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1. Introduction

Two-tier voting models, where voting inside separate citizens’ groups is performed
in the first stage and specially selected electors implement the choice of groups on the
whole society level during the second voting stage, have been known for a long time.
Voting of conformal agents also reduces to two-tier voting models, when an agent’s vote
depends on both her own beliefs and her social environment [1,2]. In the first stage, an
agent decides whether to vote “for” or “against” depending on the beliefs of the majority in
their environment, which includes the agent themselves; in the second stage, aggregation
of the agents’ votes provides a decision.

Mathematical properties of two-tier voting procedures have been intensively studied
for more than half a century, whereas thorough attention has been brought to the question
of how much the results of two-tier voting can differ from direct voting under conditions
of various social structures modeled by the graph of social interactions.

It is known that the graph of social interactions of n agents (represented by the graph
vertices) where n− 2 vertices with negative opinion are connected to two vertices with
positive opinion almost unanimously votes “for” at the second stage of the two-level
majority procedure, although almost all members of the society have negative opinion.
Therefore, it makes sense to study restrictions on the graph of social interactions that allow
one to alleviate this imbalance. Typically the research is done in terms of the so called
domination number, which is the difference between the numbers of agents with positive
and negative opinions.

Paper [3] studies the case of regular graphs (i.e., graphs with a fixed degree of vertices),
which is remarkable because the domination number in such graphs turns out to be
relatively large; that is, the voting result is positive only if a significant share of the society
has positive opinions. Regular graphs can be used to approximate the cases with a limited
number of contacts (neighboring vertices in the graph of social connections), which is
very natural for real graphs of social interactions (the so-called “Dunbar number” and its
analogues). However, the equality constraint on the degree of the vertices is quite strong
and purely regular graphs are rare in reality. Therefore, it is of interest to generalize the
results for regular graphs to wider classes of social interaction graphs.
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To take into account cognitive limitations of humans, it makes sense to consider the
case where the number of connections (the vertex degree in the graph of social interactions)
is upper-bounded by a number ∆ but no lower bound on the number of social connections
is imposed.

This article has the following structure. The problem formulation is presented in
Section 2. After a brief literature survey given in Section 3, in Section 4 we find a lower
bound for the k-subdomination number on the set of graphs with a given nonstrict upper
bound ∆ for vertex degrees (see the formal definitions below). For the cases where the
proposed lower bound is sharp we construct optimal graphs and indicate the corresponding
k-subdominating functions. In the Conclusion we provide interpretations of these optimal
graphs in terms of social structures.

2. Problem Formulation

Let G be a graph of order n = |V| with vertex set V = V(G) and edge set E(G).
Let N[v] be the closed neighborhood of vertex v ∈ V containing all vertices adjacent to v
and v itself. For any real-valued function f (v) defined for all v ∈ V and any S ⊆ V, let
f (S) = ∑v∈S f (v). The weight of f is f (V). A k-subdominating function (k-SDF) is a function
f : V → {−1, 1} such that f (N[v]) > 0 for at least k vertices v ∈ V.

Function f assigns an opinion that belongs to {−1, 1} to each vertex v ∈ V of the graph.
For any vertex v ∈ V, the value f (v) = 1 means a positive opinion and the intention to vote
“for”, while f (v) = −1 means a negative opinion and the intention to vote “against”. We will
also say that a vertex v ∈ V is “happy” if f (v) = 1 and “unhappy” otherwise. A social agent
(a vertex) listens to the opinions of its closed neighborhood before voting. On the voting
day, vertex v decides to vote “for” if f (N[v]) > 0 and “against” otherwise. By definition, the
final decision is positive if and only if the opinion function is a k-subdominating function.
We will also refer to a k-subdominating function as to an approving opinion function.

Let G be some family of graphs and let γks(G) be the minimum value of f (V) for all
approving f over all graphs in G. Let us also define the minimum support, i.e., the minimum

number of vertices with positive opinion hk
min(G) =

γks(G)+n
2 . The k-subdomination problem is

that of finding γks(G) (or, equivalently, hk
min(G)) for a given family of graphs G. An optimal

graph G ∈ G and an optimal opinion function f are those where the minimum is attained.
Below we solve the k-subdomination problem for the class Gn,∆ of graphs of order n

with a given nonstrict upper bound ∆ ≥ 3 for vertex degrees. We consider only graphs
with each vertex having a loop, so that, for every vertex v ∈ V, N[v] = Nv, where Nv is
the standard neighborhood (the set of adjacent vertices) of v and deg(v) = |N[v]|, where
deg(v) is the number of vertices adjacent to v. The cases of ∆ = 1, 2 are trivial and thus
not considered.

3. Related Work

The problems of finding the minimum support for proposals, i.e., the minimum
number of happy vertices h, that enables approval under two-tier voting on graphs, have
been studied in the literature in terms of graph domination. In the case where every vote is
performed by simple majority and the opinion function f : V(G)→ {−1, 1} is varied, such
a minimum h is denoted by hmin(G).

A weak majority dominating function [4] on V = V(G) is an opinion function such that
f (Nu) > 0 for at least half of the vertices u in V. A strict majority function is an opinion
function such that f (Nu) > 0 for more than half of the vertices u ∈ V. As said above, for a
positive integer k, a k-subdominating function is an opinion function such that f (Nu) > 0 for
at least k vertices u in V. The latter concept reduces to the previous two when k = d|V|/2e
and k = d(|V|+ 1)/2e, respectively.

The weak majority domination number γmaj(G) [4], the strict majority domination number
γsmaj(G) [5,6], and the k-subdomination number γks(G) [7] of G are the minimum possible
weights of a weak majority function, a strict majority function, and a k-subdominating
function on V(G), respectively. The minimum h corresponding to a weak majority domi-
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nating function on V(G) will be denoted by h′min(G) and the minimum h corresponding to
a k-subdominating function by hk

min(G).
N. Alon proved (see [4,7]) that the weak majority domination number γmaj(G) of a

connected graph G is at most 2, which is equivalent to hmin(G) ≤ n
2 + 1. Moreover, γmaj(G)

does not exceed 1 (resp., hmin(G) ≤ n+1
2 ) when the order n of G is odd [5,7]. Obviously, in

the latter case, γsmaj(G) = γmaj(G). For any graph G it holds (see [5]) that γsmaj(G) ≤ 4 and
γsmaj(G) ≤ 2 for the class of all trees (respectively, hmin(G) ≤ n

2 + 2 and hmin(G) ≤ n
2 + 1

for such graphs on n vertices).
Furthermore, for any tree T of order n, hk

min(T) ≤ k + 1 [7]. This bound is sharp when
k ≤ n

2 . Moreover, if n
2 < k ≤ n, then hk

min(T) ≤ k and this bound is sharp [8,9]. On the
other hand, characterizing all trees such that hk

min(T) = k with n
2 < k ≤ n is apparently still

an open problem [10]. A general conjecture that hk
min(G) ≤ k for any connected graph G

whenever n
2 < k ≤ n was disproved in [11] by the counterexample of the three-dimensional

cube G = Q3 and k = 5, for which h5
min(G) = 6. However, for any connected graph G of

order n and n
2 < k ≤ n it holds [9] that

hk
min(G) ≤ (n− k + 1)

⌈
k

n− k + 1

⌉
.

Turning to the lower bounds, suppose that Gn|d is the class of all d-regular graphs with
loops on n vertices,

γsmaj(n, d) = min
G∈Gn|d

γsmaj(G); hmin(n, d) = min
G∈Gn|d

hmin(G).

Since f (V) = h− (n− h) = 2h− n, we have

γsmaj(n, d) = 2hmin(n, d)− n.

Henning [12] and independently Holm [13] proved that (in our notation), in the case
of odd d ≥ 3,

hmin(n, d) ≥ n(d + 1)
4d

. (1)

The same lower bound can be obtained from a more general result [6] on graphs with
specified minimum and maximum vertex degrees. It was claimed [12,14–17] that the
bound (1) is sharp or best possible. Technically, it is sharp in a weak sense; that is, it cannot
be improved for some values of n and d. As shown in [3], for any odd d > 1 there are
infinitely many n such that bound (1) can be improved for the class Gn|d of d-regular graphs
with loops on n vertices. Moreover, the inaccuracy of (1) reaches n+1

2 in the case of graphs
with d ≥ n+1

2 (“high-degree” graphs).
The more accurate lower bound for odd n,

hmin(n, d) ≥ (n + 1)(d + 1)
4d

. (2)

can be derived from a result of [14,15] (cf. [18], Theorem 4.15), which in turn follows from
the results in [8,17] and Theorem 2 in [19] on k-subdomination numbers, by substituting
k = n+1

2 (in the notation of [15], q = n+1
2n ) in the case of odd n. As shown in [3], this bound

is sharp for graphs with d < n+1
2 (“low-degree” graphs). For high-degree graphs it is not

sharp and its inaccuracy in bounding hmin(n, d) can be estimated by
(

1− n+1
2d

)
d+1

2 , which

reduces to n2−1
4n when d = n.

The sharpness of the bound (2) generalized to the k-subdominating functions is
claimed in ([14], Theorem 4.1). However, to prove this for a given d, the author con-
structs a graph whose order n is determined by the parameter k of subdomination and is
divisible by d (as in [12]), so this is sharpness in a weak sense. Similarly, the sharpness of
the bounds given in ([19], Theorem 2) is established only for some values of the parameters,
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namely, when k = n, or in other words, for n-subdomination (also called signed domination).
It was proved in [3] that for all odd n, d ∈ N such that d ≤ n,

hmin(n, d) =

⌈
d + 1

2
·max

{
n + 1

2d
, 1

}⌉
+ 1{(5,3),(9,5)}((n, d)) ,

where the indicator function 1{(5,3),(9,5)}((n, d)) equals 1 when (n, d) ∈ {(5, 3), (9, 5)} and
0 otherwise.

Let G be a graph of order n with the degree sequence d1 ≤ d2 ≤ . . . ≤ dn. It was
shown in [8] that, for such graphs and for 1 ≤ k ≤ n,

hk
min(G) ≥ 1

dn

k

∑
i=1

⌈
di + 1

2

⌉
.

In particular, for the subclass of graphs with m edges (excluding loops), it holds that

hk
min(G) ≥ 1

2

(
k− n +

2m + n + k
dn

)
,

where 2m + n can be replaced with ∑n
i=1 di.

The following lower bound has been obtained in [17]:

hk
min(G) ≥ n− (n− k)(dn + 1) + 2m

2d1

(with a slightly stronger version in the case of even vertex degrees) and a lower bound for
h′min(G) in [6]:

h′min(G) ≥ n− n(dn + 1) + 4m
4d1

.

A stronger result of [19] takes in our notation the following simple form:

hk
min(G) ≥ max

{
sk
dn

, n−
n + 2m− sk

d1

}
,

where sk = ∑k
i=1(di + 1)/2. This bound is attainable.

The decision problem corresponding to computing γmaj(G) is NP-complete [4].
A number of additional inequalities related to majority domination and k-subdomina-

tion can be found in [10]. For other results applicable to regular and nearly regular graphs
with some variations of the majority domination and k-subdomination models we refer
to [20–28].

While classical graph-theoretic reasoning is widely used in graph domination studies,
we combine it with an integer programming language that has been successfully applied in
the past to the similar Roman graph domination problem (see [29,30]).

We contribute to the literature on k-subdomination by proposing a novel lower bound
for the k-subdomination number on the set of graphs with a given upper bound for the
vertex degrees, and proving that this lower bound is attained when the voting quota is
not too high and is divisible by a linear function of the upper bound of vertex degree (see
Theorems 2 and 3). Our approach is based on the original reduction of the k-subdomination
problem to the integer linear program and the proposed lower bound is obtained from the
continuous relaxation of this program.

4. Results

Definition 1. We will say that the voting conditions for vertex v ∈ V in graph G̃ = (V, Ẽ)
with opinion function f̃ are no worse than those in graph G = (V, E) with opinion function
f if, in the former case, vertex v has at least as many neighbors with positive opinion and no more
neighbors with negative opinion than in the latter case.
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Lemma 1. For the class of graphs Gn,∆, the solution of the k-subdomination problem hk
min(Gn,∆) is

at least z∗, where z∗ is the solution of the following two-dimensional linear program:

min
x, y

x + y (3a)

s.t. n− k ≥ x ≥ 0, (3b)

y ≥ 0, (3c)
∆− 1

2
x +

∆ + 3
4

y ≥ k, (3d)

∆ + 1
2

x− ∆− 3
2

y ≤ n, (3e)

∆ + 5
4

x + y ≤ n. (3f)

Proof. Let us consider an optimal graph G, that has the minimum number of edges among
all optimal graphs, and let f be its optimal opinion function. The vertices of G can be
divided into four classes. Vertices of class A are happy but vote “against” in the two-tier
voting. Vertices of class B are unhappy, but vote “for”. Vertices of class C are happy and
vote “for”, while vertices of class D are unhappy and vote “against”.

First let us note that any neighbor u of a vertex v of class A votes “for”. Indeed, if
u votes “against”, then the edge uv can be removed without decreasing the number of
positive votes (since both u and v vote “against” in G); that is, an optimal graph exists with
a smaller number of edges, which contradicts the assumption.

In a similar way, it is easy to see that any vertex v in class B has degG(v) = 3 and
both its neighbors are happy. Indeed, an unhappy vertex votes “for” only if it has at
least two happy neighbors. Connections with other neighbors could be removed without
worsening the voting conditions of these vertices (since an unhappy neighbor is not a
neighbor any more) and without changing the vote of vertex v (it still votes “for”, since
both of its neighbors are happy). In this way one would obtain an optimal graph with a
smaller number of edges, which is impossible by assumption.

Finally, any vertex v in class D is isolated (so that degG(v) = 1), otherwise connections
with all its neighbors could be removed without worsening the voting conditions of these
vertices (an unhappy neighbor is cut off) and without changing the vote of vertex v, thus
resulting in an optimal graph with a smaller number of edges.

Therefore, vertices of class A can only be connected to vertices of classes B and C,
vertices of class B can be connected to vertices of classes A and B, vertices of class C can be
connected to vertices of classes A, B, and C, while all vertices of class D are isolated.

Let us denote by nA, . . . , nD the number of vertices in the corresponding class. Let
nAB stand for the number of edges between vertices of classes A and B, nAC be the number
of edges between the vertices of classes A and C, nBC be the number of edges between the
vertices of classes B and C, while nCC be the doubled number of edges between vertices of
class C.

These variables are connected by the following relationships:

1. All variables are non-negative, so

nA ≥ 0, . . . , nD ≥ 0, nAB ≥ 0, nAC ≥ 0, nBC ≥ 0, nCC ≥ 0. (4)

2. The degree of any vertex is bounded by ∆, so the total number of edges that connect
the vertices of class A or class C with vertices outside the class cannot exceed the
number of vertices in the class multiplied by the degree upper bound ∆ (diminished
by 1 to account for loops):

nAB + nAC ≤ (∆− 1)nA, (5)

nAC + nBC + nCC ≤ (∆− 1)nC. (6)
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3. Vertices of class B have degree 3, so

nAB + nBC = 2nB. (7)

4. Vertices of class A vote “against”, so

nAB ≥ nAC + 2nA. (8)

5. Vertices of class C vote “for”, so

nAC + nCC ≥ nBC. (9)

6. Graph G has n vertices in total, so

nA + nB + nC ≤ n. (10)

7. Voting is positive, so
nB + nC ≥ k. (11)

Conditions (4)–(11) are also satisfied for any optimal graph, while the total number
nA + nC of vertices with positive opinion in such a graph is minimal. Therefore, the
problem of finding the minimum value z∗ of the sum nA + nC under constraints (4)–(11)
is a relaxation of the k-subdomination problem (because we neglect the integrality of
variables and some other constraints of the problem). Moreover, if, for the optimal values
of nA, . . . , nD, nAB . . . nCC, a graph G ∈ Gn,∆ can be constructed, then graph G with the
accompanying opinion function is optimal.

Let us simplify this linear program. First, from Equation (7) it is easy to find that
nAB = 2nB − nBC and, excluding nAB from the formulation, we obtain the problem:

min nA + nC (12a)

s.t. nA ≥ 0, . . . , nD ≥ 0, nAC ≥ 0, nBC ≥ 0, (12b)

0 ≤ nCC, (12c)

nAC + nBC ≤ nCC, (12d)

(∆− 1)nC − nAC − nBC ≥ nCC, (12e)

2nB − nAC − 2nA ≥ nBC, (12f)

2nB + nAC − (∆− 1)nA ≤ nBC, (12g)

2nB ≥ nBC, (12h)

nA + nB + nC ≤ n, (12i)

nB + nC ≥ k. (12j)

All variables except those included in the objective function can be excluded using
the procedure that is illustrated below on the example of variable nCC. From (12) we see
that nCC is met only in constraints (12c)–(12e), being constrained from below by (12c) and
(12d), and constrained from above by (12e). Variable nCC affects only problem feasibility,
but not the objective function.

Combining (12c) and (12d) with (12e) we obtain:

0 ≤ nCC ≤ (∆− 1)nC − nAC − nBC, (13)

nAC + nBC ≤ nCC ≤ (∆− 1)nC − nAC − nBC. (14)

From (13) and (14) it is clear that a feasible value of nCC exists if and only if

0 ≤ (∆− 1)nC − nAC − nBC, (15)
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nAC + nBC ≤ (∆− 1)nC − nAC − nBC. (16)

Thus, if one is not interested in the exact value of nCC, this variable can be excluded, and
constraints (12c)–(12e) can be replaced with (15) and (16). Moreover, from (12b) we know
that nAC, nBC ≥ 0; inequality (15) obviously majorizes (16), so that constraint (15) can be
omitted, and we obtain the following equivalent program:

min nA + nC (17a)

s.t. nA ≥ 0, . . . , nD ≥ 0, nAC ≥ 0, nBC ≥ 0, (17b)

nAC + nBC ≤ (∆− 1)nC − nAC − nBC, (17c)

2nB − nAC − 2nA ≥ nBC, (17d)

2nB + nAC − (∆− 1)nA ≤ nBC, (17e)

2nB ≥ nBC, (17f)

nA + nB + nC ≤ n, (17g)

nB + nC ≥ k. (17h)

Sequentially excluding variables nB, nD, nAC, nBC in a similar fashion (the routine
calculations are omitted) we end up with the following optimization problem:

min
nA, nC

nA + nC (18a)

s.t. n− k ≥ nA ≥ 0, (18b)

nC ≥ 0, (18c)
∆− 1

2
nA +

∆ + 3
4

nC ≥ k, (18d)

∆ + 1
2

nA −
∆− 3

2
nC ≤ n, (18e)

∆ + 5
4

nA + nC ≤ n. (18f)

Finally, renaming nA and nC with x and y, respectively, completes the proof.

Theorem 1. If ∆ ≤ 5, then hk
min(Gn,∆) ≥ 4k

∆+3 . If ∆ ≥ 5 then hk
min(Gn,∆) ≥ 2k

∆−1 .

Proof. Since (3d) is the only constraint that limits from below the linear combination of
both unknowns with positive weights, it takes the form of equality in the optimal solution.
Let us relax all other constraints in (3) except for the non-negativity constraints. Then it is
obvious that for ∆ ≤ 5 the minimum of the objective function is reached at x = 0, y = 4k

∆+3 ,
and z∗ = y, while, for ∆ ≥ 5, the minimum is reached at x = 2k

∆−1 , y = 0, and z∗ = x. From
Lemma 1 we know that problem (3) is a relaxation of the k-subdomination problem, which
completes the proof.

Theorem 2. For all positive integers n, k, ∆ such that ∆ is odd, k is divisible by ∆−1
2 , and k ≤ n ∆−1

∆+1 ,
hk

min(Gn,∆) = a = 2k
∆−1 holds, the optimum is attained on a “sunflower” graph (see Figure 1) with

the number of vertices having positive opinions equal to a.
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a+

+
+ +

+

+
+

−. . .−

−

...

−

−

...

−

− ...

−

− ... −

−

...
−

− − · · · −

n− ∆−1
∆+1

· · · ∆−1
2

Figure 1. The “sunflower” graph of order n with odd maximum vertex degree ∆ and voting quota k
divisible by ∆−1

2 .

Proof. Under the conditions of the theorem, the “sunflower” graph with the given param-
eters exists. It includes a = 2k

∆−1 vertices with positive opinion, so hk
min(Gn,∆) ≤ a = 2k

∆−1 .
On the other hand, by Theorem 1, for ∆ ≥ 5, hk

min(Gn,∆) ≥ 2k
∆−1 holds, which completes

the proof.

Theorem 3. For all positive integers n, k, ∆ such that ∆ is even, k is divisible by ∆ − 1, and
k ≤ n ∆−1

∆+1 , hk
min(Gn,∆) = a = 2k

∆−1 holds, the optimum is attained on the “alternating sunflower”
graph (see Figure 2) with the number of vertices having positive opinions equal to a.

a+

+
+ +

+

+
+

−. . .−

−

...

−

−

...

−

− ...

−

− ... −

−

...
−

− − · · · −

n− ∆−1
∆+1

· · · ∆
2

∆
2 − 1

∆
2

Figure 2. The “alternating sunflower” graph of order n with even maximum vertex degree ∆ and
voting quota k divisible by ∆− 1.

Proof. The proof is similar to that of Theorem 2.

The above theorems, however, do not shed light on the case of graphs with the upper
bound for the vertex degrees less than 5, which is partially covered by the following result.

Theorem 4. For all positive integers n and k ≤ n, hk
min(Gn,3) = 2b + k%3 holds, where

b = bk/3c and operator x%y is “the remainder of x divided by y”. hk
min(Gn,3) is attained on

a graph G that contains b cycles of length 3 whose vertices have opinions 1, 1, and −1 in each
cycle, and k%3 isolated vertices with positive opinions. All other vertices in G are isolated and have
negative opinions (see Figure 3).
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+ +

−

+ +

−
· · · + +

−

+ + · · · +

− − · · · −

Figure 3. The optimal graph when the nonstrict upper bound for the vertex degree ∆ equals 3.

Proof. Let us consider an optimal opinion function f over an optimal graph G of order
n that has the maximum number of connected components among optimal graphs with
the minimum number of edges. Equivalently, G is a graph in which at least k vertices vote
“for”, while the number of happy vertices is minimal, and any other optimal graph G̃ of
order n with vertex degree not exceeding 3 has the number of edges no less than in G and,
if having the same number of edges, G̃ has no more connected components than G.

Since ∆ ≤ 3, G can have vertices of degree 1, 2, and 3. Hence, any optimal graph in
Gn,3, including G, is a disjoint union of cycles, paths, and isolated vertices.

The properties of G are as follows.

1. G contains no unhappy vertices of degree 2. Otherwise, let us consider an unhappy
vertex v of degree 2 in G. This vertex votes “against” regardless of the labeling of its
neighbor u, and the edge uv can be removed without worsening the voting conditions
for all vertices and without changing the number of unhappy vertices.

2. Let G contain an unhappy vertex v of degree 3. Then both of its neighbors (call
them u1 and u2) are happy. Otherwise, v votes “against”, and one can remove the
edges u1v and u2v without worsening the voting conditions for v, u1, and u2 and
reducing the number of edges, which contradicts the fact that G is an optimal graph
with the minimum number of edges.

3. Let G contain a happy vertex v of degree 3. Then one of its neighbors (call it u1), is
happy and the second neighbor (name it u2) is unhappy.

(a) Otherwise, if u1 and u2 are happy, we can connect them directly with edge u1u2
and isolate vertex v. The votes of all vertices do not change and the number of
edges decreases, which contradicts the fact that G is an optimal graph with the
minimum number of edges.

(b) If both u1 and u2 are unhappy, then, from Item 1 above, the degrees of u1 and
u2 equal 3. Let us denote their second neighbors by w1 and w2 and consider
all possible alternatives:

i. If w1 is happy, we can isolate vertices u1 and v and directly connect
vertices u2 and w1. In this case, the voting conditions for vertices u2 and
w1 do not change. Vertex v in graph G votes “against” because it has
two unhappy neighbors but it votes “for” after being isolated. Vertex
u1, on the contrary, votes “for” in G and votes “against” after being
isolated. Hence, the total number of positive votes has not changed
and opinion function f is still approving for the new graph, which is
optimal since the number of happy vertices is the same. However, the
number of components has increased by two, which contradicts the
definition of G.

ii. Now let both w1 and w2 be unhappy. Then vertices u1, u2, and v vote
“against”, and the opinion of vertex v can be changed to −1 without
changing the vote, which strictly reduces the number of happy vertices
and contradicts the fact that G is optimal.
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iii. Finally, let w1 be unhappy and w2 be happy. Then, similarly to Case 3(b)i,
we connect vertices u1 and w2 and isolate vertices u2 and v increasing
the number of components, which contradicts the definition of G.

4. Graph G has no vertices of degree 2. We have already proved that no unhappy
vertices of degree 2 exist. Let G have a happy vertex v of degree 2. This means that
v is the beginning of a chain and, therefore, this chain has an end u, and, as follows
from the above proof, u is also happy. A neighbor v′ of v cannot be happy, otherwise
one can add an edge uv′ and isolate v leaving the opinion function approving over
this new optimal graph and increasing the number of connected components by 1. If
vertices u′ and v′ are unhappy, then one can isolate v by connecting v′ directly to u.
At the same time, the voting conditions of vertex v′ do not change; u votes “against”
as before and the voting conditions of vertex v have not worsened. However, the
number of components increases, which contradicts the definition of G.

It is clear that, since graph G has no vertices of degree 2, it appears to be a disjoint
union of cycles of length at least 3 with the repeating sequence of opinions “happy—happy—
unhappy” and, possibly, some number of isolated vertices. In fact, the opinions of the cycle
vertices are uniquely determined up to a cyclic shift. Let us assign the index “0” to any
happy vertex in a cycle. Then, from Item 3 above, one of its neighbors (let us label it by
“−1”) should be happy and the second one (let us label it as “+1”) should be unhappy.
Then, from Item 3, the second neighbor of “−1” (call it “−2”) must be unhappy and, from
Item 2, the second neighbor of “+1” must be happy. Hence, to avoid contradiction, the
length of the cycle must be divisible by 3. Now it is clear that to maximize the number of
components in G, all cycles must have length 3.

Let graph G contain a cycles. All vertices of them vote “for”, with 2a happy vertices.
Let there be x happy vertices among isolated vertices. Graph G is optimal, so a and x are
found as the solution of the minimization problem 2a + x → min over all non-negative
a, x satisfying the condition 3a + x ≥ k. If 3a + x > k in the optimal solution, then x = 0,
as otherwise x could be reduced by 1 improving the optimal solution. That is, a is the
minimum number of cycles such that 3a > k. By definition, it is only possible if k is not
divisible by 3. If 3a = k + 2, then the solution a′ = a− 1, x = 1 is better, while, if 3a = k + 1,
then this solution is not worse, which is impossible due to the optimality of G.

Therefore, we can assume that 3a+ x = k and x = k− 3a. We know that 2a+ x = k− a,
i.e., a has the maximum value for which 3a ≤ k. Then x is the remainder of k divided
by 3.

5. Conclusions

In this paper, we studied the properties of the k-subdomination number for graphs
with vertex degrees limited by a given constant ∆. The main results are summarized in
Figure 4.

It has been shown that, in the optimal graph, the k-subdomination number is suffi-
ciently low; there exist graphs of social interactions with positive voting while the ratio
of unhappy agents to those happy has the order of the maximum vertex degree (see
Theorems 2 and 3; details depend on the ratios of the graph size n, the upper bound ∆
for the vertex degree, and the voting quota k). Thus, the minimum support (the number of
happy vertices) decreases inversely as the degree ∆ increases, and the social properties of
the corresponding graph quickly converge to those of the optimal graph that has no upper
bound for the maximum vertex degree (for example, in Figure 4, for n = 100 and k = 80,
the support is only 16 under the relatively small upper bound of ∆ = 11 for the degree).
These social characteristics are completely different from those of regular graphs.
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Figure 4. The lower bound for the minimum support hk
min(Gn,∆) as a function of the nonstrict upper

bound for the vertex degree ∆ and voting quota k for graphs order n = 100. Levels of the lower
bound are depicted and labeled with red. Combinations of the values of parameters where the lower
bound is proved to be tight are depicted with blue dots for Theorem 2, green dots for Theorem 3, and
black dots for Theorem 4.

Although the social structure with the duopoly of two “opinion leaders”, which arises
when no degree restrictions are imposed, cannot be exactly reproduced in graphs with
vertex degrees limited from above by number ∆, we have there a situation of oligarchy
where any “ordinary vertex” is connected to exactly two members of a limited “corporation
of public opinion leaders”. Each opinion leader, in turn, influences ∆− 1 ordinary vertices
through its social links.

In terms of political science, if the number of social ties of the “ordinary vertices” may
be kept low, for example, by the government, then through a “corporation of opinion lead-
ers” this government can effectively manipulate the social choice. To avoid this situation,
one has to increase the lower bound of the number of social ties. In other words, to have
the k-subdomination number approaching the relatively high values (such as those found
in regular graphs), each member of the society should maintain a larger number of social
contacts (connections in the social graph). The detailed study of this effect is a promising
subject of future research, which can use the optimization-based technique introduced in
the present article.

An open question not covered by the results of the present paper is the shape of the
optimal graph for the case where vertex degrees are bounded by 4 (see the gap in blue dots
for ∆ = 4 in Figure 4), which requires additional investigation.
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