψ24 = ΓgSg(θ)Cg(θ), Ψ33 = Pg(θ+) − He
{

Ug`(θ̃)
}

, Ψ34 =

Ug`(θ̃)Ag`(θ, θ̃), Ψ35 = Ug`(θ̃)G`(θ̃), Ψ36 = Ug`(θ̃)Bg`(θ, θ̃), and Ψ46 = −ET
g`(θ, θ̃)S .

Specifically, based on (11)–(13), (25), and (35), the block matrices in (36) can be described
as follows:

Ψ14 =
[
Q1Eg(θ) −Q1H`(θ̃)

]
, Ψ24 =

[
ΓgSg(θ)Cg(θ) 0

]
,

Ψ33 =

[
P(1)

g (θ+)−He
{

U(1)
g` (θ̃)

}
P(2)

g (θ+)− ΥU(3)
` (θ̃)−U(2)T

g` (θ̃)

(∗) P(3)
g (θ+)−He

{
U(3)
` (θ̃)

}
]

,
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Ψ34 =

 U(1)
g` (θ̃)Ag(θ) + ΥĞ`(θ̃)Cg(θ), ΥF̆`(θ̃)

U(2)
g` (θ̃)Ag(θ) + Ğ`(θ̃)Cg(θ) F̆`(θ̃)

, Ψ35 =

[
−ΥĞ`(θ̃)

−Ğ`(θ̃)

]
,

Ψ36 =

 U(1)
g` (θ̃)Bg(θ) + ΥĞ`(θ̃)Dg(θ)

U(2)
g` (θ̃)Bg(θ) + Ğ`(θ̃)Dg(θ)

, Ψ46 =

[
−ET

g (θ)S
HT
` (θ̃)S

]
,

where Ğ`(θ̃) = U(3)
` (θ̃)G`(θ̃) and F̆`(θ̃) = U(3)

` (θ̃)F`(θ̃). Therefore, condition (36) boils
down to (26), which becomes the stochastic stability and strict (Q,S ,R)-β-dissipativity
condition.

The following theorem presents the stochastic stability and strict (Q,S ,R)-β-dissipativity
condition of (10) subject to (5), formulated in terms of LMIs by establishing

F̆`(θ̃) =
r

∑
i=1

θ̃i F̆`i, Ğ`(θ̃) =
r

∑
i=1

θ̃iĞ`i, H`(θ̃) =
r

∑
i=1

θ̃i H`i, Sg(θ) =
r

∑
i=1

θiSgi, (37)

Pg(θ) =
r

∑
i=1

θiPgi, Wg`(θ) =
r

∑
i=1

θiWg`i, Ug`(θ̃) =
r

∑
i=1

θ̃iUg`i. (38)

Theorem 1. For prescribed Γg ∈ Rm×m and Υ =
[
Inx̃ 0

]T ∈ Rnx×nx̃ , suppose that there exist
a scalar β > 0 and matrices F̆`i ∈ Rnx̃×nx̃ , Ğ`i ∈ Rnx̃×m, H`i ∈ Rnz×nx̃ , 0 < Sgi ∈ Rm×m,
Ng`is = NT

g`is ∈ R(nz+nx+2nx̃)×n,

0 < Pgi =

 P(1)
gi P(2)

gi

(∗) P(3)
gi

 ∈ Rn×n, 0 < Wg`i =

 W(1)
g`i W(2)

g`i

(∗) W(3)
g`i

 ∈ Rn×n,

Ug`i =

 U(1)
g`i ΥU(3)

`i

U(2)
g`i U(3)

`i

 ∈ Rn×n, Xgi = XT
gi =

 X(1)
gi X(2)

gi

(∗) X(3)
gi

 ∈ Rn×n,

Zgi =

 Z(1)
gi Z(2)

gi

(∗) Z(3)
gi

 ∈ Rn×n, Yghi = YT
ghi =

 Y(1)
ghi Y(2)

ghi

(∗) Y(3)
ghi

 ∈ Rn×n,

such that for all g, ` ∈ Nα, it holds that:

0 > M̄g`pii, ∀p, i ∈ Nr, (39)

0 >
1

r− 1
M̄g`pii +

1
2
(M̄g`pij + M̄g`pji), ∀p, i, j( 6= i) ∈ Nr, (40)

0 >

 −Xgi + ∑
h∈H̃g

ε̄2
ghYghi (∗)

[ 1
2 Phi + Zgi

]
h∈H̃g

[
−Yghi

]d
h∈H̃g

, ∀i ∈ Nr, (41)

0 ≤ Pgi −
α

∑
`=1

vg`Wg`i, ∀i ∈ Nr, (42)

with

M̄g`pij =

 M+
g`pij + Mg`ij + RT

(
r−1

∑
s=1

δ̄2
s Ng`is

)
R (∗)[

Sg`ir − Sg`is
]

s∈Nr−1

[
− Ng`is

]d
s∈Nr−1

,
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where

M+
g`pij =



−I 0 0 0 Ψ(1)
14,i 0 0 0

0 −ΓgSgi 0 0 Ψ(1)
24,ij 0 0 ΓgSgiDgj

0 0 Ψ̃(1)+
33,p Ψ̃(2)+

33,p 0 0 0 0

0 0 (∗) Ψ̃(3)+
33,p 0 0 0 0

(∗) (∗) 0 0 Ψ(1)
44,i Ψ(2)

44,i 0 Ψ(1)
46,i

0 0 0 0 (∗) Ψ(3)
44,i 0 0

0 0 0 0 0 0 −Sgi 0
0 (∗) 0 0 (∗) 0 0 −R+ βI


, (43)

Mg`ij =



0 0 0 0 0 Ψ(2)
14,j 0 0

0 0 0 0 0 0 0 0

0 0 Ψ̃(1)
33,j Ψ̃(2)

33,j Ψ(1)
34,ij Ψ(2)

34,j Ψ(1)
35,j Ψ(1)

36,ij

0 0 (∗) Ψ̃(3)
33,j Ψ(3)

34,ij Ψ(4)
34,j Ψ(2)

35,j Ψ(2)
36,ij

0 0 (∗) (∗) 0 0 0 0
(∗) 0 (∗) (∗) 0 0 0 Ψ(2)

46,j
0 0 (∗) (∗) 0 0 0 0
0 0 (∗) (∗) 0 (∗) 0 0


, (44)

Sg`ij =


0 0 0 0 0 Ψ(2)

14,j 0 0

0 0 Ψ̃(1)
33,j Ψ̃(2)

33,j Ψ(1)
34,ij Ψ(2)

34,j Ψ(1)
35,j Ψ(1)

36,ij

0 0 (∗) Ψ̃(3)
33,j Ψ(3)

34,ij Ψ(4)
34,j Ψ(2)

35,j Ψ(2)
36,ij

0 0 0 0 0 0 0 Ψ(2)
46,j

,

R =


I 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 0 0 I 0 0

,

in which Ψ(1)
14,i = Q1Egi, Ψ(2)

14,j = −Q1H`j, Ψ(1)
24,ij = ΓgSgiCgj,

Ψ̃(1)+
33,p = ∑

h∈Hg

πghP(1)
hp + ∑

h∈H̃g

π̃ghP(1)
hp + X(1)

gp , Ψ̃(1)
33,j = −He{U(1)

g`j},

Ψ̃(2)+
33,p = ∑

h∈Hg

πghP(2)
hp + ∑

h∈H̃g

π̃ghP(2)
hp + X(2)

gp , Ψ̃(2)
33,j = −ΥU(3)

`j −U(2)T
g`j ,

Ψ̃(3)+
33,p = ∑

h∈Hg

πghP(3)
hp + ∑

h∈H̃g

π̃ghP(3)
hp + X(3)

gp , Ψ̃(3)
33,j = −He{U(3)

`j },

Ψ(1)
34,ij = U(1)

g`j Agi + ΥĞ`jCgi, Ψ(2)
34,j = ΥF̆`j, Ψ(3)

34,ij = U(2)
g`j Agi + Ğ`jCgi, Ψ(4)

34,j = F̆`j, Ψ(1)
35,j =

−ΥĞ`j, Ψ(2)
35,j = −Ğ`j, Ψ(1)

36,ij = U(1)
g`j Bgi +ΥĞ`jDgi, Ψ(2)

36,ij = U(2)
g`j Bgi + Ğ`jDgi, Ψ(1)

44,i = −W(1)
g`i ,

Ψ(2)
44,i = −W(2)

g`i , Ψ(3)
44,i = −W(3)

g`i , Ψ(1)
46,i = −ET

giS , Ψ(2)
46,j = HT

`jS . Then the filtering error
system (10) is stochastically stable and strictly (Q,S ,R)-β-dissipative, and the fuzzy filter gains
are calculated via the non-PDC module in Figure 1 as follows:

F`(θ̃) =

(
r

∑
i=1

θ̃iU
(3)
`i

)−1( r

∑
i=1

θ̃i F̆`i

)
, G`(θ̃) =

(
r

∑
i=1

θ̃iU
(3)
`i

)−1( r

∑
i=1

θ̃iĞ`i

)
, H`(θ̃) =

r

∑
i=1

θ̃i H`i.
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Proof of Theorem 1. From (2) and (9), it follows that

Pg(θ
+) =

α

∑
h=1

πgh(k)Ph(θ
+)

= ∑
h∈Hg

πghPh(θ
+) + ∑

h∈H̃g

π̃ghPh(θ
+) + ∑

h∈H̃g

εgh(k)Ph(θ
+). (45)

In addition, based on ∑h∈H̃g
εgh(k) = 0, it is available that

0 = ∑
h∈H̃g

εgh(k)He
{

Zg(θ
+)
}

. (46)

Thus, using (45) and (46), condition (26) is written as follows:

0 > Ψ̃g`(θ, θ̃) + ΞT

 ∑
h∈H̃g

εgh(k)He
{

1
2

Ph(θ
+) + Zg(θ

+)

}Ξ, (47)

where

Ψ̃g`(θ, θ̃) =



−I 0 0 0 Ψ(1)
14 Ψ(2)

14 0 0

0 −ΓgSg(θ) 0 0 Ψ(1)
24 0 0 ΓgSg(θ)Dg(θ)

0 0 Ψ̃(1)
33 Ψ̃(2)

33 Ψ(1)
34 Ψ(2)

34 Ψ(1)
35 Ψ(1)

36

0 0 (∗) Ψ̃(3)
33 Ψ(3)

34 Ψ(4)
34 Ψ(2)

35 Ψ(2)
36

(∗) (∗) (∗) (∗) Ψ(1)
44 Ψ(2)

44 0 Ψ(1)
46

(∗) 0 (∗) (∗) (∗) Ψ(3)
44 0 Ψ(2)

46
0 0 (∗) (∗) 0 0 −Sg(θ) 0
0 (∗) (∗) (∗) (∗) (∗) 0 −R+ βI


,

Ξ =

[
0 0 Inx 0 0 0 0 0
0 0 0 Inx̃ 0 0 0 0

]
,

in which

Ψ̃(1)
33 = ∑

h∈Hg

πghP(1)
h (θ+) + ∑

h∈H̃g

π̃ghP(1)
h (θ+)−He

{
U(1)

g` (θ̃)
}

,

Ψ̃(2)
33 = ∑

h∈Hg

πghP(2)
h (θ+) + ∑

h∈H̃g

π̃ghP(2)
h (θ+)− ΥU(3)

` (θ̃)−U(2)T
g` (θ̃),

Ψ̃(3)
33 = ∑

h∈Hg

πghP(3)
h (θ+) + ∑

h∈H̃g

π̃ghP(3)
h (θ+)−He

{
U(3)
` (θ̃)

}
.

Furthermore, condition (47) holds if it is satisfied that

0 > Ψ̃g`(θ, θ̃) + ΞTXg(θ
+)Ξ (48)

Xg(θ
+) > ∑

h∈H̃g

εgh(k)He
{

1
2

Ph(θ
+) + Zg(θ

+)

}
. (49)

(i) First , by (37), (38), and

Xg(θ
+) =

r

∑
p=1

θ+p Xgp, Zg(θ
+) =

r

∑
p=1

θ+p Zgp, (50)
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condition (48) can be rearranged as follows:

0 >
r

∑
p=1

θ+p

(
r

∑
i=1

r

∑
j=1

θiθjM+
g`pij +

r

∑
i=1

r

∑
j=1

θi θ̃jMg`ij

)
, (51)

where M+
g`pij and Mg`ij are defined in (43) and (44), respectively. Thereupon, owing to

θ+ ∈ Λr, condition (51) is converted into

0 >
r

∑
i=1

r

∑
j=1

θiθjM+
g`pij +

r

∑
i=1

r

∑
j=1

θi θ̃jMg`ij,

=
r

∑
i=1

r

∑
j=1

θiθj
(
M+

g`pij + Mg`ij
)
−

r

∑
i=1

r

∑
j=1

θiδjMg`ij

(a)

, ∀p ∈ Nr. (52)

Subsequently, from (7), i.e., δr = −
r−1

∑
s=1

δs, it follows that

(a) = −
r−1

∑
s=1

δs

r

∑
i=1

θiMg`is − δr

r

∑
i=1

θiMg`ir=
r−1

∑
s=1

δs

r

∑
i=1

θi

(
Mg`ir −Mg`is

)
.

Thus, noting that

Mg`ij = He
{

RTSg`ij

}
, (53)

condition (52) becomes

0 >
r

∑
i=1

r

∑
j=1

θiθj
(
M+

g`pij + Mg`ij
)
+

r−1

∑
s=1

δs

r

∑
i=1

θiHe
{

RT(Sg`ir − Sg`is)
}

. (54)

Moreover, since (39) implies Ng`is > 0, it holds by (7) that

He

{
δsRT

r

∑
i=1

θi

(
Sg`ir − Sg`is

)}

≤ δ̄2
s RT

(
r

∑
i=1

θi Ng`is

)
R

+

(
r

∑
i=1

θi

(
Sg`ir − Sg`is

))T( r

∑
i=1

θi Ng`is

)−1( r

∑
i=1

θi

(
Sg`ir − Sg`is

))
. (55)

Accordingly, condition (54) is ensured by

0 >
r

∑
i=1

r

∑
j=1

θiθj
(
M+

g`pij + Mg`ij
)
+

r−1

∑
s=1

δ̄2
s RT

(
r

∑
i=1

θi Ng`is

)
R

+
r−1

∑
s=1

(
r

∑
i=1

θi

(
Sg`ir−Sg`is

))T( r

∑
i=1

θi Ng`is

)−1( r

∑
i=1

θi

(
Sg`ir−Sg`is

))
, (56)
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which is transformed by the Schur complement into

0 >


r

∑
i=1

r

∑
j=1

θiθj

(
M+

g`pij+Mg`pij+RT

(
r−1

∑
s=1

δ̄2
s Ng`is

)
R

)
(∗)

r

∑
i=1

θi
[
Sg`ir − Sg`is

]
s∈Nr−1

r

∑
i=1

θi
[
−Ng`is

]d
s∈Nr−1


=

r

∑
i=1

r

∑
j=1

θiθjM̄g`pij. (57)

Hence, with the aid of Lemma 1, the relaxed conditions of (57) are given as (39) and (40).
(ii) Next, since (41) implies Yghi > 0, i.e.,

Ygh(θ
+) =

r

∑
i=1

θ+i Yghi > 0, (58)

it holds by (9) that

εgh(k)He
{

1
2

Ph(θ
+) + Zg(θ

+)

}
≤ ε̄2

ghYgh(θ
+) +

(
1
2

Ph(θ
+) + Zg(θ

+)

)T
Y−1

gh (θ+)

(
1
2

Ph(θ
+) + Zg(θ

+)

)
. (59)

Thus, condition (49) is ensured by

0 >− Xg(θ
+) + ∑

h∈H̃g

ε̄2
ghYgh(θ

+)

+ ∑
h∈H̃g

(
1
2

Ph(θ
+) + Zg(θ

+)

)T
Y−1

gh (θ+)

(
1
2

Ph(θ
+) + Zg(θ

+)

)
. (60)

Hence, by the Schur complement and based on (38), (50), and (58), condition (60) is
transformed into

0 >
r

∑
i=1

θ+i

 −Xgi + ∑
h∈H̃g

ε̄2
ghYghi (∗)

[ 1
2 Phi + Zgi

]
h∈H̃g

[
−Yghi

]d
h∈H̃g

,

which is converted into (41) owing to θ+ ∈ Λr.
(iii) Finally, based on (38), condition (27) is represented as

0 <
r

∑
i=1

θi(Pgi −
α

∑
`=1

vg`Wg`i), (61)

which is converted into (42) owing to θ ∈ Λr.

Remark 5. In this paper, the PLMIs with θ(k) and θ(sp) are transformed into
0 > ∑r

i=1 ∑r
j=1 θiθjMij by using the bounds and zero equality of the error between θ(k) and

θ(sp), and setting the replacement variables F̆`(θ) = U(3)
` (θ)F`(θ) and Ğ`(θ) = U(3)

` (θ)G`(θ)
as (37). Thus, the non-PDC-based PLMIs in Lemma 3 can be also relaxed according to Lemma 1, as
shown in the proof of Theorem 1.

As a by-product of Theorem 1, the following corollary considers a special case where
θ(sp) = θ(k) and Hg = Nα, for all g.
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Corollary 1. For given Γg ∈ Rm×m and Υ =
[
Inx̃ 0

]T ∈ Rnx×nx̃ , suppose that there exist a
scalar β > 0 and matrices F̆`i ∈ Rnx̃×nx̃ , Ğ`i ∈ Rnx̃×m, H`i ∈ Rnz×nx̃ , 0 < Sgi ∈ Rm×m,
0 < Pgi ∈ Rn×n, 0 < Wg`i ∈ Rn×n, Ug`i ∈ Rn×n such that for all g, ` ∈ Nα, LMIs (39), (40),
and (42) hold, where

M̄g`pij =



−I 0 0 0 Ψ(1)
14,i Ψ(2)

14,i 0 0

0 −ΓgSgi 0 0 Ψ(1)
24,ij 0 0 ΓgSgiDgj

0 0 Ψ(1)
33,pi Ψ(2)

33,pi Ψ(1)
34,ij Ψ(2)

34,i Ψ(1)
35,i Ψ(1)

36,ij

0 0 (∗) Ψ(3)
33,pi Ψ(3)

34,ij Ψ(4)
34,i Ψ(2)

35,i Ψ(2)
36,ij

(∗) (∗) (∗) (∗) Ψ(1)
44,i Ψ(2)

44,i 0 Ψ(1)
46,i

(∗) (∗) (∗) (∗) (∗) Ψ(3)
44,i 0 Ψ(2)

46,i
0 0 (∗) (∗) 0 0 −Sgi 0
0 (∗) (∗) (∗) (∗) (∗) 0 −R+ βI


,

in which

Ψ(1)
14,i = Q1Egi, Ψ(2)

14,i = −Q1H`i,

Ψ(1)
24,ij = ΓgSgiCgj, Ψ(1)

33,pi =
α

∑
h=1

πghP(1)
hp −He{U(1)

g`i },

Ψ(2)
33,pi =

α

∑
h=1

πghP(2)
hp − ΥU(3)

`i −U(2)T
g`i , Ψ(3)

33,pi =
α

∑
h=1

πghP(3)
hp −He{U(3)

`i },

Ψ(1)
34,ij = U(1)

g`j Agi + ΥĞ`jCgi, Ψ(2)
34,i = ΥF̆`i,

Ψ(3)
34,ij = U(2)

g`j Agi + Ğ`jCgi, Ψ(4)
34,i = F̆`i,

Ψ(1)
35,i = −ΥĞ`i, Ψ(2)

35,i = −Ğ`i,

Ψ(1)
36,ij = U(1)

g`j Bgi + ΥĞ`jDgi, Ψ(2)
36,ij = U(2)

g`j Bgi + Ğ`jDgi,

Ψ(1)
44,i = −W(1)

g`i , Ψ(2)
44,i = −W(2)

g`i , Ψ(3)
44,i = −W(3)

g`i ,

Ψ(1)
46,i = −ET

giS , Ψ(2)
46,i = HT

`iS .

Then the filtering error system (10) is stochastically stable and strictly (Q,S ,R)-β-dissipative,

and the fuzzy filter gains are designed as follows: F`(θ) =
(

∑r
i=1 θiU

(3)
`i

)−1(
∑r

i=1 θi F̆`i
)
, G`(θ) =(

∑r
i=1 θiU

(3)
`i

)−1(
∑r

i=1 θiĞ`i
)
, and H`(θ) = ∑r

i=1 θi H`i.

Proof of Corollary 1. Conditions (26) and (27) are represented, respectively, as follows:

0 >
r

∑
p=1

θ+p

(
r

∑
i=1

r

∑
j=1

θiθjM̄g`pij

)
, (62)

0 <
r

∑
i=1

θi

(
Pgi −

α

∑
`=1

vg`Wg`i

)
. (63)

Thus, since θ ∈ Λr and θ+ ∈ Λr, conditions (62) and (63) can be converted into
0 > ∑r

i=1 ∑r
j=1 θiθjM̄g`pij and (42), respectively. Moreover, by Lemma 1, the relaxed form of

0 > ∑r
i=1 ∑r

j=1 θiθjM̄g`pij is given as (39) and (40).
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4. Illustrative Examples

In this section, two examples are presented: the first example assumes H̃g = ∅ (i.e.,
Hg = Nα) and δ(k) ≡ 0 (i.e., η(sp) = η(k)) for comparison with previous studies, but the
second example shows our results for the case where the assumptions of the first example
are not enforced.

Example 1 (for H̃g = ∅ and δ(k) ≡ 0). Let us consider the following discrete-time FMJS with
η(k) = x2

2(k) and φ(k) ∈ Nα = {1, 2}, used in [34]

A11 =

[
0.45 −0.45
0.80 0.30

]
, A21 =

[
0.36 −0.25
0.20 0.50

]
, A12 =

[
0.50 −0.50
0.70 0.50

]
,

A22 =

[
0.26 −0.35
−0.25 0.60

]
, B11 =

[
−0.03 0.25

]T, B21 =
[
−0.05 0.30

]T ,

B12 =
[
−0.01 0.32

]T , B22 =
[
−0.05 0.22

]T, C11 =

[
0.00 1.00
0.50 −0.40

]
,

C21 =

[
0.00 1.00
0.30 −0.10

]
, C12 =

[
0.00 1.00
0.25 −0.20

]
, C22 =

[
0.00 1.00
0.15 −0.30

]
,

D11 =
[

0.00 −0.30
]T , D21 =

[
0.00 −0.20

]T, D12 =
[

0.00 −0.20
]T ,

D22 =
[

0.00 −0.10
]T , E11 =

[
0.30 −0.20

]
, E21 =

[
0.20 −0.20

]
,

E12 =
[

0.10 0.50
]
, E22 =

[
0.10 0.50

]
,

where the fuzzy basis functions are given as θ1 = (−x2
2(k) + 3)/6 and θ2 = (x2

2(k) + 3)/6. In
addition, the transition rates and conditional probabilities are given as follows:

[
πgh
]

g,h∈Nα
=

[
0.35 0.65
0.40 0.60

]
,
[
vg`
]

g,`∈Nα
=

[
0.80 0.20
0.35 0.65

]
.

Tables 1 and 2 show the maximum dissipativity performance levels β for nx̃ ∈ {1, 2}
and several Γg, obtained by Theorem 2 in [26] and Corollary 1, where Q = −0.36, S = −4,
R = 5. From Tables 1 and 2, it can be found that the dissipativity performance deteriorates
as the event threshold Γg increase. Furthermore, Corollary 1 provides better performance
levels than those of Theorem 2 in [26] for all nx̃ ∈ {1, 2}. In particular, the effect of
Corollary 1 become more pronounced as the order of the filter increases.

Table 1. Optimal performance β for different Γg and nx̃ = 1.

Γg diag (0.1, 0.1) diag (0.35, 0.65) diag (0.9, 0.9)

Theorem 2 in [26] 3.3141 3.1997 3.0938
Corollary 1 3.3805 3.2764 3.1147

Table 2. Optimal performance β for different Γg and nx̃ = 2.

Γg diag (0.1, 0.1) diag (0.35, 0.65) diag (0.9, 0.9)

Theorem 2 in [26] 3.8925 3.5095 3.1413
Corollary 1 4.0999 3.5569 3.1782
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Meanwhile, for nx̃ = 2 and Γg = diag(0.35, 0.65), Corollary 1 offers the following
solution:

U(3)
11 =

[
13.7721 5.0240
3.1813 5.0302

]
, U(3)

21 =

[
13.0723 4.9320
3.3418 5.0853

]
,

U(3)
12 =

[
14.6432 5.7884
5.1768 5.4918

]
, U(3)

22 =

[
14.7605 5.9399
5.4026 5.5959

]
,

F̆11 =

[
8.8882 1.4298
4.0752 1.6113

]
, F̆21 =

[
6.6561 2.8322
2.9383 1.9088

]
,

F̆12 =

[
8.7326 0.1434
4.8799 −1.0153

]
, F̆22 =

[
6.9313 0.9980
3.8163 −0.5632

]
,

Ğ11 =

[
4.3448 1.5573
0.5914 0.1853

]
, Ğ21 =

[
4.8216 1.7550
0.6082 0.1530

]
,

Ğ12 =

[
3.2247 −0.0874
−1.6541 0.1556

]
, Ğ22 =

[
3.0214 0.0087
−1.7682 0.1553

]
,

H11 =
[
−0.5112 0.1658

]
, H21 =

[
−0.1319 0.1515

]
,

H12 =
[
−0.3456 −0.5585

]
, H22 =

[
−0.0730 −0.5478

]
,

S11 =

[
5.4375 1.8216
1.8216 1.1400

]
, S21 =

[
3.1831 1.3284
1.3284 1.3574

]
,

S12 =

[
4.8704 0.0116
0.0116 0.3598

]
, S22 =

[
8.2628 7.8567
7.8567 12.9362

]
.

According to the event-triggered scheme, Figure 2a shows the instance when the event
generator outputs an ENT signal to the transmitter, then the measured output signal y(k)
and evolution of system mode φ(k) are transmitted to the filter, which are displayed in
Figure 2b and 2c, respectively. Especially, since matched error δ(k) ≡ 0, FBF module
constructs the event-triggered fuzzy basis functions θi from the measured output y(k).
Based on the obtained non-PDC fuzzy filter gains, Figure 3a,b show the response of z(k),
z̃(k), and z̄(k) for x(0) = [−0.8,−0.7], w(k) ≡ 0; and Figure 3c,d show the response of
z(k), z̃(k), and z̄(k) for x(0) ≡ 0, w(k) = 0.5 (for 20 ≤ k < 25), and w(k) = 0 (elsewhere).
As a result, from Figure 3b, it can be found that the filtering errors converge to zero as
time increases, and from Figure 3d, it can be verified that the dissipativity performance
β = 3.5569 in Table 2 holds because ∑T

k=0W(k)/β ∑T
k=0‖w(k)‖2 > 1 is satisfied.
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Figure 2. Event-triggered transmission: (a) the release instance and interval, (b) measured output
y(k) and y(sp), and (c) evolution of φ(k) and φ(sp).
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Figure 3. Filter response: (a,b) z(k), z̃(k), and z̄(k) for x(0) 6= 0 and w(k) ≡ 0; and (c,d) z(k), z̃(k),
and z̄(k) for x(0) ≡ 0 and w(k) 6= 0.



Mathematics 2022, 10, 2917 20 of 25

Example 2 (for H̃g 6= ∅ and δ(k) 6= 0). Let us consider a tunnel diode circuit system expressed
as FMJS with φ(k) ∈ Nα = {1, 2}, adopted in [34]:

A11 =

[
0.9987 0.9024
−0.0180 0.8100

]
, A21 =

[
0.9980 1.0000
−0.0200 0.9800

]
,

A12 =

[
0.9034 0.8617
−0.0172 0.8103

]
, A22 =

[
0.9080 1.0000
−0.0200 0.9800

]
,

B11 =
[

0.0093 0.0181
]T , B21 =

[
0.0000 0.0200

]T ,

B12 =
[

0.0091 0.0181
]T , B22 =

[
0.0000 0.0200

]T ,

Cgi =

[
1.0 0.0
0.3 1.2

]
, Dgi =

[
0 1

]T, Egi =
[

1.0 −0.5
]
,

where the fuzzy basis functions are given as

θ1 =


(3 + x1(k))/3, −3 < x1(k) ≤ 0
(3− x1(k))/3, 0 < x1(k) < 3
0, elsewhere

, θ2 = 1− θ1.

In addition, the transition rates are given as follows:

[
π̃gh
]

g,h∈Nα
=

[
0.6 0.4
0.7 0.3

]
, ε̄gh = 0.1, ∀g, h ∈ Nα,

which means that H1 = ∅, H̃1 = {1, 2}, H2 = ∅, and H̃2 = {1, 2}. Furthermore, to obtain the
simulation results for both synchronous and asynchronous cases, the conditional probabilities are
established as follows:

Case 1 :
[
vg`
]

g,`∈Nα
=

[
1.0 0.0
0.0 1.0

]
,

Case 2 :
[
vg`
]

g,`∈Nα
=

[
0.8 0.2
0.3 0.7

]
.

For Γg = diag(0.35, 0.65) and nx̃ = 2, Table 3 shows the maximum dissipativity
performance level β for several δ̄i, obtained by Theorem 1, where Q = −0.4, S = −1,
R = 5. From Table 3, it can be found that (1) the dissipativity performance deteriorates as
the mismatch threshold δ̄i increase, (2) the synchronous case offers better performance than
the asynchronous case.

Table 3. Comparison of dissipativity performance β for different δ̄i.

β δ̄i = 0 (Matched) δ̄i = 0.2 δ̄i = 1

Case 1 (synchronous) 3.3799 3.3297 3.3073
Case 2 (asynchronous) 3.2309 3.2130 3.2119
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Meanwhile, for Case 2 and δ̄i = 0.2, Theorem 1 offers the following solution:

U(3)
11 =

[
2.9531 4.1538
3.9154 305.9807

]
, U(3)

21 =

[
2.9648 4.4021
3.9404 299.7105

]
,

U(3)
12 =

[
2.9255 4.3274
4.3018 297.8675

]
, U(3)

22 =

[
2.9524 4.6780
4.2959 297.0513

]
,

F̆11 =

[
1.2050 4.2356
−3.4986 266.3810

]
, F̆21 =

[
1.9449 4.6970
−3.7557 272.5151

]
,

F̆12 =

[
1.2157 4.5272
−3.8214 258.9970

]
, F̆22 =

[
1.8759 4.9323
−3.6577 267.9507

]
,

Ğ11 =

[
−1.3113 −0.8770
−0.9965 −4.7163

]
, Ğ21 =

[
−0.4479 −1.0194
−0.3818 −4.5004

]
,

Ğ12 =

[
−1.2679 −0.8848
−2.0525 −4.3402

]
, Ğ22 =

[
−0.5171 −0.9728
−0.4959 −4.8694

]
,

H11 =
[
−1.3973 −2.4358

]
, H21 =

[
−1.3395 −3.4061

]
,

H12 =
[
−1.3948 −2.3703

]
, H22 =

[
−1.3452 −3.6414

]
,

S11 =

[
1.1241 0.2488
0.2488 0.7182

]
, S21 =

[
0.3028 0.1642
0.1642 0.9900

]
,

S12 =

[
1.1848 0.5140
0.5140 0.7407

]
, S22 =

[
0.8841 0.2696
0.2696 0.8175

]
.

According to the event-triggered scheme, Figure 4a shows the instance when the event
generator outputs an ENT signal to the transmitter, then the measured output signal y(k)
and evolution of system mode φ(k) are transmitted to the filter, which are displayed in
Figure 4b and 4c, respectively. From the transmitted output y(sp), FBF module constructs
the event-triggered fuzzy basis functions θ̃i, which are shown in Figure 5a,b, and the
dynamic behavior of δi = θi − θ̃i are presented in Figure 5c. Based on the obtained
non-PDC fuzzy filter gains, Figure 6a,b show the response of z(k), z̃(k), and z̄(k) for
x(0) = [−0.9, 0.3], w(k) ≡ 0; and Figure 6c,d show the response of z(k), z̃(k), and z̄(k)
for zero initial x(0) ≡ 0, w(k) = −0.5 × rand[0, 1] (for 1 ≤ k ≤ 10), w(k) = 0.5 ×
rand[0, 1] (for 11 ≤ k ≤ 20), and w(k) = 0 (elsewhere). As a result, from Figure 6b, it can
be found that the filtering errors converge to zero as time increases, and from Figure 6d,
it can be seen that the dissipativity performance β = 3.2130 in Table 3 holds because
∑T

k=0W(k)/β ∑T
k=0‖w(k)‖2 > 1 is satisfied. Not only that, it can be verified from Figure 5c

that δi satisfies |δi| ≤ 0.1512 < δ̄i = 0.2, for i ∈ Nr.
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Figure 4. Event-triggered transmission: (a) the release instance and interval, (b) measured output
y(k) and y(sp), and (c) evolution of φ(k) and φ(sp).
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Figure 5. FBF module: (a,b) fuzzy-basis functions θ and θ̃, and (c) fuzzy basis function error δ.
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Figure 6. Filter response: (a,b) z(k), z̃(k), and z̄(k) for x(0) 6= 0 and w(k) ≡ 0; and (c,d) z(k), z̃(k),
and z̄(k) for x(0) ≡ 0 and w(k) 6= 0.

5. Concluding Remarks

In this paper, we have studied the event-triggered dissipative filtering problem of
nonhomogeneous FMJSs against asynchronous modes and mismatched premise vari-
ables. To sum up, the proposed method makes significant progress in improving the filter
performance (i) by using a non-PDC scheme for the construction of asynchronous mode-
dependent fuzzy filter gains, (ii) by making the event generation function dependent on
fuzzy basis functions, and (iii) by implementing a relaxation processes that takes advantage
of stringent constraints on time-varying paraemters.
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