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Abstract: The consideration of infectious diseases from a mathematical point of view can reveal
possible options for epidemic control and fighting the spread of infection. However, predicting
and modeling the spread of a new, previously unexplored virus is still difficult. The present paper
examines the possibility of using a new approach to predicting the statistical indicators of the
epidemic of a new type of virus based on the example of COVID-19. The important result of the
study is the description of the principle of dynamic balance of epidemiological processes, which
has not been previously used by other researchers for epidemic modeling. The new approach is
also based on solving the problem of predicting the future dynamics of precisely random values
of model parameters, which is used for defining the future values of the total number of: cases
(C); recovered and dead (R); and active cases (I). Intelligent heuristic algorithms are proposed for
calculating the future trajectories of stochastic parameters, which are called the percentage increase in
the total number of confirmed cases of the disease and the dynamic characteristics of epidemiological
processes. Examples are given of the application of the proposed approach for making forecasts of
the considered indicators of the COVID-19 epidemic, in Russia and European countries, during the
first wave of the epidemic.
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1. Introduction

An outbreak of the coronavirus infection, COVID-19, caused by the new SARS-CoV-2
virus, quickly spread around the world at the end of 2019, affecting more than 200 countries.
The consideration of infectious diseases caused by new, previously unexplored viruses
from a mathematical point of view can reveal not only the important patterns of a pan-
demic, but also possible options for epidemic control and fighting the spread of infection.
Mathematical models of disease transmission, as most experts note, can help to gain insight
into the dynamics of the spread of infectious diseases and the potential role of different
types of public health intervention strategies. The main problem in the absence of the
availability of historical data for modeling the spread of a new virus arises when estimating
the values of the input parameters of a particular model. Given the maximum uncertainty
in the parameters of the spread of a new virus, difficulties naturally arise in assessing the
potential dangers and scale of the epidemic. Traditionally used parameters in the classic
Susceptible—Infected—Recovered (SIR)) model cannot be quantified with sufficient ac-
curacy, which does not allow for eliminating the uncertainty of the future dynamics of
coronavirus spread. The aim of this work is to study the possibilities of using a case-based
rate reasoning (CBRR) model for predicting the rates of COVID-19 spread in Russia and

Mathematics 2022, 10, 3725. https://doi.org/10.3390/math10203725 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10203725
https://doi.org/10.3390/math10203725
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2743-3880
https://orcid.org/0000-0002-3139-6509
https://doi.org/10.3390/math10203725
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10203725?type=check_update&version=2


Mathematics 2022, 10, 3725 2 of 18

extending it to other countries. The proposed approach considers the percentage increase
as one of the most important parameters of the forecasting model, which has a stochastic
nature. As part of the approach being developed, it is proposed to evaluate the trends in
the key parameters, such as the percentage increase in the number of confirmed cases of the
disease and the percentage increase in the number of deaths, and use the resulting trends
in the subsequent forecast of the main statistical epidemic spread indicators’ dynamics.
Another important parameter is the so-called dynamic balance characteristic. It is based on
the proposed principle of dynamic balance of epidemiological processes, which has not
been previously used in models of epidemic spread. The new approach is based, first of
all, on solving the problem of predicting the future dynamics of precisely random values
of model parameters, instead of the values of real-time data. Predictive trajectories of
the future values of epidemic data (the total number of confirmed cases (C), the number
of active cases of the disease (I), and the dynamics of the total number of recovered (R)
and dead (D)) were calculated by substituting into the model the values of these random
parameters obtained during the analytical study. In the future, this algorithm could be
used in modeling complex network systems with emergent intelligence.

2. Literature Overview

A systematic review of the models for predicting epidemics of the novel SARS-CoV-2
(COVID-19) coronavirus was conducted by the authors. The search was carried out in the
Web of Science, Scopus and RCI databases. Additionally, the search results were analyzed
in the Elsevier database, one of the largest European publishers. The following keywords
were used: “forecasting”, “prediction”, “model”, “emerging infection”, “coronavirus” and
“COVID”. There are also several web portals aggregating research related to coronavirus
such as, for example, according to the World Health Organization [1]. During the search,
special attention was paid to studies related to forecasting models for the dynamics of the
epidemic spread in the first wave, when there was a lack of information about the new
coronavirus and the population did not develop immunity to the new infection. In general,
there are four main approaches to modeling the spread of infectious diseases [2]: time
series-based models, compartment models, agent-based (network) models, and models
built using machine learning methods and heuristic approaches.

Regarding time-series based models, it should be noted that regression analysis and
time series analysis are among the most well-known methods for predicting the incidence
of a disease. Several researchers have used the Autoregressive Integrated Moving Average
(ARIMA) model to predict the spread of the novel coronavirus pandemic. Examples of such
studies include [3–6]. In general, although time series models are a popular forecasting
tool, the use of this approach to estimate the spread of new infections has its limitations.
In particular, the lack of statistics for previous periods and, as a consequence, unknown
parameter values, do not allow building models of a sufficient degree of accuracy.

Most of the research is based on the Susceptible—Infected—Recovered (SIR) paradigm
and its variations, which is described as a system of ordinary differential equations [7]. In
the basic compartment model, a population of N people is considered. At each moment
in time, each person belongs to one of the three groups (compartments): the Susceptible
group (S), including people who have not yet encountered an infection; then, as the virus
spreads among the population, they move to the Infected group (I); and then, into the
Removed (R) group (recovered or deceased). The possibility of reinfection in this model
is not taken into consideration. It is also assumed that the size of the population remains
unchanged. The so-called SIR epidemic model, described as a system of three ordinary
differential equations for the variables S, I and R, was presented for the first time in a paper
by Kermack and McKendrick in 1927 [8,9].

Many researchers prefer to use the SIR model because of the small number of input
parameters required. However, sometimes this advantage arises from the oversimplification
of the model due to relatively unrealistic assumptions. For example, the model assumes the
homogeneous mixing of the population, which means that all individuals in the population
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are equally likely to come into contact with each other. This does not reflect the human
social structures in which most contact occurs in localized communities. The SIR model also
assumes a closed population with no migration, births or deaths from causes other than
epidemics. In addition to the SIR model, various modifications of it are often used such as,
for example, the SEIR model, which adds an Exposed (E) parameter for people who have
already been infected but are not yet infectious, as well as the SIRD model, which provides
separate parameters for recovered people (those who survived the disease and are now
immune) and deceased people. In general, up to the present, only several dozen SIR models
and their varieties have been published on COVID-19. In particular, these have been the
SIR [10–13], SEIR [14–22], SIRD [23,24], SIR-X [25], SEIQR [26] and SEIHR [27] models.

Special mention should be made of research devoted to models that take into account
the delay of input parameters [28–33]. Mostly, these research models are focused on
evaluating the parameters of compartment models based on the assumptions about the
delay between the diagnosis and the time of infection.

Network models can be considered as a discrete variant of compartment models. In
modern mathematical epidemiology, network models represent one of the latest methods
for analyzing and modeling complex epidemiological systems. Compared to compartment
models, network models are more detailed and allow the consideration of each participant
separately, while the interaction between people is presented in the form of a complex
graph of social connections. Compartment models make it possible to assess the overall
dynamics of the rapid spread of the epidemic, whereas network models make it possible
to simulate the effectiveness of certain measures to contain the spread of infection [34].
It is also possible to consider the epidemic as a complex network model with emergent
intelligence, followed by the use of machine learning and data mining methods to analyze
its dynamics [35].

Models using machine learning methods are gaining popularity. Artificial intelligence
and machine learning have long been used in epidemiology. Machine leaning is a powerful
tool for finding the relationships between inputs and outputs when analytical research
is difficult. In some cases, the use of such heuristic approaches for the early detection of
epidemiological risks can improve the quality of forecasting. One study examined the pos-
sibility of using artificial neural networks (ANNs) to predict the spread of COVID-19 [36].
The results of the network of the developed architecture for some of the regions reached an
accuracy of 87%. At the same time, the authors emphasized that a large amount of historical
data was required for the correct training of the ANNs. Other examples of machine learning
models include the research in [37–42]. It should be noted that the forecasting horizon in
this research was several days. There have been attempts to develop models with a longer
forecasting horizon (i.e., two weeks and more). An example of such a study is [43]. The
studies [44,45] can also be attributed to heuristic models with elements of machine learning.
The tSIR model in [44] suggests using a combination of the classical ARIMA model together
with neural networks for outbreak spread forecasting.

Another approach worth mentioning is the case-based reasoning approach, which
is based on the idea of finding possible solutions to the problem based on existing solu-
tions for similar situations [46]. The research in [47,48] describes a new case-based rate
reasoning (CBRR) model based on this approach, for predicting the future values of the
main parameters of the coronavirus epidemic in Russia. This model makes it possible to
build short-term forecasts based on the similarities in the dynamics of percentage growth
in other countries. A new heuristic method is also described for estimating the duration
of the transition process of the percentage increase between the given levels, taking into
account the information on the dynamics of epidemiological processes in the countries
of the distribution chain. A detailed review of the possibilities of using machine learning
methods to predict the spread of COVID-19 can be found in [49].

Mention should also be made of a number of studies devoted to predicting the dy-
namics of mortality of the new coronavirus. In this case, either the number of fatalities was
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analyzed, or the case fatality ratio (CFR). Examples of studies focused on predicting the
mortality of a new coronavirus are [39,50–55].

3. Materials and Methods

The analysis of the available recent literature that provides forecasts of the spread of
epidemics shows that the use of traditional classical models rarely provides an acceptable
forecasting accuracy for a period of more than 7–10 days in advance [6,39,40]. For example,
in [10], Deal and Maken used the SIR model to predict the confirmed cases of COVID-19 in the
Eastern Mediterranean region (Iran, Iraq, Saudi Arabia, UAE, Lebanon, Egypt and Pakistan).
The authors estimated that by 20 June 2020, 2.12 million cases in Iran, 0.58 million in Saudi
Arabia and 0.51 million in Pakistan were expected. In fact, the number of recorded cases of
COVID-19 infection as of 20 June 2020 was officially 202,584 cases in Iran, 176,617 cases in
Pakistan and 154,233 cases in Saudi Arabia (according to the CSSE Center at Johns Hopkins
University) [56]. In [57], a simple moving average method was used to predict the confirmed
cases of COVID-19 in Pakistan. The authors predicted over 35,000 cases by the end of May 2020.
Real-world data showed that at the end of May 2020, 72,460 cases of new coronavirus infection
were recorded (2 times higher than the forecasted values).

In connection with this, a new approach to modeling the spread of the COVID-19
epidemic using the percentage increase in the total number of confirmed cases of the
disease is proposed. In the English abbreviation, the new model is called Confirmed
Cases C(t)—Infected I(t)—Removed (R(t) (CIR). To predict the dynamics of the number
of confirmed cases in Russia, a case-based rate reasoning (CBRR) model was developed,
based on the precedent method and using data on the spread of infection in European
countries where the pandemic began earlier than in Russia—namely, in Italy, Spain, France
and Great Britain—to construct the future values of the parameters used in the model [48].
These countries in the model are called predecessor countries, whereas Russia is called a
follower country.

Let t ∈ 1, T be a positive integer, corresponding to day t, and r(t) be the value of the
percentage increase in detected cases during the epidemic from the beginning to day T. Let
the considered time horizon be divided into M intervals (Tm−1, Tm], 0 ≤ Tm−1 < Tm ≤ T,
m = 1, M. Then, for any interval (Tm−1, Tm] and any k = 1, 2, . . . , (Tm − Tm−1), the dynamics
of changes in the number of confirmed cases can be described as follows:

C(Tm−1 + k) =
(

1 + r(Tm−1+k)
100

)
C(Tm−1 + k− 1), k

= 1, 2, . . . , (Tm − Tm−1).

In the process of constructing the predicted trajectory of the confirmed cases of dynam-
ics of changes over the interval (Tm−1, Tm], a sequence of predicted values of the percentage
increase r̃(Tm−1 + k), k = 1, 2, . . . , (Tm − Tm−1) is generated. For example, these estimates
can be obtained by piecewise linear approximations on each of the M intervals. At the same
time, the lengths of the intervals in the considered country are estimated by taking into
account information received from the predecessor countries. Then, the predicted value of
the number of confirmed cases can be calculated as follows:

C̃(Tm) =

(
1 +

r̃(Tm−1 + 1)
100

)
× · · · ×

(
1 +

r̃(Tm)

100

)
C̃(Tm−1).

The effectiveness of the CBRR model was confirmed by examples of fairly accurate
predictions of future values of the total number of confirmed cases of the disease, built in
the course of the experiments, for several prediction intervals in April to June 2020. The
results of using the CIR model to predict the dynamics of the number of active cases in
Russia in the second half of 2021 were presented in the paper, [58], and in the reports by
the Izvestia newspaper [59].

The main idea of the principle of dynamic balance of epidemiological processes lies in
the fact that the past values of the total number of cases are close enough to the values of
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the total number of recovered and deceased patients at the current time. Concurrently, the
time intervals through which such a balance is observed change rather predictably over
time, although, like the percentage increase, they take random values.

It should be noted that the new approach is based primarily on the problem of mod-
eling the dynamics of random values of model parameters. The trajectories of the model
describing the dynamics of the total number of active cases, and the number of confirmed
and dead cases are calculated by substituting the obtained values of these parameters into
the model. The results of using the proposed approach can be found in the notes and
scientific papers posted on the page by the Center for Intelligent Logistics of St. Petersburg
State University [60].

3.1. CIRD Balance Model

The CIR model proposed in [58] can be generalized to the case of isolating the total
number of deaths as a separate variable. Let us denote by C(t), the total number of
confirmed cases of infection (cumulative cases and confirmed cases) from the beginning
of the epidemic to day t, and by ∆(t), the number of new cases registered per day. The
number of infected for t = 0 is set equal to one. Both functions are random variables with
non-negative values. Taking into account the introduced notation for t = 1, 2, 3, . . ., we
have:

C(t) = C(t− 1) + ∆(t).

Let

r(t) = 100
∆(t)

C(t− 1)
(1)

where ∆(t) = C(t)− C(t− 1).
Then, we have the following formula:

C(t) =
(

1 +
r(t)
100

)
× C(t− 1). (2)

Here, the parameter r(t) is interpreted as the ratio of the percentage of the absolute
increase in the total number of detected infections per day t to the total number of detected
infections on the previous day.

We will further call this parameter r(t), for the percentage increase in the total number
of detected cases per day t. Considering that ∆(t) is a random variable that takes non-
negative values, the percentage increase is also a non-negative random variable.

The value of C(t) on any day T is calculated by the following formula:

C(T) =
T

∏
t=1

(
1 +

r(t)
100

)
. (3)

Let us fix some values t0 ≥ 0 and T > t0, such that R(T) > C(t0) > 1, where R(t) is
the number of recoveries and deaths, and C(t) is the number of confirmed cases. Taking
into account the non-decreasing functions C(t) and R(t), as well as the fact that C(t) ≥ R(t)
for any t ≥ t0, such a value T exists. In fact, the existence of such values t0 and T means
that patients who become ill by a point in time t0 will recover or die in a finite time.

Let us consider the integer programming problem:

min
t0≤t≤T

t (4)

C(t) ≥ R(T). (5)

Considering the properties of the functions C(t) and R(t), the set of feasible solutions
to such a problem is not empty. Let us denote the solution to problem (4)–(5) by τ(T).
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Note that condition (5) is not fulfilled for t = τ(T)− 1. Then, taking into account that
the function C(t) does not decrease, the inequality R(T) ≥ C(τ(T)− 1) holds. Thus, the
following theorem is true:

Theorem 1. (Principle of dynamic balance) Let the values t0 ≥ 0 and T > t0 be given, such
that R(T) > C(t0) > 1. Then, for the solution τ(T) of the problem (4)–(5), the value of R(T) per
day T satisfies the inequalities:

C(τ(T)) ≥ R(T) ≥ C(τ(T)− 1). (6)

Condition (6) means that the number of people who recovered and died on a certain
day depends on the total number of cases recorded in the past, namely, t− τ(t) days ago.
Thus, using condition (6), it is possible to establish a dynamic balance between the values
of the functions R(t), C(τ(t)− 1) and C(τ(t)).

Note that for any T the following equality holds:

C(T) = I(T) + R(T) (7)

where C(t) is the number of confirmed cases, R(t) is the number of recoveries and deaths,
and I(t) is the number of infected cases.

This balance ratio means that the group of detected cases on any day can be divided into
those who are still ill and those who have recovered or died by that day. Let us use Formula (2),
inequality (6) and balance relation (7), and write down the system of discrete equations:

C(t) =
(

1 +
r(t)
100

)
× C(t− 1) (8)

I(t) =
(

1 +
r(t)
100

)
× C(t− 1)− R(t) (9)

R(t) = λtC(τ(t)− 1) + (1− λt)C(τ(t)). (10)

The choice of the parameter λt ∈ [0, 1] for any t guarantees that the R(t) lies in the
interval [C(τ(t)− 1), C(τ(t))].

The model, the dynamics of which are described as the system of discrete Equations (8)–(10),
will be abbreviated as the CIR model in what follows.

3.1.1. CIR Model

The CIR model uses the concept of the percentage increase in the total number of C(t)
and takes into account the balance ratio between the total number of cases at τ(t) and
τ(t)− 1, and the total number of R(t) of those who recovered and died at the moment t.
For this reason, we may also refer to this model as the balanced epidemic model based on
percentage growth.

Definition 1. The function ϑ(t) = t− τ(t) will be called the dynamic balance characteristic of
the epidemic.

Definition 2. Let us call the epidemiological process stationary over a period of time [t1, t2], if
ϑ(t) = const for all t ∈ [t1, t2].

Let σ(t) denote the segment of the total number of people who died during the
epidemic, D(t), out of the total number R(t). The value σ(t) is the coefficient (indicator)
of the current fatality of the epidemiological process. Then, the total number of deceased
people by the time t can be written as the equation:

D(t) = σ(t)R(t).
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Taking into account the representation of R(t) in Equation (10), we obtain the following
expression:

D(t) = σ(t)(λtC(τ(t)− 1) + (1− λt)C(τ(t))) (11)

When the system of Equations (8)–(10) is supplemented with Equation (11), we obtain
a new system of discrete equations, which we will call the CIRD model.

Note that the number d(t) of people who died on day t can be calculated by the formula:

d(t) = σ(t)(λtC(τ(t)− 1) + (1− λt)C(τ(t)))− σ(t− 1)(λt−1C(τ(t− 1)− 1) + (1− λt−1)C(τ(t− 1)))

If we approximate the trends for the values of r(t), σ(t) and λt for the forecast interval
[t, t + ν(t)] and use the obtained values, then we can obtain a forecast of future values of
daily mortality for this interval.

4. Results
4.1. Modeling Experiments

Studying the statistics of the COVID-19 pandemic in Russia and other countries, it
can be noted that at certain intervals, the dynamic balance characteristic ϑ(t) is constant;
however, in general, it changes over time, although its volatility is limited. Examples of the
behaviour of the dynamic balance characteristic, introduced by the authors, are shown in
Figure 1. Thus, in the period from May to December 2020 in Russia, the values for ϑ(t) were
in the range from 19 to 35 days. For Italy, the values of the characteristic of the dynamic
balance were higher, from 25 to 55 days. In Germany, the characteristic value varied from
12 to 20 days.

Figure 1. ϑ(t) dynamics for Russia, Germany and Italy during the time period of May to Decem-
ber 2020.

4.1.1. Case of Russia

Let us consider in more detail the data of the epidemiological process in Russia. As
a demonstration of the proposed algorithm, according to the available data on C(t) and
R(t), we determined the moments of time corresponding to admissible solutions of the
problem (8)–(9) in the period from 12 May to 19 May 2020, where information was available
on the previous 22 days, that is, for T = 23, 24, . . . , 30, respectively. We estimated the values
of the functions τ(t) and ϑ(t), the intervals of the possible values of the function R(t) in
the interval [23–30], as well as the deviations R(t) from these intervals. Table 1 shows the
solutions obtained, as well as the calculated values of the characteristic ϑ(t), the estimate of
the intervals of future possible values R(T) with a constant characteristic of the dynamic
balance (ϑ(t) = 22), and the deviation of the actual value from the estimated interval. In
the period from 12 May to 19 May, the function ϑ(t) was not equal to a constant; that is, the
epidemiological process under consideration during this time period was not stationary.
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Note also that an increase in the value of the function ϑ(t) = t− τ(t) by one day on 18 and
19 May in relation to the period from 12 May to 17 May 2020, when it was constant (22 days),
led to a deviation of the actual values R(18) and R(19) by 1657 and 1982, respectively.

Table 1. Values of the dynamic balance characteristic and its assessment (period from 12 May to
19 May 2020).

t Date Number of
C(t)

Number of
R(t) τ(t) ϑ(t)

Intervals of Possible
Values of R(t)

Deviation R(t) from
the Interval

23 12 May 2020 232,243 45,628 1 22 ≤47, 121 0
24 13 May 2020 242,271 50,215 2 22 [47,121; 52,763] 0
25 14 May 2020 252,245 55,835 3 22 [52,763; 57,999] 0
26 15 May 2020 262,843 60,644 4 22 [57,999; 62,773] 0
27 16 May 2020 272,043 65,739 5 22 [62,773; 68,622] 0
28 17 May 2020 281,752 70,004 6 22 [68,622; 74,588] 0
29 18 May 2020 290,678 72,931 6 23 [74,588; 80,949] 1657
30 19 May 2020 299,941 78,967 7 23 [80,949; 87,147] 1982

Let us consider the results of applying the developed approach to forecasting the
indicators of the epidemic in Russia, for the period from 6 June to 30 June 2020, based on
the information available on 5 June 2020.

Figure 2 shows the predicted trajectories built over the period from 6 June to 30 June 2020,
which were compared with the actual trajectories. The average deviation of the trajectory of
the total number of cases forecasted compared to the actual one was 0.37%. On 30 June 2020,
the deviation was found to be minus 1.17%.

Figure 2. Dynamics of the total number of C(t), the actual and predicted trajectories.

The dynamics of the function ϑ(t) for the period under consideration are shown in
Figure 3.

Assuming the stationarity of the epidemiological process from 6 June to 30 June 2020,
a constant value of the dynamic balance characteristic corresponding to the actual value
at the beginning of the forecasting horizon (25 days) was taken for the calculation. The
graphs of the calculated and actual values of the total number of deaths D(t) and active
cases I(t) are shown in Figures 4 and 5.

The deviation of the modeled trajectory from the actual trajectory of the number of
active patients was, on average, 3.63%. The mean absolute percentage error (MAPE) value
for this forecast was 4.14%. For the dynamics of the number of deaths, the forecasted MAPE
of the considered interval was 3.17%. The maximum deviation was 6.5%.

By using the actual values of ϑ(t), the graphs of the actual and predicted values of
D(t) practically coincide. Similarly, the graphs of the total number of active patients in
the case of using the actual ϑ(t) values practically coincide. In the interval from 6 June
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to 30 June 2020, the deviation from the actual trajectory of the number of active patients
averaged to 1.13% and the number of deaths was 0.4%.

Figure 3. Actual and modeled values of the dynamic balance characteristic ϑ(t) from 15 May to
30 June 2022.

Figure 4. Dynamics of I(t), the actual and modeled trajectories in the interval from 6 June to 30 June 2020.

Figure 5. Dynamics of D(t), the actual and calculated trajectories in the interval from 6 June to
30 June 2020 in a stationary case and in the case of updated values of ϑ(t).
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Let us consider the results of applying the developed approach to forecasting the
indicators of the epidemic in Russia in the period from 29 November to 22 December 2020,
based on the information available on 28 November. Assuming the stationarity of the
epidemiological process, the theta value taken was equal to 20. The change of the function
ϑ(t) over the considered time interval is shown in Figure 6.

Figure 6. Actual and modeled values of the dynamic balance characteristic ϑ(t) from 15 November
to 30 December 2020.

The dynamics of the modeled and actual values of the total number of confirmed cases
C(t), deaths D(t) and active cases I(t) are shown in Figures 7–9.

Figure 7. Dynamics of C(t), the actual and modeled trajectories in the interval from 1 December to
22 December 2020.

The deviation of the modeled trajectory from the actual trajectory of the number of
active patients in terms of MAPE was 1.1%. For the dynamics of the predicted trajectory
of the deceased, the forecasted MAPE of the considered interval was 3.1%. However, by
taking into account the update in information about the dynamic balance characteristic, the
deviations of the actual graphs from the predicted values of both I(t) and D(t) decreased.
Thus, in the considered interval, the deviation from the actual trajectory of the number of
active patients in terms of MAPE was 0.9% and the number of deaths was 2.9%.



Mathematics 2022, 10, 3725 11 of 18

Figure 8. Dynamics of I(t), the actual and modeled trajectories in the interval from 1 December to
22 December 2020, in a stationary case and at updated values of ϑ(t).

Figure 9. Dynamics of D(t), the actual and modeled trajectories in the interval from 1 December to
22 December 2020, in a stationary case and at updated values of ϑ(t).

4.1.2. Case of Europe

Let us consider the possibilities of applying this approach in other countries. For
consistency, similar forecasting time intervals were analyzed. The daily updated statistical
data published on the Johns Hopkins University portal were used as the initial information
for modeling [56]. The dynamics of ϑ(t) are shown in Figure 10.

Figure 10. Dynamics of changes in the values of ϑ(t) in Germany and Italy (a) from May to June 2020
and (b) from November to December 2020.
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Under the assumption of the piecewise stationarity of the epidemiological process, a
constant value of the dynamic balance characteristic corresponding to the actual value at
the beginning of the forecasting horizon was used. The case of the dynamic updating of
information when the value of the characteristic was updated was also considered. The
modeling was carried out at the same time as the intervals that were used to analyze the
situation in Russia. The graphs of the modeled and actual values of the total number of
confirmed cases, the number of deaths D(t) and active cases I(t) are shown in Figures 11–16.

Figure 11. Dynamics of C(t), the actual and modeled trajectories in the interval, from 6 June to
30 June 2020, in (a) Germany and (b) Italy.

Figure 12. Dynamics of C(t), the actual and modeled trajectories in December 2020, in (a) Germany
and (b) Italy.

Figure 13. Dynamics of I(t), the actual and modeled trajectories in the interval, from 6 June to
30 June 2020, in (a) Germany and (b) Italy.
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Figure 14. Dynamics of I(t), the actual and calculated trajectories for the interval of 1 to 20 December 2020,
in a stationary case and with the updated values of ϑ(t), in (a) Germany and (b) Italy.

Figure 15. Dynamics of D(t), the actual and calculated trajectories in the interval from 6 June to
30 June 2020, in a stationary case and with the updated values of ϑ(t), in (a) Germany and (b) Italy.

Figure 16. Dynamics of D(t), the actual and calculated trajectories for the interval of 1 to 20 December 2020,
in a stationary case and with the updated values of ϑ(t), in (a) Germany and (b) Italy.

For Germany, the value of ϑ(t) = 18 days was used in the summer 2020 forecast. In
the winter 2020 case, the ϑ(t) value was 17 days. The deviation of the predicted trajectory of
the number of active cases in summer was 3.22% in terms of the MAPE indicator. When we
used the dynamically updated ϑ(t), the MAPE value dropped to 2.8%. When assessing the
dynamics of epidemic indicators in December 2020, the MAPE for the trajectory of active
infections was 2.7%. When the information was dynamically updated and actual theta
values were used, the variance was reduced to 1.25%. The deviation in the total number
of cases at both prediction intervals did not exceed 0.25%. For the dynamics of the total
number of deaths, the forecast MAPE of the intervals under consideration was 0.7%.
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In the case of Italy, the value of ϑ(t) = 40 days was used when constructing the forecast
in summer. In winter, the value of ϑ(t) was 25 days. The deviation of the number of active
cases in the interval from 6 June to 30 June 2020 was 3.85% (3.3% in the case of a dynamic
update of information about the ϑ(t) value). When assessing the dynamics of epidemic
indicators in December 2020, the MAPE for the estimated trajectory of active infections was
9%. When the information was dynamically updated and actual theta values were used, the
variance was reduced to 0.5%. The deviation of the total number of cases at both prediction
intervals did not exceed 0.1%. For the dynamics of the total number of deaths, the forecast
MAPE of the intervals under consideration did not exceed 5.7%. Summary results of the
assessment of forecast accuracy in terms of MAPE are presented in Table 2.

Table 2. Forecast results for the constant and dynamically updated ϑ(t).

Country ϑ(t) C(t) Forecast
(MAPE)

Constant ϑ(t) Dynamically Updated ϑ(t)

I(t) Forecast
(MAPE)

D(t) Forecast
(MAPE)

I(t) Forecast
(MAPE)

D(t) Forecast
(MAPE)

6–30 June 2020
Russia 25 0.37% 4.14% 3.17% 1.13% 0.4%

Germany 18 0.25% 3.22% 0.7% 2.8% 0.7%
Italy 40 0.1% 3.85% 5.7% 3.3% 5.7%

1–20 December 2020
Russia 20 0.30% 1.10% 3.10% 0.9% 2.9%

Germany 17 0.25% 2.70% 0.7% 1.25% 0.7%
Italy 25 0.10% 9% 5.7% 0.5% 5.7%

Based on [58], we described an example of using the SIR model for forecasting the
dynamics of active cases in Russia during the period from 20 April 2020 to 19 May 2020.
The results of the I(t) forecasts using the SIR and CIRD models are presented in Table 3. It
contains information on real data of the I(t) dynamics, the forecasted trajectories based on
the SIR and CIRD models, as well as the deviations of the predicted values from the real
ones in the form of differences in values. The forecast MAPE for the trajectory of the active
cases using the SIR model was 11%, while the application of the proposed technique based
on the principle of dynamic balance gave a value of 1.85% MAPE for the same time period.

Table 3. The I(t) forecast results for the SIR and CIRD models, for the period from 20 April 2020 to
19 May 2020, in Russia.

Data Actual I(t) I(t) Forecast,
SIR

I(t) Forecast,
CIRD

SIR
Difference

CIRD
Difference

20 April 20 43,270 43,270 0
21 April 20 48,434 46,332 −2102
22 April 20 53,066 49,612 53,268 −3454 −202
23 April 20 57,327 53,122 58,366 −4205 −1039
24 April 20 62,421 56,881 63,526 −5540 −1105
25 April 20 67,657 60,906 68,840 −6751 −1183
26 April 20 73,435 65,215 75,652 −8220 −2217
27 April 20 79,007 69,828 81,619 −9179 −2612
28 April 20 84,235 74,767 87,616 −9468 −3381
29 April 20 88,138 80,055 93,575 −8083 −5437
30 April 20 93,806 85,716 101,582 −8090 −7776
01 May 20 100,042 91,777 108,151 −8265 −8109
02 May 20 107,819 98,265 114,394 −9554 −6575
03 May 20 116,768 105,211 120,414 −11,557 −3646
04 May 20 125,817 112647 129,095 −13,170 −3278
05 May 20 134,054 120,607 135,054 −13,447 −1000
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Table 3. Cont.

Data Actual I(t) I(t) Forecast,
SIR

I(t) Forecast,
CIRD

SIR
Difference

CIRD
Difference

06 May 20 143,065 129,128 140,395 −13,937 2670
07 May 20 151,732 138,249 149,063 −13,483 2669
08 May 20 159,528 148,012 154,160 −11,516 5368
09 May 20 164,933 158,462 158,861 −6471 6072
10 May 20 173,467 169,647 163,065 −3820 10,402
11 May 20 179,534 181,619 166,203 2085 13,331
12 May 20 186,615 194,432 171,332 7817 15,283
13 May 20 192,056 208,144 175,275 16,088 16,781
14 May 20 196,410 222,819 179,801 26,409 16,609
15 May 20 202,199 238,524 184,952 36,325 17,247
16 May 20 206,304 255,329 189,177 49,025 17,127
17 May 20 211,748 273,311 193,418 61,563 18,330
18 May 20 217,747 292,551 197,381 74,804 20,366
19 May 20 220,974 313,136 201,606 92,162 19,368

5. Discussion and Conclusions

The present study focused on the possibilities of analyzing the dynamics of changes
in the indicators of the spread of the COVID-19 during the first wave of epidemic. A
distinctive feature of such periods is the lack of sufficient statistics. On the other hand,
vaccination had not yet been initiated, so everyone could be considered as having been
a potential patient. Percentage growth was used as the most important parameter of the
model, which has a stochastic nature. Another important result of the study was the
description of the principle of dynamic balance of epidemiological processes previously
not used by other researchers to model epidemics. The principle lies in the fact that the
past values of the total number of cases are close enough to the values of the total number
of recovered and deceased patients at the current time. At the same time, the time intervals
through which such a balance is observed change in time rather predictably, although like
the percentage increase, they take random values. This study considered the case when the
dynamic balance characteristic was constant during the forecasting horizon.

Following the proposed approach for choosing the parameters of epidemic modeling,
this paper presented a new discrete CIRD model of the epidemic spread, which uses
random values of the percentage increase and characteristics of the dynamic balance to
describe the dynamics of the total number of cases, the total number of recovered and
deaths, and the number of active cases of the disease. To predict the values of the total
number of cases, the CBRR model was used, which was previously proposed and tested
by the authors. It first predicts the percentage increase in the total number of cases in the
medium term using the precedent method and intelligent algorithms for extracting the
necessary data using a special class of the predictive dynamic regression model (PDRM)
model [58], and then uses the obtained values to predict the total number of confirmed
cases. The forecasting horizon of the CIRD model, as a rule, is limited by a value equal to
the value of the dynamic balance characteristic of the epidemic, calculated on the basis of
the principle of dynamic balance of the epidemiological processes formulated in Theorem
1. Since the characteristic of the dynamic balance is a random variable that depends on
time and takes integer values, the possibilities for using the CIRD model to predict the
dynamics of non-stationary epidemiological processes are still limited. However, as the
calculations show, the forecasting accuracy when using the proposed model, even in the
case of the non-stationarity of epidemiological processes in the forecasting interval, is quite
high (see Figures 11–16). For example, when predicting the dynamics of active cases of the
disease, MAPE deviations in Germany ranged from 2.7% to 3.2%, in Italy, from 3.8% to 9%,
and in Russia, from 1.1% to 4.1%. At the same time, the MAPE indicator for predicting the
dynamics of deaths did not exceed 5.7% for all countries and time intervals considered.
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