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Abstract: In this paper, mechanics of continuum with general form of nonlocality in space and
time is considered. Some basic concepts of nonlocal continuum mechanics are discussed. General
fractional calculus (GFC) and general fractional vector calculus (GFVC) are used as mathematical
tools for constructing mechanics of media with general form of nonlocality in space and time.
Balance equations for mass, momentum, and energy, which describe conservation laws for nonlocal
continuum, are derived by using the fundamental theorems of the GFC. The general balance equation
in the integral form are derived by using the second fundamental theorems of the GFC. The first
fundamental theorems of GFC and the proposed fractional analogue of the Titchmarsh theorem are
used to derive the differential form of general balance equations from the integral form of balance
equations. Using the general fractional vector calculus, the equations of conservation of mass,
momentum, and energy are also suggested for a wide class of regions and surfaces.
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1. Introduction

A general theory of nonlocal continuum mechanics was formally initiated by the
papers of Kröner [1] in 1967, and then, by the works of Eringen [2–4] in 1972. Nonlocal
continuum theory [5,6] is based on the assumption that the forces between material points
are a long-range type, thus reflecting the long-range character of inter-atomic interactions.
The nonlocal properties of media can manifest themselves in the form of spatial non-locality,
fading memory and distributed lag (non-locality in time), fractional long-range interactions
and fractional dispersions.

At the present time, three approaches to formulating the mechanics of nonlocal media
can be distinguished from a mathematical point of view.

1. The first approach is based on the use of various integral and integro-differential
operators of general form, which are not self-consistent with each other and do not
form a calculus. Eringen’s book [5] and Rogula’s work [6] can be attributed to this
approach. As an example, it should also be noted the works [7–9] that described
continuous media with non-locality in time. Note some modern reviews of various
aspects of nonlocal mechanics in [10–14]. The models of non-local media described
in these reviews do not assume that integral and integro-differential operators form
a calculus.
It should be emphasized that the so-called differential (gradient) models, which are
based on the differential equations of integer orders, cannot be considered as a tool for
describing non-local media from a mathematical point of view. This is due to the well-
known fact that integer-order differential equations are defined in an infinitesimally
small neighborhood of the point under consideration and, therefore, are a tool for
describing only local media. However, differential (gradient) models can be used to
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obtain some corrections to standard local continuum models by taking into account
derivatives of the next order.
From a mathematical point of view, the lack of mutual consistency between the
integral and integro-differential operators, which do not form a calculus, leads to the
absence of a non-local analogue of vector calculus for such operators. At the same
time, the importance of vector calculus as a tool for describing continuous media
within the framework of standard local mechanics is obvious. As will be proved in this
article, the fundamental theorems of calculus, which describe the relationship between
differential and integral operators, make it possible to derive balance equations.
The advantage of the first approach is the use of a wide class of operator kernels in
integral and integro-differential operators. However, the price for such generality is a
narrower class of problems in mechanics, for which explicit solutions can be obtained
for the equation of nonlocal continuum.

2. The second approach is based on the use of integral and integro-differential operators
with the power-law kernels and forming a calculus, which is called fractional calculus
(FC). These operators are usually called fractional integrals and derivatives of non-
integer orders (see books [15–19] and Volumes 1 and 2 of Handbook [20,21]). The
FC has a very long history [15,22–26], and this calculus has a wide application in
mechanics and physics (for example, see [27–35], Volumes 3 and 4 of Handbook [36,37]
and reviews [38,39]). The theory of integral and differential equations of non-integer-
orders is powerful tool to describe the media and processes with nonlocality in space
and time.
First time the fractional derivatives with respect to space coordinates have been ap-
plied to nonlocal elastic continuum by Gubenko [40,41] in 1957. Then, the fractional
calculus (FC) began to be actively used to describe continuum with power-law type
of non-locality. Note some basic models and results in application of FC to nonlocal
continuum mechanics: (1) Carpinteri, Cornetti and Sapora [42–44] consider nonlocal
elastic continua modelled by a fractional calculus approach; (2) Cottone, Di Paola,
Zingales and Marino, Failla [45–49] proposed fractional mechanical models for the
dynamics of non-local continuum; (3) Drapaca and Sivaloganathan [50] describe a
fractional model of continuum mechanics; (4) Challamel, Zorica, Atanackovic and
Spasic [51] proposed a fractional generalization of Eringen’s nonlocal elasticity for
wave propagation; (5) connection between continuous and lattice nonlocal models is
proved in [27,52,53] by continuous limit of discrete systems with long-range interac-
tion; (6) Tarasov, Zaslavsky, Edelman, Korabel [54–57] describe fractional dynamics of
media with long-range interaction; (7) nonlocal model with power-law spatial disper-
sion in electrodynamics [58] and continuum mechanics [59–63] are described; (8) Yu
and Zhai [64] proposed fractional Navier-Stokes equations with power-law nonlocality.
Vector calculus plays an important role in describing continuous media. For the first
time, fractional vector calculus (FVC) that allows taking into account nonlocality was
proposed in 2008 in the work [65] (see also Chapter 11 in book [27]). The fractional
vector calculus was proposed in the form of self-consistent formulation, in which
differential and integral vector operators are satisfy the vector analogs of fundamental
theorems. The fractional generalizations of the Green’s, Stokes’, and Gauss’s theorems
are formulated and proved in [27,65]. In this nonlocal vector calculus, the Caputo
fractional derivatives and Riemann-Liouville fractional integrals are used to take into
account power-law spatial non-locality. Then, after 2008, other works, which consider
special aspects of self-consistent formulations of the FVC, are published by Bolster,
Meerschaert and Sikorskii in 2012 [66]; D’Ovidio and Garra in 2014 [67]; Tarasov
in 2014, 2015 [68,69]; Ortigueira, Rivero and Trujillo in 2015 [70]; Agrawal and Xu
in 2015 [71]; Ortigueira and Machado in 2018 [72]; (g) Cheng and Dai in 2018 [73].
Unfortunately, almost all works were devoted to only one type of nonlocality and
mainly to power-law nonlocality.
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In the framework of the second approach, there are many fractional differential and
integral equations that have exact and approximate solutions that describe various
problems of non-local mechanics. This fact is an important advantage of the second
approach in comparison with the first approach to nonlocal mechanics. Despite this
advantage, the second approach has a serious disadvantage. In the models used in
the framework of the second approach, only media and materials with power-law
nonlocality in space and time were considered.

3. The third approach, which is proposed in this article, is designed to combine the
advantages of the first and second approaches. To describe a wide class of nonlocal
continua and media, it is important to use a wide class of operator kernels for which
integral and integro-differential operators would form a calculus. Self-consistency
of integral and differential operators is provided by non-local analogues of the first
and second fundamental theorems of some general calculus. It is also important to
have a non-local analogue of the vector calculus, in which non-local analogues of the
theorems of standard vector calculus would hold.
The possibility of formulating the third approach to nonlocal continuum mechanics
is based on the general fractional calculus. The term general fractional calculus has
been suggested in article [74] by Kochubei in 2011 (see also [75–77]). In works [74,75],
the concepts of general fractional derivative (GFD) and general fractional integral
(GFI) are proposed and the fundamental theorems of the GFC were proved. The
GFC is based on the concept of kernel pairs, which was proposed by Sonin in 1884
work [78,79] (note that sometimes a French transliteration of his surname as “Sonine”
is used instead of English transliteration [80]).
In this paper, it is proposed to use the Luchko form of the general fractional calculus
(GFC) to formulate a continuum mechanics of general nonlocality in space and time.
This very important form of the GFC was proposed by Luchko in 2021 [81–83] (see
also [84,85]). In works [81,82], the GFD and GFI are suggested and the general
fundamental theorems of the GFC are proved.
Then, in work [86], a general fractional vector calculus (GFVC) was proposed based
on the general fractional calculus in the form of Luchko as a generalization of the ap-
proach that is suggested in paper [65] (see also Chapter 11 in book [27] (pp. 241–264)).
The GFVC allows us to formulate continuum mechanics with general form of spatial
nonlocality. This approach is proposed to be used to derive the balance equations for
general non-local media in this article.
It should be noted that in 2021 a non-local vector calculus was also proposed by D’Elia,
Gulian, Olson and Karniadak [87] as a generalization of the Meerschaert, Mortensen
and Wheatcraft approach to FVC. However, this calculus is not related to the general
fractional calculus.

In the paper, the Euler approach for description of nonlocal continuum is used. Motion
of a continuum obeys the conservation laws for mass, momentum, and total energy. Balance
equations for mass, momentum, and total energy of general nonlocal continuum are
mathematical formulations of the conservation laws applied to the fixed region of the
nonlocal continuum. In this paper, mathematical equations that describe these conservation
laws for nonlocal continuum are derived. For this purpose, the fundamental theorems of
the GFC are used:

(a) To derive balance equations in general integral form, the second fundamental theorem
of the GFC is used;

(b) The fractional analogue of the Titchmarsh theorem and the first fundamental theorem
of the GFC are used to derive balance equation of general nonlocal continuum in the
general fractional differential form from the GF integral form;

(c) Using the General FVC, the general fractional differential equations for conservation
of mass, momentum, and energy are proposed for a wide class of regions and surfaces
in general nonlocal media.
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In Section 2, properties of the general fractional derivatives and integrals are consid-
ered. This section also briefly describes some elements of the general fractional vector
calculus. In Section 3, some basic concepts of general nonlocal continuum are discussed.
In Section 4, the general fractional continuity equation, which describes a conservation
law for mass of general nonlocal continuum, is derived. In Section 5, the general transport
equation for momentum that describes conservation law for momentum of general nonlocal
continuum is obtained. A derivation of the fractional equilibrium equations for stresses is
also suggested. In Section 6, the general fractional transport equation for total energy of
continua with general nonlocality is derived. In Section 7, a brief conclusion and a list of
main results are given.

2. General Fractional Integrals and Derivatives
2.1. Definitions of GFI and GFD

Let us assume that the functions M(t) belongs to the space C−1,0(0, ∞) and suppose
that there exists a function K(t) ∈ C−1,0(0, ∞), such that the Laplace convolution of these
functions is equal to one for all t ∈ (0, ∞). The function ρ(t) belongs to the space C−1,0(0, ∞),
if this function can be represented in the form ρ(t) = tp g(t), where −1 < p < 0 and
g(t) ∈ C[0, ∞).

Definition 1. Let the functions M(t) and K(t)) satisfy the following conditions.
(1) The Sonin condition for the kernels M(t) and K(t) requires that the equation

(M ∗ K)(t) =
∫ t

0
M(t− t′)K(t′) dt′ = 1 (1)

holds for all t ∈ (0, ∞). The set of the pairs (M(t), K(t)) that satisfy condition (1) is called the
Sonin set and is denoted by S.

(2) The functions M(t), K(t) belong to the space C−1,0(0, ∞),

M(t), K(t) ∈ C−1,0(0, ∞), (2)

where

C−1,0(0, ∞) = {ρ(t) : ρ(t) = tp g(t), t > 0, −1 < p < 0, g(t) ∈ C[0, ∞)}. (3)

The set of the pairs (M(t), K(t)) that satisfy conditions (1) and (2) is called the Luchko set
and is denoted by L.

To define the GFI and GFD, the Luchko approach to general fractional calculus, which
is proposed in [81,82], is used.

Definition 2. Let the pair of the kernels (M(t), K(t)) belongs to the Luchko set L.
Let ρ(t) ∈ C−1(0, ∞) = C−1,∞(0, ∞). Then, the general fractional integral (GFI) with the

kernel M(t) ∈ C−1,0(0, ∞) is the operator on the space C−1(0, ∞) that is defined by the equation

It
(M)[t

′]ρ(t′) =
∫ t

0
dt′ M(t− t′) ρ(t′). (4)

Let ρ(t) ∈ C1
−1(0, ∞), i.e., ρ(1)(t) ∈ C−1(0, ∞). Then, the general fractional derivatives

(GFD) with kernel K(t) ∈ C−1,0(0, ∞), which is associated with GFI (4), is defined as

Dt,∗
(K)[t

′]ρ(t′) = (K ∗ f (1))(t) =
∫ t

0
dt′ K(t− t′) f (1)(t′) (5)

for t ∈ (0, ∞). Operator (5) is called the GFD of the Caputo type.
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Remark 1. If the kernel pair (M(t), K(t)) belongs to the Luchko set L, the kernel K(t) is called
associated kernel to M(t). Note that if K(t) is associated kernel to M(t), then M(t) is associated
kernel to K(t). Therefore, if (M(t), K(t)) belongs to the set L, then both pairs of operators It

(M)
[t′],

Dt,∗
(K)[t

′] and It
(K)[t

′] Dt,∗
(M)

[t′] can be used as the general fractional integrals (GFI) and general
fractional derivatives (GFD).

The GFI and GFD are connected by the fundamental theorems of general fractional
calculus (FT of GFC).

Theorem 1 (First fundamental theorem of GFC). If a pair of kernels (M(t), K(t)) belongs to
the Luchko set L, then the equality

Dt,∗
(K)[t

′]It′
(M)[t

′′] ρ(t′′) = ρ(t) (6)

holds for ρ(t) ∈ C−1,(K)(0, ∞), where

C−1,(K)(0, ∞) := { f : f (t) = It
(K)[t

′]g(t′), g(t) ∈ C−1(0, ∞)}. (7)

Theorem 1 is proved as Theorem 3 in [81] (p. 9) (see also Theorem 1 in [82] (p. 6)).

Theorem 2 (Second fundamental theorem of GFC). If a pair of kernels (M(t), K(t)) belongs
to the Luchko set L, then the equality

It
(M)[t

′]Dt′ ,∗
(K)[t

′′] ρ(t′′) = ρ(t) − ρ(0) (8)

holds for ρ(t) ∈ C1
−1(0, ∞), where

C1
−1(0, ∞) := { f : f (1)(t) ∈ C−1(0, ∞)}. (9)

This theorem is proved as Theorem 4 in [81] (p. 11), (see also Theorem 2 in [82] (p. 7)).

2.2. Examples of Kernel Pairs

Let us give examples of the pair of kernels that belongs to the Sonin set S and the
Luchko set L. Note that if the kernel M(t) is associated to kernel K(t), then the kernel K(t)
is associated to M(t). Therefore, if the operators

It
(M)[τ]X(τ) = (M ∗ X)(t), Dt,∗

(K)[τ]X(τ) = (K ∗ X(1))(t), (10)

are considered for the kernel pair (M(t), K(t)) belongs to the Sonin set S, then the following
operators can also be used

It
(K)[τ]X(τ) = (K ∗ X)(t), Dt,∗

(M)
[τ]X(τ) = (M ∗ X(1))(t). (11)

A similar situation with the kernel pairs (M(t), K(t)) that belong to the Luchko set L.
Let us describe the notation that are used in the Table 1. The function γ(β, t) with

β > 0 is the incomplete gamma function

γ(β, t) =
∫ t

0
τβ−1e−τ dτ. (12)

The functions Jν(t) and, Iν(t) with ν > 0 are the Bessel and the modified Bessel
functions, respectively,

Jν(t) =
∞

∑
k=0

(−1)k(t/2)2k+ν

k!Γ(k + ν + 1)
, Iν(t) =

∞

∑
k=0

(t/2)2k+ν

k!Γ(k + ν + 1)
. (13)
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The function Φ(β, α; z) is the Kummer function

Φ(β, α; z) =
∞

∑
k=0

(β)k
(α)k

zk

k!
. (14)

where (β)k and (α)k are Pochhammer symbols. The function erfc(z) with z ∈ C is the
complementary error function

erfc(z) = 1 − erf(z) = 1− 2√
π

∫ t

0
e−z2

dz. (15)

The function Eα,β[z] is the two-parameters Mittag-Leffler function

Eα,β[z] =
∞

∑
k=0

zk

Γ(α k + β)
, (16)

where α > 0 and β, z ∈ C.

Table 1. Examples of the kernel pairs that belong to the Sonin set and Luchko set, where
0 < α < 1 and 0 < α < β < 1, λ ≥ 0, t > 0.

Kernel of GFI M(t) Kernel of GFD K(t): (M ∗ K)(t) = 1

M(t) = hα(t) =
tα−1

Γ(α)
K(t) = h1−α(t) =

t−α

Γ(1− α)

M(t) = hα,λ(t) =
tα−1

Γ(α)
e−λ t K(t) = h1−α,λ(t) +

λα

Γ(1− α)
γ(1− α, λt)

M(t) = (
√

t)α−1 Jα−1(2
√

t) K(t) = (
√

t)−α I−α(2
√

t)

M(t) =
cos(2

√
t)√

π t
K(t) =

cosh(2
√

t)√
π t

M(t) = tα−1Φ(β, α;−λ t) K(t) =
sin(πα)

π
t−α Φ(−β, 1− α;−λ t)

M(t) = 1 +
λ

Γ(α)
√

t
K(t) =

1√
πt
− λ eλ2 t erfc(λ

√
(t))

M(t) = 1 − λ

Γ(α)
tα−1 K(t) =

1√
πt
− λ t−α E1−α,1−α[λ t1−α]

M(t) = h1−β+α(t) + h1−β(t) K(t) = tβ−1 Eα,β[−tα]
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2.3. General Fractional Integral and Derivative for [a, b]

Let us define the general fractional integration and differentiation on [a, b] with
0 ≤ a < b.

Definition 3. Let ρ(x′) ∈ C−1(0, ∞) and (M(x), K(x)) ∈ L. Then, the general fractional
integration on [a, x] with 0 ≤ a < x is defined by the equation

I(M)
[a,x] [x

′] ρ(x′) := Ix
(M)[x

′] ρ(x′) − Ia
(M)[x

′] ρ(x′) (17)

if x > a > 0 and I(M)
[a,x] [x

′] ρ(x′) := Ix
(M)

[x′] ρ(x′) if x > a = 0.

Let ρ(x′) ∈ C1
−1(0, ∞) and (M(x), K(x)) ∈ L. Then, the general fractional differentiation

on [a, x] with 0 ≤ a < x is defined by the equation

D(K)
[a,x][x

′] ρ(x′) := Dx,∗
(K)[x

′] ρ(x′) − Da,∗
(K)[x

′] ρ(x′) (18)

if x > a > 0 and D(K)
[a,x][x

′] ρ(x′) := Dx,∗
(K)[x

′] ρ(x′) if x > a = 0.

For x = b > a > 0, the general fractional integration on [a, b] is given by the equation

I(M)
[a,b] [x] ρ(x) :=

∫ b

0
dx M(b− x) ρ(x) −

∫ a

0
dx M(a− x) ρ(x). (19)

The general fractional derivative on [a, b] is given as

D(K)
[a,b][x] ρ(x) :=

∫ b

0
dx K(b− x) ρ(1)(x) −

∫ a

0
dx K(a− x) ρ(1)(x). (20)

Let us formulate the fundamental theorems of the GFC for the operator I(M)
[a,x] [s].

Theorem 3 (The second fundamental theorem of GFC for Ix
(M)

and GFD Dx,∗
(K)). Let ρ(x)

belongs to the space C1
−1(0, ∞), and the pair of kernels (M(t), K(t)) the Luchko set L. Then

I(M)
[a,x] [s] Ds,∗

(K)[x
′] ρ(x′) = ρ(x) − ρ(a), (21)

where x > a ≥ 0.

Theorem 4 (The first fundamental theorem of GFC for Ix
(M)

and GFD Dx,∗
(K)). Let us assume

that the conditions of the first FT of GFC for the operators Ix
(M)

and GFD Dx,∗
(K) are satisfied. Then

Dx,∗
(K)[s] I(M)

[a,s] [x
′] ρ(x′) = ρ(x), (22)

where it is used
Dx,∗
(K)[s] 1 = 0. (23)

For operators Ix
(M)

[x] and D(K)
[a,x] with a > 0, the first fundamental theorem GFC holds

in the form
D(K)
[a,x][s] Is

(M)[x
′] ρ(x′) = ρ(x) − ρ(a). (24)

The second fundamental theorem GFC does not hold for the operators Ix
(M)

[x] and

D(K)
[a,x] with a > 0, since Ix

(M)
[x] 1 6= 0.
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2.4. General Fractional Analogue of Titchmarsh Theorem

Let us give the Titchmarsh’s Theorem about the Laplace convolution.

Theorem 5 (Titchmarsh’s Theorem). Let M(x) and f (x) be real valued continuous functions,
x ∈ [0, ∞), such that

(M ∗ f )(x) =
∫ x

0
M(x− x′) f (x′)dx′ = 0 (25)

vanishes identically, i.e., condition (25) holds for all x ∈ [0, ∞). Then, either one of M(x) or f (x)
must vanish identically, i.e., f (x) = 0 for all x ∈ [0, ∞).

Proof. The proof of this theorem without using the theory of functions of a complex
variable is proposed in Part VI, Chapter VI, Section 8 in. [88] (p. 180) and Chapter VI,
Section 5 in [89] (p. 166). This ends the proof.

The first fundamental theorems of the GFC can be used to derive the GF differential
form of general balance equations from the GF integral form of general balance equations.
Let us formulate and prove a basic theorem that allows us to implement this derivation of
GF differential form of nonlocal balance equations. This theorem can be regarded as an
analogue of Titchmarsh’s theorem for general fractional calculus.

Theorem 6 (General fractional Titchmarsh’s theorem). Let the pair of kernels (M(x), K(x))
belongs to the Luchko set. Let f (x) be real valued function such that f (x) ∈ C−1,(K)(0, ∞). If
the condition

I(M)
[a,x] [x

′] f (x′) = 0 (26)

holds for all x ∈ [0, ∞), where x > a ≥ 0, Then, f (x) = 0 for all x ∈ [0, ∞).

Proof. The action of the generalized fractional derivative on equality (26) leads to
the equation

Dx,∗
(K)[s]I

(M)
[a,s] [x

′] f (x′) = 0 (27)

since the action of the generalized fractional derivative on zero is equal to zero.
Let us use the first fundamental theorem of GFC in the form

Dx,∗
(K)[s]I

(M)
[a,s] [x

′] f (x′) = f (x), (28)

which holds for all x ∈ [0, ∞), if f (x) ∈ C−1,(K)(0, ∞). Using (28), Equation (26) gives
the equality

f (x) = 0 (29)

that holds for x ∈ [0, ∞). This ends the proof.

2.5. Triple GFI

The following notation will be used

Rn
+ = {(x1, . . . , xn) : x1 > 0, . . . , xn > 0}, (30)

Rn
0,+ = {(x1, . . . , xn) : x1 ≥ 0, . . . , xn ≥ 0}, (31)

where R1
+ = (0, ∞).

Let us define concept of the Z-simple region W in R3
0,+.
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Definition 4. Let W be region in R3
0,+ that is bounded above and below by smooth surfaces S2,xy,

S1,xy and a lateral surface Sz, whose generatrices are parallel to the Z-axis. Let surfaces S1,xy, S2,xy
be described by the equations

z = z1(x, y) ≥ 0, z = z2(x, y) ≥ 0, (32)

where the functions are continuous in the closed domain Wxy that is a projection of the region W
onto the XY-plane and z2(x, y) ≥ z1(x, y) for all (x, y) ∈Wxy.

Then, the region W will be called the Z-simple region (simple area along the Z-axis). The
region W is called simple, if W is simple along three axes (X, Y, Z). If W can be divided into a finite
number of such regions with respect to all three axes, Then, W will be called piecewise simple region
in R3

0,+.

Definition 5. Let W ⊂ R3
0,+ be Z-simple domain that is bounded above and below by smooth

surfaces S2,xy, S1,xy described by Equation (32). Let Wxy ⊂ R2
0,+ be projection of W on the

XY-plane such that Wxy is Y-simple region in XY-plane that is bounded by the lines y = y2(x)
and y = y1(x), where y = y2(x) and y = y1(x) are continuous functions on the interval [a, b],
b > a ≥ 0 and y2(x) ≥ y1(x) > 0 for all x ∈ [a, b].

Let the scalar field ρ(x, y, z) be satisfy the conditions

I(Mz)
[z1(x,y),z2(x,y)][z] ρ(x, y, z) ∈ C−1(R2

+). (33)

and
I
(My)

[y1(x),y2(x)][y] I(Mz)
[z1(x,y),z2(x,y)][z] ρ(x, y, z) ∈ C−1(0, ∞). (34)

Then, the triple general fractional integral (triple GFI) is defined in the form

I(M)
W [x, y, z] ρ(x, y, z) := I(Mx)

[a,b] [x] I
(My)

[y1(x),y2(x)][y] I(Mz)
[z1(x,y),z2(x,y)][z] ρ(x, y, z). (35)

2.6. Surface GFI

The surface GFI over the surface S in R3
0,+ is defined through the double GFI over

areas Sxy, Sxz, Syz in the XY, XZ, YZ planes, where these areas are projections of the surface
S onto these planes.

Let us give definitions of piecewise simple surfaces, vector fields on these surfaces
and the surface GFI.

Definition 6. Let S be an oriented compact smooth surface in the region

R3
0,+ = {(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0}. (36)

Let us choose a side of the surface S.
Let the surface S be represented as the union of a finite number of X-simple surfaces SX,i, as

well as a finite number of Y-simple surfaces SX,j and Z-simple surfaces SZ,k, where i = 1, . . . , nx,
j = 1, . . . , ny and k = 1, . . . , nz such that

S :=
nx⋃

k=1

SX,i =

ny⋃

j=1

SY,j =
nz⋃

k=1

SZ,k. (37)

Let Si,yz, Sj,xz, Sk,xy be projections of the surfaces SX,i, SY,j, SZ,k onto the YZ, XZ, XY planes,
which can be described by continuous functions

SX,i = {x = xi(y, z) ≥ 0 if (y, z) ∈ Si,yz ⊂ R2
0,+}, (38)

SY,j = {y = yj(x, z) ≥ 0 if (x, z) ∈ Sj,xz ⊂ R2
0,+}, (39)
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SZ,k = {z = zk(x, y) ≥ 0 if (x, y) ∈ Sk,xy ⊂ R2
0,+}. (40)

Such surfaces S is called piecewise simple surfaces. The set of such surfaces is denoted by
P(R3

0,+).

Definition 7. Let S be a piecewise simple surface (S ∈ P(R3
0,+)). Let the vector field

F := ex Fx(x, y, z) + ey Fy(x, y, z) + ez Fz(x, y, z) (41)

on the surface S be satisfy the conditions

Fx(xi(y, z), y, z) ∈ C−1(R2
+), (42)

Fy(x, yj(x, z), z) ∈ C−1(R2
+), (43)

Fz(x, y, zk(x, y)) ∈ C−1(R2
+) (44)

for all i = 1, . . . , nx, j = 1, . . . , ny, k = 1, . . . , nz.
The set of such vector fields F on piecewise simple surface S is denoted by FS(R3

0,+).

Definition 8. Let S be a piecewise simple surface (S ∈ P(R3
0,+)) and a vector fields F on this

surface S belongs to the set FS(R3
0,+).

Then, the surface general fractional vector integral (surface GFI) of the second kind

I(M)
S = ex I(M)

Syz
[y, z] + ey I(M)

Sxz
[z, x] + ez I(M)

Sxy
[x, y] =

ex

nx

∑
i=1

I(M)
Si,yz

[y, z] + ey

ny

∑
j=1

I(M)
Sj,xz

[z, x] + ez

nz

∑
k=1

I(M)
Sk,xy

[x, y] (45)

for the vector fiels F ∈ FS(R3
0,+) is defined by the equation

(
I(M)

S , F
)

:=
nx

∑
i=1

I(M)
Si,yz

[y, z] Fx(xi(y, z), y, z) +

ny

∑
j=1

I(M)
Sj,xz

[x, z] Fy(x, yj(x, z), z) +
nz

∑
k=1

I(M)
Sk,xy

[x, y] Fz(x, y, zk(x, y)). (46)

Example 1. Let us consider a two-sided smooth surface S and fix one of its two sides, which is
equivalent to choosing a certain orientation on the surface. Let us also assume that the surface S is
given by the equation

z = z(x, y) ≥ 0, (47)

where the point (x, y) ∈ R2
+,0 changes in area Sxy in the XY-plane, bounded by smooth contour

∂Sxy and
S := {(x, y, z) : z = z(x, y) ≥ 0, (x, y) ∈ Sxy ⊂ R2

0,+}. (48)

Let F be a vector field F := ez Fz(x, y, z), where Fz(x, y, z(x, y)) ∈ C−1(R2
+). Then,

the surface GFI is defined as
(

I(M)
S , F

)
= I(M)

Sxy
[x, y] Fz(x, y, z(x, y)). (49)

If Sxy is region of the XY-plane such that

Sxy := {(x, y) : 0 ≤ a ≤ x ≤ b, 0 ≤ y1(x) ≤ y ≤ y2(x)}, (50)
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where y = y1(x) and y = y2(x) are continuous functions, Then, the double GFI in Equation (49)
is represented as

I(M)
Sxy

[x, y] Fz(x, y, z(x, y)) := I(M1)
[a,b] [x] I(M2)

[y1(x),y2(x)][y] Fz(x, y, z(x, y)). (51)

2.7. General Fractional Divergence

In this subsection, the definition of general fractional divergence for R3
0,+ is given.

Let us define sets of vector fields that is used in the definition of the regional general
fractional divergence.

Definition 9. Let J(x, y, z) be a vector field that satisfies the conditions

Dx,∗
(Kx)

[x′]Jx(x′, y, z) ∈ C−1(R3
+), (52)

Dy,∗
(Ky)

[y′]Jy(x, y′, z) ∈ C−1(R3
+), (53)

Dz,∗
(Kz)

[z′]Jz(x, y, z′) ∈ C−1(R3
+). (54)

Then, the set of such vector fields is denoted as F1
−1,Div(R

3
+).

Let J(x, y, z) be a vector field that satisfies the conditions

Jx(x, y, z), Jy(x, y, z), Jz(x, y, z) ∈ C1
−1(R3

+). (55)

Then, the set of such vector fields is denoted as C1
−1(R3

+).

In other words, the condition J(x, y, z) ∈ C1
−1(R3

+) means that all general fractional
derivatives of all components of the vector field J(x, y, z) with respect to all coordinates
belong to space C−1(R3

+).
Let us define the regional general fractional divergence.

Definition 10. Let J(x, y, z) be a vector field

J(x, y, z) =
3

∑
k=1

ek Jk(x, y, z) (56)

that belongs to the set F1
−1,Div(R

3
+) or C1

−1(R3
+).

Then, the general fractional divergence Div(K)
W for the region W = R3

0,+ is defined as

Div(K)
W J = Dx,∗

(Kx)
[x′]Jx(x′, y, z) + Dy,∗

(Ky)
[y′]Jy(x, y′, z) + Dz,∗

(Kz)
[z′]Jz(x, y, z′). (57)

One can consider the general fractional nabla operator (del operator) that is defined
by equation

∇(K)
W :=

3

∑
j=1

D
xj ,∗
(Kj)

[x′ j]F (58)

Using this operator, the GF divergence can be written as

(
∇(K)

W , F
)

:=
3

∑
j=1

D
xj ,∗
(Kj)

[x′ j] Fj. (59)

where F ∈ F1
−1,Div(R

3
+) or F ∈ C1

−1(R3
+).

Remark 2. It should be noted that the general fractional divergence can be defined not only as
a regional operator for regions W ⊂ R3

0,+, but also can be defined for surfaces S ⊂ R3
0,+ and
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lines L ⊂ R3
0,+. This possibility is due to the fact that this operator is non-local and, in fact, it is

an integro-differential operator. The general fractional nabla operator can also be defined for the
L, S, W ⊂ R3

0,+, that corresponds to the lines, surfaces and regions in R3
0,+.

2.8. General Fractional Gauss Theorem for Z-Simple Region

The standard Gauss theorem (the Gauss-Ostrogradsky theorem) relates the flux of a
vector field through a closed surface to the divergence of the field in the region enclosed.
The Gauss theorem states that the surface integral of a vector field over a closed surface,
which is the flux through the surface, is equal to the volume integral of the divergence over
the region inside the surface.

Let us define a set of vector fields, for which general fractional Gauss theorem
is formulated.

Definition 11. Let W in R3
0,+ be Z-simple region such that W is a piecewise Y-simple and X-

simple region

W =
n⋃

k=1

WX,k =
m⋃

j=1

WY,j, (60)

where WX,k are the X-simple regions that is described by x = xk,1(y, z), x = xk,2(y, z) for
y, z ∈ Dyz and WY,j are the Y-simple regions that are described by the functions y = yj,1(x, z),
y = yj,2(x, z) for (x, z) ∈ Dxz.

Let vector field J(x, y, z) satisfy the conditions

Jx(xk,2(y, z), y, z), Jx(xk,1(y, z), y, z) ∈ C−1(R2
+), (61)

Jy(x, yj,2(x, z), z), Jy(x, yj,1(x, z), z) ∈ C−1(R2
+), (62)

Jz(x, y, z1(x, y)), Jz(x, y, z2(x, y)) ∈ C−1(R2
+). (63)

Then, the set of such vector fields J is denoted as J(x, y, z) ∈ F−1(∂W).
Let vector field J(x, y, z) satisfy the conditions

Dx,∗
(Kx)

[x′] Jx(x′, y, z) ∈ C−1(R3
+), (64)

Dy,∗
(Ky)

[y′] Jy(x, y′, z) ∈ C−1(R3
+), (65)

Dz,∗
(Kz)

[z′] Jz(x, y, z′) ∈ C−1(R3
+). (66)

Then, the set of such vector field J is denoted as J(x, y, z) ∈ F1
−1(R3

+).

Theorem 7 (General fractional Gauss theorem for Z-simple region). Let W in R3
0,+ be Z-

simple region such that W is a piecewise Y-simple and X-simple region. Let W is bounded above
and below by smooth surfaces S2,xy, S1,xy, which is described by Equation (32) and a lateral surface
Sz, whose generatrices are parallel to the Z-axis.

Let the vector field J(x, y, z) belongs to the sets F−1(W) and F1
−1(R3

+).
Then, the general fractional Gauss equation has the from

I(M)
W [x, y, z]

(
Div(K)

W J
)

=
(

I∂W , J
)

(67)

that can be written as

I(M)
W [x, y, z]

(
Dx,∗
(Kx)

[x′] Jx(x′, y, z) + Dy,∗
(Ky)

[y′] Jy(x, y′, z) + Dz,∗
(Kz)

[z′] Jz(x, y, z′)
)

=

I(M)
S [y, z] Jx(x, y, z) + I(M)

S [x, y] Jy(x, y, z) + I(M)
S [x, y] Jz(x, y, z). (68)

Proof. This theorem was proved in [86].
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The general fractional Gauss theorem is also satisfied for regions W ⊂ R3
0,+ that can

be represented as unions of the Z-simple regions Wk, which are piecewise Y-simple and
X-simple regions in R3

0,+.

For parallelepiped regions, a general fractional Gauss theorem can be formulated in
the following form.

Theorem 8 (General fractional Gauss theorem for Gauus’s theorem for parallelepiped
region). Let Jx(x, y, z), Jy(x, y, z), Jz(x, y, z) belong to the function space F1

−1(R3
+) and the

region W ⊂ R3
0,+ has the form of the parallelepiped

W := {(x, y, z) : 0 ≤ a ≤ x ≤ b, 0 ≤ c ≤ y ≤ d, 0 ≤ e ≤ z ≤ f }. (69)

If the boundary of W be a closed surface S = ∂W, then
(

I(M)
∂W , J

)
= I(M)

W Div(K)
W J. (70)

For the Cartesian coordinates, the vector field J = Jxex + Jyey + Jzez and the GFI operators

I(M)
W = I(M)

W [x, y, z], I(M)
∂W = ex I(M)

∂W [y, z] + ey I(M)
∂W [x, z] + ez I(M)

∂W [x, y]. (71)

expressions of Equation (70) have the form
(

I(M)
∂W , J

)
= I(M)

Syz
[y, z]Jx + I(M)

Sxz
[x, z]Jy + I(M)

Sxy
[x, y]Jz, (72)

and
I(M)
W Div(K)

W F = I(M)
W [x, y, z]

(
Dx,∗
(Kx)

[x′]Fx + Dy,∗
(Ky)

[y′]Fy + Dz,∗
(Kz)

[z′]Fz

)
, (73)

where Sxy, Sxz, Syz are projections of S = ∂W into XY, XZ, YZ planes.

Proof. This theorem was proved in [86].

3. Concepts of General Nonlocal Continuum
3.1. General Density Function

At the beginning, for simplicity, the one-dimensional case of mass distribution is
considered. Let the medium be distributed along the line (beam) R0,+ = [0, ∞). One can
consider the function m(x) ∈ C1[0, ∞) that describes the mass of the region W1 = [0, x],
where x > 0. The real-valued continuous function

ρs(x) :=
dm(x)

dx
(74)

describes the standard linear density of the medium. The function ρs(x) ∈ C[0, ∞) allows
us to describe the mass of the region W = [a, b] ⊂ R0,+ and the mass m(x) by the equations

m([a, b]) =
∫ b

a
ρs(x) dx, (75)

and
m(x) =

∫ x

0
ρs(x) dx. (76)

Substitution of Equation (76) into Equation (74) gives identity by virtue of the first
fundamental theorem of calculus, that states the equality

d
dx

∫ x

0
f (x′) dx′ = f (x), (77)
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if f (x) is continuous real-valued function on a closed interval [0, x0] and 0 ≤ x ≤ x0.
Let us define the real-valued function

ρ(x) =
∫ x

0
K(x− x′)m(1)(x′) dx′, (78)

if the function m(x) belongs to the space C1
−1(0, ∞).

If the kernels K(x) is equal to the Dirac delta-function

Kx(x− x′) = δ(x− x′), (79)

Then, Equation (78) takes the standard form (74).
If the kernel K(x) belongs the function space C−1,0(0, ∞) and together with the kernel

Mx(x) form a kernel pair from the Luchko set. Then, Equation (78) can be written in
the form

ρ(x) = Dx,∗
(Kx)

[x′]m(x′), (80)

where Dx,∗
(Kx)

[x′] is the general fractional derivative.
The function ρ(x), which is defined by Equation (80), can be interpreted as a general

density function. In this case, the function ρ(x) belongs to the space C−1(0, ∞).
The function (78) can be used to describe mass of the region W = [a, b] ⊂ R0,+ and

the mass m(x) by the equations

m([a, b]) =
∫ b

0
Mx(b− x) ρ(x) dx −

∫ a

0
Mx(a− x) ρ(x) dx, (81)

and
m(x) =

∫ x

0
Mx(x− x′) ρ(x′) dx′. (82)

If the kernel Mx(x) is equal to 1. Then, Equations (81) and (82) take the standard
form (75) and (76), respectively.

It should be note that substitution of Equation (82) into Equation (78) can give an
identity only under certain conditions on the kernels Mx(x) and Kx(x) of these operators.
This condition is that these kernels form a pair belonging to the Luchko set. In this case,
the integral operators are general fractional integrals. Therefore, it is necessary to use
function (80) that can be used to describe mass of the region W = [a, b] ⊂ R0,+ and the
mass m(x) by equations

m([a, b]) = I(Mx)
[a,b] [x] ρ(x) =

∫ b

0
Mx(b− x) ρ(x) dx −

∫ a

0
Mx(a− x) ρ(x) dx, (83)

and
m(x) = Ix

(Mx)
[x′] ρ(x′) =

∫ x

0
Mx(x− x′) ρ(x′) dx′. (84)

Substitution of Equation (84) into Equation (80) gives identity by virtue of the first funda-
mental theorem of the general fractional calculus (see Theorems 1 and 4).

3.2. General Nonlocal Continuum

The concept of the general density function (80) allows us to consider a general
nonlocal continuum (GNC). From the point of view of the mathematical approach, the one-
dimensional linear GNC is a continuum, nonlocality of which can be described by the pair of
kernels from the Luchko sets, but cannot be described by the kernel pairs
(Mx(x) = 1, Kx(x) = δ(x)).

The general density and other fields of continuum are functions of the time vari-
able t and the space coordinates (x, y, z). In this case, the general density function is
ρ = ρ(t, x, y, z).
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For the region

W0 := {(x′, y′, z′) : 0 ≤ x′ ≤ x, 0 ≤ y′ ≤ y, 0 ≤ z′ ≤ z}, (85)

the mass of the continuum in the region W0 is described by equation

m(t, x, y, z) = Ix
(Mx)

[x′]Iy
(My)

[y′]Iz
(Mz)

[z′] ρ(t, x′, y′, z′) = I(M)
W0

[x′, y, z′] ρ(t, x′, y′, z′). (86)

Then, the density function is described by the expression

ρ(t, x, y, z) = Dx,∗
(Kx)

[x′]Dy,∗
(Ky)

[y′]Dz,∗
(Kz)

[z′]m(t, x′, y′, z′). (87)

Proposed Equations (86) and (87) can be written for the wide class of regions W ⊂ R3
0,+.

For example, one can use the regions W that can be represented as a union of all the Z-
simple region.

As a result, it is possible to formulate the concept of a general nonlocal continuum
(GNC) with nonlocality in space and time. Note that the nonlocality in time can be
interpreted as a memory in many cases.

Definition 12. From the point of view of mathematics, the GNC is a continuum, nonlocality of
which can be described by the pair of kernels from the Luchko sets, but cannot be described by the
kernel pairs (Mt(t) = 1, Kt(t) = δ(t)), (Mj(xj) = 1, Kj(xj) = δ(xj)), where j = 1, 2, 3. From
physical point of view, nonlocal continuum is a medium whose behavior at any interior point in
space and time depends on the state of all other points in the medium in addition to its own state
and the state of external fields.

Using the concept of GNC and the concepts of the generalized density of physical
quantities (fields of a non-local continuum medium), balance equations for mass, momen-
tum, and energy can be derived for such media.

Note that a microstructural basis of nonlocal properties of continuum is the assumption
that the forces between material points are a long-range type, thus reflecting the long-range
character of inter-atomic forces. Microstructural models of general nonlocal continuum can
be formulated as models of discrete systems with long-range interactions, frequency and
spatial dispersion [5,27].

3.3. Nonlocality of Mass in Continuum

For the first time, the continuity equation, which expresses the law of conservation of
mass for nonlocal media, was obtained by Wheatcraft and Meerschaert in [90] for the media
with power-law nonlocality (see also [91,92]). The proposed equation of mass conservation
is a fractional differential equation with the Caputo fractional derivative with respect to
space coordinates. The nonlocality in time variable, which can be interpreted as a memory,
is not considered in this work and the derivative with respect to time has the first order.
In paper [90], authors used a generalization of the standard derivation method for the
continuity equation, that is based on the Taylor series with integer derivatives (for example,
see Chapters 2 and 3 in [93,94]). In work [90], the fractional generalization of the Taylor
formula in the Odibat-Shawagfeh form [95] is used.

The main restrictions of the standard mass the continuity equation are the following:

(A) First, the standard derivation method that applies to local media is valid for flux
fields, in which flux changes are small and linear or piecewise linear within the fixed
region W.

(B) The size of the fixed area and the scale of the measurements must be large compared
to the scale of the heterogeneity in the medium. These restrictions are necessary due
to the fact that changes in the flow in the fixed region W can be approximated by the
Taylor series with derivatives of first orders.
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It was shown in [90] that the fractional Taylor series can be an exact representation
of a nonlinear flow with a power-law nonlinearity, using only the first two terms of this
series. Using the fractional Taylor series to describe the change in flux through a fixed
region, fractional differential equations describing the conservation of mass with power
nonlocality were obtained in [90]. The proposed equation does not contain the described
restrictions of the standard mass conservation equation.

However, it should be noted that the use of fractional Taylor series to obtain bal-
ance equations for non-local media has significant drawbacks. To do this, consider the
generalization of the Taylor series, which was proposed in [95].

The function f (x) with x ∈ [a, b] can be expanded by using the generalized Taylor
series with the left-sided Caputo derivatives of order 0 < α ≤ 1 in the form

f (x) = f (a) +
(x− a)α

Γ(α + 1)
(

Dα
C;a+ f

)
(a) + R2α(x, a+), (88)

where (
Dα

C;a+ f
)
(a) := lim

x→a
C
a Dα

x [x
′] f (x′) (89)

and RNα(x, a+) is the remainder term, which can be represented in the form

R2α(x, a+) =

((
Dα

C;a+

)2
f
)
(ξ+)

Γ(2α + 1)
(x− a)2α, (90)

where a ≤ ξ+ ≤ x. The generalized Taylor series (88) is applicable to functions f (x) that
satisfy the condition ((

Dα
C;a+

)k f
)
(x) ∈ C[a, b], (91)

for k = 0, 1, 2.

Remark 3. Note that there is a problem in application of Equation (88), which is caused by the
coincidence of the initial and final values in the derivatives

(
Dα

C;a+ f
)
(a) (see Equation (89)). To

derive correct balance equations by using the Taylor series, it is necessary to use a fractional Taylor
series at an arbitrary point x0, which does not coincide with the initial point of fractional derivative
Dα

C;a+, i.e., x0 6= a. In this case, it is possible to avoid some restrictions on a possible application of
Equation (88). To solve this problem, a generalization of the Taylor formulas (88) is proposed to the
case when the Caputo derivative is considered at an arbitrary point x0 ≥ a (see Sections 3.3 and 4.2
in book [96]). However, in this case, the remainder term will be represented as the sum of the
remainder terms of form (90) for different points and therefore such a term cannot be considered as a
small value and it cannot be neglected in the general case.

As a result, the proposed approach, which is based on the fractional Taylor series, has
some drawbacks due to the properties of the coefficients of the fractional Taylor series and
the properties of the media.

(1) First, for local media, it is quite logical that the size of a fixed region tends to zero,
and thus an infinitely small region of medium can be used. However, for nonlocal
media, this procedure is not entirely logical.

(2) Second, the coefficients of the Taylor series are described as fractional derivatives from
a to some upper limit, which tends to a even for finite fixed regions. This leads to the
fact that the mass balance equation for a nonlocal medium should be described only
by fractional derivatives on the infinitesimal interval [a, a + ε) with ε→ 0. A possible
approach to solve this problem is proposed in [92] for power-law nonlocality. If using
the Taylor series to express in terms of fractional derivatives on a finite interval. Then,
the remainder (more precisely, the difference between the two remainder terms) will
not tend to zero and these terms cannot be neglected (see Remark 3).
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(3) Third, the equations were obtained only for the power-law type of nonlocality of the
medium. In addition to this, it should also be emphasized that in article [90] other
laws of conservation of nonlocal media were not derived.

Remark 4. It should be noted that the use of the fractional derivative of the non-integer order
is actually equivalent to using an infinite number of derivatives of integer orders, which assume
arbitrarily large values. For example, the Riemann-Liouville derivative [15,18] can be represented
in the form of the infinite series

( RLDα
a+ f )(x) =

∞

∑
k=0

Γ(α + 1)
Γ(k + 1)Γ(α− k + 1)

(x− a)k−α

Γ(k− α + 1)
Dk

x f (x) (92)

for analytic functions on (a, b), (see Lemma 15.3 in [15]). Using Equation 2.4.6 in [18], of the form

( C
a Dα

x f )(x) = ( RL
a Dα

x f )(x)−
n−1

∑
k=0

(x− a)k−α

Γ(k− α + 1)
(Dk f )(a) (93)

and Equation (92), the Caputo derivative of the non-integer order can also be represented by the
infinite series of derivatives of integer orders. Therefore, the use of fractional derivatives means
that a contribution of derivatives of all integer orders is taken into account with weights of the
power-law type. This fact creates additional difficulties for using the fractional Taylor series to obtain
balance equations for non-local media. Moreover, this approach does not allow one to obtain balance
equations in integral form and for a finite region of a non-local medium.

By virtue of the above arguments, it is important to mathematically and consistently
derive all the conservation laws and obtain balance equations for nonlocal media with a
general form of nonlocality. This conclusion became possible due to the creation of a general
fractional calculus in the form proposed by Luchko in [81–85] and a general fractional
vector calculus in [86].

4. General Nonlocal Continuity Equation

In this section, the motion of a nonlocal medium in a stationary reference frame with a
fixed Cartesian coordinate system is considered. The Euler approach for description of con-
tinuum is used. Balance equation for mass of general nonlocal continuum is a mathematical
formulation of the conservation law applied to the fixed region of the nonlocal continuum.

Let us select an region W ⊂ R3
0,+ of continuum in the form of a parallelepiped

AB . . . C1D1 (see Figure 1) with the coordinates of the vertices are the following

A(a, c, e), B(b, c, e), C(b, d, e), D(a, d, e), (94)

A1(a, c, f ), B1(b, c, f ), C1(b, d, f ), D1(a, d, f ), (95)

where b > a ≥ 0, d > c ≥ 0, f > e ≥ 0 and the sizes of the edges

∆x = |AB| = |DC| = |A1B1| = |D1C1|, (96)

∆y = |AD| = |BC| = |A1D1| = |B1C1|, (97)

∆z = |AA1| = |BB1| = |CC1| = |DD1|. (98)

where ∆x = b− a ≥, ∆y = d− c ≥ 0, ∆z = f − e ≥ 0.
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4 General Nonlocal Continuity Equation

In this section, the motion of a nonlocal medium in a stationary reference frame with a fixed
Cartesian coordinate system is considered. The Euler approach for description of continuum is
used. Balance equation for mass of general nonlocal continuum is a mathematical formulation
of the conservation law applied to the fixed region of the nonlocal continuum.

Let us select an region W ⊂ R3
0,+ of continuum in the form of a parallelepiped AB...C1D1

(see Figure 1) with the coordinates of the vertices are the following

A(a, c, e), B(b, c, e), C(b, d, e), D(a, d, e), (94)

A1(a, c, f), B1(b, c, f), C1(b, d, f), D1(a, d, f), (95)

where b > a ≥ 0, d > c ≥ 0, f > e ≥ 0 and the sizes of the edges

∆x = |AB|= |DC|= |A1B1|= |D1C1|, (96)

∆y = |AD|= |BC|= |A1D1|= |B1C1|, (97)

∆z = |AA1|= |BB1|= |CC1|= |DD1|. (98)

where ∆x = b− a ≥, ∆y = d− c ≥ 0, ∆z = f − e ≥ 0.
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Figure 1: The elementary parallelepiped AB...C1D1.

Let point S ∈ W have coordinates (x, y, z) such that x ∈ [a, b], y ∈ [c, d] and z ∈ [e, f ]. Let
us consider the density ρ = ρ(t, x, y, z), the velocity V = V(t, x, y, z) and the flow J(t, x, y, z) =
ρ(t, x, y, z) V(t, x, y, z) of mass at the point S(x, y, z).
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Figure 1. The elementary parallelepiped AB . . . C1D1.

Let point S ∈W have coordinates (x, y, z) such that x ∈ [a, b], y ∈ [c, d] and z ∈ [e, f ].
Let us consider the density ρ = ρ(t, x, y, z), the velocity V = V(t, x, y, z) and the flow
J(t, x, y, z) = ρ(t, x, y, z)V(t, x, y, z) of mass at the point S(x, y, z).

In this section, a connection between the density and the velocity of a continuous
medium in the nonlocal case is derived by assuming the velocity V(t, x, y, z) and density
ρ(t, x, y, z) to be continuous functions of time and coordinates that belong to the function
space C1(R4

0,+).
In general, the following conditions are assumed

ρ(t, x, y, z) ∈ C{1,0}
−1 (R4

+), (99)

and
Jk(t, x, y, z) ∈ C{0,1}

−1 (R4
+), (100)

where
Jk(t, x, y, z) = ρ(t, x, y, z)Vk(t, x, y, z). (101)

The function spaces C{n,m}
−1 (R4

+) are defined in the next subsection.
Note that C(0, ∞) ⊂ C−1(0, ∞). Therefore the continuous functions of time and

coordinates can be considered as special cases of the general approach.

4.1. Function Spaces for Derivation of Balance Equations

Let us define two function spaces, which will be used in the theorems about the
balance equations for general nonlocal media. The first type of spaces (C{n,m}

−1 (R4
+)) will

be used in derivation of the balance equations in the general integral form. The second
function space (C−1,(K)(R4

+) will be used in derivation equations in the general differential
forms from integral form.

Definition 13. The function f (t, x, y, z) belongs to the space C{n,m}
−1 (R4

+), if this function satisfies
the properties:

(1) Property with respect to time variable t:

∂n f (t, x, y, z)
∂tn ∈ C−1(R4

+) (102)
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This condition means that f (t, x, y, z) ∈ Cn
−1(0, ∞) for all (x, y, z) ∈ R3

0,+.
(2) Property with respect to the space variables (x, y, z):

∂m f (t, x, y, z)
∂xm

j
∈ C−1(R4

+) (j = 1, 2, 3). (103)

This condition means that f (t, x, y, z) ∈ Cm
−1(R3

+) for all t ∈ R0,+.

Definition 14. The function f (t, x, y, z) belongs to the space C−1,(K)(R4
+), if there is such a

function g(t, x, y, z) ∈ C−1(R4
+) that the equality

f (t, x, y, z) = It
(Kt)

[t′] Ix
(Kx)

[x′] Iy
(Ky)

[y′] Iy
(Ky)

[y′] g(t′, x′, y′, z′) (104)

holds for all (t, x, y, z) ∈ R4
0,+, i.e.

C−1,(K)(R4
+) := { f : f (t, x, y, z) = It

(Kt)
[t′] Ix

(Kx)
[x′] Iy

(Ky)
[y′] Iy

(Ky)
[y′]g(t′, x′, y′, z′),

g(t, x, y, z) ∈ C−1(R4
+)}. (105)

Note that if f (t, x, y, z) belongs to the space C−1,(K)(R4
+), Then, the integral eqiuation

It
(Mt)

[t′] Ix
(Mx)

[x′] Iy
(My)

[y′] Iy
(Mz)

[z′] f (t′, x′, y′, z′) = 0, (106)

gives
f (t, x, y, z) = 0 (107)

for all (t, x, y, z) ∈ R4
0,+.

4.2. Mass of Nonlocal Continuum

Let the density ρ = ρ(t, x, y, z) as a function of time t ≥ 0 belong to the space C1
−1(0, ∞)

for all (x, y, z) ∈ R3
0,+.

The mass of nonlocal medium in the parallelepiped region W ⊂ R3
0,+ is given by

the equation
m(t) = I(M)

W [x, y, z] ρ(t, x, y, z) = (108)

I(Mx)
[a,b] [x]I

(My)

[c,d] [y]I
(Mz)
[e, f ] [z] ρ(t, x, y, z). (109)

A discussion of the justification for equations of mass nonlocality from the physical
point of view is considered in Section 3.3.

If the kernels Mk(xk) with k = 1, 2, 3 have the form

Mk(xk) = hαk (xk) =
1

Γ(αk)
xαk−1

k , (110)

where 0 < αk ≤ 1, Equation (109) gives equation for nonlocal media with power-law
nonlocality. If all Mk(ak) = 1, Equation (109) takes the standard equation of local continuum
in the form

m(t) =
∫

W
dx dy dz ρ(t, x, y, z) =

∫ b

a
dx
∫ d

c
dy
∫ f

e
dz ρ(t, x, y, z). (111)

The mass of the medium in the region W at the time t = t1 ≥ 0 is determined
by equation

m(t1) = I(M)
W [x, y, z] ρ(t1, x, y, z) = I(Mx)

[a,b] [x]I
(My)

[c,d] [y]I
(Mz)
[e, f ] [z] ρ(t1, x, y, z), (112)
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where ∆xk = bk − ak.
At the next moment in time t = t2 = t1 + ∆t the mass of the selected region is equal to

m(t2) = I(M)
W [x, y, z] ρ(t2, x, y, z) = I(Mx)

[a,b] [x]I
(My)

[c,d] [y]I
(Mz)
[e, f ] [z] ρ(t2, x, y, z). (113)

Thus, due to a change in the density of the medium in a given fixed region W, the mass
during the time ∆t = t2 − t1 is changed by the value

∆mt = m(t2) − m(t1) = I(M)
W [x, y, z]

(
ρ(t2, x, y, z) − ρ(t1, x, y, z)

)
. (114)

The fundamental theorem of the GFC [81] in the form

I(Mt)
[t1,t2]

[t] Dt,∗
(Kt)

[τ] ρ(τ, x, y, z) = ρ(t2, x, y, z) − ρ(t1, x, y, z) (115)

can be used in Equation (114) to obtain the expression

∆mt = I(M)
W [x, y, z] I(Mt)

[t1,t2]
[t] Dt,∗

(Kt)
[τ] ρ(τ, x, y, z). (116)

Equation (116) describes the changes of mass due to change of medium density in the
fixed region W ⊂ R3

+,0 during the time ∆t.

4.3. Mass Flow of Nonlocal Continuum

Let us consider the density ρ(t, x, y, z), the velocity V(t, x, y, z) and the flow J(t, x, y, z) =
ρ(t, x, y, z)V(t, x, y, z) of mass at the point S(x, y, z) ∈W.

The mass change in the fixed region W will occur due to its mass transfer across the
boundaries of the region. Let us now calculate the change in mass in the area W during the
time ∆t = t2 − t1, when it is transferred across the boundaries of the region W.

The medium mass, which is flow through the face Wa = ADD1 A1 for the time ∆t in
the direction of the OX-axis, is given by equation

ma = I(Mt)
[t1,t2]

[t] Jx(t, a), (117)

where Jx(t, a) is the flow of mass through the face Wa of the parallelepiped W such that

Jx(t, a) = I(M)
Wa

[y, z] Jx(t, a, y, z). (118)

Here Jx(t, x, y, z) = ρ Vx, where ρ = ρ(t, x, y, z) and Vx = Vx(t, x, y, z).
The mass, which is transported through the opposite face Wb = BCC1B1 in time ∆t in

the direction of the OX-axis, is given by the equation

mb = I(Mt)
[t1,t2]

[t] Jx(t, b). (119)

Let us assume that the mass flowing into the region is positive and the mass flowing
out negative. Then, the change in mass in the region W, when the mass is transferred
through the Wa and Wb faces (see Figure 1) perpendicular to the OX-axis, is equal to

∆mx = mb −ma = I(Mt)
[t1,t2]

[t] I(M)
∂Wyz

[y, z]
(

Jx(t, b, y, z) − Jx(t, a, y, z)
)

, (120)

where
∂Wyz = Wa

⋃
Wb = AA1D1D

⋃
BB1C1C. (121)

The fundamental theorem of the GFC in the form

I(Mx)
[a,b] [x] Dx,∗

(Kx)
[x′] Jx(t, x′, y, z) = Jx(t, b, y, z) − Jx(t, a, y, z), (122)
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can be used in Equation (120) to obtain the expression

∆mx = I(Mt)
[t1,t2]

[t] I(M)
∂Wyz

[y, z] I(Mx)
[a,b] [x] Dx,∗

(Kx)
[x′] Jx(t, x′, y, z) =

I(Mt)
[t1,t2]

[t] I(M)
W [x, y, z] Dx,∗

(Kx)
[x′] Jx(t, x′, y, z). (123)

Considering similarly, it is possible to obtain the mass change in the region W through
the faces that are perpendicular to OY and OZ axes. Reasoning in a similar way, the mass
that is transferred through the faces perpendicular to the axes OY and OZ, has the
form, respectively:

∆my = I(Mt)
[t1,t2]

[t] I(M)
∂Wxz

[x, z] I
(My)

[c,d] [y] Dy,∗
(Ky)

[y′] Jy(t, x, y′, z) =

I(Mt)
[t1,t2]

[t] I(M)
W [x, y, z] Dy,∗

(Ky)
[y′] Jy(t, x, y′, z), (124)

∆mz = I(Mt)
[t1,t2]

[t] I(M)
∂Wxy

[x, y] I(Mz)
[e, f ] [z] Dz,∗

(Kz)
[z′] Jz(t, x, y, z′) =

I(Mt)
[t1,t2]

[t] I(M)
W [x, y, z] Dz,∗

(Kz)
[z′] Jz(t, x, y, z′). (125)

Equations (123)–(125) describe the change of mass in the region W ⊂ R3
0,+.

4.4. Mass Balance Equation

The sum of values ∆mt, ∆mx, ∆my and ∆mz gives the equation

∆mt + ∆mx + ∆my + ∆mz = 0 (126)

that describes the mass conservation. Using Equations (116), (123)–(125), the balance
Equation (126) can be represented in the form

I(M)
W [x, y, z] I(Mt)

[t1,t2]
[t]
(

Dt,∗
(Kt)

[τ] ρ(τ, x, y, z) + Dx,∗
(Kx)

[x′] Jx(t, x′, y, z) +

Dy,∗
(Ky)

[y′] Jy(t, x, y′, z) + Dz,∗
(Kz)

[z′] Jz(t, x, y, z′)
)

= 0. (127)

As a result, the following theorem is proved.

Theorem 9 (Mass balance in GF integral form). Let the function ρ(t, x1, x2, x3) belong to
the space C{1,0}

−1 (R4
+) and the functions Jn(t, x1, x2, x3) belong to the space C{0,1}

−1 (R4
+) for all

n = 1, 2, 3. Then, GF integral balance equation of mass of general nonlocal continuum in the
parallelepiped region W ⊂ R3

0,+ has the form

I(M)
W [x1, x2, x3] I(Mt)

[t1,t2]
[t]
(

Dt,∗
(Kt)

[τ] ρ +
3

∑
n=1

Dxn ,∗
(Kn)

[x′n] Jn

)
= 0, (128)

where x1 = x, x2 = y, x3 = z.

Equations (127) and (128) must be satisfied for any finite time intervals ∆t = t2 − t1,
where t2 > t1 ≥ 0 and any finite sizes of the parallelepiped, ∆x = b − a, ∆y = d − c,
∆x = f − e, where b > a ≥ 0, d > c ≥ 0, f > e ≥ 0. This fact can be used to obtain
the balance equation for general nonlocal continuum in a differential form.

To derive balance equation of general nonlocal continuum in the fractional differential
form, it is possible to use the fractional analogue of the Titchmarsh Theorem (see Theorem 6).
This theorem and the first fundamental theorems of GFC are used to derive GF differential
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form of general balance equations from the GF integral form of general balance equations.
As a result, the balance equation is obtained in the form

Dt,∗
(Kt)

[τ] ρ(τ, x, y, z) + Dx,∗
(Kx)

[x′] Jx(t, x′, y, z) +

Dy,∗
(Ky)

[y′] Jy(t, x, y′, z) + Dz,∗
(Kz)

[z′] Jz(t, x, y, z′) = 0, (129)

which can be called the general nonlocal continuity equation. Equation (129) is the desired
equation that describes the balance of mass in general non-local media.

As a result, the following theorem is proved for a differential form of the mass balance
in general nonlocal continuum.

Theorem 10 (Mass balance in GF differential form). Let the function ρ = ρ(t, x1, x2, x3) and
Jn = Jn(t, x1, x2, x3) (n = 1, 2, 3) satisfy the conditions

Dt,∗
(Kt)

[τ] ρ ∈ C−1,(K)(R4
+), (130)

Dxk ,∗
(Kk)

[x′n] Jn ∈ C−1,(K)(R4
+) (131)

for all n = 1, 2, 3. Then, the GF differential balance equation of mass of general nonlocal continuum
in the parallelepiped region W ⊂ R3

0,+ has the form

Dt,∗
(Kt)

[τ] ρ +
3

∑
n=1

Dxn ,∗
(Kn)

[x′n] Jn = 0. (132)

Remark 5. It should be emphasized that for the non-local media the differential balance equation
depends on the region W and in fact is an integro-differential equation.

Equation (132) is a mathematical expression of the existence of continuum flow with-
out the formation of discontinuity surfaces. The proposed continuity equation is valid
for any nonlocal continuous medium, viscous and compressible, with steady and un-
steady motions.

Equation (132) is the basic equation of the mechanics of nonlocal medium, the nonlo-
cality of which can be described by kernels belonging to the Luchko set.

4.5. General FVC Form of Mass Balance Equation

For general nonlocal media, the continuity equation, which is derived for paral-
lelepiped region W, can be generalized to a wide class of domains and surfaces. This
generalization can be realized by using the theorems of the general fractional vector calcu-
lus (General FVC).

Using the general FVC, Equation (129) can be written in the vector form

Dt,∗
(Kt)

[τ] ρ(τ, x, y, z) + Div(K)
W J(t, x, y, z) = 0, (133)

where Div(K)
W is the general fractional divergence, which is defined by Equation (57) and

J(t, x, y, z) = ex Jx(t, x, y, z) + ey Jy(t, x, y, z) + ez Jz(t, x, y, z), (134)

J(t, x, y, z) = ρ(t, x, y, z)V(t, x, y, z). (135)

Using (135), Equation (133) can be represented in the form

Dt,∗
(Kt)

[τ] ρ + Div(K)
W ρ V = 0. (136)
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Equations (133) and (136) is the fractional differential equation of continuity that
represents conservation law of mass for the general nonlocal continuum. Equation (133)
is valid for fractional nonlocal continuum in steady and unsteady motion, and it is the
fundamental equation of general nonlocal continuum mechanics for the wide class of the
Sonin kernel pairs from the Luchko set.

Remark 6. For the general fractional divergence the standard properties of divergence is violated.
For example, the well-known equality

div(ρ V) = ρ div V + (grad ρ, V) (137)

is violated for the operator Div(K)
W in the general case. For the general fractional vector calculus [86],

there is the inequality

Div(K)
W

(
ρ(t, r)V(t, r)

)
6= ρ(t, r) Div(K)

W V(t, r) +
(

V(t, r) , Grad(K)
W ρ(t, r)

)
, (138)

where r = x ex + y ey + z ez. Inequality (138) is a consequence of the violation of the standard
product rule (the Leibniz rule) for fractional derivatives of non-integer orders and all the types of the
general fractional derivatives.

As a result, some equivalent forms of representations of the standard balance equations are not
equivalent in the nonlocal case.

5. General Fractional Equation for Momentum

Let us consider motions of general nonlocal medium, assuming that the velocity,
density, pressure and, mass forces are continuous functions of time and position. The Euler
approach for description of continuum is used. Balance equation for momentum of general
nonlocal continuum is a mathematical formulation of the conservation law applied to the
fixed region of the nonlocal continuum. In the Cartesian coordinate system OXYZ, an
element of continuum is selected in the form of the parallelepiped

W = {(x, y, z) : 0 ≤ a ≤ x ≤ b, 0 ≤ c ≤ y ≤ d, 0 ≤ e ≤ z ≤ f } (139)

with sizes ∆x, ∆y, ∆z (see Figure 1). Let ρ = ρ(t, x, y, z) be the density and V = V(t, x, y, z)
be the velocity at the point S(x, y, z) ∈ R3

+,0. Then, the momentum of continuum particles
in the given fixed parallelepiped area W, at a time t, is desccribed by the equation

P(t) = I(M)
W [x, y, z] J(t, x, y, z) = I(M)

W [x, y, z] ρ(t, x, y, z)V(t, x, y, z). (140)

The changes of the momentum P(t) are caused by changes of the density and the
velocity of the particles that came to the region W, at the time t1 and t2, such that

P(t1) = I(M)
W [x, y, z] ρ(t1, x, y, z)V(t1, x, y, z), (141)

P(t2) = I(M)
W [x, y, z] ρ(t2, x, y, z)V(t2, x, y, z). (142)

In the given fixed parallelepiped area W, the change of momentum during the time
∆t = t2 − t1 is written as

∆Pt = P(t2) − P(t1) = I(M)
W [x, y, z]

(
J(t2, x, y, z) − J(t1, x, y, z)

)
. (143)

The fundamental theorem of the GFC in the form

I(Mt)
[t1,t2]

[t]Dt,∗
(Kt)

[t′]
(

J(t′, x, y, z)
)

= J(t2, x, y, z) − J(t1, x, y, z) (144)
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is used to obtain the equation

∆Pt = I(M)
W [x, y, z]I(Mt)

[t1,t2]
[t] Dt,∗

(Kt)
[t′]
(

ρ(t′, x, y, z)V(t′, x, y, z)
)

. (145)

The momentum in the parallelepiped region W is varied by the following:

(a) the transfer of momentum across the boundary;
(b) the momentum of surface forces;
(c) the momentum of mass forces.

These changes are considered in the following subsections.

5.1. Momentum Transfer across Boundaries

Let us consider the change of momentum due to its transport across the boundary.
The momentum transferred through the face Wa during the time ∆t in the positive direction
of the axis OX is

Pa = I(Mt)
[t1,t2]

[t]I(M)
Wa

[y, z] J(t, a, y, z)Vx(t, a, y, z) =

I(Mt)
[t1,t2]

[t]I
(My)

[c,d] [y]I
(Mz)
[e, f ] [z] J(t, a, y, z)Vx(t, a, y, z). (146)

The momentum transferred through the face Wb during the time ∆t can be represented by

Pb = I(Mt)
[t1,t2]

[t]I(M)
Wb

[y, z]J(t, b, y, z)Vx(t, b, y, z) =

I(Mt)
[t1,t2]

[t]I
(My)

[c,d] [y]I
(Mz)
[e, f ] [z]J(t, b, y, z)Vx(t, a, y, z). (147)

The change of momentum by moving it across the faces, which is perpendicular to
the OX-axis, is found if Equation (147) is subtracted from (146). Then, one can obtain
the equation

∆Px = Pa − Pb =

I(Mt)
[t1,t2]

[t]I
(My)

[c,d] [y]I
(Mz)
[e, f ] [z]

(
J(t, a, y, z)Vx(t, a, y, z) − J(t, b, y, z)Vx(t, b, y, z)

)
. (148)

Then, the fundamental theorem of the GFC in the form

I(Mx)
[a,b] [x] Dx,∗

(Kx)
[x′]

(
J(t, x′, y, z)Vx(t, x′, y, z)

)
=

J(t, b, y, z)Vx(t, b, y, z) − J(t, a, y, z)Vx(t, a, y, z), (149)

is used to obtain the equation

∆Px = − I(Mt)
[t1,t2]

[t]I(Mx)
[a,b] [x]I

(My)

[c,d] [y]I
(Mz)
[e, f ] [z] Dx,∗

(Kx)
[x′]

(
J(t, x′, y, z)Vx(t, x′, y, z)

)
=

− I(Mt)
[t1,t2]

[t]I(M)
W [x, y, z]

(
Dx,∗
(Kx)

[x′] J(t, x′, y, z)Vx(t, x′, y, z)
)

. (150)

Similar arguments is found for the change of momentum in the region W, when
moving nonlocal continuum through a pair of faces perpendicular to the axes of OY and
OZ, in the form

∆Py = − I(Mt)
[t1,t2]

[t]I(M)
W [x, y, z]

(
Dy,∗
(Ky)

[y′] J(t, x, y′, z)Vy(t, x, y′, z)
)

, (151)

∆Pz = − I(Mt)
[t1,t2]

[t]I(M)
W [x, y, z]

(
Dz,∗
(Kz)

[z′] J(t, x, y, z′)Vz(t, x, y, z′)
)

. (152)
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Summing relations (150)–(152), one can obtain the change of momentum in the paral-
lelepiped region W due to its transport through the boundary

∆Pr =
3

∑
k=1

∆Pk = − I(Mt)
[t1,t2]

[t]I(M)
W [x1, x2, x3]

(
3

∑
k=1

Dxk ,∗
(Kk)

[x′k]
(

J Vk

))
, (153)

where x1 = x, x2 = y, x3 = z.

5.2. The Momentum of the Mass Force

In classical mechanics of point particles without nonlocality in time (memoryless),
the momentum of the force is described as

∆Pc =
∫ t2

t1

F(t)dt. (154)

For the case of nonlocality in time, the momentum of the force in given by the equation

∆Pc = I(Mt)
[t1,t2]

[t]F(t). (155)

Let us consider the momentum of the mass force for non-local continuum. The density
of the mass (volume) force is denoted as F = F(t, x, y, z). Then, the momentum of the mass
forces is the following

∆PF = I(Mt)
[t1,t2]

[t]I(M)
W [x, y, z] ρ(t, x, y, z) F(t, x, y, z), (156)

where it is assumed that the condition

ρ(t, x, y, z) F(t, x, y, z) ∈ C−1(R4
0,+) (157)

holds for all (t, x, y, z) ∈ R4
0,+.

5.3. The Momentum of the Surface Force

In this subsection, the momenta of surface forces are described. Let us consider the
stress px for the face with the normal that is parallel to the OX-axis and positive direction of
the face. On the opposite face the stress is p−x. Additionally, px = −p−x. The momentum
of the force on the face Wa is

∆Pσ,a = I(Mt)
[t1,t2]

[t]I(M)
Wa

[y, z]p−x(t, a, y, z) = −I(Mt)
[t1,t2]

[t]I(M)
Wa

[y, z]px(t, a, y, z). (158)

On the opposite face Wb, the momentum of the force is

∆Pσ,b = I(Mt)
[t1,t2]

[t]I(M)
Wb

[y, z]p−x(t, b, y, z) = −I(Mt)
[t1,t2]

[t]I(M)
Wb

[y, z]px(t, b, y, z). (159)

The total momentum for the faces perpendicular to the OX-axis, is the sum of
Equations (158) and (159) in the form:

∆Pσ,x = ∆Pσ,b − Pσ,a =

− I(Mt)
[t1,t2]

[t]I(M)
Wx

[y, z]
(

px(t, a, y, z) − px(t, b, y, z)
)

, (160)

where one can take into account the property px = −p−x and Wx = Wa
⋃

Wb.
The fundamental theorem of the GFC in the form

I(Mx)
[a,b] [x] Dx,∗

(Kx)
[x′] px(t, x′, y, z) = px(t, b, y, z) − px(t, a, y, z), (161)
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is used to obtain the equation

∆Pσ,x = I(Mt)
[t1,t2]

[t]I(M)
Wx

[y, z]I(Mx)
[a,b] [x] Dx,∗

(Kx)
[x′] px(t, x′, y, z) =

I(Mt)
[t1,t2]

[t]I(M)
W [x, y, z] Dx,∗

(Kx)
[x′] px(t, x′, y, z). (162)

Similarly, one can obtain the momenta of the surface forces acting on the faces that are
perpendicular to the OX, OY and OZ axes in the form

∆Pσ,k = I(Mt)
[t1,t2]

[t]I(M)
W [x1, x2, x3] Dxk ,∗

(Kk)
[xk
′] pk (163)

for k = 1, 2, 3 and x1 = x, x2 = y, x3 = z.
Summing Equations (163), the momentum of the surface forces is described by

the equation

∆Pσ =
3

∑
k=1

∆Pσ,k =
3

∑
k=1

I(Mt)
[t1,t2]

[t]I(M)
W [x1, x2, x3] Dxk ,∗

(Kk)
[xk
′] pk, (164)

where pk can be represented through the stress tensor σkl .

5.4. General Fractional Momentum Equation

The balance equation of momentum has the form

∆Pt = ∆Pr + ∆PF + ∆Pσ. (165)

Summing expressions (153), (156) and (164), equating the resulting sum to relation (145),
one can obtain

I(M)
W [x, y, z]I(Mt)

[t1,t2]
[t] Dt,∗

(Kt)
[t′]
(

ρ(t′, x1, x2, x3)V(t′, x1, x2, x3)
)

=

I(Mt)
[t1,t2]

[t]I(M)
W [x1, x2, x3]

(
3

∑
k=1

Dxk ,∗
(Kk)

[x′k]
(

J Vk

))
+

I(Mt)
[t1,t2]

[t]I(M)
W [x1, x2, x3] ρ(t, x1, x2, x3) F(t, x1, x2, x3) +

3

∑
k=1

I(Mt)
[t1,t2]

[t]I(M)
W [x1, x2, x3] Dxk ,∗

(Kk)
[xk
′] pk. (166)

Equation (166) describes transfer of momentum in terms of stresses for fractional
nonlocal continuum.

Equation (166) can be written in the compact form by using x1 = x, x2 = y, x3 = z. As
a result, the following theorem can be formulated.

Theorem 11 (Momentum balance in GI integral form). Let the conditions

(ρ V)(t, x1, x2, x3) ∈ C{1,0}
−1 (R4

+), (167)

(ρ F)(t, x1, x2, x3) ∈ C{0,0}
−1 (R4

+), (168)
(

J Vn

)
(t, x1, x2, x3) ∈ C{0,1}

−1 (R4
+) pn(t, x1, x2, x3) ∈ C{0,1}

−1 (R4
+) (169)

are satisfied for all n = 1, 2, 3.
Then, the GF integral balance equation of momentum of general nonlocal continuum in the

parallelepiped region W ⊂ R3
0,+ has the form

I(M)
W [x1, x2, x3] I(Mt)

[t1,t2]
[t] Dt,∗

(Kt)
[t′]
(

ρ V
)

=
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I(M)
W [x1, x2, x3] I(Mt)

[t1,t2]
[t]
( 3

∑
n=1

Dxn ,∗
(Kn)

[x′n]
(

J Vn

)
+ ρ F +

3

∑
n=1

Dxn ,∗
(Kn)

[xn
′] pn

)
. (170)

Equation (166) should be satisfied for all the parallelepiped regions W ⊂ R3
0,+ and

all time intervals [t1, t2] ⊂ R0,+. To derive balance equation for momentum of general
nonlocal continuum in the GF differential form, the fractional analogue of the Titchmarsh
Theorem (see Theorem 6) and the first fundamental theorems of GFC should be used.
As a result, the general balance equation for momentum in integral form (166) gives the
differential form

Dt,∗
(Kt)

[t′]
(

ρ(t′, x1, x2, x3)V(t′, x1, x2, x3)
)
+

3

∑
k=1

Dxk ,∗
(Kk)

[x′k]
(

J Vk

)
=

ρ(t, x1, x2, x3) F(t, x1, x2, x3) +
3

∑
k=1

Dxk ,∗
(Kk)

[xk
′] pk. (171)

Using

V =
3

∑
l=1

Vl el , F =
3

∑
l=1

Fl el , pk =
3

∑
l=1

σkl el , (172)

where σkl is the stress, Equation (171) can be written in the component form

Dt,∗
(Kt)

[t′]
(

ρ(t′, x1, x2, x3)Vl(t′, x1, x2, x3)
)
+

3

∑
k=1

Dxk ,∗
(Kk)

[x′k]
(

ρ Vl Vk

)
= (173)

ρ(t, x1, x2, x3) Fl(t, x1, x2, x3) +
3

∑
k=1

Dxk ,∗
(Kk)

[xk
′] σkl (174)

for all t > 0 and xk > 0. Equation (174) can be written in the compact form.
As a result, the following theorem for momentum balance in general nonlocal contin-

uum was proved.

Theorem 12 (Momentum balance in GF differential form). Let the following conditions
be satisfied

Dt,∗
(Kt)

(
ρ Vn

)
∈ C−1,(K)(R4

+), (175)

Dxn ,∗
(Kn)

(
ρ Vl Vn

)
∈ C−1,(K)(R4

+), (176)

(ρ Fl) ∈ C−1,(K)(R4
+), Dxk ,∗

(Kk)
[xk
′] σkl ∈ C−1,(K)(R4

+) (177)

for all n, l = 1, 2, 3. Then, the GF differential balance equation of momentum of general nonlocal
continuum in the parallelepiped region W ⊂ R3

0,+ has the form

Dt,∗
(Kt)

(
ρ Vl

)
+

3

∑
k=1

Dxk ,∗
(Kk)

(
ρ Vl Vk

)
= ρ Fl +

3

∑
k=1

Dxk ,∗
(Kk)

[xk
′] σkl . (178)

For the non-local media the differential balance Equation (178) depend on the region
W, since these equations are integro-differential equations. Equations (174) and (178) is the
desired equation describing the balance of momentum in general non-local media.

5.5. GF Divergence of a Dyadic Product

At the beginning, let us consider the standard local case.
The nabla operator

∇ = ek∂k =
3

∑
k=1

ek∂k, (179)
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and the dyadic product of the vectors

A⊗ B = Ai Bjei ⊗ ej =
3

∑
i=1

3

∑
j=1

Ai Bjei ⊗ ej (180)

can be used to get (
∇, A⊗ B

)
=
(

ek∂k, (Ai Bj)ei ⊗ ej

)
= (181)

∂k (Ai Bj)
(

ek, ei ⊗ ej

)
, (182)

where the brackets
(

,
)

denotes the scalar product and the basis vectors ek are fixed.
Then, using the equality

(
ek, ei ⊗ ej

)
=
(

ek, ei

)
⊗ ej = δki ej, (183)

and the chain (Leibniz) rule

∂k (Ai Bj) = (∂k Ai) Bj + Ai(∂k Bj), (184)

one can write (
∇, A⊗ B

)
= δki ej

(
(∂k Ai) Bj + Ai(∂k Bj)

)
= (185)

(
(∂k Ak) Bj + Ak(∂k Bj)

)
ej. (186)

Therefore, (
∇, A⊗ B

)
=
(
(∂k Ak) Bj + Ak(∂k Bj)

)
ej. (187)

The vector notation for local case can be used to get the equality
(
∇, A⊗ B

)
=
(
∇, A

)
B +

(
A, ∇

)
B (188)

that can be interpreted as a chain rule for the standard nable operator. For general fractional
derivatives, the standard product (Leibniz) rule is violated. Therefore, for nonlocal case the
following inequality has the form

(
∇(K)

W , A⊗ B
)
6=
(
∇(K)

W , A
)

B +
(

A, ∇(K)
W

)
B. (189)

Equations (181) and (183) gives

(
∇, A⊗ B

)
=

3

∑
j=1

3

∑
i=1

∂i (Ai Bj)ej . (190)

The general fractional analog of Equation (190) has the form

(
∇(K)

W , A⊗ B
)

=
3

∑
i=1

Dxi ,∗
(Ki)

(A⊗ B) =
3

∑
j=1

3

∑
i=1

Dxi ,∗
(Ki)

(Ai Bj)ej. (191)

Let us consider the nonlocal case and general fractional differential vector operators.
The general fractional divergence of dyad product can be defined by equation

Div(K)
W

(
A ⊗ B

)
=

3

∑
j=1

3

∑
k=1

ejD
xk ,∗
(Kk)

[xk
′]
(

Ak Bj

)
, (192)

where a fixed frame of reference and a fixed Cartesian coordinate system are used.
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It should be noted that the general fractional divergence does not satisfy the standard
properties of the divergence, such as

div
(

A ⊗ B
)

=
(

div A
)

B +
(

A, ∇
)

B. (193)

In the general case, the following inequality shoud be taken into account

Div(K)
W

(
A ⊗ B

)
6=
(

Div(K)
W A

)
B +

(
A, ∇(K)

W

)
B (194)

for general fractional divergence. Inequality (194) is a consequence of the violation of the
standard product rule (the Leibniz rule) for fractional derivatives of non-integer orders and
general fractional derivatives of all the types.

5.6. General FVC Form of Momentum Balance Equation

The continuity equation of thegeneral nonlocal media, which is derived by using
parallelepiped region W, can be generalized to a wide class of domains and surfaces
by using the theorems of the general fractional vector calculus. Equation (174) contains
general fractional derivatives Dt,∗

(Kt)
[t′] and Dxk ,∗

(Kk)
[x′k] that are defined for t ∈ [0, ∞) and

and xk ∈ [0, ∞) for k = 1, 2, 3.
Using the general fractional vector calculus, Equation (174) can be written in the

vector form

Dt,∗
(Kt)

[t′]
(

ρ(t′, x, y, z)V(t′, x, y, z)
)
+ Div(K)

W

(
ρ V ⊗ V

)
=

ρ(t, x, y, z) F(t, x, y, z) + Div(K)
W Pσ (195)

where Pσ is the stress tensor

Pσ =
3

∑
k=1

pk ek =
3

∑
k=1

3

∑
l=1

σkl ek ⊗ el . (196)

In a more compact form, Equation (195) can be written as

Dt,∗
(Kt)

(
ρ V
)

= Div(K)
W

(
Pσ − ρ V ⊗ V

)
+ ρ F. (197)

For the local case, Equations (197) give the standard equations with the partial deriva-
tive ∂

∂t and divergence (div) instead of the general fractional operators Dt,∗
(Kt)

and Div(K)
W .

Remark 7. For the kernels Kt(τ) = h1−α(τ) and Kj(xj) = h1−αj(xj), Equation (174) gives

C
0 Dα

t (ρ Vl) +
3

∑
k=1

C
0 Dαk

xk (ρ Vl Vk) = ρ Fl +
3

∑
k=1

C
0 Dαk

xk σkl , (198)

where l = 1, 2, 3.

5.7. General Fractional Equilibrium Equations for Stresses

In this subsection, the general fractional equilibrium equations for the stress tensor
of general nonlocal continuum is derived. For simplification, one can consider a two-
dimensional elastic isotropic non-local continuum. Let us consider a rectangular region
W2 ⊂ R2

0,+ (see Figure 2) that is given as

W2 := {(x, y) : 0 ≤ a ≤ x ≤ b, 0 ≤ c ≤ y ≤ d}. (199)



Mathematics 2022, 10, 1427 30 of 43

5.7 General fractional equilibrium equations for stresses

In this subsection, the general fractional equilibrium equations for the stress tensor of general
nonlocal continuum is derived. For simplification, one can consider a two-dimensional elastic
isotropic non-local continuum. Let us consider a rectangular region W2 ⊂ R2

0,+ (see Figure 2)
that is given as

W2 := {(x, y) : 0 ≤ a ≤ x ≤ b, 0 ≤ c ≤ y ≤ d}. (199)
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Figure 2: For stresses at time ∆t in the XY -plane.

In the Figure 2, the following notations are used

σ+
xx = σxx(b, c), σxx = σxx(x, y), (200)

σ+
yy = σyy(a, d), σyy = σyy(x, y), (201)

and
σx+xy = σxy(b, c), σxy = σxy(x, y), (202)

σy+xy = σxy(a, d), σxy = σxy(x, y). (203)

The force equilibrium condition gives the equation

I
(My)

[c,d] [y]
(
σxx(b, y) − σxx(a, y)

)
+ I

(Mx)
[a,b] [x]

(
σxy(x, d) − σxy(x, c)

)
+

I
(Mx)
[a,b] [x]I

(My)

[c,d] [y]
(
ρ(x, y)Fx(x, y)

)
= 0. (204)
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In the Figure 2, the following notations are used

σ+
xx = σxx(b, c), σxx = σxx(x, y), (200)

σ+
yy = σyy(a, d), σyy = σyy(x, y), (201)

and
σx+

xy = σxy(b, c), σxy = σxy(x, y), (202)

σ
y+
xy = σxy(a, d), σxy = σxy(x, y). (203)

The force equilibrium condition gives the equation

I
(My)

[c,d] [y]
(

σxx(b, y) − σxx(a, y)
)
+ I(Mx)

[a,b] [x]
(

σxy(x, d) − σxy(x, c)
)
+

I(Mx)
[a,b] [x]I

(My)

[c,d] [y]
(

ρ(x, y) Fx(x, y)
)

= 0. (204)

For direction, that is parallel to the OX-axis, the fundamental theorem of GFC for the
stress can be used in the form

σxx(b, y) − σxx(a, y) = I(Mx)
[a,b] [x]D

x,∗
(Kx)

[x′]σxx(x′, y)

σxy(x, d) − σxy(x, c) = I
(My)

[c,d] [y]D
y,∗
(Ky)

[y′]σxy(x, y′). (205)

Then, the equation

I(Mx)
[a,b] [x]I

(My)

[c,d] [y]D
x,∗
(Kx)

[x′]σxx(x′, y) + I(Mx)
[a,b] [x]I

(My)

[c,d] [y]D
y,∗
(Ky)

[y′]σxy(x, y′) +

I(Mx)
[a,b] [x]I

(My)

[c,d] [y]
(

ρ(x, y) Fx(x, y)
)

= 0, (206)

can be written as

I(M)
W2

[x, y]Dx,∗
(Kx)

[x′]σxx(x′, y) + I(M)
W2

[x, y]Dy,∗
(Ky)

[y′]σxy(x, y′) + (207)

I(M)
W2

[x, y]
(

ρ(x, y) Fx(x, y)
)

= 0. (208)
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The fact that Equation (208) must be satisfied for any rectangular regions W2 ⊂ R2
0,+

and the general fractional analogue of Titchmarsh’s Theorem 6 leads to the general fractional
differential equation

Dx,∗
(Kx)

[x′]σxx(x′, y) + Dx,∗
(Ky)

[y′]σxx(x, y′) + ρ(x, y) Fx(x, y) = 0. (209)

For the power-law non-locality Kj(xj) = h1−αj(xj), Equation (209) takes the form

( C
0 Dαx

x σxx)(x, y) + ( C
0 D

αy
y σxy)(x, y) + ρ(x, y) Fx(x, y) = 0. (210)

For αx = αy = 1, Equation (210) takes the standard form

∂σxx(x, y)
∂x

+
∂σxy(x, y)

∂y
+ ρ(x, y) Fx(x, y) = 0. (211)

Similarly for the direction that is parallel to the OY-axis, the force equilibrium condition
gives the equation

Dx,∗
(Kx)

[x′]σyx(x′, y) + Dy,∗
(Ky)

[y′]σyy(x, y′) + ρ(x, y) Fy(x, y) = 0. (212)

The two-dimensional case can be generalized to the three-dimensional case. As a
result, the general fractional equilibrium equations take the form

3

∑
j=1

(
D

xj ,∗
(Kj)

[x′ j]σjk

)
(x, y, z) + ρ(x1, x2, x3)Fk(x1, x2, x3) = 0, (k = 1, 2, 3), (213)

where x1 = x, x2 = y, x3 = z. Equation (213) are the general equilibrium equations for
stress of the general nonlocal continuum.

Comparing Equations (195) and (213), it is possible to see that Equation (213) is a
special case of Equation (195).

6. General Fractional Equation for Total Energy

The Euler approach for description of continuum is used to derive the energy balance
equation. Equation for total energy of the general nonlocal continuum is a mathematical
formulation of the conservation law for energy applied to the fixed region of the nonlocal
continuum. This law states that the change of the total (kinetic and internal) energy ∆Et in
the fixed region of nonlocal continuum is described by equation

∆Et = ∆ES + AM + AS + QM + QS, (214)

where ∆ES is the energy transport across the boundaries S = ∂W of the region W ⊂ R3
0,+;

AM is a work of mass forces (body forces) and AS is a work of surface forces and QS is a
heat supplied through the surface S. In this section, it will be assumed that the volumetric
input amount of energy is equal to zero QM = 0.

Let us consider a region W ⊂ R3
0,+ in the form of the elementary parallelepiped

W := {(x, y, z) : 0 ≤ a ≤ x ≤ b, 0 ≤ c ≤ y ≤ d, 0 ≤ e ≤ z ≤ f } (215)

that is presented in Figure 1. It will be supposed that the velocity V(t, x, y, z), density
ρ(t, x, y, z), stress and mass forces are known functions at the point S(x, y, z) ∈W, which
are continuous functions of coordinates (x, y, z) and time t. In general, it is possible for a
wider class of functions or function space.
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The value V2/2 is the kinetic energy per unit mass and ei is the internal energy per
unit mass of the medium in a given time t ≥ 0. The function

E(t, x, y, z) = ei(t, x, y, z) +
1
2

V2(t, x, y, z) (216)

describes the total energy per unit mass of the medium at t ≥ 0.
The value (ρ V2/2)(t, x, y, z) is the density of the kinetic energy of the nonlocal con-

tinuum in a given time; (ρ ei)(t, x, y, z) is the density of the internal energy of nonlocal
continuum at t ≥ 0. The sum of the densities of internal energy and the kinetic energy is
called the density of total energy

E′ = ρE = ρ ei +
1
2
(ρ V2)/2, (217)

where ρ, ei and V are functions of the time variable t ≥ 0 and the space coordinates
(x, y, z) ∈ R3

0,+.
The kinetic energy Ekin(t) at time t ≥ 0 is defined by equation

Ekin(t) = I(M)
W [x, y, z]

(
1
2

ρV2
)
(t, x, y, z). (218)

The internal energy Eint(t) at time t ≥ 0 is defined by equation

Eint(t) = I(M)
W [x, y, z](ρ ei)(t, x, y, z). (219)

The total energy E(t) of the fixed region W of the medium at time t ≥ 0 is given by
the equation

E(t) = I(M)
W [x, y, z]

(
ρ ei +

ρV2

2

)
= I(M)

W [x, y, z](ρE)(t, x, y, z). (220)

In the general case, the following condition can be considered

(ρE)(t, x, y, z) ∈ C{1,0}
−1 (R4

+) (221)

for Equation (219).
For t = t1 and t = t2, the total energy is described as

E(t1) = I(M)
W [x, y, z](ρE)(t1, x, y, z). (222)

E(t2) = I(M)
W [x, y, z](ρE)(t2, x, y, z). (223)

Therefore, the change of the total energy in a time ∆t = t2 − t1 is written as

∆Et = E(t2) − E(t1) = I(M)
W [x, y, z]

(
(ρE)(t1, x, y, z) − (ρE)(t1, x, y, z)

)
. (224)

Using the fundamental theorem of the GFC in the form

I(Mt)
[t1,t2]

[t]Dt,∗
(Kt)

[t′](ρE)(t′, x, y, z) = (ρE)(t2, x, y, z) − (ρE)(t1, x, y, z), (225)

Equation (224) takes the form

∆Et = E(t2) − E(t1) = I(M)
W [x, y, z]I(Mt)

[t1,t2]
[t]Dt,∗

(Kt)
[t′](ρE)(t′, x, y, z). (226)

Change of the total energy ∆Et in the region W can be caused by the
following processes:
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(a) the energy transport across the boundaries of the region ∆ES;
(b) the work of the mass forces ∆AF;
(c) the work of the surface forces AS;
(d) the heat flux through the boundary QS (internal heat sources are not considered).

In the following sub-sections, expressions describing the contribution of these pro-
cesses to the energy balance in the nonlocal medium will be obtained.

6.1. Change of Total Energy Due to the Transfer across Boundaries

Change of the total energy due to the transfer across boundaries of the selected fixed
region W can be obtained analogously as was done above for calculating the change in
momentum. The energy transfer through the boundary perpendicular to the OX-axis has
the form

∆ES = − I(Mt)
[t1,t2]

[t] I(M)
W [x, y, z] Dx,∗

(Kx)
[x′](Vx ρE)(t, x′, y, z). (227)

Then, the sum of the terms, that take into account the mass transfer across all the
boundaries of the fixed region W, has the form

∆ES = −
3

∑
j=1

I(Mt)
[t1,t2]

[t]I(M)
W [x1, x2, x3]D

xj ,∗
(Kj)

[x′ j](Vj ρE), (228)

where (ρE)(t, x1, x2, x3) is the density of total energy that is given in (217).

6.2. Work of Mass Forces

In classical mechanics of point particle with nonlocality in time, which is characterized
by the kernel M(t), the work of the force f(t) is described by equation

∆A = I(Mt)
[t1,t2]

[t](f(t), v(t)), (229)

where v(t) is the velocity of the point particle.
In the continuum mechanics, the work ∆AF of the force for ∆t = t2 − t1 is described

by the equation

∆AF = I(Mt)
[t1,t2]

[t] I(M)
W [x, y, z] ρ(t, x, y, z) (F, V)(t, x, y, z), (230)

where F is the force per unit mass fo the medium, ρ F is the density of force and

(F, V) =
3

∑
k=1

Fk Vk (231)

is the scalar product of the vector fields that can be interpreted as a power of the mass force
per unit mass (the density of power).

6.3. Work of Surface Forces

Let us obtain an expression for the work of the surface forces. The vector px denotes
the stress vector at the face AA1D1D,

Wa = {(x, y, z) : x = a ≥ 0, y ∈ [c, d], z ∈ [e, f ]}. (232)

Let us denote the stress vector on the face Wa with the direction of the normal coin-
ciding with the positive direction of the OX-axis as px. For the opposite direction of the
normal, it should be used p−x. Furthermore, px = −p−x.

Let us find the total work ∆AS of the surface forces acting on the faces of the paral-
lelepiped region W ⊂ R3

0,+.
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The work of the surface force acting on the area Wa with stress p−x is

∆Aa = I(M)
Wa

[y, z] IMt
[t1,t2]

[t](p−x, V)(t, a, y, z). (233)

For the face Wb, the work of the surface force with stress px is

∆Ab = I(M)
Wb

[y, z] IMt
[t1,t2]

[t](px, V)(t, b, y, z). (234)

The sum of the works of the surface forces acting on the faces Wa and Wb that are
perpendicular to OX, can be written as

∆Ax = ∆Aa + ∆Ab =

I(M)
Wx

[y, z] IMt
[t1,t2]

[t]
(
(px, V)(t, b, y, z) − (px, V)(t, a, y, z)

)
, (235)

where p−x = −px and Wx = Wa
⋃

Wb are taken into account. The fundamental theorem of
the GFC in the form

(px, V)(t, b, y, z) − (px, V)(t, a, y, z) = I(Mx)
[a,b] [x]D

x,∗
(Kx)

[x′](px, V)(t, x′, y, z) (236)

can be used to get

∆Ax = I(M)
W [x, y, z] IMt

[t1,t2]
[t]Dx,∗

(Kx)
[x′](px, V)(t, x′, y, z). (237)

In Equation (237), the stress vector px can be represented in the form

px = σxxi + σxyj + σxzk. (238)

Therefore, the scalar product can be written as

(px, V) = σxxVx + σxyVy + σxzVz, (239)

and the work (237) is represented as the sum

∆Ax = Axx + Axy + Axz. (240)

This allows us to assert that the total work ∆AS, which is caused by the surface forces,
is defined by the normal stresses σxx, σyy, σzz and the tangential stresses σxy, σyz, σxz.

Considering the work of the forces acting on the faces Wa and Wb that are perpendicu-
lar to the OX-axis, one can obtain the work of the normal forces for the time interval [t1, t2]
in the form

∆Axx,a = IMt
[t1,t2]

[t]I(M)
Wa

[y, z](σxx Vx)(t, a, y, z), (241)

∆Axx,b = IMt
[t1,t2]

[t]I(M)
Wb

[y, z](σxx Vx)(t, b, y, z). (242)

Therefore,
∆Axx = ∆Axx,a + ∆Axx,b =

IMt
[t1,t2]

[t]I(M)
∂W [y, z]

(
(σxx Vx)(t, b, y, z) − (σxx Vx)(t, a, y, z)

)
. (243)

The funfamental theorem of the GFC is used to get

∆Axx = I(M)
W [x, y, z] Dx,∗

(Kx)
[x′]

(
(σxx Vx)(t, x′, y, z)

)
. (244)

where it is assumed that

(σxx Vx)(t, x′, y, z) ∈ C1
−1(0, ∞) for all t ≥ 0, y ≥ 0, z ≥ 0. (245)
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It should be noted that the standard Leibniz rule for GF derivatives is not satisfied.
Therefore, the inequality

Dx,∗
(Kx)

[x′](σxx Vx) 6= Vx Dx,∗
(Kx)

[x′]σxx + σxx Dx,∗
(Kx)

[x′]Vx. (246)

is satisfied in the general case.
The work of tangential forces on the faces Wa and Wb, which are perpendicular to the

OX-axis, is equal to

∆Axy = IMt
[t1,t2]

[t]I(M)
W [x, y, z]Dy,∗

(Ky)
[y′]
(
(σxy Vy)(t, x, y′, z)

)
, (247)

∆Axz = IMt
[t1,t2]

[t]I(M)
W [x, y, z]Dz,∗

(Kz)
[z′]
(
(σxz Vz)(t, x, y, z′)

)
. (248)

Thus, the total work ∆Ax of the surface forces acting on the faces that are perpendicular
to OX, for the time interval [t1, t2], is equal

∆Ax =
3

∑
j=1

IMt
[t1,t2]

[t] I(M)
W [x1, x2, x3]D

xj ,∗
(Kj)

[x′ j]
(

σl j Vj)
)

. (249)

where x1 = x, x2 = y and x3 = z.
Similarly, one can obtain the works for the faces that are perpendicular to the OY-axis

and OZ-axis. For all pairs of faces, the total work ∆Aj is described by the equation

∆Aj = IMt
[t1,t2]

[t] I(M)
W [x1, x2, x3] D

xj ,∗
(Kj)

[x′ j] (pj, V). (250)

As a result, the total work, which is caused by the surface forces, is described in
the form

∆AS =
3

∑
k=1

∆Aj =
3

∑
j=1

IMt
[t1,t2]

[t] I(M)
W [x1, x2, x3] D

xj ,∗
(Kj)

[x′ j](pj, V) =

3

∑
j=1

3

∑
l=1

IMt
[t1,t2]

[t]I(M)
W [x1, x2, x3]D

xj ,∗
(Kj)

[x′ j]
(

σjl Vl

)
, (251)

where

(pj, V) =
3

∑
l=1

σjl Vl . (252)

6.4. Change of Total Energy by the Heat Flow

Let us find a change of the total energy due to the heat flow. We denote the specific
vector of the density of heat flow by q(t, x, y, z). Then, the heat flow through the face Wa,
which is perpendicular to the OX-axis, is

Qa = I(M)
Wa

[y, z]I(Mt)
[t1,t2]

[t] qx(t, a, y, z). (253)

For the face Wb, the heat flow through the face is

Qb = I(M)
Wb

[y, z]I(Mt)
[t1,t2]

[t] qx(t, b, y, z). (254)

The change of the total energy by the heat flux transported through the faces Wx =
Wa

⋃
Wb that are perpendicular to the OX-axis, is given by

∆Qx = Qa − Qb =
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I(M)
Wx

[y, z]I(Mt)
[t1,t2]

[t]
(

qx(t, a, y, z) − qx(t, b, y, z)
)

. (255)

Using the fundamental theorem of the GFC in the form

qx(t, b, y, z) − qx(t, a, y, z) = I(Mx)
[a,b] [x]D

x,∗
(Kx)

[x′] qx(t, x′, y, z), (256)

and
I(M)
Wx

[y, z]I(Mx)
[a,b] [x] = I(M)

W [x, y, z], (257)

Equation (255) can be written as

∆Qx = − I(M)
W [x, y, z]I(Mt)

[t1,t2]
[t]Dx,∗

(Kx)
[x′] qx(t, x′, y, z). (258)

For all pairs of faces, which are perpendicular to all the axes, the change of the total
energy is described by the equations

∆Qj = − I(M)
W [x1, x2, x3]I

(Mt)
[t1,t2]

[t]D
xj ,∗
(Kj)

[x′ j] qj (j = 1, 2, 3). (259)

Summing Equation (259), the change of the total energy by the heat flow is obtained
in the form

∆QS =
3

∑
j=1

∆Qj = −
3

∑
j=1

I(M)
W [x1, x2, x3]I

(Mt)
[t1,t2]

[t]D
xj ,∗
(Kj)

[x′ j] qj, (260)

where qj = qj(t, x1, x2, x3) (j = 1, 2, 3) are components of the density of heat flow.

6.5. Change of Total Energy of All Sources

The balance equation for the total energy has the form

∆Et = ∆ES + ∆AM + ∆AS + ∆QS. (261)

Summing relations (228), (230), (251) and (260) that have the form

∆ES = −
3

∑
j=1

I(Mt)
[t1,t2]

[t]I(M)
W [x1, x2, x3]D

xj ,∗
(Kj)

[x′ j](Vj ρE), (262)

∆AF = I(M)
W [x1, x2, x3] I(Mt)

[t1,t2]
[t] ρ (F, V), (263)

∆AS =
3

∑
j=1

I(M)
W [x1, x2, x3] IMt

[t1,t2]
[t]D

xj ,∗
(Kj)

[x′ j](pj, V), (264)

∆QS = −
3

∑
j=1

I(M)
W [x1, x2, x3]I

(Mt)
[t1,t2]

[t]D
xj ,∗
(Kj)

[x′ j] qj, (265)

and equating the resulting sum to relation (226) in the form

∆Et = I(M)
W [x1, x2, x3]I

(Mt)
[t1,t2]

[t] Dt,∗
(Kt)

[t′](ρE), (266)

the balance equation for general nonlocal continuum takes the integral form

I(Mt)
[t1,t2]

[t]I(M)
W [x1, x2, x3] Dt,∗

(Kt)
[t′](ρE) = (267)

I(M)
W [x1, x2, x3]I

(Mt)
[t1,t2]

[t]
(
−

3

∑
j=1

D
xj ,∗
(Kj)

[x′ j](Vj ρE) + ρ (F, V)
)
+ (268)



Mathematics 2022, 10, 1427 37 of 43

I(Mt)
[t1,t2]

[t]I(M)
W [x1, x2, x3]

( 3

∑
j=1

D
xj ,∗
(Kj)

[x′ j](pj, V) −
3

∑
j=1

D
xj ,∗
(Kj)

[x′ j] qj

)
. (269)

As a result, the following theorem was proved.

Theorem 13 (Energy balance in GF integral form). Let the following conditions be satisfied

(ρE)(t, x1, x2, x3) ∈ C{1,0}
−1 (R4

+), (270)

(Vj ρE)(t, x1, x2, x3), (pj, V)(t, x1, x2, x3), qj(t, x, y, z) ∈ C{0,1}
−1 (R4

+), (271)

ρ (F, V)(t, x1, x2, x3) ∈ C{0,0}
−1 (R4

+). (272)

Then, the GF integral balance equation of total energy of general nonlocal continuum in the
parallelepiped region W ⊂ R3

0,+ has the form

I(Mt)
[t1,t2]

[t]I(M)
W [x1, x2, x3] Dt,∗

(Kt)
[t′](ρE) = (273)

I(Mt)
[t1,t2]

[t]I(M)
W [x1, x2, x3]

(
ρ (F, V) +

3

∑
j=1

D
xj ,∗
(Kj)

[x′ j]
(
(pj, V − Vj(ρE) − qj

))
. (274)

The fact that Equation (274) must be satisfied for any regions in the form of a paral-
lelepiped and the general fractional analogue of Titchmarsh’s Theorem 6, can be used to
obtain the balance equation for the total energy in the general fractional differential form

Dt,∗
(Kt)

[t′](ρE) = −
3

∑
j=1

D
xj ,∗
(Kj)

[x′ j](Vj ρE) + ρ (F, V) +

3

∑
j=1

D
xj ,∗
(Kj)

[x′ j] (pj, V) −
3

∑
j=1

D
xj ,∗
(Kj)

[x′ j] qj. (275)

Equation (275) can be rewritten as

Dt,∗
(Kt)

[t′](ρE) +
3

∑
j=1

D
xj ,∗
(Kj)

[x′ j] (Vj ρE) =

ρ (F, V) +
3

∑
j=1

D
xj ,∗
(Kj)

[x′ j]
(
(pj, V) − qj

)
. (276)

Equation (276) can be represented in the compact form. As a result, the theorem for the
total energy balance in general nonlocal continuum can be formulated in the following form.

Theorem 14 (Energy balance in GF differential form). Let the following conditions be satisfied

Dt,∗
(Kt)

[t′](ρE), ρ (FlVl) ∈ C−1,(K)(R4
+), (277)

σjlVl , Vj(ρE), qj ∈ C−1,(K)(R4
+) (278)

for all j, l = 1, 2, 3.
Then, the GF differential balance equation of total energy of general nonlocal continuum in the

parallelepiped region W ⊂ R3
0,+ has the form

Dt,∗
(Kt)

[t′](ρE) =
3

∑
k=1

ρ (FkVk) +
3

∑
j=1

D
xj ,∗
(Kj)

[x′ j]
( 3

∑
l=1

σjlVl − Vj(ρE) − qj

)
. (279)
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where
ρE = ρ ei +

1
2

ρV2. (280)

Note that for the non-local media the differential balance equation for total energy (279)
depends on the region W and in fact is an integro-differential equation.

Remark 8. Let us consider the case of a memoryless continuum. In this case, the general fractional
derivative with respect to time variable is a standard derivative of the first order. Then, Equation (279)
takes the form

∂(ρE)

∂t
= ρ

3

∑
k=1

(FkVk) +
3

∑
j=1

D
xj ,∗
(Kj)

[x′ j]
( 3

∑
k=1

σjkVk − Vj(ρE) − qj

)
. (281)

If all general fractional derivatives with respect to coordinates are standard derivatives of the
first order, then Equation (281) takes the form of the standard balance equation of total energy for
local media.

6.6. General FVC Form of Energy Balance Equation

The balance equations of general nonlocal media, which are derived by using paral-
lelepiped region W, can be generalized to a wide class of domains and surfaces by using
the theorems of the general fractional vector calculus [86].

Using the general fractional vector calculus (General FVC), Equation (279) can be
written in the form

Dt,∗
(Kt)

[t′](ρE) = ρ (V, F) + Div(K)
W

(
(Pσ, V) − V (ρE) − q

)
, (282)

where

Div(K)
W (Pσ, V) =

3

∑
j=1

D
xj ,∗
(Kj)

[x′ j]
( 3

∑
k=1

σjkVk

)
. (283)

The product (Pσ, V) of the tensor Pσ and the vector V is the vector

(Pσ, V) =
3

∑
j=1

(Pσ, V)j ej (284)

that has the components

(Pσ, V)j =
3

∑
k=1

σjk Vk. (285)

The components of the tensor P have the form

Pσ =
3

∑
j=1

3

∑
k=1

σjk ej ⊗ ek. (286)

The tensor Pσ consists of nine components σjk(t, x1, x2, x3) that define the stress state
at the point (x1, x2, x3) ∈W ⊂ R3

0,+.

6.7. Spatial Power-Law Nonlocality without Memory

Let us consider the case of memoryless continuum with the spatial power-law nonlo-
cality. In this case, the general fractional derivatives are the Caputo fractional derivatives
and Equation (276) takes the form

∂(ρE)

∂t
+

3

∑
k=1

C
ak

Dαk
xk (Vk(ρE)) =
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= ρ (F, V) +
3

∑
k=1

C
ak

Dαk
xk (pk, V) −

3

∑
k=1

C
ak

Dαk
xk qk. (287)

Equation (287) can be represented in the compact form

∂(ρE)

∂t
= ρ (FkVk) +

3

∑
k=1

C
ak

Dαk
xk (σklVl − Vk(ρE) − qk). (288)

Let us substitute expression (280) into Equation (288). The product rule (the Leibniz
rule) for the time-derivative of the first order and the continuity equation, can be used
to get

ρ
∂

∂t

(
ei +

V2

2

)
−
(

ei +
V2

2

) 3

∑
k=1

C
ak

Dαk
xk (Vk) =

ρ (FkVk) +
3

∑
k=1

C
ak

Dαk
xk

( 3

∑
l=1

σklVl − Vk(ρE) − qk

)
. (289)

Equation (289) describes the change of total energy in continuum with the power-law
spatial nonlocality. It is valid for any of the stress-strain rates for the power-law non-local
continua without memory.

7. Conclusions

In the suggested paper, the theory of nonlocal continua with general type of nonlocality
is developed. The non-local continuum mechanics is formulated by using the general
fractional calculus (GFC) in the Luchko form [81–83] and general fractional vector calculus
(GFVC) in the form that is proposed in [86].

The integral and differential equations, which describe the conservation laws of mass,
momentum, and energy for the general nonlocal continuum, are derived. The integral
forms of the balance equations of general nonlocal continuum are derived by using the
second fundamental theorems of general fractional calculus. The differential forms of
the balance equations of general nonlocal continuum are derived by using the proposed
fractional analogue of the Titchmarsh theorem and the first fundamental theorems of the
GFC. Using the GFVC, the general equations for conservation of mass, momentum, and
energy are obtained for continuum with general form of nonlocality in space and time.

In this paper, some basic concepts of general nonlocal continuum are discussed in
Section 3. The main results of this article are derivations of the balance equations for mass,
momentum, and energy, which describe conservation laws for general nonlocal continuum.
These equations are derived in the two forms: general fractional integral and differential
forms. In this article, it is proved that the fundamental theorems of calculus, which describe
the relationship between differential and integral operators, make it possible to derive
balance equations.

Let us briefly point out the main ideas and methods for deriving balance equations for
nonlocal media:

• To derive general balance equation in the GF integral form, the second fundamental
theorems (Theorems 2 and 3) of the GFC is used;

• The first fundamental theorems (Theorems 1 and 4) of the GFC and the proposed frac-
tional analogue of the Titchmarsh theorem (Theorem 6) are used to derive differential
form of general balance equations from the integral form of balance equations;

• Using the general fractional vector calculus, the balance equations are suggested for a
wide class of regions and surfaces of the general nonlocal continuum.

A more detailed list of the main results in the form of theorems and equations obtained
in this paper would include:

• The mass balance equation for continuum with general space and time nonlocality:
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– The mass balance equation in the GF integral form for general nonlocal continuum
is given by Theorem 9 for regions in the form of a parallelepiped.

– The mass balance equation in the GF differential form for general nonlocal con-
tinuum is given by Theorem 10 for regions in the form of a parallelepiped.

– Using the general fractional vector calculus, the mass balance equation in GF
differential form is described by Equation (133) for a wide class of regions
and surfaces.

• The momentum balance equation for continuum with general space and time nonlocality:

– The momentum balance equation in the GF integral form for general nonlocal
continuum is given by Theorem 11 for regions in the form of a parallelepiped.

– The momentum balance equation in the GF differential form for general nonlocal
continuum is given by Theorem 12 for regions in the form of a parallelepiped.

– Using the general fractional vector calculus, the momentum balance equation in
GF differential form is described by Equation (195) for a wide class of regions
and surfaces.

• The energy balance equation for continuum with general space and time nonlocality:

– The energy balance equation in the GF integral form for general nonlocal contin-
uum is given by Theorem 13 for regions in the form of a parallelepiped.

– The energy balance equation in the GF differential form for general nonlocal
continuum is given by Theorem 14 for regions in the form of a parallelepiped.

– Using the general fractional vector calculus, the energy balance equation in
GF differential form is described by Equation (282) for a wide class of regions
and surfaces.

It should be noted that in order to solve the equations of general nonlocal continuum
mechanics, one can use the methods of general operational calculus that was proposed by
Luchko in [83,85].
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