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Abstract: Biometrics is a method of recognizing a person based on one or more unique physical and
behavioral characteristics. Since each person has a different structure and shape, it is highly secure
and more convenient than the existing security system. Among various biometric authentication
methods, finger-vein recognition has advantages in that it is difficult to forge because a finger-vein
exists inside one’s finger and high user convenience because it uses a non-invasive device. However,
motion and optical blur may occur for some reasons such as finger movement and camera defocusing
during finger-vein recognition, and such blurring occurrences may increase finger-vein recognition
error. However, there has been no research on finger-vein recognition considering both motion and
optical blur. Therefore, in this study, we propose a new method for increasing finger-vein recognition
accuracy based on a network for the restoration of motion and optical blurring in a finger-vein image
(RMOBF-Net). Our proposed network continuously maintains features that can be utilized during
motion and optical blur restoration by actively using residual blocks and feature concatenation. Also,
the architecture RMOBF-Net is optimized to the finger-vein image domain. Experimental results are
based on two open datasets, the Shandong University homologous multi-modal traits finger-vein
database and the Hong Kong Polytechnic University finger-image database version 1, from which
equal error rates of finger-vein recognition accuracy of 4.290–5.779% and 2.465–6.663% were obtained,
respectively. Higher performance was obtained from the proposed method compared with that of
state-of-the-art methods.

Keywords: RMOBF-Net; motion and optical blurred finger-vein image; finger-vein recognition

MSC: 68T07; 68U10

1. Introduction

Recently, the increasing use of mobile devices has raised the importance of their
security. Accordingly, there is an increasing need for biometric verification systems to solve
the problems of the existing identity authentication system in which forgetting passwords,
ID card theft, and spoofing occur frequently. Biometric recognition refers to a technology
that recognizes individuals using biometric characteristics. It is a method of recognizing a
person based on one or more unique physical and behavioral traits, and it is highly secure
and convenient compared with the existing system because each person has a different
structure and shape of biological characteristics [1]. There are various types of biometric
verifications, such as fingerprint, iris, face, voice, palmprint, and finger-vein recognition.
Among them, finger-vein recognition has the following advantages: (1) the finger-vein
pattern is hidden within the finger and thus is difficult to forge or steal, and (2) non-
invasive image capture ensures both convenience and hygiene. (3) Additionally, since
humans usually have 10 fingers, if an unexpected accident occurs on one finger, another can
be used for authentication [2], and (4) the probability of false recognition is lower than other
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methods since each finger has a unique pattern and equal finger-vein pattern detection
rarely occurs between two individuals [1]. These universality, uniqueness, and permanence
characteristics of finger-veins can be applied to user authentication. However, blur may
occur when capturing a finger-vein image because of various reasons such as light scattering
in the skin layer due to near-infrared (NIR) sensor light used in acquiring finger-vein images,
camera lens focus mismatch, finger thickness difference, depth difference between the finger
skin surface and the finger-vein, and finger movement. The blurred finger-vein image due
to blur is different from the original image registered in the recognition system, and as a
result, the error during finger-vein recognition can be increased, which may cause instability
in the recognition system. Therefore, blurred finger-vein image restoration through image
deblurring is essential. Blur that can occur when capturing a finger-vein image can be
divided into light scattering blur, optical blur, and motion blur. In general, light scattering
from the skin tissue inevitably occurs during NIR light transmission. Therefore, numerous
studies on blurred finger-vein image restoration through scattering removal have been
conducted [3–8]. In addition, optical blur may occur due to the mismatch in the focus
of the camera lens, the distance between the camera lens and the finger-vein, and the
finger thickness of each individual. Therefore, research on optically blurred finger-vein
image restoration has been conducted [9–11]. Additionally, research on motion blurred
finger-vein image restoration due to finger movement during finger-vein recognition was
also conducted [12]. Of course, during finger-vein recognition, a finger is fixed to some
extent on a capturing device, but excitement, anxiety, brain disease, influence of alcohol,
Parkinson’s disease, physiological tremor, dystonia, lack of sleep, and excessive stress may
cause hand tremor, which may result in a motion blurred finger-vein image being captured.
In addition, non-contact devices have been recently expanded due to COVID-19, and when
a user tries to recognize his finger-vein at fast speed using these devices, severe motion blur
can inevitably occur to the input image. Furthermore, if a finger moves during recognition,
not only motion blur but also optical blur may occur because the camera lens is not focused
due to the movement of an object. However, a finger-vein recognition method that accounts
for both motion and optical blur has not been studied. Therefore, in this paper, research
was conducted focusing on motion blur and optical blur restoration that can occur during
finger-vein recognition.

Deblurring approaches for image restoration are largely divided into non-blind and
blind deblurring methods [13]. In non-blind deblurring methods, deblurring is performed
after estimating the blur kernel. The blur kernel can be inferred from knowledge, such
as the amount of motion or defocus blur and camera sensor optics, during the image
formation process, calibrated from the test image, or estimated from the point spread
function (PSF) [14]. After estimating the blur kernel, the original image can be obtained
through a deconvolution operation on the blurred image. From this non-blind restoration
method, a high restoration performance can be expected for the image domain that suits
the predicted blur kernel. However, this method has a disadvantage in that the restoration
performance can be degraded when images are acquired from other devices or when
the dataset for prediction is in a different domain from the existing image. Additionally,
during image capturing in the real environment, various changes such as image rotation,
illumination change, and texture change can occur, so there is a limit to applying non-
blinded methods to the case-specific application. Also, in the real environment, most of the
blur kernels are unknown, and measuring the blur kernel for each case is time-consuming.
On the other hand, in the blind deblurring method, deblurring is performed while the blur
kernel remains unknown. In most environments, it is difficult to know the blur kernel, and
images with numerous domains are acquired from various devices. Therefore, recent blind
deblurring algorithms have been proposed using a training-based method to reduce the
difference between the blur and original sharp images [13,15–17]. Therefore, in this study,
a blurred finger-vein image restoration was performed with the blind deblurring method,
similar to the real environment. In this research, we propose a method of performing motion
and optical blurred finger-vein image restoration using a newly proposed network for the
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restoration of motion and optical blurred finger-vein image and a method of performing
restored finger-vein image recognition using a deep convolutional neural network (CNN).
To restore blurred finger-vein images, our newly proposed network is largely composed of
an encoder, a decoder, and a feature concatenation function without pooling operations,
which can avoid loss of vein information. ResUnet [18] is also composed of an encoder–
decoder and feature concatenation without pooling operations. However, the purpose
of the task and the overall structure of ResUNet and our proposed method are different.
The purpose of ResUNet is for the semantic segmentation of road label data [18], while
our network is for the image restoration of motion and optical blurred finger-vein data.
In detail, ResUNet uses a complex residual block with a ReLU activation function and
mean square error (MSE) loss, while our network uses a simple residual block with a
PReLU activation function and Charbonnier and perceptual loss functions to preserve
overall finger-vein information including vein pattern and texture information. In addition,
compared with ResUNet, larger numbers of residual blocks are used in our network
to restore finger-vein information because the finger-vein image has extremely less high-
frequency information than the road data. Considering these points, we made our proposed
restoration architecture focusing on blurred finger-vein image data. The main contributions
of our study are as follows:

• This is the first study on motion and optical blur finger-vein image restoration that
can occur during finger-vein recognition.

• We propose a new image restoration network, the network for the restoration of
motion and optical blurred finger-vein image (RMOBF-Net). Our proposed network
continuously maintains features that can be utilized during motion and optical blur
restoration by actively using residual blocks and feature concatenation. Although
components such as encoder–decoder, convolutional layers, residual block, and feature
concatenation of RMOBF-Net are well-known, we found out that a combination
of these components is important when restoring the blurred finger-vein image to
improve finger-vein recognition performance.

• The architecture of RMOBF-Net is optimized for the finger-vein image domain. We
also experimented with the state-of-the-art deep learning-based restoration network,
MPRNet and found that more complex architecture showed more degradation of
recognition accuracy. Therefore, we focused on the architecture that is less complex
but can preserve features. As a result, in most cases, our proposed model shows better
performance than the previous methods.

• The RMOBF-Net, recognition network, and blurred image database according to non-
uniform motion blur and blur intensity are publicly available in [19] to allow other
researchers to perform fair performance evaluations.

This paper is organized as follows. Section 2 provides an overview of the previous
studies, and the proposed method is explained in Section 3. In Section 4, comparative
experiments and experimental results with analysis are discussed. Finally, in Section 5, the
conclusions of this paper are summarized.

2. Related Works

Blurring may occur during finger-vein image capturing, and the types of blurs can be
broadly divided into light scattering blur, optical blur, and motion blur. In the case of light
scattering blur, light scattering and the attenuation of the biological tissue occur during the
NIR light transmission of the finger-vein image capture using a NIR sensor. Accordingly,
the quality of the captured finger-vein image can be significantly degraded. This makes
the feature representation of the finger-vein image unreliable and consequently decreases
the recognition accuracy [20]. Research on image restoration for skin scattering blurred
finger-vein image were conducted to resolve this issue. In addition, an optical blur may
occur due to the differences in finger thickness, the difference in depth between the finger
skin surface and finger-vein, and the shortest distance between the camera lens and finger.
Motion blur can also occur due to finger movements. Therefore, some studies have been
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conducted on image restoration for optical or motion blurred finger-vein images. However,
motion and optical blur can occur together for hand tremors caused by illness or stress
and camera lens focus mismatch caused by such hand tremors. However, research has
not been conducted on image restoration for both motion and optical blurred finger-vein
images. Therefore, in this study, previous research analysis can be divided into finger-
vein recognition without blur restoration, finger-vein recognition with skin scattering blur
restoration, finger-vein recognition with optical blur restoration, and finger-vein recognition
with motion blur restoration.

2.1. Finger-Vein Recognition without Blur Restoration

Before deep learning was actively studied, finger-vein recognition was performed
using handcrafted features. Miura et al. [21] extracted and connected the center positions
of veins by calculating local maximum curvature and matching with the registered finger-
vein pattern using template matching. Miura et al. [22] proposed a method of finger-vein
recognition using repeated line tracking, feature extraction, and template matching. Mat-
suda et al. [23] proposed a method of finger-vein recognition using image normalization,
feature extraction, and feature point matching. Lee et al. [24] extracted the minutia points
within the finger-vein region and aligned the image and then extracted the finger-vein
feature with the local binary pattern (LBP) from the aligned image. They proposed a
method for a finger-vein recognition by Hamming distance using the extracted feature.
Peng et al. [25] performed finger-vein segmentation by applying a Gabor filter with eight
orientations to the original image and extracted the finger-vein pattern by fusion by se-
lecting an image that emphasized the finger-vein pattern. Using the extracted finger-vein
patterns, the scale-invariant feature transform (SIFT) features were extracted, and the
method of matching the imposter and genuine using Euclidean distance was proposed.
Rodsi et al. [26] used the local line binary pattern, which transformed the local binary
pattern, to obtain the line binary code for each horizontal and vertical direction and use
the Hamming distance to obtain the matching score. With the matching score obtained
in this way, if it is close to 0, it is recognized as the same finger, and if it is close to 1,
it is recognized as a different finger. The above handcrafted feature-based finger-vein
recognition methods have the advantage of improving recognition performance when
the designed optimal filter is accurately modeled in the image spatial domain. However,
their application to images with different characteristics and the designed filter may cause
performance degradation. In addition, these handcrafted feature-based methods were
applied in constrained environments during filter design, and their performance may be
degraded due to susceptibility to image variants, such as various illumination, misalign-
ment, and distortion. The handcrafted feature-based method has these problems, and
trained feature-based finger-vein recognition methods have been studied to overcome
this problem. Hong et al. [27] and Kim et al. [28] generated a difference image, which is
a difference between the enrolled and matching images, and used it as input for CNN
models such as VGG-16 [29], ResNet-50 [30], or ResNet-101 [30]. The outputs from these
models were divided into two classes, genuine (authentic) matching (matching between
images in the same class) and imposter matching (matching between images in the different
classes), and using these outputs, finger-vein recognition was performed. Qin et al. [31]
divided the original finger-vein image into N × N size for training. Based on the trained
CNN, the probability of the image center pixel being the vein pattern was determined from
the softmax classifier, which is the last layer, followed by finger-vein recognition through
feature matching. Song et al. [32] and Noh et al. [33,34] performed DenseNet-based [35]
finger-vein recognition by creating a composite image between an enrolled image and a
matching image and using it as training and testing images. Shift-matching was also used
to mitigate performance degradation due to misalignment or rotation during the evaluation
process. Qin et al. [36] proposed a finger-vein recognition method that combined the long
short-term memory (LSTM) and CNN. They extracted the finger-vein feature with the
stacked CNN and LSTM (SCNN-LSTM). Based on the extracted features, the genuine and
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imposter images were distinguished based on supervised feature encoding and enrollment
database feature matching. Zhao et al. [37] performed finger-vein recognition using a
shallow CNN using triplet loss, center loss, and dynamic regularization. Since these trained
feature-based finger-vein recognition studies use trained deep-feature, there is no need for
a person to design a filter directly. Additionally, as various forms of images were used for
training, robust performance can be expected from various spatial domains. However, there
are the limitations that many images are required for learning and an intensive training
process is required. Additionally, various types of possible blurring that may occur during
finger-vein image acquisition are not considered.

2.2. Finger-Vein Recognition with Skin Scattering Blur Restoration

Lee et al. [3] measured the PSF of skin scattering blur and used a constrained least
squares (CLS) filter to restore the blur. Yang et al. [4] defined a biological optical model
(BOM) specialized for finger-vein using the principle of light propagation in biological
tissue. Using this defined BOM, they proposed a scattering removal algorithm that leads
to blurred finger-vein image restoration after light scattering component estimation and
scattering radiation estimation. Later, the phase-only-correlation (POC) measure was used
for restored images to perform the finger-vein image matching. Yang et al. [5] used the
weighted biological optical model (WBOM) to measure the finger-vein image degrada-
tion, and the local background illumination map (LBIM) and non-scattered transmission
map (NSTM) were estimated based on the anisotropic diffusion and gamma correction
(ADAGC). Based on these estimation values, image restoration was performed, and the
scattering effect was eliminated through the venous region enhancement based on Gabor
wavelets and inter-scale multiplication operation. Thereafter, the POC measure was used
for restored images for finger-vein image matching. Yang et al. [6] proposed PSF-based
image restoration and BOM-based scattering noise removal considering the structure of
human skin tissue. In addition, Yang et al. [7] designed a biological optical model-based
scattering algorithm to measure the scattering component, scattering radiation, and trans-
mission map. Additionally, they proposed a method of removing the scattering effects
based on the measured values. Later, finger-vein image matching was performed using
the POC measure. In these studies, finger-vein image restoration and recognition were
performed, focusing on light scattering within the skin layer. However, the light scattering
component needs to be accurately estimated for performance improvement for restoration,
which may be time-consuming. In addition, if the domains between the image used for
estimation and the test image are different, there is a disadvantage in that the parame-
ters for image restoration need to be re-estimated. Du et al. [8] newly defined the BOM
and restored the degraded image through a CNN composed of dense blocks. Then, the
finger-vein recognition performance was measured through matrix matching using the
correlation coefficient. They proposed scattering removal and recognition methods by train-
ing the network. These studies proposed scattering blurred finger-vein image restoration
methods, but none considered the motion and optical blur that occur during finger-vein
image capturing.

2.3. Finger-Vein Recognition with Optical Blur Restoration

Lee et al. [9] measured the extent of finger-vein image optical blurring of the finger
edge orthogonal profile based on the average gradient and proposed blurred finger-vein
image restoration considering both the optical blur and scattering blur using the PSF
and CLS filter. Two PSFs each estimated the optical and scattering blur components to
restore the blurred finger-vein image and performed finger-vein image recognition with
the modified Hausdorff distance [38] for restored images. To measure the two PSFs for
optical blur and scattering blur, the performance of this method can be improved when the
parameters are accurately predicted, and accordingly, it has a limitation in that it takes a lot
of processing time. Choi et al. [10] proposed a finger-vein recognition method using several
CNN models by restoring the optical blur included in the original finger-vein image based
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on a modified conditional GAN. He et al. [11] considered two types of blurs, local and
global blur, a pair of defocused blurriness. They proposed GAN-based restoration for local
and global blurred finger-vein images. These methods are robust for images obtained from
various environments. However, the motion blur during image capturing for finger-vein
recognition that may occur from hand tremor is not considered in this method. In addition,
GAN-based restoration methods adopt an additional discriminator, which increases the
training complexity compared with our proposed model, which adopts only encoder and
decoder structure without any discriminator.

2.4. Finger-Vein Recognition with Motion Blur Restoration

Choi et al. [12] proceeded with motion-blurred finger-vein image restoration con-
sidering motion blur that may occur due to hand tremor during finger-vein recognition.
They constructed a dataset by applying motion blur to the original finger-vein image,
restored the image through modified DeblurGAN, and applied DenseNet to perform
finger-vein recognition.

Most of the existing blurred finger-vein image restoration studies consist of scattering
blur restorations, and some consist of optical blur or motion blur restoration. However,
in the real environment, when a finger moves during finger-vein recognition, not only
does motion blur occurs, optical blur can occur simultaneously because the camera lens
is unable to focus due to the object movement. Therefore, in this paper, we propose a
method for motion blur and optical blur restoration through a newly proposed network,
and finger-vein recognition using a deep CNN. Table 1 summarizes the advantages and
disadvantages of the proposed method and previous studies.

Table 1. Comparisons of the previous and proposed finger-vein image restoration methods.

Category Methods Advantages Disadvantages

Without
considering blur

restoration

Handcrafted
feature-based

Local maximum
curvature + template

matching [21]

Recognition
performance can be
improved when the
designed optimal filter
is accurately modeled
in the image
spatia domain.

- When a filter designed from the
source image is applied to an
image with different
characteristics, recognition
performance may decrease.

- Vulnerable to image variants
such as various, illumination,
misalignment, and distortion
because the optimal filter is
designed in a
constraint environment.

Repeated line tracking +
template matching [22]

Feature point
matching [23]

Minutia points +
LBP-based feature

extraction + Hamming
distance [24]

Gabor filter + SIFT
feature matching +

Euclidean distance [25]

Local line binary pattern
+ Hamming distance [26]
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Table 1. Cont.

Category Methods Advantages Disadvantages

Trained
feature-based

Difference image + CNN
+ genuine/imposter

matching
[27,28]

- Efficient as the
optimal filter is
not directly
modeled.

- Various image
features can be
extracted through
training, therefore
robust from
image variation.

Requires large data for training.

Vein pattern maps +
CNN + feature
matching [31]

Composite image + CNN
+ shift matching +
genuine/imposter
matching [32–34]

SCNN-LSTM +
Hamming distance [36]

Skin scattering
blur restoration

Handcrafted
feature-based

PSF + CLS filter [3]

If the light scattering
components are
accurately estimated,
performance can be
improved significantly.

- Blur parameters for the
scattering component must be
accurately measured.

- If the domains between the
image used for scattering
components estimation and the
test image are different, it is
necessary to re-estimate the
parameters for
image restoration.

BOM + POC [4]

WBOM + ADAGC +
LBIM + NSTM + Gabor

wavelets + POC [5]

PSF + BOM [6]

Optical model + POC
[7]

Trained
feature-based

BOM + CNN + matrix
matching [8]

Shows robust
performance through
training with images
obtained from
various environments.

Did not consider optical and
motion blur.

Optical-blur
restoration

Handcrafted
feature-based

2 PSFs for optical blur
and scattering blur +
CLS filter + modified

Hausdorff distance [9]

- Both optical blur
and skin
scattering blur are
considered.

- Performance can
be significantly
improved if the
blur components
are accurately
estimated.

Both optical blur and skin scattering
blur components require accurate
parameter estimation for performance
improvement, which can increase
processing time.

Trained
feature-based

Difference image +
Conditional GAN + CNN

+ genuine/imposter
matching [10]

- Robust
performance
through training,
even with images
obtained from
various
environments.

- Requires large data for training.
- Did not consider motion blur.

Local blur model + global
blur model + GAN-based

restoration [11]

Defines blur models
considering user
condition and
temperature condition.
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Table 1. Cont.

Category Methods Advantages Disadvantages

Motion blur
restoration

Trained
feature-based

Difference image +
Modified DeblurGAN +

CNN +
genuine/imposter

matching [12]

Shows performance
improvement
considering possible
motion blur during
finger-vein recognition.

Requires large data for restoration
and recognition.

Motion blur +
optical blur
restoration

Trained
feature-based

Difference image +
RMOBF-Net + CNN +

genuine/imposter
matching

(Proposed method)

- Continuously
maintains
features that can
be utilized during
motion and
optical blur
restoration.

- Motion and
optical blur that
may occur during
finger-vein
recognition are
considered.

Requires a long (approximately 14 h)
training process.

3. Proposed Method
3.1. Overview of the Proposed Method

Figure 1 presents an overall flowchart of the method proposed in this study. The
finger-vein image is captured from the image capturing device using the NIR sensor
camera (step (1)), and the finger-vein area is obtained through preprocessing (step (2)).
Subsequently, the RMOBF-Net proposed in this research is used to restore the motion and
optical blurred finger-vein image (step (3)). Then, the difference image between the enrolled
and matching images is generated from the restored finger-vein images, and the difference
image is used as input in the deep CNN model for finger-vein recognition (step (4)). Based
on the final output score obtained from deep CNN, it distinguishes between genuine
(authentic) matching or imposter matching (step (5)) and performs finger-vein recognition
(step (6)).
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3.2. Preprocessing of Finger-Vein Images

Preprocessing is necessary to find the region of interest (ROI), which is a key part
of finger-vein recognition [12]. The first process for this is to obtain the image presented
in Figure 2b by binarization on the captured raw finger image. However, using simple
binarization thresholding does not perfectly eliminate the background. Therefore, the Sobel
filter is applied to the original finger-vein image to extract the finger edge and obtain the
edge map. Then, the edge map is subtracted from the binarized image to create the final
edge map. Area thresholding is applied to the remaining regions aside from the finger
region to obtain the background-eliminated image, as shown in Figure 2c. In addition,
Equations (1) and (2) are used for the binarized mask B of Figure 2c to correct the image
misalignment by the in-plane rotation.

σ11=
∑(x,y)∈B(y−cy)

2 · M(x,y)
∑(x,y)∈B M(x, y)

σ12=
∑(x,y)∈B(x−cx)(y−cy) · M(x,y)

∑(x,y)∈B M(x, y)

σ22=
∑(x,y)∈B(x−cx)

2 · M(x,y)
∑(x,y)∈B M(x, y)

(1)

θ =


tan−1

{
σ11−σ22+

√
(σ11−σ22)

2+4σ2
12

−2σ12

}
i f σ11 > σ22

tan−1

{
−2σ12

σ22−σ11+
√
(σ22−σ11)

2+4σ2
12

}
i f σ11 ≤ σ22

(2)
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Figure 2. Original finger-vein image preprocessing: (a) original image; (b) binarized image; (c) back-
ground removed image; (d) in-plane rotation compensation; (e) removal of left and right areas; and
(f) detected finger-vein ROI image.

In Equation (1), M(x, y) and (cx, cy) are the image pixel value and the central co-
ordinate, respectively. Based on this, the angle of rotation θ of Equation (2) is calculated
to compensate for the in-plane rotation [39]. Through this process, a corrected image is
obtained, as shown in Figure 2d. The left and right parts of Figure 2d are eliminated based
on the predetermined value to obtain Figure 2e to focus on the finger-vein area. Finally, as
shown in Figure 2f, the final ROI finger-vein image is obtained with the created ROI mask.
We resized rectangular finger-vein images to quadratic ones so that the resized images
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could be the inputs to the proposed RMOBF-Net and DenseNet for blur restoration and
finger-vein recognition, respectively.

3.3. RMOBF-Net-Based Restoration of Motion and Optical Blurred Finger-Vein Images

Unlike most image enhancement methods that subjectively process images to improve
visual quality, most image restorations that change the image similar to the original image
can be viewed as objective image processing [40]. Image restoration is an attempt to
reconstruct a degraded image using prior knowledge of image degradation. Therefore,
the restoration in image processing is aimed toward the application of the degradation
modeling and its inverse process to restore the original image. Based on this, the blur
model can be expressed as the following [41]:

g(x, y) = h(x, y) ∗ f (x, y) + η(x, y) (3)

f̂ (x, y) ≈ f (x, y) (4)

In Equation (3), g(x, y) is the degraded image, h(x, y) is the degradation function,
∗ is the convolution operation, f (x, y) is the input original image, and η(x, y) is the noise.
In Equation (4), f̂ (x, y) represents the estimation of the original image through image
restoration, and the objective of image restoration is to make f̂ (x, y) similar to the original
image f (x, y). Therefore, it is important to more accurately estimate the degradation
function h(x, y) and noise η(x, y). Early studies performed image restoration by defining
the blur model as above and directly inferring the parameters. However, when applied
in a real environment, the accurate estimation of h(x, y) and η(x, y) is extremely difficult
and time-consuming. In addition, due to the recent increase in digital devices, images
of various types can be obtained. In this case, various types of images different from the
source images referenced during parameter estimation can be input, and performance
degradation may occur when estimated h(x, y) and η(x, y) are applied. Considering this
point, in this study, we propose a new blurred finger-vein image restoration method that
finds motion and optical restoration models through a training-based method rather than
directly finding parameters for restoration. In the proposed method, the optimal filter
is designed through training that when Fblur, the motion and optical blurred finger-vein
image is given. Therefore, directly estimating h(x, y) and η(x, y) is no longer necessary.
The objective of the proposed method is to make the restored finger-vein image Fres similar
to the original finger-vein image Fori. A detailed explanation of RMOBF-Net, which is the
restoration of motion and optical blurred finger-vein network proposed in this paper, is
presented in the following sub-section.

3.3.1. Architecture of RMOBF-Net

The architecture for the blurred finger-vein image restoration RMOBF-Net is shown
in Figure 3 and Table 2. RMOBF-Net is composed of an encoder that extracts features, a
decoder that restores the blurred finger-vein image using the extracted features, a residual
block that continuously connects the information of the previous step, and a concatenation
that sends the extracted information from each layer of the encoder to the decoder. To
extract information about an image and visualize the extracted information as an output
image according to the task, an encoder–decoder type structure is effective, and this
structure was also used in recent restoration studies [13,15–17]. In the upsampling layer
of the decoder part, a transpose convolution, which is the representative deconvolution
operation, was considered, but checkerboard artifacts may occur in the restored output
image [42]. Instead, bilinear interpolation is used to increase the feature size.
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Table 2. Description of the proposed RMOBF-Net (× 3 means the number of iterations).

Layer
Input Feature Size
(Height ×Width ×

Channel)

Output Feature
Size

Size of Kernel
(Height ×Width) Stride Padding

Input (enc 0) 256 × 256 × 3

Encoder

Conv 256 × 256 × 3 256 × 256 × 48 3 × 3 1 1

Residual block × 3 (enc 1) 256 × 256 × 48 256 × 256 × 48 3 × 3 1 1

Downsample + Conv 256 × 256 × 48 128 × 128 × 96 3 × 3 1 1

Residual block × 3 (enc 2) 128 × 128 × 96 128 × 128 × 96 3 × 3 1 1

Downsample + Conv 128 × 128 × 96 64 × 64 × 192 3 × 3 1 1

Residual block × 3 (enc 3) 64 × 64 × 192 64 × 64 × 192 3 × 3 1 1

Downsample + Conv 64 × 64 × 192 32 × 32 × 288 3 × 3 1 1

Residual block × 3 (enc 4) 32 × 32 × 288 32 × 32 × 288 3 × 3 1 1

Downsample + Conv 32 × 32 × 288 16 × 16 × 384 3 × 3 1 1

Residual block × 3 (enc 5) 16 × 16 × 384 16 × 16 × 384 3 × 3 1 1

Downsample + Conv 16 × 16 × 384 8 × 8 × 480 3 × 3 1 1

Residual block × 3 8 × 8 × 480 8 × 8 × 480 3 × 3 1 1
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Table 2. Cont.

Layer
Input Feature Size
(Height ×Width ×

Channel)

Output Feature
Size

Size of Kernel
(Height ×Width) Stride Padding

Decoder

Upsample (dec 5) 8 × 8 × 480 16 × 16 × 384 3 × 3 1 1

Concat 16 × 16 × 384 (dec 5)
16 × 16 × 384 (enc 5) 16 × 16 × 768

Conv 16 × 16 × 768 16 × 16 × 384 1 × 1 1 0

Residual block × 3 16 × 16 × 384 16 × 16 × 384 3 × 3 1 1

Upsample + Conv (dec 4) 16 × 16 × 384 32 × 32 × 288 3 × 3 1 1

Concat 32 × 32 × 288 (dec 4)
32 × 32 × 288 (enc 4) 32 × 32 × 576

Conv 32 × 32 × 576 32 × 32 × 288 1 × 1 1 0

Residual block × 3 32 × 32 × 288 32 × 32 × 288 3 × 3 1 1

Upsample + Conv (dec 3) 32 × 32 × 288 64 × 64 × 192 3 × 3 1 1

Concat 64 × 64 × 192 (dec 3)
64 × 64 × 192 (enc 3) 64 × 64 × 384

Conv 64 × 64 × 384 64 × 64 × 192 1 × 1 1 0

Residual block × 3 64 × 64 × 192 64 × 64 × 192 3 × 3 1 1

Upsample + Conv (dec 2) 64 × 64 × 192 128 × 128 × 96 3 × 3 1 1

Concat 128 × 128 × 96 (dec 2)
128 × 128 × 96 (enc 2) 128 × 128 × 192

Conv 128 × 128 × 192 128 × 128 × 96 1 × 1 1 0

Residual block × 3 128 × 128 × 96 128 × 128 × 96 3 × 3 1 1

Upsample + Conv (dec 1) 128 × 128 × 96 256 × 256 × 48 3 × 3 1 1

Concat 256 × 256 × 48 (dec 1)
256 × 256 × 48 (enc 1) 256 × 256 × 96

Conv 256 × 256 × 96 256 × 256 × 48 1 × 1 1 0

Residual block × 3 256 × 256 × 48 256 × 256 × 48 3 × 3 1 1

Conv (dec 0) 256 × 256 × 48 256 × 256 × 3 3 × 3 1 1

Concat 256 × 256 × 3 (enc 0)
256 × 256 × 3 (dec 0) 256 × 256 × 6

Ouput 256 × 256 × 6 256 × 256 × 3 1 × 1 1 0

Inspired by [13,16,17], the residual block [30] is actively used at the encoder and
decoder of RMOBF-Net. In the case of the finger-vein image, the vein pattern information
and the texture detail are used for classification. Therefore, it is important to restore this
vein pattern and texture detail information. The RMOBF-Net encoder is used to extract
the abstract feature of the finger-vein, and the vein pattern or the texture data can be
lost during the extraction of this abstract feature. The residual blocks are added for each
layer to minimize this information loss. Within the residual block, a function exists that
continuously delivers feature information from the previous layers to the following layers,
and through this, the finger-vein information is continuously maintained. To utilize this
advantage, residual blocks are also used in the decoder. The structure of the residual block
is shown in Figure 4, and it was applied 3 times to each layer. In addition, a parametric
rectified linear unit (PReLU) [43] is used as the activation function in the middle of the
residual block. Unlike the rectified linear unit (ReLU) [44] that treats all negative input
values of the feature into 0, PReLU is an activation function that can preserve negative
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values. PReLU is used to restore the blurred finger-vein image by preserving the overall
information including vein pattern and texture information and transferring it to the next
layer. Unlike the leaky rectified linear unit (leaky ReLU) [45], which has to directly find
the optimal value by applying a predetermined constant to the negative slope coefficient
to process the negative values of the feature, PReLU efficiently finds optimal parameters
of the negative slope coefficient through training by setting learnable parameters. The
equation of PReLU used in this paper is as follows:

f (yi) =

{
yi, i f yi > 0

aiyi, i f yi ≤ 0
(5)
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The yi of PReLU is the input value of the non-linear activation function of the ith
channel, and ai is the controlling coefficient of the slope of the negative part as the train-
able parameter.

Finally, inspired by [46], feature concatenation is performed such that the finger-vein
feature information extracted from the encoder part is concatenated to the decoder part for
reference when restoring the blurred finger-vein image. In the RMOBF-Net, the encoder
features are channel-wise concatenated with the decoder features, and then the number of
channels is adjusted to be the same as the encoder part using 1 × 1 convolution.

3.3.2. Loss Function

To optimize RMOBF-Net, two types of loss functions are used, Charbonnier and
perceptual loss functions. Inspired by [17,47–49], the Charbonnier loss function is applied
as the first loss function. Unlike the L2 loss function, the Charbonnier loss function can
handle outliers and improve restoration accuracy [47]. Therefore, the Charbonnier loss
function is applied in this study, which is expressed as:

Lchar =

√
(Fres − Fori)

2 + ε2 (6)

In the equation, Fres is the restored finger-vein image, and Fori is the original finger-vein
image. The optimal ε used in this study is obtained from the training data, which is set
to 10−3 in all experiments. Using Charbonnier loss, the overall structure of the finger-
vein image can be obtained by the Equation (6). However, using the Charbonnier loss
function alone can produce blurry results because its role is not to calculate the difference
between local information or feature information but simply to calculate the average pixel
differences between the output and target image [50]. To improve this blurry output and
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to restore feature information similar to the original finger-vein pattern a perceptual loss
function is applied as shown below:

Lperceptual =
1

W∅H∅

√√√√W∅

∑
x=1

H∅

∑
y=1

(
∅(Fori)x,y −∅(Fres)x,y

)2
(7)

∅ is the feature map extracted from the network trained with original finger-vein
images, and W∅ and H∅ are the width and height of the feature map, respectively. In case of
original perceptual loss [51], VGGNet [29] pretrained with ImageNet database [52] is used.
However, in this research, DenseNet-161 [35], a deeper network than VGGNet, trained
with original finger-vein images, is used for extracting the finger-vein feature maps that
are used for the calculation of perceptual loss of Equation (7). The feature map extracted
from the layer before the second dense block is used in the perceptual loss function. In
general, networks for classification tasks preserve the overall spatial structure of abstracted
features extracted from deeper layers. However, lower-level features, such as color, corner,
edge, and texture, cannot be preserved [51,53]. In the blurred finger-vein image restoration
task, it is important to restore the abstracted feature to its original, but the recognition
performance can vary according to differences in finger-vein pattern (edge information)
or texture between images. Therefore, it is important to restore the low-level features as
well and to restore more accurate finger-vein pattern and texture features, the network
trained with the original finger-vein images is used to determine the difference between
the restored and target finger-vein image features from the earlier layer to achieve a more
accurate finger-vein pattern and texture feature restoration, and the difference is applied to
the loss. In the case of DenseNet, since the architecture itself densely connects the layers at
the front and back, the features extracted from the previous layers can be preserved to a
higher extent. Considering this point, during training and testing for blurred finger-vein
image restoration, it can be helpful to restore features such as vein pattern and texture of
finger-vein to be more similar to the original. The final loss that applies the two losses from
Equations (6) and (7) is expressed as:

Ltotal = Lchar + Lperceptual (8)

By combining these two loss functions of Charbonnier and perceptual loss, overall
finger-vein structure can be restored by the Charbonnier loss function, and vein pattern
and texture detail can be restored by perceptual loss. Because of these advantages, using
these two loss functions can be helpful for blurred finger-vein image restoration.

3.4. Finger-Vein Recognition by Deep CNN

In this study, deep CNN-based finger-vein recognition is performed with a difference
image as input. We used difference images based on the previous research [27] that showed
better finger-vein recognition performance using the difference images compared with that
using original images. The difference image is created by calculating the difference between
the enrolled and matching images. Image differencing is a method that can confirm the
change between images and generates an image by calculating the pixel difference between
images to be compared [54]. For this reason, it is sensitive to changes between images. In
the case of the finger-vein dataset used in this study, because the pixel difference between
images of the same class tends to be small, the difference values are close to 0. Accordingly,
when generating a difference image, the image that is mostly occupied by dark areas is
generated as an output. In contrast, pixel difference exists between images of different
classes, and the difference values vary. Therefore, an image containing mostly bright areas
is generated as output during difference image generation. Genuine and imposter matching
can be expressed from a single image by utilizing image differencing and finger-vein image
characteristics during finger-vein recognition [12]. Genuine matching or authentic matching
refers to matching when the input matching image is of the same class as the enrolled
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image, and imposter matching refers to matching when the matching image is of a different
class from the enrolled image. When looking at the output of the image through image
differencing, in general, images with many black areas become genuine matching cases,
and images with many bright areas become imposter matching cases. For the finger-vein
datasets used in this study, since the similarity of image features between intra-classes is
high and the similarity between inter-classes is low, it is possible to distinguish genuine
matching and imposter matching through difference images, therefore, it is possible to
measure the finger-vein recognition performance. The samples of finger-vein difference
images generated relevant to the dataset used in this study are shown in Figure 5c,f.
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The generated difference image is used as an input into the classification network for
finger-vein recognition. DenseNet-161 is used in this study as the classification network [35].
DenseNet uses dense connectivity between layers that concatenate the feature maps. This
may reduce information loss that occurs during feature extraction and enhance classifica-
tion performance. In this study, the DenseNet-161 model pretrained with the ImageNet
database [52] is fine-tuned with the finger-vein training data. The difference images are
used as training and testing data for the DenseNet-161. Since finger-vein recognition is
performed using the difference image, the output class of the model is set to two classes,
genuine matching and imposter matching. FAR is the error rate of incorrectly accepting
imposter data as genuine data, and FRR is the error rate of incorrectly rejecting genuine
data as imposter data [55]. The point where FAR and FRR become equal is called the equal
error rate (EER), and this is used to measure the final finger-vein recognition performance.

Vertical and horizontal shifts, rotation, and illumination changes can occur when
capturing finger-vein images. During finger-vein recognition, performance degradation
due to this variation can be resolved to some extent when adopting the shift matching of
eight directions: up, down, right, left, and diagonal [32]. However, our research focuses
on finger-vein restoration rather than finger-vein recognition. Therefore, we did not apply
the shift matching for finger-vein recognition; instead, we applied various modules for
finger-vein restoration of optical and motion blurring instead.

4. Experiments and Analysis
4.1. Datasets for the Experiments

In this study, two types of finger-vein datasets, the Shandong University homologous
multimodal trait finger-vein database (SDU-DB) [56] and session 1 of the Hong Kong Poly-
technic University finger-image database version 1 (PolyU-DB) [57] were used. In SDU-DB,
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six images per person consisting of the index, middle, and ring finger images of both hands
were obtained from 106 participants. Therefore, the original finger-vein dataset of SDU-DB
consists of a total of 3816 images (106 participants × 2 hands × 3 fingers × 6 images). In
PolyU-DB, six images of the index and middle fingers of the left hand of 156 participants
were obtained. Therefore, PolyU-DB consists of a total of 1872 images (156 subjects ×
2 fingers × 6 images) of the original finger-vein dataset. Figure 6 shows sample images of a
finger from SDU-DB and PolyU-DB.

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 42 
 

 

   
(d) (e) (f) 

Figure 5. Examples of the difference image between the enrolled and matching images. (a) Enrolled 
image, matching image of the same class as (a–c) difference image of (a,b) enrolled image, matching 
image of class different to (d–f) difference image of (d,e). 

The generated difference image is used as an input into the classification network for 
finger-vein recognition. DenseNet-161 is used in this study as the classification network 
[35]. DenseNet uses dense connectivity between layers that concatenate the feature maps. 
This may reduce information loss that occurs during feature extraction and enhance clas-
sification performance. In this study, the DenseNet-161 model pretrained with the 
ImageNet database [52] is fine-tuned with the finger-vein training data. The difference 
images are used as training and testing data for the DenseNet-161. Since finger-vein recog-
nition is performed using the difference image, the output class of the model is set to two 
classes, genuine matching and imposter matching. FAR is the error rate of incorrectly ac-
cepting imposter data as genuine data, and FRR is the error rate of incorrectly rejecting 
genuine data as imposter data [55]. The point where FAR and FRR become equal is called 
the equal error rate (EER), and this is used to measure the final finger-vein recognition 
performance. 

Vertical and horizontal shifts, rotation, and illumination changes can occur when 
capturing finger-vein images. During finger-vein recognition, performance degradation 
due to this variation can be resolved to some extent when adopting the shift matching of 
eight directions: up, down, right, left, and diagonal [32]. However, our research focuses 
on finger-vein restoration rather than finger-vein recognition. Therefore, we did not apply 
the shift matching for finger-vein recognition; instead, we applied various modules for 
finger-vein restoration of optical and motion blurring instead. 

4. Experiments and Analysis 
4.1. Datasets for the Experiments 

In this study, two types of finger-vein datasets, the Shandong University homologous 
multimodal trait finger-vein database (SDU-DB) [56] and session 1 of the Hong Kong Pol-
ytechnic University finger-image database version 1 (PolyU-DB) [57] were used. In SDU-
DB, six images per person consisting of the index, middle, and ring finger images of both 
hands were obtained from 106 participants. Therefore, the original finger-vein dataset of 
SDU-DB consists of a total of 3816 images (106 participants × 2 hands × 3 fingers × 6 im-
ages). In PolyU-DB, six images of the index and middle fingers of the left hand of 156 
participants were obtained. Therefore, PolyU-DB consists of a total of 1872 images (156 
subjects × 2 fingers × 6 images) of the original finger-vein dataset. Figure 6 shows sample 
images of a finger from SDU-DB and PolyU-DB. 

   
(a) 

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 42 
 

 

   
(b) 

   
(c) 

   
(d) 

Figure 6. Examples of images obtained from the same finger. (a,b) SDU-DB and (c,d) PolyU-DB. 

Since there are not many total numbers of images in the datasets, all experiments in 
this research were performed with twofold cross-validation. Because twofold cross-vali-
dation was used, the data of the class used in training were not used for testing, and vice 
versa (open world setting). In addition, 1/3 and 1/5 of the training data were used as vali-
dation data for restoration and recognition, respectively. The average of the EER meas-
ured from twofold cross-validation experiments was used as the final finger-vein recog-
nition performance. 

4.2. Motion and Optical Blurred Datasets for the Finger-Vein Image Restoration 
Figure 7 shows original and blurred finger-vein images captured by the actual finger-

vein acquisition device [9] in a real environment. As shown in Figure 7b, vein patterns 
disappeared due to the optical and motion blurs. By referring to these blurred images of 
Figure 7b, which were captured by the actual finger-vein acquisition device, our blurred 
images of Figures 8b and 9b were generated, and they show similar finger-vein shape and 
texture to those of Figure 7b. Therefore, we confirmed that the blur we added to the finger 
vein samples corresponds to the blur levels occurring in a practical acquisition scenario. 

To restore this finger-vein pattern, a blurred dataset is necessary for motion and op-
tical blur restoration of finger-vein images. As SDU-DB and PolyU-DB databases were 
constructed in a controlled environment, motion and optical blurred finger-vein datasets 
are not constructed. Existing motion and optical blurred finger-vein datasets do not exist. 
For the restoration of blurred finger-vein images by our FMOBF-Net or other state-of-the-
art models, pairs of ground-truth (without blurring) and blurred images are required, and 
it is difficult to acquire the corresponding ground-truth finger-vein image in case of con-
structing real database of optical and motion blurred finger-vein image. Therefore, to con-
struct datasets for motion and optical blurred finger-vein restorations, motion blurring 
kernels were first applied to SDU-DB and PolyU-DB, referring to Bascle et al. [58]. After 
that, a motion and optical blurred finger-vein database was constructed by applying a 
Gaussian kernel for the optical blurring effect. In this case, the original images of SDU-DB 
and PolyU-DB were used as ground-truth data. In the real environment, the motion may 
occur in various directions. Therefore, non-uniform (random) motion blurring kernels 
were applied instead of uniform motion blurring kernels. Random motion blurring ker-
nels were generated by referring to the method proposed by Kupyn et al. [13]. In the case 
of the Gaussian kernel for optical blurring, referring to Choi et al. [10], filter sizes of 11 × 
11, 15 × 15, and 19 × 19, and standard deviations of 11, 15, and 19 were applied to generate 
data. Figures 8 and 9 represent the motion and optical blurred images generated for the 

Figure 6. Examples of images obtained from the same finger. (a,b) SDU-DB and (c,d) PolyU-DB.

Since there are not many total numbers of images in the datasets, all experiments
in this research were performed with twofold cross-validation. Because twofold cross-
validation was used, the data of the class used in training were not used for testing, and
vice versa (open world setting). In addition, 1/3 and 1/5 of the training data were used
as validation data for restoration and recognition, respectively. The average of the EER
measured from twofold cross-validation experiments was used as the final finger-vein
recognition performance.

4.2. Motion and Optical Blurred Datasets for the Finger-Vein Image Restoration

Figure 7 shows original and blurred finger-vein images captured by the actual finger-
vein acquisition device [9] in a real environment. As shown in Figure 7b, vein patterns
disappeared due to the optical and motion blurs. By referring to these blurred images of
Figure 7b, which were captured by the actual finger-vein acquisition device, our blurred
images of Figures 8b and 9b were generated, and they show similar finger-vein shape and
texture to those of Figure 7b. Therefore, we confirmed that the blur we added to the finger
vein samples corresponds to the blur levels occurring in a practical acquisition scenario.
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To restore this finger-vein pattern, a blurred dataset is necessary for motion and
optical blur restoration of finger-vein images. As SDU-DB and PolyU-DB databases were
constructed in a controlled environment, motion and optical blurred finger-vein datasets
are not constructed. Existing motion and optical blurred finger-vein datasets do not exist.
For the restoration of blurred finger-vein images by our FMOBF-Net or other state-of-
the-art models, pairs of ground-truth (without blurring) and blurred images are required,
and it is difficult to acquire the corresponding ground-truth finger-vein image in case of
constructing real database of optical and motion blurred finger-vein image. Therefore, to
construct datasets for motion and optical blurred finger-vein restorations, motion blurring
kernels were first applied to SDU-DB and PolyU-DB, referring to Bascle et al. [58]. After
that, a motion and optical blurred finger-vein database was constructed by applying a
Gaussian kernel for the optical blurring effect. In this case, the original images of SDU-DB
and PolyU-DB were used as ground-truth data. In the real environment, the motion may
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occur in various directions. Therefore, non-uniform (random) motion blurring kernels
were applied instead of uniform motion blurring kernels. Random motion blurring kernels
were generated by referring to the method proposed by Kupyn et al. [13]. In the case
of the Gaussian kernel for optical blurring, referring to Choi et al. [10], filter sizes of
11 × 11, 15 × 15, and 19 × 19, and standard deviations of 11, 15, and 19 were applied to
generate data. Figures 8 and 9 represent the motion and optical blurred images generated
for the SDU-DB and PolyU-DB datasets, respectively. The blurred finger-vein database
constructed in this research can be regarded as reflecting the real environment as shown in
Figures 7–9 because of the blur kernels of random and various types of motion are applied.
Blurred images were generated with the same number of original images as 3816 images
for SDU-DB and 1872 images for PolyU-DB, respectively.

4.3. Data Augmentation and Experimental Setup

In this study, data augmentation was used during RMOBF-Net and DenseNet-161
training to reduce training overfitting and improve the generality of the model. When
training RMOBF-Net, an online augmentation method for selectively adjusting gamma
correction, color saturation, and contrast was applied. During DenseNet-161 training,
off-line augmentation was used that increased the number of each image by nine times
including the original image by applying five-pixel shifting based on eight directions:
combinations of up, down, left, and right were used for each image. Additionally, for the
generation of difference images for training, the intra-class distance was calculated among
the augmented images, and only one image was selected as the enrolled image while the
rest were used as matching images. A difference image for genuine matching and imposter
matching is generated using the selected enrolled image and matching image. In this case,
the number of imposter matching increases by 635 times for SDU-DB and 311 times for
PolyU-DB compared to genuine matching. When this imposter matching data is used
as it is, the performance for genuine matching is degraded due to data imbalance. To
solve this problem, a random selection method was applied to the imposter matching data.
The number of data to be randomly selected was made equal to the number of genuine
matching cases so that class imbalance did not occur. The above augmentation and random
selection methods were equally applied to both SDU-DB and PolyU-DB datasets.

In all our experiments, we used a desktop computer with Intel® Core™ i7-9700F
CPU with 32 GB of main memory equipped with NVIDIA GeForce GTX 3060 graphics
processing unit (GPU) with a graphics memory of 12 GB [59] on a Linux operating system.
The training and testing algorithms of our network were implemented with a PyTorch
framework (version 1.8.1) [60].

4.4. Training of RMOBF-Net and DenseNet-161

The number of max epochs, mini-batch size, and learning rate used as training param-
eters of RMOBF-Net were set to 300, 16, and 0.00005, respectively. In this study, adaptive
moment estimation (Adam) optimization [61] was used to optimize the RMOBF-Net.

Figure 10 shows the RMOBF-Net training and validation loss graphs according to each
epoch. As shown in Figure 10, although the training loss values still seem to have a little
decreasing trend as the epoch increased, we stopped the training at 300 epochs because
further training by more than 300 epochs can cause the overfitting of RMOBF-Net with
training data and validation loss graph was already converged. Therefore, the RMOBF-Net
was considered to have been sufficiently trained with the given training data. Additionally,
the RMOBF-Net validation loss graph according to the epoch are presented in Figure 10. As
shown in the figure, the validation loss values were converged with the increase in epoch,
indicating that the RMOBF-Net used in this study is not overfitted with the training data.
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dation loss, which uses the difference image of the images restored with RMOBF-Net as 

Figure 10. Training and validation loss graphs of RMOBF-Net. (a) trained until 300 epochs (attached
in paper), (b) trained until 1000 epochs.

For the CNN model for finger-vein recognition, training and testing were performed
with DenseNet-161 to measure performance. The number of max epochs, mini-batch size,
and learning rate used as training hyperparameters of DenseNet-161 were set to 30, 8,
and 0.0001, respectively. To optimize DenseNet-161, a stochastic gradient descent (SGD)
method [62] was used.

The difference image was used to classify genuine and imposter matching. Therefore,
the final number of output classes of the model was set to 2. During training, fine-tuning
was performed using ImageNet pretrained weights. The DenseNet-161 training and val-
idation loss, which uses the difference image of the images restored with RMOBF-Net
as the input, and the loss and accuracy graphs are shown in Figure 11. Based on the
training loss and validation graphs, the training loss converges to 0 and accuracy to 100.
Therefore, DenseNet-161 was sufficiently trained with the training data. As shown in
Figure 11, although the validation loss values still seem to have a little fluctuation trend
as the epoch increased, we stopped the training at 30 epochs because further training by
more than 30 epochs can cause the overfitting of DenseNet-161 with training data and the
validation accuracy graph was already converged whereas validation loss graph was still a
little fluctuated.
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Figure 11. Training and validation loss and accuracy graphs of DenseNet-161 using images restored
by the proposed RMOBF-Net: (a) trained until 30 epochs (attached in paper), (b) trained until
100 epochs.
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4.5. Testing Results of the Proposed Method
4.5.1. Evaluation Metrics

In this experiment, the similarity between the restored image of motion and optical
blurred finger-vein image and the original image was quantitatively evaluated. For the
numerical comparison, the peak-signal-to-noise ratio (PSNR) [63] and structural similarity
(SSIM) [64] were measured. Equations (9) and (10) define MSE and PNSR, respectively:

MSE =
1

hw

h−1

∑
i=0

w−1

∑
j=0

[Fori(i, j)− Fres(i, j)]2 (9)

PSNR = 10log10

(
MAXi

2

MSE

)
(10)

where Fres is the restored finger-vein image by the state-of-the-art methods or the proposed
method and Fori is the original finger-vein image. Symbols h and w are the height and
width of the image, respectively. MAXi is the maximum pixel value of the input image.
Equation (11) is the mathematical equation of SSIM:

SSIM =
(2µoµr + C1)(2σor + C2)

(µo2 + µr2 + C1)(σo2 + σr2 + C2)
(11)

Here, µr and σr are the average and standard deviations of the pixel value of the
restored image, respectively. µo and σo are the average and standard deviations of the
pixel value of the original image, respectively. σor is the covariance of the two types of
images. C1 and C2 are constants that prevent the denominator value from becoming 0.
The original and restored images are similar when SSIM is close to 1. This indicates the
superiority of the reconstruction algorithm in terms of image quality. Additionally, the EER
of finger-vein recognition described in Section 3.4 was used as a metric for evaluating the
recognition performance.

4.5.2. Testing Result with SDU-DB
4.5.2.1. Performance Evaluation of Image Quality

Using the evaluation metrics of Equations (9)–(11), the motion and optical blurred im-
age restoration quality for our proposed method and the state-of-the-art methods were nu-
merically evaluated as shown in Table 3. Table 3 presents that the numerical values of PSNR
in all cases were superior in RMOBF-Net. The numerical value of SSIM hardly differed from
that of the best-performing SRN-DeblurNet. These restoration performances show that
RMOBF-Net performed well in motion and optical blur restoration. Figures 12–14 show
the finger-vein images reconstructed through the state-of-the-art methods and RMOBF-Net.
In these figures, the motion and optical blurred finger-vein image restoration performance
was superior in RMOBF-Net compared with the state-of-the-art methods as the restored
image was closest to the original image.

However, the purpose of the motion and optical blurred image restoration in this
study is not simply to improve the image quality to be close to the original image but to
improve the accuracy of finger-vein recognition, in the following Sections 4.5.2.2 and 4.5.2.3,
performance was evaluated in terms of the EER of finger-vein recognition.
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Table 3. Comparisons of motion and optical blur restoration performance of SDU-DB by state-of-the-
art methods and proposed RMOBF-Net (11 × 11, 15 × 15, and 19 × 19 mean the size of Gaussian
blur filter).

Methods
11 × 11 15 × 15 19 × 19

PSNR SSIM PSNR SSIM PSNR SSIM

DeblurGAN [13] 29.79 0.910 29.764 0.914 29.839 0.916

DeblurGANv2 [15] 31.092 0.913 31.058 0.916 30.545 0.890

SRN-DeblurNet [16] 32.705 0.958 32.58 0.957 32.553 0.957

MPRNet [17] 31.395 0.948 30.239 0.937 31.158 0.947

RMOBF-Net 32.775 0.955 32.668 0.954 32.574 0.954
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Figure 12. Examples of restored SDU-DB finger-vein images using the state-of-the-art methods and
the proposed RMOBF-Net (motion blur with Gaussian blur filter of 11 × 11): (a) original image,
(b) blurred image and images restored by (c) DeblurGAN, (d) DeblurGANv2, (e) SRN-DeblurNet,
(f) MPRNet, and (g) RMOBF-Net.
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Figure 13. Examples of restored SDU-DB finger-vein images using the state-of-the-art methods and
the proposed RMOBF-Net (motion blur with Gaussian blur filter of 15 × 15): (a) original image,
(b) blurred image and images restored by (c) DeblurGAN, (d) DeblurGANv2, (e) SRN-DeblurNet,
(f) MPRNet, and (g) RMOBF-Net.
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Figure 14. Examples of restored SDU-DB finger-vein images using the state-of-the-art methods and
the proposed RMOBF-Net (motion blur with Gaussian blur filter of 19 × 19): (a) original image,
(b) blurred image and images restored by (c) DeblurGAN, (d) DeblurGANv2 (e) SRN-DeblurNet,
(f) MPRNet, and (g) RMOBF-Net.

4.5.2.2. Ablation Studies

For SDU-DB, as ablation studies, experiments were conducted depending on whether
motion and optical blur were applied. The method proceeded in the following five ways:
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Scheme 1: After training the DenseNet-161 classifier with original finger-vein training
data without blurring, performance measurement on original finger-vein testing data

Scheme 2: After training the DenseNet-161 classifier with original finger-vein train-
ing data without blurring, performance measurement with motion and optical blurred
testing data

Scheme 3: After training the DenseNet-161 classifier with motion and optical blurred
training data, performance measurement with motion and optical blurred testing data

Scheme 4: After training the DenseNet-161 classifier with training data restored with
RMOBF-Net, performance measurement on testing data restored with RMOBF-Net

Scheme 5: After training the DenseNet-161 classifier with original finger-vein training
data without blurring, performance measurement on testing data restored with RMOBF-Net

Based on the comparison of scheme 1 and schemes 2–5 in Table 4, the recognition
accuracy was significantly degraded in motion and optical blur images compared with
original images without blurring. In addition, based on schemes 2 and 3, the recognition
accuracy was degraded because the vein pattern area and remaining skin area are harder
to differentiate when motion and optical blur occur. Schemes 4 and 5, which were restored
through RMOBF-Net proposed in this study, have lower error rates than schemes 2 and 3
using blurred finger-vein images. This shows that the proposed motion and optical blur
restoration method was effective in improving the finger-vein recognition performance
that was degraded by the blurring.

Table 4. Comparison of finger-vein recognition error (EER) with and without motion and optical blur
application and restoration in SDU-DB (unit: %).

Optical Blur Intensity
(Gaussian Filter Size, Std.) Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5

11 × 11, 11

2.647

13.473 6.367 4.638 5.754

15 × 15, 15 13.311 6.604 4.336 5.488

19 × 19, 19 13.494 6.624 4.290 5.779

Figures 15–17 represent the recognition performances of schemes 1–5 in the receiver
operating characteristics (ROC) curves of FAR and genuine acceptance rate (GAR). GAR is
determined by 100 − FRR (%). In all cases, the recognized performances were higher in
schemes 4 and 5, which were restored with RMOBF-Net, than in schemes 2 and 3, which
used blurred finger-vein images.
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4.5.2.3. Comparisons with the State-of-the-Art Methods

Table 5 shows the results of SDU-DB for comparing finger-vein recognition perfor-
mance on restored data after motion and optical blur restoration using the RMOBF-Net
proposed in this study and the existing state-of-the-art restoration methods. Figures 18–23
show the ROC curves of the results presented in Table 5. In scheme 4, SRN-DeblurNet
demonstrated exceptional performance with motion and optical blur with intensity 11× 11,
while RMOBF-Net shows the best performances in other cases. In scheme 5, RMOBF-Net
has the best performance in all cases. In short, we confirmed that the RMOBF-Net-based
blurred finger-vein image restoration proposed in this study achieved better performance
in finger-vein recognition than the existing restoration methods.
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Table 5. Comparisons of finger-vein recognition error (EER) on SDU-DB by schemes 4 and 5 with
state-of-the-art restoration models and proposed RMOBF-Net (unit: %).

Methods
Scheme 4 Scheme 5

11 × 11 15 × 15 19 × 19 11 × 11 15 × 15 19 × 19

DeblurGAN [13] 6.706 6.471 5.651 12.701 13.443 12.176

DeblurGANv2 [15] 5.933 5.828 5.594 8.315 8.483 9.127

SRN-DeblurNet [16] 4.410 4.676 4.848 7.215 7.458 7.402

MPRNet [17] 5.145 5.348 5.430 9.211 8.819 9.421

RMOBF-Net 4.638 4.336 4.290 5.754 5.488 5.779
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Table 6 shows the results of SDU-DB for comparing finger-vein recognition perfor-
mance on motion and optical blur application and restoration using the DenseNet-161
used in this study and the state-of-the-art finger-vein recognition method [65]. Detail
explanations of Schemes 1–5 are provide in above Section 4.5.2.2. As shown in Table 6,
DenseNet-161 shows the better performance in all cases than the state-of-the-art finger-vein
recognition methods. In addition, based on the comparison of scheme 1 and schemes 2–5
in Table 6, the recognition accuracy was significantly more degraded in the motion and
optical blur images than in the original images without blurring in both DenseNet-161 and
NASNet. Furthermore, based on schemes 2 and 3, the recognition accuracy was degraded
in both DenseNet-161 and NASNet because the vein pattern area and remaining skin area
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are harder to differentiate when motion and optical blur occur. Schemes 4 and 5, which
were restored through RMOBF-Net proposed in this study, have lower error rates than
schemes 2 and 3 using blurred finger-vein images in both DenseNet-161 and NASNet.
This shows that the proposed motion and optical blur restoration method was effective in
improving the finger-vein recognition performance that was degraded by the blurring in
both DenseNet-161 and NASNet.

Table 6. Comparison of finger-vein recognition error (EER) with and without motion and optical
blur application and restoration in SDU-DB according to different finger-vein recognition methods
(unit: %) (random motion blur and optical blur with intensity 19 × 19 (Gaussian filter size) and 19
(Gaussian filter standard deviation)).

Methods Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5

DenseNet-161 2.647 13.494 6.624 4.290 5.779

NASNet [65] 3.269 21.793 9.306 4.849 8.284

4.5.3. Testing Result with PolyU-DB
4.5.3.1. Performance Evaluation of Image Quality

Similar to SDU-DB, the evaluation metrics in Equations (9)–(11) were used to numeri-
cally evaluate the motion and optical blurred image restoration quality of the proposed
and state-of-the-art methods, as shown in Table 7. Table 7 shows that PSNR indicated that
RMOBF-Net performed best in all cases. Additionally, SSIM did not differ much from
those of SRN-DeblurNet, showing similar results to that of SDU-DB. Figures 24–26 show
a result of the finger-vein image reconstructed through the state-of-the-art methods and
RMOBF-Net. In these figures, the motion and optical blurred finger-vein image restoration
performance was superior in RMOBF-Net compared with the state-of-the-art methods as
the restored image was closest to the original image.

Table 7. Comparisons of motion and optical blur restoration performance of PolyU-DB by state-of-
the-art methods and proposed RMOBF-Net (11 × 11, 15 × 15, and 19 × 19 mean the size of Gaussian
blur filter).

Methods
11 × 11 15 × 15 19 × 19

PSNR SSIM PSNR SSIM PSNR SSIM

DeblurGAN [13] 31.185 0.936 30.564 0.93 31.071 0.934

DeblurGANv2 [15] 31.741 0.933 31.373 0.924 31.255 0.927

SRN-DeblurNet [16] 33.199 0.969 33.031 0.969 32.889 0.968

MPRNet [17] 32.494 0.966 32.609 0.967 32.382 0.966

RMOBF-Net 33.701 0.968 33.577 0.968 33.276 0.967
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Figure 24. Examples of restored PolyU-DB finger-vein images using state-of-the-art methods and
the proposed RMOBF-Net (motion blur with Gaussian blur filter of 11 × 11): (a) original image,
(b) blurred image and images restored by (c) DeblurGAN, (d) DeblurGANv2, (e) SRN-DeblurNet,
(f) MPRNet, and (g) RMOBF-Net.
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Figure 25. Examples of restored PolyU-DB finger-vein images using state-of-the-art methods and
the proposed RMOBF-Net (motion blur with Gaussian blur filter of 15 × 15): (a) original image,
(b) blurred image, and restored images by (c) DeblurGAN, (d) DeblurGANv2, (e) SRN-DeblurNet,
(f) MPRNet, and (g) RMOBF-Net.
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(f) MPRNet, and (g) RMOBF-Net.

However, as described in Section 4.5.2.1, the main objective of motion and optical
blurred image restoration is to increase the finger-vein recognition accuracy rather than
improving the image quality of the original image. Therefore, in Sections 4.5.3.2 and 4.5.3.3,
performance was evaluated in terms of EER of finger-vein recognition.

4.5.3.2. Ablation Studies

Ablation studies were conducted using the same method as that of SDU-DB. Based
on the comparison of scheme 1 and schemes 2–5 in Table 8, the recognition accuracy was
significantly degraded in motion and optical blur images than in images without blurring.
In addition, scheme 4 have lower error rates in all cases than schemes 2 and 3 using
blurred finger-vein images, and scheme 5 have lower error rates in all cases than scheme
2. Therefore, the motion and optical blur restoration method proposed in this study was
effective in improving the finger-vein recognition performance degraded by blurring in
PolyU-DB as well. Figures 27–29 represent the recognition performances of schemes 1–5 in
the ROC curves.

Table 8. Finger-vein recognition error (EER) comparison according to motion and optical blur
application in PolyU-DB (unit: %).

Optical Blur Intensity
(Gaussian Filter

Size, Std.)
Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5

11 × 11, 11

1.205

18.424 5.307 2.669 5.428

15 × 15, 15 20.707 5.416 2.465 5.887

19 × 19, 19 23.612 5.750 3.096 6.663
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4.5.3.3. Comparisons with State-of-the-Art Methods

Table 9 shows the results of PolyU-DB for comparing finger-vein recognition perfor-
mance on restored data after motion and optical blur restoration using the RMOBF-Net
proposed in this study and the existing state-of-the-art restoration methods. Figures 30–35
show the ROC curves of the results presented in Table 9. In scheme 4, MPRNet showed
the best performance in motion blur and optical blur with intensity 15 × 15, but in other
cases, RMOBF-Net showed the best performance. In scheme 5, DeblurGANv2 showed the
best results in motion blur and optical blur with intensity 11 × 11, but in all other cases,
the proposed RMOBF-Net shows the best performance. Therefore, we confirmed that the
RMOBF-Net-based blurred finger-vein image restoration proposed in this study achieves
better performance than the existing restoration methods.

Table 9. Comparisons of finger-vein recognition error (EER) on PolyU-DB by schemes 4 and 5 with
state-of-the-art restoration models and proposed RMOBF-Net (unit: %).

Methods
Scheme 4 Scheme 5

11 × 11 15 × 15 19 × 19 11 × 11 15 × 15 19 × 19

DeblurGAN [13] 6.092 6.303 6.510 14.663 13.710 15.318

DeblurGANv2 [15] 3.739 4.060 3.888 5.224 6.079 7.161

SRN-DeblurNet [16] 3.045 3.245 3.503 7.727 9.870 7.815

MPRNet [17] 3.332 2.265 4.770 11.808 13.897 13.731

RMOBF-Net 2.669 2.465 3.096 5.428 5.887 6.663
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4.6. Processing Time of the Proposed Method

In the next experiment, processing time, floating point operations (FLOPs), and the
number of parameters of RMOBF-Net and DenseNet-161 were measured. The measure-
ments were conducted on a desktop computer introduced in Section 4.3 and Jetson TX2
embedded system [66]. The reason for the measurement in the embedded system is that
the access control type finger-vein recognition system is constructed in the form of on-
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board computing (edge computing) operated in the embedded system attached to the door.
Therefore, it is essential to check whether the model proposed in this study is capable of
on-board computing. Jetson TX2 has NVIDIA PascalTM-family GPU (256 CUDA cores),
and 8 GB of memory shared between the central processing unit (CPU) and GPU, 59.7 GB/s
of memory bandwidth, and it uses less than 7.5 W of power. As shown in Table 10, in
the case of the method proposed in this study, the recognition speed for one image took
51.9 ms on the desktop computer, which corresponds to approximately 19.3 frames/sec
(1000/51.9) processing speed. In the Jetson TX2 embedded system, it took about 198.4 ms,
which corresponds to a processing speed of about 5 frames/sec (1000/198.4). In the case of
the Jetson TX2 embedded system, the processing time was longer than that of the desktop
computer due to limited computing resources. However, it can be confirmed that the
method proposed in this study can be applied to embedded systems through processing
time measurement. As shown in Table 10, in the case of FLOPs, RMOBF-Net has 75.5 Giga
FLOPs and DenseNet-161 has 7.82 Giga FLOPs. For the number of parameters, RMOBF-Net
has 49.83 million parameters and Dense-Net-161 has 28.68 million parameters. Table 11
shows the comparison of processing time and speed as frame per second (fps) for RMOBF-
Net and the state-of-the-art restoration model. As shown in this table, our model shows the
best performance of processing time and speed except for DeblurGAN, but the accuracies
by our method were much higher than those by DeblurGAN as shown in Tables 5 and 9,
and Figures 18–23 and 30–35. In the case of SRN-DeblurNet [16] and MPRNet [17], the
overall structure consists of a multistage, and numerous connections between features exist
between them. This leads to an increase in memory access cost, which can be inferred as an
increase in processing time [67].

Table 10. Comparisons of processing time, FLOPs, and the number of parameters of the pro-
posed method.

Category RMOBF-Net DenseNet-161 Total

Processing time (ms)
Desktop computer 17.7 34.2 51.9

Jetson TX2 73.1 125.3 198.4

FLOPs (G) 75.5 7.82 83.32

Number of parameters (M) 49.83 28.68 78.51

Table 11. Comparisons of processing time and speed as frame per second (fps) of the proposed
method and the state-of-the-art restoration model on the Jetson TX2 embedded system.

Category Processing Time (ms) Frame per Second (fps)

DeblurGAN [13] 53.1 18.83

DeblurGANv2 [15] 591.84 1.69

SRN-DeblurNet [16] 950.57 1.05

MPRNet [17] 758.74 1.32

RMOBF-Net 73.1 13.7

4.7. Discussion
4.7.1. Cases of Correct and Incorrect Matching after Restoration

Figure 36a,c are examples of genuine matching and imposter matching before motion
and optical blurred finger-vein restoration, respectively, and both are incorrect matching
cases because changes in vein pattern and texture information due to motion and optical
blur. This blur occurrence causes false acceptance cases in which imposter matching is
misclassified as genuine matching and false rejection cases in which genuine matching is
misclassified as imposter matching. Increases in this incorrect matching degrade the finger-
vein recognition performance and cause instability in the recognition system. Figure 36b,d
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show the cases of correct matching by restoring incorrect matching in (a) and (c) with
RMOBF-Net proposed in this study, respectively. Genuine matching was correctly classified
as correct acceptance after restoration in false rejection, and imposter matching was correctly
classified as correct rejection after restoration in false acceptance.
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Figure 36. Correct recognition examples after restoring motion and optical blur. (a) Incorrect genuine
matching before restoration, (b) correct genuine matching after restoration, (c) incorrect imposter
matching before restoration, and (d) correct imposter matching after restoration. From the left,
examples in (a–c) and (d) present the enrolled, matching, and difference images, respectively.
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Figure 37 shows examples of incorrect genuine and imposter matching despite the
application of the restoration method proposed by this study. In the case of incorrect
genuine matching, motion and optical blur significantly occurred between images of the
same class, and even after restoration, vein pattern or texture information was not similar
to the original. Therefore, the image was recognized as an imposter, and incorrect matching
occurred. In the case of incorrect imposter matching, the enrolled image and the matching
image of difference classes showed a similar texture. Even after restoration, the texture was
similarly restored between different classes, and the finger-vein pattern was not clearly
restored, resulting in incorrect matching.
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Figure 37. Incorrect recognition examples after restoring motion and optical blur. (a) Incorrect
genuine matching before restoration, (b) incorrect genuine matching after restoration, (c) incorrect
imposter matching before restoration, and (d) incorrect imposter matching after restoration. From
the left, examples in (a–c) and (d) present the enrolled, matching, and difference images, respectively.
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4.7.2. Class Activation Map of the Restored Image

Figure 38 shows the visualized results of the class activation map [68] for genuine
and imposter matching images based on restored images by RMOBF-Net and original
images from each layer of DenseNet-161. The areas of class activation map output were
first convolutional layer, first transition layer, second transition layer, third transition layer,
and last dense block layer from top to bottom. Figure 38a,b are examples of authentic
(genuine) matching and imposter matching, respectively, and the left and right images are
original images and restored images, respectively. In the class activation map, important
features are shown in red regions, while insignificant features are shown in blue regions.
Therefore, if the two images have similar red and blue areas, it means that they have similar
features. As shown in Figure 38, as the layer progresses, the class activation is made at
a location similar to the original and restored images. In Figure 38a, class activation was
performed on similar areas of the original and restored images in the case of authentic
matching. Therefore, restoration using RMOBF-Net was effective for motion and optical
blurred finger-vein images, and we verified that correct acceptance was possible. Further,
class activation was performed on similar areas of the original and restored images in the
case of imposter matching, as shown in Figure 38b. Hence, correct rejection of imposter
matching cases was possible.
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1st convolutional layer, 1st transition layer, 2nd transition layer, 3rd transition layer, and the class
activation map outputs from the last dense block from top to bottom.
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5. Conclusions

In this study, motion and optical blurred finger-vein images were restored to solve
the problem of the degradation of finger-vein recognition performance due to motion
and optical blur. In addition, a method for finger-vein recognition using deep CNN was
conducted to evaluate the performance of the restored image. The motion and optical blur
restoration model RMOBF-Net was proposed for the optimization of finger-vein images.
We confirmed that when finger-vein recognition was performed using the restoration
method proposed in this study, the recognition error rate was lower than that without
restoration, and thus, the performance was better. In addition, as shown in Tables 5 and 9,
and Figures 18–23 and Figures 30–35, our RMOBF-Net shows the higher performance of
blur restoration with finger-vein data than the state-of-the-art methods that were trained
with the same motion and optically blurred images as those for our RMOBF-Net. These
results confirm that our model is more appropriate for deblurring finger-vein data than
the state-of-the-art methods. The RMOBF-Net proposed in this study was also found to be
effective in extracting the important features for recognition through the analysis of the
class activation map.

Referring to Song et al. [32] and Noh et al. [33,34], DenseNet showed the highest accu-
racy of finger-vein recognition; therefore, we adopted DenseNet as a baseline finger-vein
recognition model in our research. Different from previous research [69–71], our method
is mainly focused on blurred finger-vein restoration rather than finger-vein recognition.
That is another reason why we adopted only DenseNet as a baseline finger-vein recogni-
tion model. For future work, we would compare the various state-of-the-art finger-vein
recognition methods to DenseNet with our finger-vein restoration algorithm of optical and
motion blur.

As shown in Figures 12–14 and 25–27, we considered that motion and optical blur
intensities can be various and severe in a real environment. Even though we restored the
blurred finger-vein images to similar states as the originals, the recognition error is higher
than that of using the original image due to the severe blur. Therefore, in future work, we
will investigate how to obtain recognition performance similar to that of using the original
image even with severe blur.

As shown in Figure 36, it was confirmed that incorrect matching cases occurred
despite the proposed restoration method. Therefore, in future work, a method of improving
restoration and recognition performance will be conducted by solving the problem of false
rejection due to severe motion and optical blur in intra-class and by reducing inter-class
similarity. Additionally, we plan to do research for a method to apply the proposed motion
and optical blur restoration method to other biometric modalities such as face, iris, and
palm-vein recognition. Because there is no previous state-of-the-art work in finger vein
image inpainting, we would compare other state-of-the-art inpainting models of natural
scene images in future work.
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