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Abstract: The blind quantum computation (BQC) protocol allows for privacy-preserving remote
quantum computations. In this paper, we introduce a remote quantum error correction code prepa-
ration protocol for BQC using a cluster state and analyze its blindness in the measurement-based
quantum computation model. Our protocol requires fewer quantum resources than previous meth-
ods, as it only needs weak coherent pulses, eliminating the need for quantum memory and limited
quantum computing. The results of our theoretical analysis and simulations show that our protocol
requires fewer quantum resources compared to non-coding methods with the same qubit error rate.
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1. Introduction

With the rapid development of quantum technology, quantum computing has attracted
increasing attention from researchers because of its theoretically super-high computing
power. In the classical field, it is very hard for conventional computers to deal with the
non-deterministic polynomial (NP) problems. However, these tasks have the potential to
be solved by a quantum computer in the future [1–6]. At present, a practical quantum com-
puter requires large-scale quantum resources, expensive equipment, and low-temperature
environment, etc., which ordinary clients cannot afford. A blind quantum computation
(BQC) protocol as an optimal potential solution can address this problem at hand. By
harnessing of the power of BQC, the client (Alice) can effectively delegate intricate com-
puting tasks to a remote quantum server (Bob) while guaranteeing the privacy of Alice’s
information [7–9]. The breakthrough of QBC is not only the low cost of overcoming Alice’s
computing limitations but also protecting sensitive data well. In recent years, many ex-
tension BQC protocols have emerged [10–16]. The universal blind quantum computation
(UBQC) proposed by Broadbent, Fitzsimons, and Kashefi [9] is very popular among these
protocols, in which Alice only needs to prepare the single-photon states.

In UBQC, the preparation is a very important process [9] which directly determines
the number of pulses to be sent and the state of the desired qubits and is the basis of
the successful execution of subsequent quantum computing. In Alice’s preparation, she
prepares the required single photon pulses for a desired computing and sends them to Bob
through a quantum channel. However, the probability of the photon number satisfies the
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Poisson distribution, which results in a lower generated probability of single photons. It
is also inevitable that two or multiple photon pulses are sent in the preparation, which
will destroy the privacy of quantum states in Alice’s preparation. Hence, a remote blind
qubit state preparation (RBSP) protocol is proposed by Dunjko et al. [10] to delegate Bob to
prepare qubits, which only requires Alice to send weak coherent pulses to Bob. To prepare a
desired qubit, the number of pulses is of the order O(1/T4), where T(T < 1) represents the
transmittance of the quantum channel. Xu and Lo then presented the one decoy state-based
RBSP protocol to improve the preparation efficiency [11]. The number of pulses to prepare
a desired qubit can be reduced from O(1/T4) to almost O(1/T). Obviously, the decoy state
technique can be used to prepare more qubits in unit time. On this basis, the multi-decoy
states technique in quantum key distribution [17] can also be applied to the UBQC protocol.
Subsequently, Zhao and Li proposed a blind quantum state preparation protocol with two
decoy states [12–14], which further improves the preparation efficiency. Their simulation
experiments also show that the preparation protocol with two decoy states is more suitable
for long-distance communication.

However, in the preparation of UBQC, the qubits disturbed by noise are prone to
errors [16,18]. To avoid the accumulation and propagation of these errors in the subse-
quent computations, quantum error-correcting code [19] offers a viable solution to correct
error qubits in the preparation process. Tan Xiaoqing et al. [20] proposed a fault-tolerant
framework for blind quantum computing, which used 7-qubit CSS code to encode the
logical GHZ states to overcome the collective-dephasing noise and the collective-rotating
noise. However, the client was required to have the ability of single-qubit measurement
on the third qubit of the logical GHZ state and share the remaining Bell state with the
server. Morimae and Koshiba [21] have shown that it is impossible for the classical client
to implement perfectly secure one-round delegated quantum computing. Therefore, the
client at least requires access to the quantum channel or other quantum properties in a
realistic situation. In order to reduce the client’s burden and dependence on quantum, we
delegate quantum error-correcting code preparation to Bob for implementation. Since the
delegated preparation is implemented in the measurement-based quantum computation
(MBQC) framework [22,23], the encoding circuit is required to be converted into graph
states to prepare the quantum error-correcting codes in the MBQC manner.

Combined with two-decoy-state RBSP, a remote quantum error-correcting code prepa-
ration protocol on cluster state is presented to correct errors in blind quantum computation.
In our protocol, the cluster states are used as graph states to prepare quantum error-
correcting codes that are unknown to Bob. Then, these codes can be considered as encoded
logical qubits for subsequent fault-tolerant blind quantum computation. The security of
the proposed protocol is proven theoretically to be ε-blind. Finally, the lower bound of
quantum resource consumption is estimated, i.e., the number of required pulses. When the
prepared quantum error-correcting codes have the same qubit error rate, our protocol can
reduce the number of pulses, which will contribute to the practical application of UBQC in
the future.

The remainder of the paper is structured as follows: In Section 2, we introduce the basic
knowledge. In Section 3, we present a quantum error-correcting code preparation protocol
on cluster state to correct qubit errors. Furthermore, we demonstrate that the protocol is
ε-blind and estimate the quantum resource consumption. In Section 4, simulation results
show the quantum resource consumption of coding and non-coding protocols in the case
of the same qubit error rate. In Section 5, the necessary conclusions are drawn.

2. Technical Preliminaries
2.1. Qubit Error

Due to environmental noise, it is inevitable that errors occur in quantum computations.
Therefore, we need to build a general error model to correct qubit errors. In quantum
Hilbert space, a quantum state |ψ〉 can be described as

|ψ〉 = α|0〉+ β|1〉, (1)
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where |0〉 =
(

1 0
)T , |1〉 =

(
0 1

)T are the basis vectors in the Hilbert space, and
|α|2 + |β|2 = 1.

After the noise has occurred, the evolution of the quantum state |ψ〉 contains four
cases: (1) no error, (2) the bit error |0〉 ↔ |1〉, (3) the phase error α|0〉+ β|1〉 ↔ α|0〉 − β|1〉,
and (4) both bit and phase errors. Hence, an error operator Ei can be considered a linear
combination of identity operator I, bit flip operator X, phase flip operator Z, and bit-phase
flip operator Y [24]. These Pauli operators are

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (2)

To simplify the analysis, suppose the noise occurs on a single qubit, so the quantum state
Ei|ψ〉 can be described as a superposition state of the four possible states I|ψ〉, X|ψ〉, Z|ψ〉,
and Y|ψ〉 [25]. If one measures the error quantum state Ei|ψ〉, it collapses into one of four
states. In order to correct the qubit error, we need to perform a diagnostic process to
determine which error occurred in four possible cases and then utilize Pauli operators to
act on the error qubit to correct it.

2.2. Quantum Error-Correcting Codes

In the error-correcting process, the error syndrome measurement is used to diagnose
which qubit is in error. With the increasing number of qubits in code, it is more difficult to
determine where the error occurred. As a result, we use seven qubits to encode one qubit,
which can correct a qubit error in an encoded block, which is called the 7-qubit Steane
code,[[7, 1, 3]]. The encoded logical qubit base {|0〉L, |1〉L} is shown as follows:

|0〉L =
1

2
√

2
(|0000000〉+ |0001111〉+ |0110011〉+ |0111100〉

+ |1010101〉+ |1011010〉+ |1100110〉+ |1101001〉)

|1〉L =
1

2
√

2
(|1111111〉+ |1110000〉+ |1001100〉+ |1000011〉

+ |0101010〉+ |0100101〉+ |0011001〉+ |0010110〉)

(3)

Based on the encoding principle of Steane code [24], we can design the encoding
circuit of quantum error-correcting code, as shown in Figure 1a. The unknown data qubit
and six ancilla qubits can be used to encode an encoded logical qubit. According to the
error syndrome measurement circuit in Figure 1b, one uses two Steane ancilla states to
diagnose the bit and phase error syndromes, respectively. Finally, the Pauli gates are used
to act on the error qubits to correct them in each encoded block.

H

H

H

0

0

0

0

0

0

0 1 

H H

M

M

7
ZXData

Ancilla

(a)

(b)

0

1

L

L







Figure 1. The quantum encoded and syndrome measurement circuits of the Steane code [[7,1,3]].
(a) A 7-qubit encoded logical qubit is prepared by a data qubit and six ancilla qubits. (b) The bit and
phase errors occurring in the encoded block can be diagnosed with two Steane ancilla states and
recovered by Pauli gates.
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2.3. Realization of Quantum Gates on Cluster State

For a quantum circuit, we can use the ordered quantum gates to describe the compu-
tational process. Any quantum gate can be transformed into a combination of quantum
gates in the universal gate group, such as {CNOT, H, π/8}. Hence, only if we can re-
alize every quantum gate in the universal logic gate group can we implement arbitrary
quantum computing.

In the framework of MBQC [26], we know that quantum gates can be realized by
multi-particle entangled graph states, such as cluster state and brickwork state [9,22]. Note
that the [[7, 1, 3]] encoded circuit consists of Hadamard gates and CNOT gates in Figure 1.
Hence, we only need to realize these two types of quantum gates on graph states. Since
quantum gates in brickwork state only act on the neighboring qubit, the CNOT gate acting
on non-neighboring qubits needs many SWAP gates to be realized, which is very inefficient.
Hence, we use the cluster state to realize these Hadamard and CNOT gates in the encoding
circuit, as shown in Figure 2.

(d) (e)

(a)

X X X XY

Y

Y Y Y Y YX

X

(c)

X Y Y Y

  X

(b)

Figure 2. Implementation of basic quantum gates on cluster state. Each circle represents a qubit, and
the left-most squares represent the input qubits, the right-most squares denote the output qubits.
Each green circle represents a cluster qubit measured in the eigenbasis of Pauli gate X, the red denotes
I. The ξ, η, and ζ represent the measurement angles δ of the measurement basis M(δ). (a) The
Hadamard gate. (b) A general rotation gate. (c) The CNOT gate applied between adjacent logical
qubits. (d) The CNOT gate applied between two logical qubits separated by an even number. (e) The
CNOT gate applied between two logical qubits separated by an odd number.

In Figure 2, these diagrams are used to illustrate the realization of quantum gates
on cluster states. (a) represents the pattern to realize the Hadamard gate. Each circle
symbolizes a qubit, and the lines indicate entangling operators. Controlled-Z (CZ) gates
are employed to interact between neighboring qubits, preparing the entangled state. The
qubits are measured in a specifically selected basis, with the green (red) circle represent-
ing a measurement in the eigenstates of the X (Y) Pauli gate. The measurement basis
M(δ) is determined by the measurement angle δ. The eigenbasis of X (Y) corresponds
to δ = 0(π/2). The computational basis {|0〉, |1〉} is the eigenbasis of Z. (b) illustrates a
general one-qubit rotating quantum gate through one-qubit measurement in a cluster state,
where the measurement basic angles ±ξ,±η,±ζ depend on the measurement results of
other qubits. (c), (d), and (e) show the CNOT gate applied between different distance logical
qubits. One can repeat the rectangle parts enclosed by the black dashed line in (d) and (e)
to deal with any separation. In quantum computing in a cluster state, the {|0〉, |1〉} basis is
used to eliminate the redundant qubits, and the adaptive basis M(θ) is used to measure
the remaining qubits to implement any quantum gate.
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3. Quantum Error-Correcting Code Preparation on Cluster State

In the field of quantum computation, it is widely recognized that cluster states can be
used to realize arbitrary quantum gates. Indeed, the essence of a quantum circuit resides in
its meticulously ordered sequence of quantum gates, forming the fundamental backbone of
quantum computing. Consequently, each quantum circuit can be efficiently performed in a
cluster state [22]. By harnessing the power of cluster states, the quantum encoding circuit
can also be feasible, enabling the generation of quantum error-correcting codes. These
encoded qubits can then be utilized to construct novel brickwork states to facilitate the
realization of fault-tolerant quantum computing.

According to the implementation of quantum gates on cluster state in the preliminaries,
the encoding circuit of [[7,1,3]] code needs to be transformed into MBQC on cluster state,
then the quantum error-correcting code preparation can be realized through measuring
each qubit on cluster state, as shown in Figure 3. In the preparation process, Bob initiates
the construction of the initial cluster state, followed by the judicious utilization of the com-
putational basis {|0〉, |1〉} to eliminate the redundant qubits based on the precise positional
information provided by Alice. In accordance with Alice’s designated measurement bases
M(δ), the remaining qubits of the cluster state serve as a platform for preparing quantum
error-correcting codes. These bases are meticulously designed to be orthogonally projected
onto the states |±δ〉 = (|0〉 ± eiδ|1〉)/

√
2, where δ ∈ [0, 2π] designates the measurement

angle. Note that the specific values of δ such as δ = 0 or π/2 corresponds to the X or Y
Pauli measurement, respectively. It is important to emphasize that these measurements
are inherently destructive. Obviously, the measurement is understood as a destructive
measurement. The measurement outcome of qubit i is denoted by si ∈ Z2. Our convention
dictates that si = 0 when the state collapses to |+δ〉 as a result of the measurement, and
si = 1 when it collapses to |−δ〉.

Figure 3. The implementation of the [[7,1,3]] encoding circuit on cluster state. The measured cluster
qubits are denoted by the green, red, and white circles, representing the measurements in the
eigenbases of X, Y, and Z, respectively.

During the process of removing redundant qubits, an inherent challenge arises con-
cerning the potential leakage of quantum gates used, which could inadvertently disclose
the underlying structural information of the cluster state to Bob. However, Alice’s primary
concern lies in ensuring the security of the encoded logical qubit |+θi 〉L during the prepa-
ration, while the quantum gates employed in the encoded circuit can be made public to
Bob. To accomplish preparation, three distinct measurement bases are employed, including
{|0〉, |1〉}, M(0) and M(π/2) corresponding to the eigenbases of the Pauli gates Z, X, Y,
respectively. These measurement bases exhibit a notable characteristic: their independence
from the polarization angle θi. As a result, the information pertaining to θi remains entirely
secure and undisclosed to Bob throughout the process. These findings shed light on the po-
tential of cluster states for secure and efficient quantum information processing in quantum
error-correcting code preparation.

In UBQC, the delegated preparation process contains Alice’s preparation, Bob’s prepa-
ration, and the interaction measurement. In Alice’s preparation, Alice sends N data pulses
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to Bob, which comprise signal states and two decoy states, and their polarization is ρσ,
where σ is chosen randomly from

{
kπ
4 : 0 ≤ k ≤ 7

}
. In addition, Alice needs to send a

series of ancilla pulses to Bob, and their polarization is |+〉, which is allowed to be pub-
lic. In Bob’s preparation, the required qubit |+θi 〉 can be generated based on non-coding
RBSP [13]. Among the generated qubit |+θi 〉 and a series of ancilla qubits, Bob utilizes CZ
gates to entangle them to build an initial cluster state. During the interaction measurement,
Bob follows Alice’s instructions and eliminates the redundant qubits from the initial cluster
state in the computational basis, as shown in the white circles in Figure 3. According to
Alice’s measurement basis M(δij), δij ∈ {0, π/2}, the remaining qubits on cluster state
are measured sequentially until the final outcome is obtained. Finally, Bob can achieve
the required quantum error-correcting codes. As depicted in Algorithm 1, we propose an
innovative protocol for remote quantum error-correcting code preparation on cluster state,
which lays the groundwork for subsequent fault-tolerant blind quantum computing.

Algorithm 1: A remote quantum error-correcting code preparation on clus-
ter state

Input: data pulses with polarization ρσ, σ ∈R {kπ/4 : 0 ≤ k ≤ 7} including
signal and two decoy states; ancilla pulses with polarization |+〉.

Output: the encoding logical qubits:
{
|+θi 〉L

}S
1 .

1 Alice uses the laser to send the required data and ancilla pulses to Bob.
2 for i = 1 to S; do
3 Bob utilizes non-coding RBSP to prepare qubit |+θi 〉, then uses it and a series

of ancilla qubits {|+〉} to build the cluster state.
4 for x = 1 to m, y = 1 to n; do
5 Based on Figure 3, Bob performs the [[7,1,3]] encoding circuit on cluster

state
6 if qxy is white then Bob performs measurement in {|0〉, |1〉} ;
7 if qxy is green then Bob performs measurement in M(0);
8 if qxy is red then Bob performs measurement in M(π/2);
9 end

10 Bob generates quantum error-correcting code
{
|+θi 〉L

}
.

11 end

12 return
{
|+θi 〉L

}S
1 .

The [[7,1,3]] encoding circuit is designed based on the generator matrix, and its
correctness had been proven by Preskill [24]. Since the preparation on cluster state is
equivalent to the encoding circuit model, our protocol can generate the correct quantum
error-correcting codes. In order to ensure Alice’s information privacy, the encoding logical
qubits (quantum error-correcting codes) are required to be unknown to Bob in UBQC. In
other words, the polarization angle θ is always unknown to Bob in the preparation process
of the encoding logical qubits |+θ〉L.

In UBQC, the client and server share a joint state that describes the evolution of the
entire system. The ideal state is symbolized as πideal

AB that effectively guarantees the client’s
information against potential malicious attacks. During the preparation, the ideal state
πideal

AB evolves into a set of states, which can be conveniently represented by F (πideal
AB ). To

ensure robust security against any server actions, it is imperative that all states with this set
remain equally blind. To assess the security level achievable in practical implementation,
we explore scenarios where the client transmits a realistic state ρθi to replace a perfect state
|+θi 〉. In the following, we introduce the concept of almost blindness by quantifying the
proximity between the realistic joint state and the ideal joint state, i.e., ε-blind [10].

Definition 1. A UBQC protocol with imperfect preparation is ε-blind if the trace distance between

the ideal joint state π
θi
AB and realistic joint state π

ρθi

AB is less than ε > 0. Finally, we have:
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min
π

θi
AB∈F

1
2

∥∥∥∥π
{ρθi }
AB − π

{θi}
AB

∥∥∥∥ ≤ ε. (4)

Theorem 1. Our preparation Algorithm 1 is ε-blind to Bob.

Proof. In our protocol, the measurement-based quantum computation is used to realize
quantum error-correcting code preparation on cluster state. The prepared data qubit |+θ〉
and a series of ancilla qubits |+〉 can be considered as quantum resources to build the
cluster state. Based on the RBSP protocol [10,13], the generated data qubit |+θ〉 is ε-blind.
In order to demonstrate the ε-blindness of the encoded logical qubit |+θ〉L, we only need
to prove that the encoding circuit on cluster state is ε-blind. In other words, the angle of
polarization θ of |+θ〉L in the preparation process is unknown to Bob.

To be more precise, it is necessary to illustrate that the measurements on cluster state
do not reveal any information about polarization angle θ. The cluster state is built by
multiple entanglement qubits. For the purpose of simplicity, it suffices to prove that the
polarization angle θ is ε-blind to Bob during the measurements on the minimum cluster
state. Further, we analyze three kinds of measurements on cluster state according to the
[[7,1,3]] encoding circuit. The eigenstates of X, Y, Z are used to measure the qubits on the
minimum cluster state, respectively. We explore whether there is information leakage of
the polarization angle θ during the measurements.

|+θ〉1 ⊗ |+〉2 =
1√
2

(
|0〉+ eiθ |1〉

)
1
⊗ |+〉2

CZ−→ 1√
2
|0〉1 ⊗ |+〉2 +

eiθ
√

2
|1〉1 ⊗ |−〉2

M(X)
=====

|+〉1 ⊗ (H|+θ〉2) + |−〉1 ⊗ (X · H|+θ〉2)√
2

M(Y)
====

|+π/2〉1 ⊗ (XHS|+θ〉2) + |−π/2〉1 ⊗ (HS|+θ〉2)√
2

(5)

The first qubit |+θ〉 and the second qubit |+〉 are used to build the minimum cluster
state using CZ gate, as shown in Figure 4. If the first qubit is measured in the eigenstates of
X gate, as shown in Figure 4a, the quantum state is |+〉 or |−〉with an equal probability. The
second qubit is evolved into (X)k · H|+θ〉2, k ∈ {0, 1}, where k represents the measurement
result of the first qubit, as shown in Equation (5). If the eigenstates of Y gate are used to
measure the first qubit, as shown in Figure 4b, the polarization state of the second qubit
is evolved into (X)k · H · S|+θ〉2, k ∈ {0, 1}, k is also determined by measurement result
of the first qubit, as shown in Equation (5). It can be seen that the information of the first
qubit is transmitted to the second qubit through MBQC without loss of information. If the
first qubit |+〉 and the second qubit |+θ〉 are entangled into the minimum using CZ gate,
as shown in Figure 4c, and the eigenstates of Z gate are used to measure the first qubit, the
second qubit is still |+θ〉, as shown in Equation (6). Obviously, the remaining qubits are
unchanged when the redundant qubits are eliminated by Z.

|+〉1 ⊗ |+θ〉2 =
1√
2
(|0〉+ |1〉)1 ⊗ |+θ〉2

CZ−→ 1√
2
|0〉1 ⊗ |+θ〉2 +

1√
2
|1〉1 ⊗ |−θ〉2

M(Z)
=====

|0〉1 ⊗ |+θ〉2 + |1〉1 ⊗ (Z|+θ〉2)√
2

(6)
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X Y Z
(a) (b) (c)

Figure 4. The cluster state with two qubits. The green, red, and white represent the measurements of
X, Y, and Z gates. (a) The first qubit of the cluster state is measured in the eigenbasis of X. (b) The
first qubit is measured in Y. (c) The first qubit is measured in Z.

Thus, the polarization angle θ is irrelevant to the eigenstates of X, Y, and Z. During
the measurements on cluster state, Bob can not obtain any information about the angle
of polarization θ. Hence, the generated encoded logical qubit |+θ〉L is ε-blind in our
Algorithm 1 if the input data qubit |+θ〉 is ε-blind.

In our protocol, these pulses sent by Alice consist of two parts, data and ancilla. Based
on non-coding RBSP, note that data pulses are employed to generate the required data
qubits {|+θi 〉}

S
1 . Each data qubit is then transformed into its corresponding logical qubit

as required. Consequently, the number of data pulses used aligns with that of the non-
coding RBSP, denoted as Nd [14]. The number of ancilla pulses depends on the cluster
state used to prepare encoded states, as shown in Figure 3. It is important to highlight
that the number of ancilla qubits is a constant if one encoded qubit is prepared, denoted
as C. The transmittance of the quantum channel between client and server directly affects
the probability of the pulses being received, denoted as T, and the scale of quantum
computation is denoted as S, the number of required ancilla pulses Na = CS/T. Hence,
we can derive the lower bound of the total number of pulses in Algorithm 1.

N = Nd + Na

≥ NL,v1,v2 +
CS
T

=
S
T

 ln(ε/S)

pµµ ln
(

1− pL,v1,v2
1

) + C

 (7)

where ε represents the secure parameter. µ,v1, v2 are the average photon number of signal
states and two decoy states, respectively. p1 represents the proportion of single-photon
states in the signal states, and the lower bound is denoted as pL,v1,v2

1 [13]. The probabilities
of signal pulses chosen by the client are defined as pµ. S is the computational scale, and T
represents the transmittance of the quantum channel.

We assume that the qubit errors are independent. We can repeatedly use ancilla qubits
in the correction, so we do not consider the ancilla qubit consumption in the correction
process, as shown in Figure 1b. In the [[7, 1, 3]] code, we note that each encoded block can
correct one error. Therefore, before encoding, the error probability of each qubit is e (e < 1),
and after encoding, it changes to e2. In a quantum computation with computation scale
S, the error rate of each generated qubit based on non-coding RBSP [13] is e. If an error
qubit occurs in all generated qubits, the preparation process fails. Since the error rate of
each encoded qubit is e2 in the preparation of Algorithm 1, the successful probability of
encoded preparation is derived as (1− e2)S. We consider the non-coding RBSP protocol as
a repeated Bernoulli experiment, then the success probability of preparation is (1− e)S. By
repeating the process k times, the success probability can be calculated as 1− [1− (1− e)S]k.
In the scenario where the success probabilities are equal for both coded and non-coded
cases, specifically indicated by 1− [1− (1− e)S]k = (1− e2)S, the number of repetitions,
denoted as k, can be determined using the following derivation:

k = ln[1− (1− e2)S]/ ln[1− (1− e)S]. (8)

Hence, when the generated qubit error rate in the coding case is e2, the non-coding RBSP
needs to repeatedly send kNd pulses to achieve the same generated qubit error rate.
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In UBQC, we assume that Alice has a laser transmitter with frequency f , and Bob has
a full-fledged quantum computer. By deriving the preparation efficiency of UBQC, which
represents the rate at which qubits are generated per second, we can gain valuable insights
into the system’s performance. According to Equation (7), the upper bound of the efficiency
for the concatenation code can be estimated as

E = S · f /N

≤ S · f /
(

NL,v1,v2 + Na
)

.
(9)

In summary, our Algorithm 1 can prepare ε-blind quantum error-correcting codes to
correct qubit errors. Under the condition of the same generated qubit error rate, our ap-
proach can reduce the number of weak coherent pulses and improve preparation efficiency
compared with the non-coding RBSP protocol.

4. Simulation Results

An Intel(R) Core(TM) i7-6700HQ CPU, 12.0GB RAM, and Win 10 pro OS were utilized
to implement the simulations through MATLAB software. The transmittance T contains
the outside fiber, the inside fiber, and the detection efficiency between Alice and Bob, which
can be calculated as follows:

T = ts · ηs · 10−αL/10 (10)

where α represents the loss coefficient in decibels per kilometer (dB/km), L represents the
length of the fiber optic cable in kilometers (km), ts stands for the internal transmittance of
Bob’s optical components, and ηs represents the detector efficiency. The average photon
number of signal states is denoted as µ, and two decoy states are represented as v1, v2. The
signal state is chosen with probability pµ, and two decoy states are chosen with pv1 , pv2 .
The scale of quantum computation is S. The secure parameter is symbolized as ε. The error
rate per qubit is denoted as e. According to Figures 1 and 3, the required number of ancilla
qubits can be determined, i.e., C = 1774. The repetition frequency of the laser transmitter is
f = 1 MHZ. The relative parameters setting in our simulation are shown in Table 1 (refer
to the data in [11,17]).

Table 1. The simulation parameters for our protocol.

α tS ηS µ v1 v2 pµ pv1 pv2 S ε e

0.2 0.45 0.1 0.6 0.125 0 0.9 0.05 0.05 1000 10−10 0.01

In Figure 5, note that the number of pulses in the coding case is comparatively lower
than that in the non-coding RBSP [13] with the same qubit error rate and is closer to the
asymptotic scenario (with infinite data-size and no qubit error [13,17]). The error rate of the
generated qubits using Algorithm 1 is significantly lower than that of the non-coding RBSP.
In order to obtain the same error rate, the non-coding case is required to repeat k times.
Under the encoding condition of the same qubit error rate, the number of pulses required
in our Algorithm 1 is lower than that of the previous coding case [14]. On the one hand,
since our approach uses the cluster state instead of the brickwork state to realize remote
delegated preparation, it can reduce many SWAP gates when utilizing CONT gates between
non-adjacent qubits. On the other hand, our approach requires the CNOT gates with a
high execution probability to avoid using too many ancilla qubits in the preparation to
realize the operations of the fault-tolerant CNOT gates. Both aspects can greatly reduce the
consumption of ancilla qubits; thereby, our proposed Algorithm 1 can reduce the number
of pulses required.

In Figure 6, the preparation efficiency E in the coding case is less than the non-coding
RBSP with the same qubit error rate and is closer to the asymptotic case. Especially, the
efficiency of our proposed Algorithm 1 is better than the previous protocols [13,14] with
the same qubit error rate. This reason is that our approach can reduce the consumption of
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SWAP gates and ancilla qubits. With the increasing distance, the value of efficiency E grows
rapidly, implying the significant impact of channel loss and corresponding qubit error rate.
For long-distance communication, our protocol surpasses the non-coding case, primarily
due to the fact that the value of E is closer to the asymptotic scenario (with an infinitely
large data size and no qubit error [13,17]). These advantages underscore the enhanced
performance and efficacy of our protocol, making it a favorable choice for long-distance
blind quantum computing.
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Figure 5. The relationship between the total number of pulses N case and the communication distance
L with the same qubit error rate. The red line represents the quantum resource consumption of
Algorithm 1 with coding, the green line represents the simulation results of the previous coding
case [14], and the blue line depicts the results in the non-coding case [13]. The simulation results
depicted by the black line show the outcomes in the asymptotic scenario, characterized by an infinitely
large data size and near-perfect preparation of qubits.
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Figure 6. The relationship between preparation efficiency E and the communication distance L with
the same qubit error rate. The red line represents the preparation efficiency of Algorithm 1 with
coding, the green line represents the simulation results of the previous coding case [14], and the blue
line depicts the results in the non-coding case [13]. The simulation results represented by the black
line illustrate the outcomes in the asymptotic scenario, characterized by an infinitely large data size
and near-perfect preparation of qubits.
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Therefore, our protocol holds the potential to enhance not only the preparation effi-
ciency but also the conservation of quantum resources. Furthermore, the quantum error-
correcting codes can be used as logical qubits to facilitate subsequent fault-tolerant blind
quantum computation. The capability of our protocol ensures an optimized utilization
of quantum resources while maintaining the integrity and reliability of the preparation
in UBQC.

5. Conclusions

In this study, we propose an innovative protocol for remote quantum error-correcting
code preparation on cluster states, which can be used to correct error qubits in the prepa-
ration of UBQC. Based on the blindness of the original RBSP protocol, we demonstrate
that Algorithm 1 is also ε-blind. Alice only needs to send weak coherent pulses, without
quantum memory or extensive quantum computing capabilities. By incorporating quantum
error-correcting codes, our protocol can reduce the number of pulses when preparing the
quantum error-correcting codes with the same qubit error rate. Furthermore, these quan-
tum error-correcting codes prepared by our protocol are unknown logical qubits to Bob,
which can be used to build a new encoded brickwork state to realize the fault-tolerant blind
quantum computation. Our proposed preparation protocol provides a theoretical basis
for the practical application of blind quantum computation in the future. In our approach,
when CNOT gates are executed, they need to run with a high probability. This will limit
the generalized application of blind quantum computation. Hence, we will continue to
research the surface codes and the concatenated codes with high fault tolerance to better
balance the quantum resource consumption and the qubit error rate, so as to generalize the
preparation protocol of quantum error-correcting codes.
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