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Abstract: In this paper, the filtering problem of nonlinear networked systems with event-triggered
data transmission tasks is studied. To reduce the transmission of excessive measurement data in
the bandwidth-limited network, a data transmission mechanism with event trigger is introduced
to analyze the error behavior of the extended Kalman filter. We prove that the real estimation error
and error covariance matrices can be determined by restricting the initial conditions appropriately.
Finally, the effectiveness of the filtering algorithm is verified by simulation.
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1. Introduction

In recent years, microelectronics technology, computing technology and wireless
communication technology have developed rapidly. Various integrated microsensors work
together to monitor, perceive and collect information. This wireless sensor network (WSN)
has a very broad application prospect [1–5].

Kalman filter (KF) uses the minimum mean square error (MMSE) criterion to estimate
the state of the system, which is an optimal dynamic estimation algorithm for linear
systems [6,7]. The algorithm of KF is expressed in the form of recursion and has been
studied thoroughly by scholars. However, the nonlinear phenomenon is very common
in practical applications [8,9]. Therefore, extended Kalman filter (EKF) and untraced
Kalman filter (UKF) have been derived for nonlinear systems [10]. For one-step prediction
equations, UKF uses untracked transformation to handle the nonlinear transfer of mean
and covariance. EKF uses Taylor decomposition to linearize the model and then uses
Gauss hypothesis to solve the problem of difficult probability calculation. The application
of EKF further improves the estimation performance of KF for nonlinear systems. The
computational complexity of EKF is less than that of UKF and their performances are
compared in [11,12]. EKF is widely used in control [13], optimization [14], observation [15],
adaptive filtering [16], estimation [17] and neural network [18].

EKF is the most direct method to solve a nonlinear state estimation problem which
has lower computational complexity and has been successfully applied in many nonlinear
systems. On the other hand, most of the literature working on nonlinear systems uses the
traditional time-triggered sampling method which is easy to implement. However, such
a periodic transmission scheduling will lead to unnecessary transmission and waste of
resources. References [19,20] designed a new event-triggered mechanism based on the
event-triggered control (ETC) strategy and studied the input-to-state stability of nonlinear
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systems. This reduces the burden of system communication and controller updates while
maintaining performance requirements. Therefore, it is of great significance to adopt
appropriate sampling methods [21]. In this case, the event-triggered policies are more
suitable [22–25]. Reference [22] studies the estimation of event triggering in linear systems.
References [23,24] study event-triggered robust estimation problems for hidden Markov
models and linear systems, respectively. Reference [25] presents a MMSE estimator with
an innovation-based event trigger. Based on the event trigger in [25,26] studies the UKF
problem of nonlinear networked system. However, only the boundedness of the estimation
error covariance matrix is analyzed. In addition, to the best of our knowledge, little
attention has been paid to the problem of event-triggered filtering of nonlinear systems.
Therefore, this paper aims to close this gap. The Kalman filter has good results in terms
of convergence when applied to linear systems. However, for nonlinear filtering, it is
difficult to discuss the boundedness of the estimation error and it is even more difficult to
add event-trigger conditions. For example, in [25], the proof of the boundedness of the
estimation error is not given for a linear system with event-triggered condition; however,
we give the sufficient conditions for it.

In this paper, the event-triggered MMSE estimator for a linear system proposed
in [25] is extended to EKF for nonlinear systems and both boundedness conditions of the
real estimation error and estimation error covariance matrix are analyzed. Data are only
transmitted when certain conditions are met, effectively reducing the quantity of executions.
However, such a transmission scheme leads to a complicated state estimation analysis.
The linearization of the event-triggered filtering algorithm in nonlinear EKF systems will
introduce step error and lead to the decrease in filtering accuracy. Therefore, it is difficult
to conduct error analysis and design a stable estimator. At the same time, when the initial
state error is relatively large or the system model is nonlinear, the accuracy of filtering will
be severely affected or even diverged. These are the problems to be solved in this paper.

Motivated by the above analysis, this paper has proposed an EKF-based nonlinear fil-
tering algorithm for nonlinear networked systems under event-triggered data transmission.
The main contributions are embodied in the following three aspects: (1) An event-triggered
data transmission scheme is introduced to lower the excessive measurement transmis-
sion. (2) An EKF type filtering algorithm is designed under event triggering for nonlinear
system. (3) Sufficient initial conditions are provided to ensure the boundedness of the
real estimation error and the error covariance matrices. The organization of this paper
is as follow. Problem setup is presented in Section 2. Event-triggered EKF is proposed
in Section 3. Boundness of the real estimation error and the error covariance matrices
are discussed in Section 4. Section 5 and Section 6 present the numerical example and
conclusion, respectively.

Notations: The symbols are standard in this paper. Rn andRm×n represent n-dimensional
vector space and set of the m× n matrices, respectively. tr(·) stands for the trace of a matrix.
X′ and X−1 represent the transpose and inverse of the matrix X, respectively. X > 0
(X ≥ 0) means X is a positive definite (positive semi-definite) matrix. E[·] denotes the
expectation of a random variable. E[x|y] stands for the expectation value of x with y as the
condition. diag(·) denotes a diagonal matrix. ‖ · ‖ and ‖ · ‖∞ stand for the Euclidean norm
and infinity-norm, respectively.

2. System and Problem Description

Consider the system with nonlinear discrete-time represented by:

xn+1 = f (xn) + ωn, (1)

yn = h(xn) + υn, (2)

where xn ∈ Rl and yn ∈ Rm are the state vector and the sensor measurement, respectively.
The process noise ωn ∈ Rl and the measurement noise υn ∈ Rm are uncorrelated zero-
mean white noises with the covariance matrices Qn ≥ 0 and Rn > 0. Assume that at
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each x, the nonlinear function f (x) and the measurement function h(x) are continuous
and differentiable.

In Figure 1, the smart sensor consists of the sensor and event-trigger scheduler. Assume
that the wireless network channel is ideal without packet loss and delay. The smart sensor
transmission yn is first sent to the event-triggered scheduler at each time n. According
to the value of γn which is calculated based on the event-trigger conditions, the sensor
determines whether to transfer yn to the remote nonlinear estimator.

Smart Sensor

ny  1,0n

nnx |ˆSensor
  nnn vxhy 

Event-triggered
Scheduler

EstimatorWireless
Channel

Process
  nnn wxfx 1

Figure 1. Networked system communication diagram.

We use the event-triggered communication strategy in [25] to reduce excessive mea-
surement traffic. There exists a unitary matrix Γn ∈ Rm×m satisfying:

Γ′n(CnPn|n−1C′n + Rn)Γn = Λn, (3)

where Λn = diag(λ1
n, ..., λm

n ) ∈ Rm×m and the elements λ1
n, ..., λm

n on the diagonal are
eigenvalues of CnPn|n−1C′n + Rn. Pn|n−1 is the prediction error covariance and Cn is a matrix
related to the system, which will be defined later. If we define Sn , ΓnΛ−1/2

n ∈ Rm×m,
the smart sensor calculates the matrix Sn at each time. Define zn , yn − ŷn|n−1 and
εn , S′nzn, where ŷn|n−1 is the measurement step prediction. The event-trigger mechanism
is as follows:

γn =

{
0, ‖εn‖∞ ≤ δ,
1, others,

(4)

where δ ≥ 0 is a threshold which can be fixed to achieve a desired compromise. The desired
tradeoff can be achieved by adjusting the threshold appropriately. We let the set of available
information In at instant n as:

In , {γ0y0, · · · , γnyn} ∪ {γ0, · · · , γn}. (5)

Define the a priori and a posterior MMSE estimates x̂n|n−1 = E[xn|In−1] and x̂n|n =
E[xn|In]. Let prediction error en+1|n = xn+1 − x̂n+1|n and estimation error en+1|n+1 =
xn+1 − x̂n+1|n+1. Pn|n−1 = E[en|n−1e′n|n−1|In−1] and Pn|n = E[en|ne′n|n|In] represent the
corresponding error covariance matrix. The Taylor expansions of the functions f (x) and
h(x) are expressed as

f (xn) = f (x̂n|n) +
∂ f

∂x̂n|n
en|n + φ(xn, x̂n|n), (6)

h(xn) =h(x̂n|n−1) +
∂h

∂x̂n|n−1
en|n−1 + ψ(xn, x̂n|n−1), (7)

where the functions φ, ψ represent the remainder. We define ∂ f
∂x̂n|n

= An and ∂h
∂x̂n|n−1

= Cn.

In the calculation of Section 3, we approximate x̂n|n by f (x̂n|n) +
∂ f

∂x̂n|n
en|n and approxi-
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mate h(xn) by h(xn) = h(x̂n|n−1) +
∂h

∂x̂n|n−1
en|n−1, we have ŷn|n−1 = E[h(x̂n|n−1) + Cn(xn −

x̂n|n−1) + υn] = h(x̂n|n−1).

3. Design of Event-Triggered EKF

Considering the event-triggered transformation, an EKF-type nonlinear filter is proposed:

x̂n+1|n = f (x̂n|n), (8)

x̂n+1|n+1 = x̂n+1|n + γn+1Kn+1zn+1. (9)

Note that when γn+1 = 0, the state estimate x̂n+1|n+1 is equal to x̂n+1|n. Kn+1 is the
state gain matrix.

Theorem 1. Consider the event-triggered data transmission mechanism (4) under the nonlinear
systems (1) and (2). The error covariance matrices Pn+1|n, Pn+1|n+1 and the state gain matrix Kn+1
are given as:

Pn+1|n = AnPn|n A′n + Qn, (10)

Kn+1 = Pn+1|nC′n+1(Cn+1Pn+1|nC′n+1 + Rn+1)
−1, (11)

Pn+1|n+1 = Pn+1|n − [(1− γn+1)β(δ) + γn+1]Kn+1Cn+1Pn+1|n, (12)

where β(δ) = 2√
2π

δe−
δ2
2 [1− 2Q(δ)]−1, Q(δ) ,

∫ +∞
−∞

1√
2π

e−
x2
2 dx.

Proof of Theorem 1. We can obtain Pn+1|n = E[en+1|ne′n+1|n|In] = AnPn|n A′n + Qn by
substitution, which proves (10). We have zn+1 = Cn+1en+1|n + υn+1 and

E[en+1|nz′n+1|In] = E[en+1|n(Cn+1en+1|n + υn+1)
′] = Pn+1|nC′n+1,

E[(Cn+1en+1|n + υn+1)(Cn+1en+1|n + υn+1)
′|In] = Cn+1Pn+1|nC′n+1 + Rn+1.

Now, from Lemmas 3.3 and 3.4 in [25], one obtains

E[(en+1|n − Kn+1zn+1)(en+1|n − Kn+1zn+1)
′|În+1] = Pn+1|n − Kn+1Cn+1Pn+1|n, (13)

E[(en+1|n − Kn+1zn+1)z′n+1K′n+1|În+1] = 0, (14)

E[zn+1z′n+1|În+1] = [Il − β(δ)](Cn+1Pn+1|nC′n+1 + Rn+1), (15)

where În+1 = In ∪ {γn+1 = 0}. Next, two cases are considered.
(1) γn+1 = 1: Smart sensor sends measurement information to remote estimator in this

case. The estimation error is written as xn+1− x̂n+1|n−Kn+1zn+1 and In+1 = In ∪{γn+1 =
1}. Then the estimation error covariance is calculated as follows

Pn+1|n+1 = E[en+1|n+1e′n+1|n+1|In+1]

= E[((Il − Kn+1Cn+1)en+1|n − Kn+1υn+1)((Il − Kn+1Cn+1)en+1|n

− Kn+1υn+1)
′|In+1]

= (Il − Kn+1Cn+1)Pn+1|n(Il − Kn+1Cn+1)
′ + Kn+1Rn+1K′n+1. (16)

Take the partial derivative of Pn+1|n+1 relative to Kn+1 and let
∂Pn+1|n+1

∂Kn+1
= 0. Then,

the filter gain is derived as

Kn+1 = Pn+1|nC′n+1(Cn+1Pn+1|nC′n+1 + Rn+1)
−1. (17)
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Substituting (17) into (16) , Pn+1|n+1 is determined as

Pn+1|n+1 = Pn+1|n − Kn+1Cn+1Pn+1|n. (18)

(2) γn+1 = 0: x̂n+1|n+1 is replaced by x̂n+1|n due to (9). Then, we let en+1|n+1 =
en+1|n − Kn+1zn+1 + Kn+1zn+1, and we can obtain:

Kn+1E[zn+1z′n+1|În+1]K′n+1 = [1− β(δ)]Kn+1Cn+1Pn+1|n. (19)

Thus, the calculation process of Pn+1|n+1 is as follows:

Pn+1|n+1 =E[(en+1|n − Kn+1zn+1 + Kn+1zn+1)(en+1|n − Kn+1zn+1 + Kn+1zn+1)
′|În+1]

=E[(en+1|n − Kn+1zn+1)(en+1|n − Kn+1zn+1)
′|În+1] + Kn+1E[zn+1z′n+1|În+1]

· K′n+1 + Kn+1E[zn+1(en+1|n − Kn+1zn+1)
′|În+1] +E[(en+1|n − Kn+1zn+1)

· z′n+1K′n+1|În+1].

Make some substitutions based on (13)–(15) and (19), Pn+1|n+1 is written in the form as:

Pn+1|n+1 = Pn+1|n − β(δ)Kn+1Cn+1Pn+1|n. (20)

Finally, combine (18) and (20) , one obtains:

Pn+1|n+1 = Pn+1|n − [(1− γn+1)β(δ) + γn+1]Kn+1Cn+1Pn+1|n. (21)

This completes the proof.

Remark 1. Exactly as [25], Pn+1|n+1 is about the function of γn+1 and β(δ), and both are affected
by the value of δ. It can be adjusted appropriately to achieve an ideal balance between the communi-
cation rate and the estimated performance. The complete algorithm for event triggering is given in
Algorithm 1.

Algorithm 1 Event-triggered EKF scheduler.

1. Prior estimate and error covariance matrix:
x̂0|0 = x̂0, P0|0 = P0.

2. Time update:
given

x̂n|n, Pn|n,
do

x̂n+1|n = f (x̂n|n), Pn+1|n = AkPn|n AT
k + Qk.

Sensor scheduling: Let the scheduling variable be given by:

γn =

{
0, ‖εk‖∞ ≤ δ,
1, others.

Data transmission: If γn = 1, send yn to the estimator.
3. Measurement update:

let
Kn+1 = Pn+1|nCT

n+1(Cn+1Pn+1|nCT
n+1 + Rn+1)

−1,
do

x̂n+1|n+1 = x̂n+1|n + γn+1Kn+1(yn+1 − ŷn+1|n),
Pn+1|n+1 = Pn+1|n − [(1− γn+1)β(δ) + γn+1]Kn+1Cn+1Pn+1|n,

where β(δ) = 2√
2π

δe−
δ2
2 [1− 2Q(δ)]−1, Q(δ) ,

∫ +∞
−∞

1√
2π

e−
x2
2 dx.
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4. Estimation Error Analysis
4.1. Boundedness of the Estimation Error

According to (3) and (4), we derive the real estimation errors as:

en|n = (In − γnKnCn)en|n−1 − γnKnψ(xn, x̂n|n−1)− γnKnυn,

en+1|n = An(xn − x̂n|n) + φ(xn, x̂n|n) + ωn

= An(Il − γnKnCn)en|n−1 + mn + sn, (22)

where

mn = φ(xn, x̂n|n)− γn AnKnψ(xn, x̂n|n−1), (23)

sn = ωn − γn AnKnυn. (24)

Next, we will prove that under the event-triggered nonlinear filter, the generated
estimation error is bounded if the following hypothesis holds:

Assumption 1. Considering the event-triggered EKF for nonlinear systems, assume that the
linearization of the nonlinear systems (1) and (2) satisfies the uniform observability condition.
There are positive real constants a, c, p, p, q, q, r, r such that the various matrices have the
following boundaries

‖An‖ ≤ a,

‖Cn‖ ≤ c,

qIl ≤ Qn ≤ qIl ,

rIm ≤ Rn ≤ rIm,

pIl ≤ Pn+1|n+1 ≤ Pn+1|n ≤ pIl . (25)

For all εφ, εψ > 0 there are ηφ, ηψ > 0, such that for all ‖xn − x̂n|n‖ ≤ ηφ and ‖xn −
x̂n|n−1‖ ≤ ηψ, there hold

‖φ(xn, x̂n|n)‖ ≤ εφ‖xn − x̂n|n‖2, (26)

‖ψ(xn, x̂n|n−1)‖ ≤ εψ‖xn − x̂n|n‖2. (27)

Theorem 2. Under Assumption 1, there is a constant κ > 0, the random noise covariance matrix
has a bound ε > 0, i.e., E[ωnω′n] ≤ ε2 Il , E[υnυ′n] ≤ ε2 Im, and a bound η > 0 for the initial
estimation error, i.e., E[‖e1|0‖] ≤ η, so that the estimation error en+1|n is bounded and satisfies the
following inequality

E[‖en+1|n‖] ≤ κ. (28)

Proof of Theorem 2. Define Vn(en|n−1) = e′n|n−1P−1
n|n−1en|n−1, one obtains

Vn(en+1|n) = e′n+1|nP−1
n+1|nen+1|n

= e′n|n−1(Il − γnKnCn)
′A′nP−1

n+1|n An(Il − γnKnCn)en|n−1 + m′nP−1
n+1|n[2An(Il

− γnKnCn)en|n−1 + mn] + 2s′nP−1
n+1|n[An(Il − γnKnCn)en|n−1 + mn]

+ s′nP−1
n+1|nsn. (29)

Next, we will prove that there exist constants d, κ1, κ2 such that the following inequality
is satisfied

E[Vn+1(en+1|n)] ≤ (1− d)E[Vn(en|n−1)] + κ1‖en|n−1‖3 + κ2ε. (30)
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First of all, let us prove:

(Il − γnKnCn)
′A′nP−1

n|n−1 An(Il − γnKnCn) ≤ (1− d)P−1
n|n−1. (31)

Under the Assumption 1, one obtains:

Pn+1|n = AnPn|n A′n + Qn ≥ (1 +
q

a2 p
)AnPn|n An. (32)

Then, by using (12) and (17), we have:
(1) When γn = 1, it can be noted that Pn|n−1C′n = Kn(CnPn|n−1C′n + Rn), one has

Pn|n = Pn|n−1 − KnCnPn|n−1 + Pn|n−1C′nK′n − Pn|n−1C′nK′n
= Pn|n−1 − KnCnPn|n−1 + Kn(CnPn|n−1C′n + Rn)K′n − Pn|n−1C′nK′n
= (Il − KnCn)Pn|n−1(Il − KnCn)

′ + KnRnK′n.

(2) When γn = 0, Pn|n = Pn|n−1 − β(δ)KnCnPn|n−1. Notice that β(δ) ∈ (0, 1) leads to
β(δ)2 < β(δ), then it follows:

Pn|n = Pn|n−1 − β(δ)KnCnPn|n−1 + β(δ)Pn|n−1C′nK′n − β(δ)Pn|n−1C′nK′n
= Pn|n−1 − β(δ)KnCnPn|n−1 + β(δ)KnCnPn|n−1(KnCn)

′ − β(δ)Pn|n−1C′nK′n
+ β(δ)KnRnK′n

> Pn|n−1 − β(δ)KnCnPn|n−1 + β(δ)2KnCnPn|n−1(KnCn)
′ − β(δ)Pn|n−1C′nK′n

+ β(δ)KnRnK′n
= (Il − β(δ)KnCn)Pn|n−1(Il − β(δ)KnCn)

′ + β(δ)KnRnK′n
> (Il − KnCn)Pn|n−1(Il − KnCn)

′.

According to the results of the above two cases and the validity of (32), the desired
inequality relation is obtained as:

Pn+1|n > (1 +
q

a2 p
)An(Il − KnCn)Pn|n−1(Il − KnCn)

′A′n.

Setting An(Il − KnCn) = A, (1 +
q

a2 p
)Pn|n−1 = B, Pn+1|n = C. From Lemma 6.1 in [15],

suppose that C− ABA′ > 0, then B−1 − A′C−1 A > 0. We have (1 +
q

a2 p
)−1 = 1− q

a2 p+q
<

1, one can let d =
q

a2 p+q
, further we can obtain (31).

In the next part, let us show that

m′nP−1
n+1|n[2An(Il − γnKnCn)en|n−1 + mn] ≤ κ1‖en|n−1‖3. (33)

We know that (17) holds, we derive ‖Kn‖ ≤ p̄c̄
r under hypothetical conditions. Setting

‖xn−x̂n|n‖
‖xn−x̂n|n−1‖

= σ, according to (26) and (27), notice that (23) leads to

‖mn‖ ≤ ‖φ(xn, x̂n|n)‖+ γn
ā p̄c̄

r
‖ψ(xn, x̂n|n−1)‖

≤ (σ2εφ + γn
ā p̄c̄

r
εψ)‖en|n−1‖2.



Mathematics 2022, 10, 927 8 of 12

Let κ′ = σ2εφ + γn
āp̄c̄

r εψ, thus ‖mn‖ ≤ κ′‖en|n−1‖2. Since ‖en|n−1‖ ≤ ηψ, further
calculation as follows:

m′nPn+1|n[2An(Il − γnKnCn)en|n−1 + mn] ≤ κ′‖en|n−1‖2 1
p
[2a(1 + p̄c̄

1
r

c̄)‖en|n−1‖

+ κ′ηψ‖en|n−1‖],

take κ1 = κ′ 1p [2a(1 + p̄c̄ 1
r c̄) + κ′ηψ] one can obtain (33).

The last part we have to prove

E[s′nP−1
n+1|nsn] ≤ κ2ε. (34)

Since ωn and υn are uncorrelated, the expectation value of the crossterms containing
both will vanish. Using (24), we have:

E[s′nP−1
n+1|nsn] =E[ω′nP−1

n+1|nωn − γnω′nP−1
n+1|n AnKnυn − γnυ′nK′n A′nP−1

n+1|nωn

+ γ2
nυ′n A′nK′nP−1

n+1|nKn Anυn]

=E[ω′nP−1
n+1|nωn + γnυ′n A′nKv

nP−1
n+1|nKn Anυn]

≤ 1
p
E[ω′nωn] +

1
p
(

ā p̄c̄
r

)2E[υ′nυn].

Let κ2 = q
p + r

p (
ā p̄c̄

r )2, one can obtain (34). Finally, it follows with (31), (33) and
(34) that (30) holds, which further implies that (28) is satisfied. To sum up, complete the
proof.

Remark 2. By Theorem 2, the initial error and noise terms are bounded, then the estimation error
remains bounded. The error bounds are quantified in the proof. State estimation is reliable if the
numerically calculated values satisfy the required boundaries.

4.2. Boundedness of the Error Covariance Matrices

We present the following theorem to discuss the bounds of the error covariance
matrices:

Theorem 3. Assume that m = n, for all n, Cn is invertible and its inverse satisfies ‖C−1
n ‖ ≤ c−1,

the arrival probability satisfies θ > 1− ā−2, there are constants p, p > 0, such that

pIl ≤ Pn+1|n+1 ≤ Pn+1|n, (35)

E[Pn+1|n+1] ≤ E[Pn+1|n] ≤ pIl . (36)

Proof of Theorem 3. From (11)–(13), let (1− γn)β(δ) + γn , αn(γn, δ), then

Pn+1|n = AnPn|n−1 A′n − αn(γn, δ)AnKnCnPn|n−1 A′n + Qn

= AnPn|n−1 A′n − αn(γn, δ)AnPn|n−1C′n(CnPn|n−1C′n + Rn)
−1CnPn|n−1 A′n + Qn

= An[Pn|n−1 − αn(γn, δ)Pn|n−1C′n(CnPn|n−1C′n + Rn)
−1CnPn|n−1]A

′
n + Qn.
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Let CnPn|n−1 = M and Rn = N, on the basis of Lemma 6.3 in [15], (M + N)−1 ≥
M−1 −M−1NM−1, we obtain:

Pn+1|n ≤ An{Pn|n−1 − αn(γn, δ)Pn|n−1C′n[(CnPn|n−1C′n)
−1

− (CnPn|n−1C′n)
−1Rn(CnPn|n−1C′n)

−1]CnPn|n−1}A′n + Qn

≤ [1− αn(γn, δ)]AnPn|n−1 A′n + αn(γn, δ)An(CnRnC′n)
−1 A′n + Qn.

Observing that C−1
n RnC−T

n ≤ rC−1
n C−T

n ≤ rc−2 Il , Qn ≤ qIl , then:

Pn+1|n ≤ [1− αn(γn, δ)]AnPn|n−1 A′n + αn(γn, δ)rc−2 An A′n + qIn.

We now show that for all n, one has E[Pn+1|n] ≤ p
n
∑

j=0
[(1− θ)a2]j Il . We prove it by

mathematical induction. First, notice that (1− θ)a2 < 1 leads to θ > 1− a−2, setting
p = max{‖P1|0‖, θr̄ā2

c2 + q}, it follows:

E[P2|1] ≤ E{[1− α0(γ0, δ)]A0P1|0 A′0 + α0(γ0, δ)r̄c−2 A0 A′0 + qIl}
≤ (1− θ)a2P1|0 + θrc−2a2 Il + qIl ,

≤ (1− θ)a2 pIl + pIl .

Assume that E[Pn|n−1] satisfies the inequality E[Pn|n−1] ≤ p
n
∑

j=0
[(1− θ)a2]j Il , next we

calculate E[Pn+1|n],

E[Pn+1|n] ≤ {[1− αn(γn, δ)]AnPn|n−1 A′n + αn(γn, δ)rc−2 An A′n + qIl}
≤ (1− θ)E[a2Pn|n−1] + θrc−2a2 Il + qIl

≤ (1− θ)a2 p
n

∑
j=0

[(1− θ)a2]j Il + pIl

= p
n

∑
j=0

[(1− θ)a2]j Il ,

which completes the proof.

5. Numerical Simulation

A nonlinear system is shown below:

x1,n = x1,n−1 + tx2,n−1 + ω1,n−1,

x2,n = −10t sin x1,n−1 + (1− t)x2,n−1 + ω2,n−1,

y1,n = 2 sin
x1,n

2
+ υ1,n,

y2,n =
x1,n

2
+ υ2,n,

where xn is the state and yn is the observation , ωn and υn are noises. Covariance matrices
Q = diag(0.01, 0.0001) and R = diag(0.1, 0.1). Let P0|0 = diag(1, 1) and the initial state be
[1, 0]′, filtering cycle t = 0.05s, and take δ = 1.70. In Figure 2, we can see the results of the
estimation by the Theorem 1 and the event trigger time, and the estimation value is closer
to the real value than the measurement value. Compared with the measurement value, the
estimation value result is more accurate. We trigger 43 times out of 200 moments, saving
the communication energy. In the upper part of Figure 3, we use the Monte Carlo method
to obtain the mean of the results of 10,000 runs. Traces of Pn|n−1 and Pn|n are shown in the
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middle part of Figure 3. It shows the boundedness of the estimation error covariance and
real estimation error, which verifies the effectiveness of Theorem 1 in this paper. It can
be seen from the above simulation results that the designed nonlinear filter has a better
estimation effect on nonlinear systems.
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Figure 2. The actual state, estimation and event trigger time.
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  Figure 3. The boundedness of the estimation error and covariance matrix.

6. Conclusions

Aiming at the event-triggered mechanism in a nonlinear networked system, a nonlin-
ear filtering algorithm based on EKF is proposed. The event-triggered data transmission
scheme reduces the quantity of measurement transmissions on the bandwidth-limited
network. The convergence of the designed filter is also analyzed, and sufficient conditions
are established to ensure the convergence of the nonlinear filter. Finally, an example is
given to illustrate the feasibility of the method.

Author Contributions: Conceptualization, H.Z., J.X. and F.L.; methodology, H.Z. and J.X.; software,
H.Z., J.X. and F.L.; validation, H.Z. and J.X.; formal analysis, H.Z., J.X. and F.L.; writing—original
draft preparation, H.Z.; writing—review and editing, H.Z., J.X. and F.L. All authors have read and
agreed to the published version of the manuscript.



Mathematics 2022, 10, 927 11 of 12

Funding: This research was funded by the National Natural Science Foundation of China under
Grant 62173142 and the Programme of Introducing Talents of Discipline to Universities (the 111
Project) under Grant B17017.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

WSN wireless sensor network
KF Kalman filter
MMSE minimum mean square error
EKF extended Kalman filter
UKF untraced Kalman filter
ETC event-triggered control

References
1. García-Ligero, M.J.; Hermoso-Carazo, A.; Linares-Pérez, J. Distributed fusion estimation with sensor gain degradation and

Markovian delays. Mathematics 2020, 8, 1948. [CrossRef]
2. Li, X.; Peng, D.; Cao, J. Lyapunov stability for impulsive systems via event-triggered impulsive control. IEEE Trans. Autom.

Control 2020, 65, 4908–4913. [CrossRef]
3. Yu, W.; Chen, G.; Wang, Z.; Yang, W. Distributed consensus filtering in sensor networks. IEEE Trans. Syst. Man Cybern. Part

B-Cybern. 2009, 39, 1568–1577.
4. Li, X.; Zhang, T.; Wu, J. Input-to-state stability of impulsive systems via event-triggered impulsive control. IEEE Trans. Cybern.

2021, in press. [CrossRef] [PubMed]
5. Yang, W.; Zheng, Z.; Chen, G.; Tang, Y.; Wang, X. Security analysis of a distributed networked system under eavesdropping

attacks. IEEE Trans. Circuits Syst. II-Express Briefs 2020, 67, 1254–1258. [CrossRef]
6. Simon, D.; Tien, L.C. Kalman filtering with state equality constraints. IEEE Trans. Aerosp. Electron. Syst. 2002, 38, 128–136.

[CrossRef]
7. Nikoukhah, R.; Campbell, S.L.; Delebecque, F. Kalman filtering for general discrete-time linear systems. IEEE Trans. Autom.

Control 1999, 44, 1829–1839. [CrossRef]
8. Teng, J.L.; Yao, M. The Kalman filter as the optimal linear minimum mean-squared error multiuser CDMA detector. IEEE Trans.

Inf. Theory 2000, 46, 2561–2566.
9. Assa, A.; Janabi-Sharifi, F. A Kalman filter-based framework for enhanced sensor fusion. IEEE Sens. J. 2015, 15, 3281–3292.

[CrossRef]
10. Antoniou, C.; Ben-Akiva, M.; Koutsopoulos, H.N. Nonlinear Kalman filtering algorithms for on-line calibration of dynamic traffic

assignment models. IEEE Trans. Intell. Transp. Syst. 2007, 8, 661–670. [CrossRef]
11. Muhammad, W.; Ahsan, A. Airship aerodynamic model estimation using unscented Kalman filter. J. Syst. Eng. Electron. 2020, 31,

1318–1329. [CrossRef]
12. Giannitrapani, A.; Ceccarelli, N.; Scortecci, F.; Garulli, A. Comparison of EKF and UKF for spacecraft localization via angle

measurements. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 75–84. [CrossRef]
13. Zhou, Y.; Zhang, Q.; Wang, H.; Zhou, P.; Chai, T. EKF-based enhanced performance controller design for nonlinear stochastic

systems. IEEE Trans. Autom. Control 2018, 63, 1155–1162. [CrossRef]
14. Pantaleon, C.; Souto, A. An aperiodic phenomenon of the extended Kalman filter in filtering noisy chaotic signals. IEEE Trans.

Signal Process 2005, 53, 383–384. [CrossRef]
15. Kluge, S.; Reif, K.; Brokate, M. Stochastic stability of the extended Kalman filter with intermittent observations. IEEE Trans.

Autom. Control 2010, 55, 514–518. [CrossRef]
16. Jiancheng, F.; Sheng, Y. Study on innovation adaptive EKF for in-flight alignment of airborne POS. IEEE Trans. Instrum. Meas.

2011, 60, 1378–1388. [CrossRef]
17. Hu, F.; Wu, G. Distributed error correction of EKF algorithm in multi-sensor fusion localization model. IEEE Access 2010, 8,

93211–93218. [CrossRef]
18. Charkhgard, M.; Farrokhi, M. State-of-charge estimation for lithium-ion batteries using neural networks and EKF. IEEE Trans. Ind.

Electron. 2010, 57, 4178–4187. [CrossRef]

http://doi.org/10.3390/math8111948
http://dx.doi.org/10.1109/TAC.2020.2964558
http://dx.doi.org/10.1109/TCYB.2020.3044003
http://www.ncbi.nlm.nih.gov/pubmed/33449902
http://dx.doi.org/10.1109/TCSII.2019.2928558
http://dx.doi.org/10.1109/7.993234
http://dx.doi.org/10.1109/9.793722
http://dx.doi.org/10.1109/JSEN.2014.2388153
http://dx.doi.org/10.1109/TITS.2007.908569
http://dx.doi.org/10.23919/JSEE.2020.000102
http://dx.doi.org/10.1109/TAES.2011.5705660
http://dx.doi.org/10.1109/TAC.2017.2742661
http://dx.doi.org/10.1109/TSP.2004.837411
http://dx.doi.org/10.1109/TAC.2009.2037467
http://dx.doi.org/10.1109/TIM.2010.2084710
http://dx.doi.org/10.1109/ACCESS.2020.2995170
http://dx.doi.org/10.1109/TIE.2010.2043035


Mathematics 2022, 10, 927 12 of 12

19. Li, X.; Li, P. Input-to-state stability of nonlinear systems: Event-triggered impulsive control. IEEE Trans. Autom. Control 2021, 67,
1460–1465. [CrossRef]

20. Li, X.; Zhu, H.; Song, S. Input-to-state stability of nonlinear systems using observer-based event-triggered impulsive control.
IEEE Trans. Syst. 2021, 51, 6892–6900. [CrossRef]

21. Borri, A.; Pepe, P. Event-triggered control of nonlinear systems with time-varying state delays. IEEE Trans. Autom. Control 2021,
66, 2846–2853. [CrossRef]

22. Shi, D.; Chen, T.; Shi, L. On set-valued Kalman filtering and its application to event-based state estimation. IEEE Trans. Autom.
Control 2015, 60, 1275–1290. [CrossRef]

23. Xu, J.; Ho, D.W.C.; Li, F.; Yang, W.; Tang, Y. Event-triggered risk-sensitive state estimation for hidden Markov models. IEEE Trans.
Autom. Control 2019, 64,4276–4283. [CrossRef]

24. Xu, J.; Tang, Y.; Yang, W.; Li, F.; Shi, L. Event-triggered minimax state estimation with a relative entropy constraint. Automatica
2019, 110, 108592. [CrossRef]

25. Wu, J.; Jia, Q.-S.; Johansson, K.H.; Shi, L. Event-based sensor data scheduling: Trade-off between communication rate and
estimation quality. IEEE Trans. Autom. Control 2013, 58, 1041–1046. [CrossRef]

26. Li, L.; Niu, M.; Yang, H.; Liu, Z. Event-triggered nonlinear filtering for networked systems with correlated noises. J. Franklin Inst.
2018, 355, 5811–5829. [CrossRef]

http://dx.doi.org/10.1109/TAC.2021.3063227
http://dx.doi.org/10.1109/TSMC.2020.2964172
http://dx.doi.org/10.1109/TAC.2020.3009173
http://dx.doi.org/10.1109/TAC.2014.2370472
http://dx.doi.org/10.1109/TAC.2019.2894616
http://dx.doi.org/10.1016/j.automatica.2019.108592
http://dx.doi.org/10.1109/TAC.2012.2215253
http://dx.doi.org/10.1016/j.jfranklin.2018.05.044

	Introduction
	System and Problem Description
	Design of Event-Triggered EKF
	Estimation Error Analysis
	Boundedness of the Estimation Error
	Boundedness of the Error Covariance Matrices

	Numerical Simulation
	Conclusions
	References

