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Abstract: Tools for decision making need to be simple to use. In previous papers, we advocated
that decision engineering needs to provide these tools, as well as a list of necessary properties
that aggregation functions need to satisfy. When we model decisions using aggregation functions,
andness-directedness is one of them. A crucial aspect in any decision is the degree of compromise
between criteria. Given an aggregation function, andness establishes to what degree the function
behaves in a conjunctive manner. That is, to what degree some criteria are mandatory. Nevertheless,
from an engineering perspective, what we know is that some criteria are strongly required and we
cannot ignore a bad evaluation even when other criteria are correctly evaluated. That is, given our
requirements of andness, what are the aggregation functions we need to select. Andness is not only
for mean-like functions, but it also applies to t-norms and t-conorms. In this paper, we study this
problem and show how to select t-norms and t-conorms based on the andness level.
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1. Introduction

Aggregation functions [1] play an important role in any decision-making process [2].
We have aggregation functions in multicriteria decision making and in multiobjective
decision making. Recall that the former is understood to be the case of a finite set of
alternatives and the latter to correspond to the case of an infinite set of alternatives.

In both cases, alternatives are evaluated into a set of criteria and the goal is to find
a good or optimal alternative satisfying the criteria. It is well known that the difficulty
of the problem is due to the fact that criteria are conflicting and, thus, we need to have
an overall good performance of the alternative, but an absolute good performance on all
criteria is usually not possible. Pareto efficient solutions (i.e., solutions in the Pareto front),
and solutions that reach a good compromise play then a role.

When not all criteria are going to be satisfied, aggregation has a very important role. It
is a way to model the compromise between criteria. For this reason, families of aggregation
functions [1,3–5] have been defined. Most families of functions require parameters. Differ-
ent aggregation functions will produce different orderings on the alternatives, the same
applies to different parameterizations for a given function. Therefore, this means that we
need to select in an appropriate way both the aggregation function and its parameters.

In a recent paper [6] (see also [7]), we described ten necessary properties that aggre-
gation functions are required to satisfy for decision engineering. They are (P1) semantic
identity of arguments, (P2) andness/orness-directedness and andness/orness monotonic-
ity, (P3) aggregation in the full range from drastic conjunction to drastic disjunction, (P4)
selectable idempotency/nonidempotency, (P5) selectable support for annihilators, (P6)
adjustable threshold andness/orness, (P7) selectable commutativity/noncommutativity
based on importance weights, (P8) unrestricted usability in a soft computing proposi-
tional calculus, (P9) independence of importance and simultaneity/substitutability, (P10)
applicability based on simplicity, specifiability, and readability of aggregators.
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In this paper, we focus on P2, that is, andness/orness-directedness. Andness and
orness were defined by Dujmović [8,9] as the level of simultaneity and substitutability of
the aggregation. In other words, a high orness permits that a bad criteria be compensated
by a good one. On the other hand, a high andness requires both criteria to be satisfied to
a great degree. Andness and orness are related and add up to one. Dujmović proposed
and studied andness and orness for several functions [8–11] and a number of inputs (as
the andness depends on how many values we aggregate). Yager introduced an expression
for OWA [12]. We later studied [13,14] the case of WOWA (Weighted OWA [15]). Andness-
directedness is about selection of a function or its parameters from the andness level.
This andness-directedness appears in [10]. It was later studied by O’Hagan [16,17] for
the OWA. In the case of OWA, the goal is to find OWA weights that satisfy a given
andness/orness, using entropy to select among all those vector of weights with the same
andness. Carbonell et al. [18] and Fuller and Majlender [19,20] also studied this problem.
We have studied the case of andness-directed OWA and WOWA in [21]. More concretely,
we consider the family of generalized WOWA, which allows annihilators, and study how
we can set all parameters given a certain value for andness. Andness-directedness for other
aggregation functions can also be found in [2]. Parametric characterization of aggregation
functions as proposed by [22] is similar to the idea of andness-directedness.

Aggregation is usually performed by means and related functions that satisfy the
internality principle. That is, functions that return a value between the minimum and the
maximum of the values being aggregated. This corresponds [2] to andness and orness
between 0 and 1. Nevertheless, in some cases, we need to consider stronger functions in
the sense that the outcome of an aggregation is less than the minimum or it is larger than
the maximum. Fuzzy logic provides these type of operators, they are called t-norms and
t-conorms. The minimum is an example of t-norm, but another one is product, and it is
easy to see that xy ≤ min(x, y). That is, product is still more conjunctive than minimum.
Because of this relationship, while minimum has an andness equal to one, product has an
andness that is larger than one (equal to 5/4 for two inputs). A similar idea appears in [23]
were bounded extreme conformity is defined for aggregation functions.

In this paper, we show how to select an appropriate t-norm for a given andness. That
is, an andness-directed selection of the t-norm. For this, instead of considering a (finite)
set of t-norms and discussing their andness, we will consider a family of t-norms that are
parameterized by a parameter and show how to tune this parameter given an andness level.

The structure of the paper is as follows. In Section 2, we introduce some basic defi-
nitions that we need in the rest of the paper. This includes the definition of t-norm and
t-conorm, as well as some families of measures. We also review the formal definition of
andness and orness. Then, in Section 3 we introduce our approach for andness-directed
selection of t-norms. The paper finishes with some discussion and directions for future
research.

2. Preliminaries

We have divided this section in two parts. The first one is about t-norms and some fam-
ilies of t-norms that are useful in our work. Then, we focus on andness and orness. For more
details on t-norms and t-conorms, the books by Alsina et al. [24] and Klement et al. [25] are
good reference works.

2.1. Fuzzy Operators: t-Norms and t-Conorms

In fuzzy sets theory, conjunction is modeled in terms of t-norms. They are functions >
from [0, 1]× [0, 1] into [0, 1] that satisfy the following four properties.

• >(a, b) = >(b, a) (commutativity)
• >(a, b) ≤ >(c, d) when a ≤ c and b ≤ d (monotonicity)
• >(a,>(b, c)) = >(>(a, b), c) (associativity)
• >(a, 1) = a (identity)



Mathematics 2022, 10, 1598 3 of 10

It is easy to see that conjunction in logic (i.e., and) satisfies these properties. Thus, they
imply a generalization of classical conjunction (which is defined in {0, 1} × {0, 1}) in the
fuzzy setting (i.e., in [0, 1]× [0, 1]). Any t-norm > when values are restricted to be either 0
or 1 behaves just as the standard conjunction.

The most typical example of t-norm functions is the minimum, but the product is also
a very much used t-norm in, for example, fuzzy control [26] because of its nonlinearity.
Nevertheless, there are several other t-norms and, in particular, some families of t-norms.
We will review some of them below. We select families that are parameterized and that the
parameter permits us to select a t-norm between the minimum and the drastic t-norm. We
describe the t-norms in their binary form. These functions are associative and expressions
for n > 2 inputs can be built.

Let Tmn denote the minimum, Tap the algebraic product, Tbd the bounded difference,
and let Tdr denote the drastic intersection. That is, Tmn(a, b) = min(a, b), Tap(a, b) = ab,
Tbd(a, b) = max(0, a + b− 1), and

Tdr =


a if b = 1
b if a = 1
0 otherwise

Then for any t-norm >, we have that

Tdr(a, b) ≤ >(a, b) ≤ Tmn(a, b).

That is why we have interest in considering families of t-norms that cover the whole
spectrum of t-norms.

We have described t-norms above. Similarly, we have that a t-conorm generalizes the
disjunction in classical logic. A t-conorm ⊥ from [0, 1]× [0, 1] into [0, 1] is a function that
satisfies the following four properties. Observe that the only one that changes from the
properties above is the identity.

• ⊥(a, b) = ⊥(b, a) (commutativity);
• ⊥(a, b) ≤ ⊥(c, d) when a ≤ c and b ≤ d (monotonicity);
• ⊥(a,⊥(b, c)) = ⊥(⊥(a, b), c) (associativity);
• ⊥(a, 0) = a (identity).

While t-norms are often denoted by T, t-conorms are often denoted by S. We will use
this notation for particular families of t-norms. It is relevant to observe that given t-norm T,
S(a, b) = 1− T(1− a, 1− b) is its dual t-conorm.

The typical disjunction is the maximum, but, again, there are alternatives to the use
of maximum, and several families of parametric t-conorms exist. In a way similar to the
case of t-norms, we will consider functions that range between maximum and drastic
disjunction. We denote these t-conorms by Smx and Sdd. Analogous to the case of t-norms,
we have that for any t-conorm ⊥, the following holds:

Smx(a, b) ≤ ⊥(a, b) ≤ Sdd(a, b).

In the rest of this section, we will review families of norms by Dombi, by Schweizer
and Sklar (3 families) and by Yager. These families, as well as other examples of t-norms
and t-conorms, are described in the excellent book by Klir and Yuan [27].

Dombi [28] introduced the following family of t-norms and t-conorms (for λ > 0):

TD(a, b; λ) =

1 +

[(
1
a
− 1
)λ

+

(
1
b
− 1
)λ
]1/λ


−1
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SD(a, b; λ) =

1 +

[(
1
a
− 1
)−λ

+

(
1
b
− 1
)−λ

]−1/λ

−1

.

Note that for a and b equal to zero and one, they are defined according to the axioms
for t-norms and t-conorms above. The same applies to the other families of norms discussed
below.

It is worth mentioning that with respect to the t-norm, when λ converges to 0, TD
tends to the drastic intersection; when λ = 1, TD converges to ab/(a + b− ab); and when λ
converges to ∞, TD converges to min(a, b).

With respect to the t-conorm, when λ converges to 0, SD tends to the drastic disjunction;
when λ = 1, SD converges to (a + b − 2ab)/(1− ab); and when λ converges to ∞, SD
converges to max(a, b).

Schweizer and Sklar [29] introduced several families of t-norms and t-conorms, some
of which are also appropriate for our purpose. We review below these pairs of functions.
Klir and Yuan [27] denote them as the first, second, and third family of norms. A fourth
family is also described in Klir and Yuan’s book, but we do not review it here because it
does not reach the drastic intersection.

The first family of Schweizer and Sklar is defined as follows (for p 6= 0):

TSS1(a, b; p) = {max(0, ap + bp − 1)}1/p,

SSS1(a, b; p) = 1− (max(0, (1− a)p + (1− b)p − 1))1/p.

With respect to the t-norm, when p converges to−∞, TSS1 converges to min(a, b); when
p = 1, TSS1 is max(0, a + b− 1); when p converges to zero, TSS1 tends to ab; when p = −1,
TSS1 is ab/(a + b− ab); when p converges to ∞, TSS1 converges to the drastic intersection.

The second family is defined as follows (for p > 0):

TSS2(a, b; p) = 1− [(1− a)p + (1− b)p − (1− a)p(1− b)p]1/p,

SSS2(a, b; p) = (ap + bp − (ap)(bp))1/p.

For the t-norm TSS2, when p converges to zero, TSS2 converges to the drastic inter-
section; when p = 1, TSS2 converges to ab; when p converges to ∞, TSS2 converges to
min(a, b).

The third family is defined as follows (for p > 0):

TSS3(a, b; p) = e−(|lna|p+|lnb|p)1/p
,

SSS3(a, b; p) = 1− exp
(
−(|(ln(1− a)|)p + (|ln(1− b)|)p)1/p

)
.

For TSS3, when p converges to zero, TSS3 converges to the drastic intersection; when
p = 1, TSS3 converges to ab; when p converges to ∞, TSS3 converges to min(a, b).

We finish this review with the family of t-norms introduced by Yager [30]. Its definition
(for w > 0) follows.

TY(a, b; w) = 1−min(1, [(1− a)w + (1− b)w]1/w),

SY(a, b; w) = min
(

1, ((aw) + (bw))1/w
)

.

For this t-norm, when w converges to 0, TSSY converges to the drastic intersection;
when w = 1, TSSY(a, b; 1) = max(0, a + b− 1); and when w converges to ∞, TSSY tends to
min(a, b).
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2.2. Andness and Orness

Andness and orness were introduced by Dujmović [8,9] as a degree of conjunction
and disjunction. They are defined in terms of the similarity to minimum and maximum,
respectively. More formally, if we are considering a function C with n inputs in [0, 1] then
D = [0, 1]n, and andness corresponds to

andness(C) =
∫

D max xdx−
∫

D C(x)dx∫
D max xdx−

∫
D min xdx

where the integral is, naturally, an n-dimensional integral and x ∈ D.
Then, andness is in the range [−1/(n − 1), n/(n − 1)], for n inputs. When n = 2,

the range is naturally [−1, 2]. When operators are between minimum and maximum,
andness is for any number of inputs in the range [0, 1]. Operators that can return values
smaller than the minimum (as t-norms) or larger than the maximum (as t-conorms) will
provide andness outside [0, 1], reaching the minimum and the maximum of the interval
with drastic disjunction and drastic conjunction.

The orness can be defined similarly but in terms of the minimum. Then, it follows that
andness and orness add to one. We will use α to denote andness and ω to denote orness.
Then, α + ω = 1. Duality between t-norms and t-conorms is propagated into andness and
orness, as they exchange their values.

The andnesss can be computed for some functions analytically or, otherwise, it can
be computed numerically. The computation needs to take into account the number of
inputs n, as, in general, andness for a t-norm depends on the number of inputs. Numerical
computation for Tmn, Tap, Tbd, Tdr and Smx, Tas, Tbs, and Tdr for two inputs result into the
values described in Table 1.

Table 1. Andness of some relevant t-norms and t-conorms.

t-norm Tmn Tap Tbd Tdr

andness 1.000 1.250 1.500 2.000

t-conorm Smx Sas Sbs Sdr

andness 0.000 −0.250 −0.500 −1.000

3. Andness Directedness for t-Norms

In order to provide andness directedness, we proceed as follows. First, we select a
family of t-norms among the five ones described in Section 2.1. We will assume that the
parameter of this t-norm (that we denote by >) is p. This parameter corresponds, of course,
to w, λ or p itself, according to the description above. Then, we will use >p to denote that
p is the parameter of >.

We describe below the construction of the relationship between the parameter of the
aggregation and its andness, as well as the andness-directed selection of the parameter
given andness. We describe the process for two inputs; we would proceed in a similar
way for any number of inputs. Note that the andness of a t-norm depends on the number
of inputs.

• Establish the relationship between the parameter and andness. Compute the and-
ness of >p for p in range(p). As we cannot consider the full range of p, we will select a
finite subset of this range large enough to have a good approximation. We denote this
finite subset of the range by Rp. This process results in pairs {(p, andness(>p))}p∈Rp .
As andness is monotonic with respect to p, we can interpolate (e.g., linearly) the
relationship between p and the andness easily.
Figure 1 displays the andness for the t-norms (left) and t-conorms (right) discussed
in Section 2. Therefore, we include TD, TSS1, TSS2, TSS3, and TY as t-norms, and SD,
SSS1, SSS2, SSS3, SY as t-conorms. It is worth noting that in the figure only four lines
are visible because the lines for TD (Dombi’s t-norm) and TY are indistinguishable.
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In Figure 1, we consider positive parameters λ, p, and w for all t-norms and t-conorms.
We have discussed before that the parameter for both t-norm and t-conorm TSS1 and
SSS1 can take any value except zero. For this reason, we represent the andness of these
function independently in Figure 2.
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Figure 1. Andness of t-norms TD, TSS1, TSS2, TSS3, TY (left) and t-conorms SD, SSS1, SSS2, SSS3, SY

(right) in terms of their parameters (λ, p, or w).
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Figure 2. Andness of t-norm TSS1 (left) and t-conorm SSS1 (right) given its parameter p.

• Establish the parameter given the andness. Given the andness level α and the pairs
{(pi, αi)}i∈{1,...,|Rp |} check if there is a value αi = α. If this is the case, select pi.
Otherwise, find a pair of values αi and αi+1 that satisfy αi ≤ α ≤ αi+1. Then, first,
compute r = (α− αi)/(αi+1− αi) and, second, compute p = pi ∗ (1− r)+ pi+1 ∗ r. For
example, given αp = α(p) = andness(>p) for a given t-norm >, we compute α−1

p (α),
or, in other words, we approximate the parameter p as the inverse of the andness for
the given andness α.
We will use λ(α), p(α), and w(α) to denote this process. For example, for α = 1.5, we
obtain the following 5 parameters. For TD, λ = 0.4143849; for TSS1, p = 0.9999819;
TSS2, p = 0.4080617; TSS3 p = 0.6143033 and for TY, w = 1.0000.

3.1. Differences between t-Norms for a Given Andness

Andness-directedness permits to align the parameters of t-norms so that they have
the same conjunctive behavior. Then, we want to understand to what extent these t-norms
differ. To do so, we compute the difference between them.
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To compute the difference between two t-norms >1 and >2, possibly parameterized
with parameters p and q, we consider the following expression.

diff(>p
1 ,>q

2) =
∫
[0,1]

∫
[0,1]
|abs(>p

1 (x, y)−>q
2(x, y)|dxdy

This expression permits to compute the difference between two t-norms >1 and >2
for a given andness α. To do this, first we find the parameter of >1 which corresponds to
andness α and the same for >2. Let p(α) be the parameter of >1 which leads to andness
α and let q(α) be the parameter of >2 which leads to the same andness. Then, we use the
expression above to compute diff(>p(α)

1 ,>q(α)
2 ).

We have considered all pairs of t-norms with > being any of the TD, TSS1, TSS2, TSS3,
and TY. This corresponds to 10 pairs of differences. In Figure 3 (left), we show the maximum
of all differences. That is, the figure plots

max diff(α) = max
>1,>2

diff(>p
1 ,>q

2).

We can see that the maximum is below 0.10. More precisely, it is 0.08894.
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Figure 3. Given andness α, maximum difference between pairs of t-norms TD, TSS1, TSS2, TSS3, TY

(left), and difference between high hyperconjunction hC and the same t-norms (right). The parameters
of the t-norms (λ, p, or w) have been selected so that the t-norm has precisely andness α (i.e., (λ = λ(α),
p = p(α), and w = w(α)).

Figure 4 shows the results for each pair of t-norms. It can be observed that pairs that
involve TSS1 and TY are the ones with a larger difference.

3.2. Differences between t-Norms and High Hyperconjunction for a Given Andness

We have also computed the difference between these t-norms and a high hyperconjunc-
tion (in the sense of Dujmović in [2]). High hyperconjunction has andness larger than 1 but,
in general, it is not a t-norm. For example, associativity does not hold. More particularly,
we consider the following expression, which corresponds to the weighted power function,

hC(a, b; p, q, α) = (ap · bq)
√

3/(2−α)−1.

Here, α refers to the andness level, and p and q are two weights that add up to 2
(i.e., two–this is not a typo). In our experiments, we use p = q = 1. That is, the two inputs
have the same weight.

Note that this definition is such that the andness of hC for a given α is precisely α. This
function hC does not lead to minimum for α = 1, so, our analysis focuses on α > 1.25 when
the expression corresponds to the product. In [2] and related works, interpolation is used
between minimum and the product for andness in the interval [1, 1.25].
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The differences between t-norms and hC are in Figure 3 (right). We can observe
that maximum differences correspond to t-norms TSS1 and TY. These were precisely the
t-norms that also had maximum differences in the comparison between pairs of t-norms.
Nevertheless, we can see that the hyperconjunction has a lower maximum difference.
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Figure 4. Given andness α, difference between pairs of t-norms TD, TSS1, TSS2, TSS3, TY . Their
parameters (λ, p, or w) have been selected so that the t-norm has precisely andness α (i.e., (λ = λ(α),
p = p(α), and w = w(α)).
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3.3. Analysis

TSS3 is the t-norm with the lowest maximum difference to all the others, and such
difference is similar to the one of high hyperconjunction hC. The difference between TSS3
and hC is about 0.04.

We have also seen that TSS1 and TY are the t-norms that have largest difference from
the others. We can observe that in their definitions we have either a minimum or maximum,
which causes a discontinuity in the derivative and a flat region equal to zero in the norm.
To compensate for these flat regions and have the same andness, the function should be
larger in the non-zero regions.

To illustrate this, we consider the t-norm of (0.8, 0.8) and the t-norm of (0.5, 0.5) for
an andness equal to α = 1.6. The results are presented in Table 2. We can observe that the
norm of (0.5, 0.5) has a zero value for TSS1 and TY and a non-zero for the others larger than
0.1. In contrast, for (0.8, 0.8), all values are non-zero. In this case, for TSS1 and TY, the value
is significatively larger than for the other t-norms. As this is for fixed andness, this behavior
is to compensate for the other lower results.

As a conclusion, TSS3 and hC seem to be good alternatives, being a kind of average
conjunctions and being smooth, not suffering from the fact of a non-continuous derivative
(i.e., avoiding the conjunction stronger in some regions and softer in others). TD and TSS2
are also smooth but have larger differences with TSS1 and TY.

Among TSS3 and hC, only TSS3 is a t-norm. Therefore, for andness-directed t-norms,
TSS3 seems the best alternative.

Table 2. Computation of different t-norms with andness α = 1.6.

Case TD TSS1 TSS2 TSS3 TY

(0.8, 0.8) 0.3566074 0.5738743 0.4089883 0.4146452 0.5387788

(0.5, 0.5) 0.1217016 0 0.1120718 0.06492248 0

4. Conclusions and Future Directions

In this work, our goal was to study how to select a t-norm based on an andness
level, that is, andness-directed t-norms. This problem has been made concrete by means
of considering five families of parametric t-norms. That is, t-norms that depend on a
parameter that permits to change their degree of conjunction.

Our experiments show that TSS3, a family of t-norms defined by Schweizer and Sklar,
seems to be a good family for this problem, as it has a soft behavior and is a kind of average
t-norm in terms of its similarity to other t-norms.

We have described our approach for t-norms. The same applies to t-conorms. In fact,
duality between t-norms and t-conorms, as well as the fact that α + ω = 1, can be used for
this purpose.

As future directions, we consider the analysis of other families of functions and con-
sider andness-directedness together with other properties that may introduce constraints
to the problem. For example, and said in different terms, we wonder if there are relevant
properties that may imply that it is better to select TSS1 instead of TSS3.
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