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Abstract: In this paper, a three-dimensional (3D) autonomous chaotic system is introduced and
analyzed. In the system, each equation contains a quadratic crossproduct. The system possesses a
chaotic attractor with a large chaotic region. Importantly, the system can generate both one- and two-
scroll chaotic attractors by choosing appropriate parameters. Some of its basic dynamical properties,
such as the Lyapunov exponents, Lyapunov dimension, Poincaré maps, bifurcation diagram, and the
chaotic dynamical behavior are studied by adjusting different parameters. Further, an equivalent
electronic circuit for the proposed chaotic system is designed according to Kirchhoff’s Law, and a
corresponding response electronic circuit is also designed for identifying the unknown parameters or
monitoring the changes in the system parameters. Moreover, numerical simulations are presented to
perform and complement the theoretical results.
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1. Introduction

Since the first discovery of chaotic attractors by Lorenz in 1963 [1], chaos has attracted
attention and interest for its useful speciality and application in information and computer
science [2]. The proposals of new chaotic systems have been extensively studied by scien-
tists in the past decades. In 1976, Rössler found a new simple 3D quadratic autonomous
chaotic system with only one quadratic nonlinearity on the right-hand side [3].

In 1999, Chen found another chaotic attractor [4]. Recently, Lü and Chen further found
a new chaotic system, which represented the transition between the Lorenz and the Chen
system [5]. Moreover, Liu and Chen introduced a new chaotic system with three quadratic
nonlinearities on the right-hand side in 2003 [6], which displayed two- and four-scroll
attractors for different parameters. Then, Lü and Chen constructed another simple 3D
system, which displayed two chaotic attractors simultaneously [7].

During the past few years, some new 3D chaotic systems have been analyzed [8–20].
To classify these 3D autonomous chaotic systems, Vaněček and Čelikoshý [21] gave a
divertive classification by separating the linear and quadratic parts of a 3D autonomous
system. The linear part was described by a constant matrix A = [aij]3×3. The Lorenz
system satisfied a12a21 > 0, the Chen system satisfied a12a21 < 0, and the Lü system
satisfied a12a21 = 0. As is known, the Lorenz system and Chen system display a two-scroll
chaotic attractor separately. In this paper, we introduce a 3D autonomous system, in which
each equation contains a quadratic crossproduct, and the constant matrix of the linear part
satisfies a12a21 = 0. Different from Lorenz-like systems, the proposed system can display
different numbers of scroll chaotic attractors simultaneously. The system is described by:
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
ẋ = ay− yz,
ẏ = −bz + zx,
ż = cx + xy− dz,

(1)

in which (x, y, z)T ∈ <3, and a, b, c, and d are real parameters. Though system (1) has three
quadratic nonlinearities on the right-hand side, it can display only one-scroll attractor in
contrast to the Rössler attractor and Sprott’s attractor [22,23]. Simultaneously, with the
appropriate parameters, the system (1) can display a two-scroll attractor in contrast to the
famous Lorenz attractor. This system is a supplement to the discovery of two-scroll band
structure attractors.

Further, according to Kirchhoff’s law, we design an equivalent electronic circuit for the
proposed chaotic system to show its practical applications. The system parameters of an
electronic circuit maybe unknown or uncertain. Thus, based on the parameter identification
and adaptive synchronization of drive–response systems, we design a corresponding
response electronic circuit to identify the unknown parameters or monitor the changes in
the system parameters.

The outline of this paper is as follows. In Section 2, the basic dynamical behavior in
the parameter space is discussed, and some parameter examples for generating chaos are
given. In Section 3, bifurcation analysis and the simulation results of the chaotic system are
presented. In Section 4, a vector map is employed to generalized different attractors with
the same parameters in the system. In Section 5, the adaptive synchronization problem
between the drive–response systems with fully unknown parameters is studied. Finally,
conclusions are drawn in Section 6.

2. Basic Dynamical Behavior of the System

The divergence of system (1) is

∇V̇ =
∂ẋ
∂x

+
∂ẏ
∂y

+
∂ż
∂z

= 0 + 0− d = −d. (2)

Therefore, when parameter d is positive, system (1) is dissipative.
The equilibria of system (1) can be obtained by solving the following algebraic equa-

tions:
ay− yz = 0, − bz + xz = 0, cx + xy− dz = 0.

When bd 6= 0, the system has three equilibria:

S1 = (0, 0, 0)T , S2 = (b,
ad− bc

b
, a)T , S3 = (b, 0,

bc
d
)T .

In addition, under the condition b = 0 (or d = 0), the system has a unique equilibrium
S∗01 = (0, 0, 0)T (or S∗02 = (b,−c, a)T). In the following, we let b 6= 0 and d > 0. The Jacobian
matrix of system (1) at the three equilibria S1, S2, and S3 are

J1 =

 0 a 0
0 0 −b
c 0 −d

, J2 =

 0 0 bc−ad
b

a 0 0
ad
b b −d

,

J3 =

 0 ad−bc
d 0

bc
d 0 0
c b −d

.

The characteristic equations of J1, J2, and J3 are

λ3 + dλ2 + abc = 0, (3)
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λ3 + dλ2 +
a2d2 − abcd

b2 λ + a2d− abc = 0, (4)

(λ + d)(λ2 +
b2c2 − abcd

d2 ) = 0. (5)

Obviously, from Equation (5), the equilibrium S3 is a saddle for bc(bc− ad) < 0 and is
a center for bc(bc− ad) > 0.

According to the Routh–Hurwitz criterion [24,25], for a cubic characteristic equation

λ3 + a1λ2 + a2λ + a3 = 0, (6)

the real part of the roots of the cubic Equation (6) is negative if and only if a1 > 0, a3 > 0,
a1a2 − a3 > 0, i.e., (6) satisfies the condition |arg(λ)| > π/2. Then, the equilibrium point
of system (1) is locally asymptotically stable.

Comparing Equation (3) with Equation (6), it is impossible to satisfy the conditions
abc > 0 and −abc > 0 simultaneously, i.e., when abc > 0 (or abc < 0) and d > 0, the
equilibrium S1 is unstable. For instance, when a = 0.4, b = 60, c = 16, and d = 10, the three
eigenvalues corresponding to S1 = (0, 0, 0) are λ1 = −12.4696 and λ2,3 = 1.2348± 5.4102i,
and the system has a chaotic attractor at the unstable equilibrium S1 for the initial value
(0.01, 0.01, 0.01)T as shown in Figure 1.
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Figure 1. (a) Chaotic attractor of system (1) with (a, b, c, d) = (0.4, 60, 16, 10) at the initial values
(0.01, 0.01, 0.01)T . (b) The corresponding Poincaré map on plane x = 0. (c) The time series of the
x, y, z states. (d) The power spectrum of the x state.

Similarly, comparing Equation (4) with Equation (6), when one or two of the three
conditions (i.e., a(ad− bc) > 0, d2 − b2 > 0, and d > 0) are not satisfied, the equilibrium
S2 is unstable, and system (1) can generate chaos at S1 and S2. For instance, when a = 5,
b = 50, c = −6, and d = 13, the three eigenvalues corresponding to S2 = (50, 7.3, 5)T

are λ1 = −18.0662 and λ2,3 = 2.5331± 9.7263i, and the three eigenvalues corresponding
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to S3 = (50, 0,−23.0769)T are λ1 = −13 and λ2,3 = ±25.4544i. The system has a chaotic
attractor at unstable equilibrium S2, as shown in Figure 2.
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Figure 2. (a) Chaotic attractor of system (1) with (a, b, c, d) = (5, 50,−6, 13) at the initial values
(50.01, 7.31, 5.01)T . (b) The corresponding Poincaré map on plane y = 5. (c) The time series of the
x, y, z states. (d) The power spectrum of the x state.

3. Bifurcation Analysis

As is known, for a 3D autonomous system, its three Lyapunov exponents L1, L2,
and L3 can be obtained by using the Wolf algorithm [26]. For the equilibrium points,
L3 < L2 < L1 < 0, for the periodic orbits, L3 < L2 < 0, L1 = 0, and for the chaotic attractor,
L3 < 0, L2 = 0, L1 > 0. In the following, the Lyapunov exponent spectrum and the
corresponding bifurcation diagram of state variable x with respect to different parameters
are shown, and the basic dynamics of the chaotic system (1) are summarized as follows. In
addition, the Lyapunov exponents Li and the Lyapunov dimension DL are listed, in which
the Lyapunov dimension of chaos attractors is a fractional dimension, described as:

DL = j +
1

| Lj+1 |

j

∑
i=1

Li = 2 +
L1 + L2

| L3 |
. (7)

In this section, system (1) is investigated under the condition that the four parameters
are all positive, as shown in Table 1. Some examples according to different conditions of the
parameters are shown in Tables 1 and 2, which cause system (1) to display chaotic attractors
at S1 and S2, respectively.
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Table 1. Parameter examples and Lyapunov exponents for chaotic system (1) that generate chaos at
the equilibrium S1.

abc > 0 and d > 0 Parameter Examples Lyapunov Exponents DL Initial Values

a = 0.3, b = 60, c = 16, d = 10 L1 = 0.422, L2 = 0, L3 = −10.419 2.0404 (0.01, 0.01, 0.01)T

a > 0, b > 0, c > 0, a = 0.45, b = 62, c = 16.1, d = 9 L1 = 0.883, L2 = 0, L3 = −9.883 2.0897 (0.01, 0.01, 0.01)T

a = 1.2, b = 18, c = 15, d = 8 L1 = 0.776, L2 = 0, L3 = −8.775 2.0885 (0.01, 0.01, 0.01)T

a = 0.85, b = −20, c = −16, d = 10 L1 = 0.314, L2 = 0, L3 = −10.314 2.0306 (0.01, 0.01, 0.01)T

a > 0, b < 0, c < 0, a = 0.85, b = −30, c = −19, d = 1 L1 = 0.895, L2 = 0, L3 = −10.891 2.0821 (0.01, 0.01, 0.01)T

a = 0.65, b = −30, c = −16, d = 10 L1 = 0.443, L2 = 0, L3 = −10.441 2.0424 (0.01, 0.01, 0.01)T

a = −2, b = −21, c = 16, d = 10 L1 = 1.022, L2 = 0, L3 = −11.020 2.0931 (0.01, 0.01, 0.01)T

a < 0, b < 0, c > 0, a = −2, b = −15, c = 16, d = 9 L1 = 0.881, L2 = 0, L3 = −9.882 2.0896 (0.01, 0.01, 0.01)T

a = −10, b = −8, c = 9, d = 8 L1 = 1.115, L2 = 0, L3 = −9.115 2.1236 (0.01, 0.01, 0.01)T

a = −1, b = 40, c = −18, d = 12 L1 = 0.924, L2 = 0, L3 = −12.918 2.0715 (0.01, 0.01, 0.01)T

a < 0, b > 0, c < 0, a = −0.7, b = 30, c = −16, d = 10 L1 = 0.570, L2 = 0, L3 = −10.568 2.0539 (0.01, 0.01, 0.01)T

a = −1.2, b = 20, c = −16, d = 9 L1 = 0.743, L2 = 0, L3 = −9.742 2.0763 (0.01, 0.01, 0.01)T

Table 2. Parameter examples and Lyapunov exponents for chaotic system (1) that generate chaos at
the equilibrium S1.

abc < 0 and d > 0 Parameter Examples Lyapunov Exponents DL Initial Values

a(ad− bc) > 0, a = 5, b = 50, c = −6, d = 13 L1 = 1.283, L2 = 0, L3 = −14.261 2.0906 (50.01, 7.31, 5.01)T

d2 − b2 < 0, b > 0 a = 12, b = 50, c = −6.1, d = 13 L1 = 1.586, L2 = 0, L3 = −14.574 2.1093 (50.01, 7.31, 5.01)T

a = −16, b = 60, c = 3, d = 9 L1 = 1.328, L2 = 0, L3 = −10.328 2.1290 (50.01, 7.31, 5.01)T

a(ad− bc) > 0, a = 16, b = −60, c = 3, d = 9 L1 = 1.365, L2 = 0, L3 = −10.367 2.1277 (−50.01, 7.31, 5.01)T

d2 − b2 < 0, b < 0 a = 10, b = −50, c = 3, d = 10 L1 = 1.376, L2 = 0, L3 = −11.366 2.1212 (−50.01, 7.31, 5.01)T

a = 20, b = −70, c = 3, d = 10 L1 = 1.383, L2 = 0, L3 = −11.379 2.1216 (−50.01, 7.31, 5.01)T

We fixed b = 60, c = 16, and d = 10, and the Lyapunov exponent spectrum with
respect to a is shown in Figure 3. When the parameter a varied in the small interval (0, 0.66),
system (1) had very rich dynamical behaviors, i.e., when a ∈ (0, 0.171) ∪ (0.219, 0.231) ∪
(0.257, 0.269) ∪ (0.473, 0.526), the maximum Lyapunov exponent equaled zero, and system
(1) had periodic orbits, and when a ∈ (0.171, 0.219) ∪ (0.231, 0.257) ∪ (0.269, 0.473) ∪
(0.526, 0.66), there was one positive Lyapunov exponent, and system (1) was chaotic.
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Figure 3. The Lyapunov exponents spectrum and the bifurcation diagram of system (1) with (b, c, d) =
(60, 16, 10) and 0 < a < 0.66 at the initial values (0.01, 0.01, 0.01)T : (a) Lyapunov exponents; (b)
bifurcation diagram.

We fixed a, c, and d, and the Lyapunov exponent spectrum with respect to b is
shown in Figures 4 and 5. We fixed a = 0.4, c = 16, and d = 10; when b varied in
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the interval (0, 97), system (1) had very rich dynamical behaviors at the initial values
(0.01, 0.01, 0.01)T , i.e., when b ∈ (0, 25.7) ∪ (29.3, 30.2) ∪ (32.9, 35) ∪ (39.3, 41) ∪ (68.5, 78.5),
the maximum Lyapunov exponent equaled zero, and system (1) had periodic orbits,
and when b ∈ (25.7, 29.3) ∪ (30.2, 32.9) ∪ (35, 39.3) ∪ (41, 68.5) ∪ (78.5, 97), there was
one positive Lyapunov exponent, and system (1) was chaotic. On the other hand, we
fixed a = 5, c = −6, and d = 13; when b varied in the interval (45, 60), system (1) had
very rich dynamical behaviors at the initial values (50.01, 7.31, 5.01)T as well, i.e., when
b ∈ (45.6, 46.9) ∪ (50.3, 50.5) ∪ (54.6, 55.2), the maximum Lyapunov exponent equaled zero,
and system (1) had periodic orbits, and when b ∈ (45, 45.6) ∪ (46.9, 50.3) ∪ (50.5, 54.6) ∪
(55.2, 56.82), there was one positive Lyapunov exponent, and system (1) was chaotic.
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Figure 4. The Lyapunov exponents spectrum and the bifurcation diagram of system (1) with
(a, c, d) = (0.4, 16, 10) and 0 < b < 97 at the initial values (0.01, 0.01, 0.01)T : (a) Lyapunov exponents;
(b) bifurcation diagram.
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Figure 5. The Lyapunov exponents spectrum and the bifurcation diagram of system (1) with (a, c, d) =
(5,−6, 13) and 45 < b < 60 at the initial values (50.01, 7.31, 5.01)T : (a) Lyapunov exponents; (b)
bifurcation diagram.

We fixed a = 0.4, b = 60, and d = 10; when c varied in the interval (2.7, 20.2), system (1)
had very rich dynamical behaviors, i.e., when c ∈ (2.7, 9.1) ∪ (10.12, 10.21) ∪ (11.7, 12.1) ∪
(17.38, 17.77), the maximum Lyapunov exponent equaled zero, and system (1) had periodic
orbits, and when c ∈ (9.1, 10.12) ∪ (10.21, 11.7) ∪ (12.1, 17.38) ∪ (17.77, 20.2), there was one
positive Lyapunov exponent, and system (1) was chaotic. The corresponding Lyapunov
exponent and bifurcation diagram are shown in Figure 6.
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Figure 6. The Lyapunov exponents spectrum and the bifurcation diagram of system (1) with (a, b, d) =
(0.4, 60, 10) and 2.7 < c < 20.2 at the initial values (0.01, 0.01, 0.01)T : (a) Lyapunov exponents; (b)
bifurcation diagram.

We fixed a = 0.4, b = 60, and c = 16; when d varied in the interval (8.49, 20), system
(1) had very rich dynamical behaviors at the initial values (0.01, 0.01, 0.01)T , i.e., when
d ∈ (9.35, 9.65) ∪ (11.58, 20), the maximum Lyapunov exponent equaled zero, and system
(1) had periodic orbits, and when d ∈ (8.49, 9.35) ∪ (9.65, 11.58), there was one positive
Lyapunov exponent. and system (1) was chaotic. The corresponding Lyapunov exponent
and bifurcation diagram are shown in Figures 7 and 8. On the other hand, we fixed
a = 5, b = 50, and c = −6; when d varied in the interval (5, 30), system (1) had very rich
dynamical behaviors at the initial values (50.01, 7.31, 5.01)T as well, i.e., when b ∈ (5, 5.4) ∪
(11.9, 12.2) ∪ (13.3, 13.6) ∪ (13.8, 14.1) ∪ (14.8, 15.1) ∪ (16.6, 16.8) ∪ (17.8, 23.1) ∪ (24.9, 30),
the maximum Lyapunov exponent equaled zero, and system (1) had periodic orbits, and
when b ∈ (5.4, 11.9) ∪ (12.2, 13.3) ∪ (13.6, 13.8) ∪ (14.1, 14.9) ∪(15.1, 16.6) ∪ (16.8, 17.8) ∪
(23.1, 24.9), there was one positive Lyapunov exponent, and system (1) was chaotic.
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Figure 7. The Lyapunov exponents spectrum and the bifurcation diagram of system (1) with (a, b, c) =
(0.4, 60, 16) and 8.49 < d < 20 at the initial values (0.01, 0.01, 0.01)T : (a) Lyapunov exponents;
(b) bifurcation diagram.

In Figure 9, some simulation results of system (1) with different parameter values are
given in the x− y− z space.
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Figure 8. The Lyapunov exponents spectrum and the bifurcation diagram of system (1) with
(a, b, c) = (5, 50,−6) and 5 < d < 30 at the initial values (50.01, 7.31, 5.01)T : (a) Lyapunov exponents;
(b) bifurcation diagram.

-10
0

y

-10

10

0z

10

x

10

5 0 -5 20-10

(a)

0.5
0

x

-0.5
-1

-1

y
-1.510

z
0

5 0 -5

1

(b)

60-10
50

x

0

10

40
y

0

z -10

10

-20

(c)

-40

-20

0

20

z

20

y 0
80

x

7060-20 5040

(d)

70
60-10 50

x

40
0

20

y

z

0

10

-20

-40

(e)

-40

-20

0

20

40

60

z

20

y

0
-20

x

-20 -40-60-80

(f)

Figure 9. The phase portrait of system (1) with different parameter values: (a) a = 5.8, b = 9, c =

15, d = 11; (b) a = 0.4, b = 60, c = 10, d = 10; (c) a = 5, b = 50, c = −6, d = 25.5; (d) a = 5, b = 60, c =
−6, d = 34; (e) a = 5, b = 55, c = −6, d = 16; (f) a = 16, b = −60, c = 3, d = 9.
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4. Chaotic Systems Generalized by a Vector Map

In this section, we introduce several chaotic systems generalized by a vector map.
Firstly, system (1) can be written as: ẋ

ẏ
ż

 =

 0 y 0
0 0 z
x 0 0

A +

 x 0 0
0 y 0
0 0 z

B +

 yz 0 0
0 xz 0
0 0 xy

C, (8)

where A = (c, a,−b)T , B = (0, 0,−d)T , and C = (−1, 1, 1)T are the parameter vectors.
Now, we define the following vector maps φi : <3 → <3, i = 1, 2 :

φ1((x1, x2, x3)
T) = (x2, x3, x1)

T ,

φ2((x1, x2, x3)
T) = (x3, x1, x2)

T .
(9)

Then, system (10) is chaotic for the same parameters as (8): ẋ
ẏ
ż

 =

 0 y 0
0 0 z
x 0 0

φi(A) +

 x 0 0
0 y 0
0 0 z

φi(B)

+

 yz 0 0
0 xz 0
0 0 xy

φi(C).

(10)

Substituting Equation (9) into (10) yields two chaotic systems (11) and (12) with
a = 1, b = 22, c = 16, and d = 10 and the initial value (0.1, 0.1, 0.1)T . The two chaotic
attractors are shown in Figure 10a.

ẋ = −by + yz,
ẏ = cz + zx− dy,
ż = ax− xy,

(11)


ẋ = cy + yz− dx,
ẏ = az− zx,
ż = −bx + xy.

(12)

−10
0

10

−6
−4

−2
0

2
4

−10
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0
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10

15

xy

z

(a)

−2
−1

0
1

2

−10

0

10

−3

−2

−1

0

1

2

3

xy

z

(b)

Figure 10. (a) The red plot corresponds to system (11), and the blue plot corresponds to system (12),
with (a,b,c,d)=(1,22,16,10). (b) The red plot corresponds to system (13), and the blue plot corresponds
to system (1), with (a, b, c, d) = (0.4, 50, 16, 10).

In addition, if we only revise C = (1,−1,−1)T in system (8), system (13) is chaotic for
the same parameters as system (1), when we have the parameters a = 0.4, b = 50, c = 16,
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and d = 10 and the initial value (0.1, 0.1, 0.1)T . The two chaotic attractors are shown in
Figure 10b. 

ẋ = ay + yz,
ẏ = −bz− xz,
ż = cx− xy− dz.

(13)

5. Electronic Circuit Design

In this section, we present an equivalent electronic circuit for the proposed chaotic
system (1). The circuit implementation shows that it can be practically used in technological
applications. In order to implement the equations, we considered the analog circuit design
using Multisim software, as depicted in Figure 11, with AD712KN operational amplifiers
and AD633 analog multipliers all powered by ±15 V symmetric voltages.

Figure 11. Electronic circuit schematics of the chaotic system (1).

Using the Kirchhoff Law for the analog circuit, the generated nonlinear equations are
described as 

ẋ = R4
R1R5C1

y + R4R7
R1R6R8C1

yz,
ẏ = − R9R12

R2R10R13C2
z + R9

R2R11C2
zx,

ż = R14
R3R15C3

x + R14
R3R16C3

xy− R14R18
R3R17C3

z.
(14)

Comparing Equation (14) with Equation (1), the common circuital component values
were selected as C1 = C2 = C3 = 10 nF, Ri = 10 kΩ (i = 1, 2, 3, 4, 9, 14), Ri = 100 kΩ
(i = 6, 11, 16), and Ri = 10 kΩ (i = 7, 8, 12, 13, 18, 19). When we chose R5 = 2500 kΩ,
R10 = 16.67 kΩ, R15 = 62.5 kΩ, and R17 = 100 kΩ, we obtained a one-scoll chaotic attractor
similar to the one obtained by numerical simulation with (a, b, c, d) = (0.4, 60, 16, 10),
and the Multisim results on oscilloscope are shown as Figure 12a,b. When we chose
R5 = 200 kΩ, R10 = 20 kΩ, R15 = 166.67 kΩ, and R17 = 76.92 kΩ, and modified the
connection R15 to R1, we obtained a two-scoll chaotic attractor similar to the one obtained
by numerical simulation with (a, b, c, d) = (5, 50,−6, 13), and the Multisim results on the
oscilloscope are shown as Figure 12c,d.
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(a) (b)

(c) (d)

Figure 12. Phase spaces of the chaotic system (1) on an oscilloscope obtained from the analog circuit:
(a) x-z; (b) y-z; (c) x-z; (d) y-z.

6. Parameter Identification

In this section, we supposed that the parameters a, b, c, and d of system (1) were
unknown and needed to be identified. We regarded system (1) as the drive system. The
response system with adaptive controllers and updating laws was designed as:

ẋ1 = a1y1 − y1z1 + u1,
ẏ1 = −b1z1 + z1x1 + u2,
ż1 = c1x1 + x1y1 − d1z1 + u3,

(15)

where a1, b1, c1, and d1 were the estimations of a, b, c, and d, and u1, u2, and u3 were
controllers to be designed.

Theorem 1. If we design the controllers u1, u2, and u3 in (15) as

u1 = −k1ex,
u2 = −k2ey − x1ez,
u3 = −k3ez − xey,
k̇1 = α1e2

x,
k̇2 = α2e2

y,
k̇3 = α3e2

z ,

(16)

where α1, α2, and α3 are positive constants, and the updating laws of a1, b1, c1, and d1 as
ȧ1 = −θ1y1ex,
ḃ1 = θ2z1ey,
ċ1 = −θ3x1ez,
ḋ1 = θ4z1ez,

(17)
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where θ1, θ2, θ3, and θ4 are positive constants, then the adaptive synchronization between the
drive–response systems (1) and (15) is achieved, and the unknown parameters a, b, c, and d in (1)
are identified by a1, b1, c1, and d1 in (15), with controllers (16) and updating laws (17).

Proof. Let ex = x1 − x, ey = y1 − y, and ez = z1 − z; then, one has
ėx = (a1 − a)y1 + aey − y1ez − eyz + u1,
ėy = −(b1 − b)z1 − bez + x1ez + exz + u2,
ėz = (c1 − c)x1 + cex + exy1 + xey − (d1 − d)z1 − dez + u3.

(18)

We consider the following Lyapunov function

V(t) =
e2

x + e2
y + e2

z

2
+

(a1 − a)2

2θ1
+

(b1 − b)2

2θ2

+
(c1 − c)2

2θ3
+

(d1 − d)2

2θ4
+

3

∑
i=1

(ki − k∗i )
2

2αi
,

(19)

where k∗1, k∗2, and k∗3 are arbitrary positive constants to be determined.
Then, the derivative of V(t) along the trajectories of (18) gives

V̇(t) =ex ėx + ey ėy + ez ėz +
(a1 − a)ȧ1

θ1
+

(b1 − b)ḃ1

θ2

+
(c1 − c)ċ1

θ3
+

(d1 − d)ḋ1

θ4
+

3

∑
i=1

(ki − k∗i )k̇i

αi

=eT(P− K)e,

where e = (ex, ey, ez)T ,

P =

 0 a
2

c
2

a
2 0 − b

2
c
2 − b

2 −d

, K =

 k∗1 0 0
0 k∗2 0
0 0 k∗3

.

Then, one can choose k∗1, k∗2, and k∗3 large enough such that P− K < 0, i.e., V̇(t) < 0,
which implies that the adaptive synchronization is achieved, and the unknown parameters
a, b, c, and d are identified by a1, b1, c1, and d1. Thus, the proof is complete.

In the simulations, we designed the corresponding electronic circuit with controllers
(16) and updating laws (17) to identify the unknown parameters using Multisim software.
Figure 13 shows the electronic circuit design with the AD712KN operational amplifiers and
AD633 analog multipliers all powered by ±15 V symmetric voltages. We supposed that
the resistances R22, R12, R14, and R17 of the drive system corresponding to the parameters
a = 0.4, b = 60, c = 16, and d = 10 of system (1) were unknown and needed to be identified.
We chose the following resistances of the updating laws Ra = Rb = Rc = Rd = 50 kΩ
and the following resistances of the controllers RK1 = RK2 = RK3 = 100 kΩ. The Multisim
results on the oscilloscope are shown as Figure 14a,b. Clearly, the unknown parameters
a, b, c, and d were well identified by a1, b1, c1, and d1.
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Figure 13. Electronic circuit schematics of the parameter identification.

(a) (b)

Figure 14. Identification of a1, b1, c1, and d1 by an electronic circuit.

7. Conclusions

In this paper, we introduced and studied a new 3D autonomous chaotic system, which
could generate one-scroll and two-scroll chaotic attractors with different parameters. The
dynamical behaviors and properties of this chaotic system were investigated both theoreti-
cally and numerically. The Lyapunov exponent spectrum and the corresponding bifurcation
diagram, with respect to different parameters, were presented, and these validated the
correctness of our results. Spectral analysis showed that the system had a large chaos
region. Moreover, a vector map was employed to the generalized chaotic system. Com-
pared with the famous Rössler, Sprott, and Lorenz attractors, this system is a supplement to
the discovery of one-scroll and two-scroll attractors. Further, we designed an equivalent
electronic circuit for the proposed chaotic system based on Kirchhoff’s Law to show its
practical applications. We designed a corresponding response electronic circuit to identify
the unknown parameters or monitor the changes in the system parameters as well. Finally,
numerical simulations were presented to perform and complement the theoretical results.
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