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Abstract: This paper proposes an event-triggered state estimation method for parameter-uncertain
systems with a binary encoding transmission scheme. Firstly, a binary encoding transmission scheme
is introduced between the state estimator and the system to improve the efficiency of network
communication. Secondly, an event-triggering mechanism (ETM) is designed to ensure the accuracy
of state estimation and reduce the computational burden of the state estimator. At the event-triggered
moments, considering the uncertainty of the system, the binary encoding transmission scheme, and
the ETM, a moving horizon estimator (MHER) is designed using the robust least squares optimization
method to obtain optimal state estimation. At the no-event-triggered moments, the state estimation
of the system is computed based on an open-loop state estimator (OLER). Furthermore, stability
analysis showed that the state estimation error of the proposed method is bounded. Finally, the
practical value of the proposed in this paper is confirmed through numerical simulation.

Keywords: moving horizon estimator (MHER); event-triggered mechanism (ETM); binary encoding
transmission scheme; min–max problem
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1. Introduction

In recent years, state estimation theory has been extensively investigated [1–3]. Among
the various state estimation methods, the moving horizon estimation (MHE) method
continues to attract an increasing amount of attention because it can explicitly deal with
constraints and limit the solutions of optimization problems to a fixed window length [4–6].
Using the moving horizon optimization principle, the authors of [7] designed a state
estimation method with observable estimators for linear discrete systems. For distributed
linear network systems, the authors of [8] proposed an MHE method with a consistent
arrival cost. It is evident that the MHE method can provide solutions for state estimation
problems in different systems.

Practical systems, such as robotic arms and unmanned aerial vehicles, are susceptible
to external disturbances, which result in the uncertainty in the system model. However,
state estimation for parameter-uncertain systems is challenging due to the uncertainty of
the corresponding model parameters [9–11]. A regularized, robust method for dealing
with uncertain data was proposed in [12], which effectively quantified the impact of
uncertain parameters. The authors of [13] investigated the state estimation problem with
respect to parameter-uncertain systems using min–max optimization theory. By designing
a distributed moving horizon optimization algorithm for uncertain systems, the authors
of [14] achieved good convergence of the state estimation error. The authors of [15] reduced
the complexity of the state estimation scheme for distributed uncertain systems using a
consistency algorithm.

At present, the time-triggered state estimation methods are mainly used for uncertain
discrete systems, bringing about issues of limited communication bandwidth and energy
shortages [16–20]. However, the event-triggered methods can effectively mitigate these
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issues [21–23]. For linear systems with an energy-harvesting sensor, the authors of [24]
designed a dynamic event-triggered state estimation method to compute the real-time
estimation of system states. The authors of [25] introduced a state estimation algorithm
for linear systems based on an ETM that ensured the smooth operation of a system when
affected by issues such as insufficient communication bandwidth. To meet the require-
ments of high-intensity state estimation for complex systems, two event-triggered state
estimation methods were proposed in [26] for centralized systems and distributed systems,
respectively. In general, there is usually a considerable distance between the systems
and the state estimators, so it is necessary to ensure the remote and efficient transmission
of information [27–29]. The authors of [30] proposed a state estimation method with un-
known inputs. It allowed for the accurate transmission of useful information by quantifying
the system measurements. Ref. [31] presented a binary encoding scheme for centralized
systems and distributed systems that was capable of effectively transmitting the output
information of sensors. Furthermore, in practical systems, system noise and random mea-
surement noise are usually energy-limited [32], and it is difficult to accurately compute
their variances, means, and other properties. However, a distinctive feature in this regard
is that the noise from a system and random measurements is usually bounded. Therefore,
in order to further progress research in this area, it is important to predefine the upper
bounds of system noise and random measurement noise [33,34].

In summary, uncertain systems in industrial production usually need to carry out
remote information transmission in a timely manner. At the same time, the uncertain
parameters lead to an obvious increase in the computational burden of state estimation,
which can severely disrupt the normal functioning of systems. Therefore, it is crucial to
propose a state estimation method for uncertain systems that not only achieves efficient
and reliable information transmission but also enables accurate state estimation in cases
involving limited computational resources.

Based on the above analysis, this paper proposes an event-triggered state estimation
method for parameter-uncertain systems with a binary encoding transmission scheme. The
main points of innovation are as follows:

(1) By introducing a binary encoding transmission scheme, the efficient transmission of
information between the state estimator and the system can be achieved.

(2) By designing an ETM, the state is estimated via the OLER when an event is not
triggered. When an event is triggered, the MHER developed in this study enables
optimal state estimation by solving a min–max problem using a robust least squares
optimization method.

(3) Through stability analysis, the state estimation error is bounded when the noise
remains bounded.

This paper consists of the following sections. Section 2 introduces the research subject
and a flowchart of the designed state estimation method and presents the binary encoding
transmission scheme and the ETM. In Section 3, the design process of the state estimator is
described. The stability analysis is discussed in Section 4. Subsequently, Section 5 provides
an example via a simulation. Finally, Section 6 provides a summary of the entire paper.

Given a symmetric positive definite matrix K, ‖·‖2
K is the square of the weighted

Euclidean norm, ‖b‖2
K = bTKb. ‖·‖ represents the spectral norm of the matrix, and I

represents the identity matrix. E(·) represents the expectation of the vector parameters, and
Rn stands for n-dimensional space. For the positive definite matrix K, λmax(K) represents
the maximum singular value of matrix K, and λmin(K) represents the minimum singular
value of matrix K. col{bt−N , . . . , bt} is denoted as bt

t−N .

2. Problem Description
2.1. System Model

Consider the following class of parameter-uncertain linear discrete systems:
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xt+1 = (A + δAt)xt + ωt,
yt = Cxt + υt,

(1)

where t ∈ N≥0, xt ∈ X ∈ Rnx represents the system state variable, yt ∈ Y ∈ Rny represents
the measurement output, ωt ∈ W ⊂ Rnx denotes system noise, and υt ∈ V ⊂ Rny

represents random measurement noise. A and C represent the matrices with appropriate
dimensions. Additionally, the uncertainty of the model parameter is represented by δAt,
which is a matrix of the same type as A.

Assumption 1. The matrix group (C, A) is observable in N steps.

Assumption 2. Set X, W, and V such that they satisfy the following conditions:
X = {xt : ‖xt‖ 6 ρx},
W = {ωt : ‖ωt‖ 6 ρω},
V = {υt : ‖υt‖ 6 ρυ},

where ρx, ρω, and ρυ represent the upper bounds of the state variable, system noise, and random
measurement noise, respectively.

To cope with the complex network communication environment and ensure the
efficient transmission of information, this paper introduces a binary encoding transmission
scheme operating between the sensor and the state estimator. To reduce the estimation
burden of the state estimator and ensure estimation accuracy, the ETM was designed. The
state estimation method proposed in this paper is illustrated in Figure 1.

Plant

Sensor

Binary encoding transmission strategy

OLER2MHER

State estimator

ETM

tx

ty

ty


ty


, ,ˆ ˆ,...,t N t t tx x

Figure 1. Event-triggered state estimation method.

2.2. Design of Binary Encoding Transmission Scheme

As shown in Figure 2, we designed a binary encoding transmission scheme for trans-
mitting a sensor’s measurement output to a state estimator.
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Figure 2. Binary encoding transmission scheme.

In the binary encoding transmission scheme, a constant scalar Mt within a certain
range [−U, U] is converted into a binary array with a length of Ω at time t. Then, 2Ω points
are obtained from the binary array, and χ = {l1, . . . , l2Ω} are used to represent these evenly
spaced points. There are a total of 2Ω − 1 equally long intervals, each with a length of
ςl = 2U

/
2Ω − 1. By utilizing a random truncation function, Mt is processed to obtain the

truncated output βt.
When li ≤ Mt ≤ li+1, i = 1, 2, . . . , 2Ω − 1, βt is generated via the following equation:{

P{βt(Mt, Ω) = li} = 1− pt,
P{βt(Mt, Ω) = li+1} = pt,

(2)

where 0 ≤ pt ≤ 1, pt = (Mt − li)
/

ςl . In addition, βt can be obtained based on

βt(Mt, Ω) = −U + ∑ Ω
i=1oi,t2i−1ςl . (3)

Therefore, Mt is encoded into a binary array: Ot = {o1,t, o2,t, . . . , oΩ,t}, oi,t ∈ {0, 1}.
To fulfill the requirement for transmitting the sensor measurement output, the de-

signed encoding scheme is expanded into vector form: Mt ∈ Rny , βt(Mt, Ω) ∈ Rny .
To quantify the measurement output distortion caused by the binary encoding trans-

mission scheme, the sensor measurement output recovered by the binary decoder is pro-
cessed as follows:

_y i = βt(yi, Ω), i = t− N, . . . , t, (4)

where E
{

_y i

}
= yi, N represents the window length of state estimation, and the truncation

error is denoted as εi =
_y i − yi. = represents the tight set that constrains the truncation

error
= = {εi ∈ Rny ,

∥∥εt
t−N

∥∥ =
∥∥∥_y t

t−N − y t
t−N

∥∥∥ ≤ v, v > 0}. (5)

Remark 1. Different from the communication scheme designed in [31], the scheme designed in this
paper only considers the error caused by the random truncation function in the communication
process and restricts the truncation error. In actual information transmission, the probability of
binary bit flipping in the binary coding transmission scheme is very low, and its error is negligible
compared with the truncation error, so this problem is not studied in this paper.

2.3. Design of ETM

The ETM is set on the estimator’s side, and its configuration is illustrated in Figure 3.

Event Scheduler Trigger

OLER1

, ,,...,t N t t tx x 

1, 1 1, 1ˆ ˆ,...,t N t t tx x    

tr
ty


ty


ty



Figure 3. Schematic diagram of the ETM.

At t > N, the ETM obtains the output value after its transmission via the binary en-
coding transmission scheme, and OLER1 provides the current state estimation value; then,
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the two values are both transmitted to the event scheduler, which performs a calculation
based on the following conditions:

rt =


0, if

∥∥∥∥_y t

t−N − ỹt,t
t−N,t

∥∥∥∥ 6 ∆,

1, if
∥∥∥∥_y t

t−N − ỹt,t
t−N,t

∥∥∥∥ > ∆,
(6)

where ∆ is the threshold to adjust the event trigger; rt = 1 and rt = 0 respectively indicate
whether the event has been triggered; ỹi,t satisfies

ỹi,t = Cx̃i,t, i = t− N + 1, . . . , t, (7)

x̃i,t represents the state estimation carried out by OLER1.

Based on the above analysis, at time t, the available information ȳt of the state estimator
is satisfied: {

ȳt = _y t, if rt = 1,
ȳt = ỹt,t, otherwise.

(8)

Then, the following equation is obtained∥∥∥∥_y t

t−N − ȳt
t−N

∥∥∥∥ 6 ∥∥∥∥_y t

t−N − ỹt,t
t−N,t

∥∥∥∥ 6 ∆. (9)

To quantify the error caused by the ETM, we introduce a bounded vector gi,
i = t− N, . . . , t, which satisfies the following relation:

∥∥gt
t−N

∥∥ =

∥∥∥∥_y t

t−N − ȳt
t−N

∥∥∥∥ 6 ∥∥∥∥_y t

t−N − ỹt,t
t−N,t

∥∥∥∥ 6 ∆. (10)

Thus, the relationship between the available information ȳt regarding the state estima-
tor and the system state variable xt can be expressed as follows:

ȳt = Cxt + υt + εt + gt. (11)

3. Design of State Estimator

The state estimator is composed of OLER2 and an MHER. When rt = 1, an MHER is
stimulated to obtain the optimal state estimation sequences within the current time window.
When rt = 0, OLER2 is used to obtain the open-loop state estimation sequences within the
current time window.

3.1. Design of OLER
^x i,t represents the estimate of xi,t. At t > N, the updated estimation sequences of state

by the OLER1 are as follows:

x̃i+1,t = Ax̃i,t, i = t− N, . . . , t, (12)

x̃t−N,t = A^x t−N−1,t−1, (13)

^x t−N−1,t−1 =

{
x̂∗t−N−1,t−1, if rt−1 = 1,
x̃t−N−1,t−1, if rt−1 = 0.

(14)

The OLER2 designed in the state estimator has the same structure as OLER1.
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Remark 2. OLER1 is designed to ensure that the ETM can operate properly when t > N. OLER2
is used to obtain the open-loop estimation of a state when an event has not been triggered, thus
ensuring that the MHER can use the information from a previous moment when an event is
triggered.

3.2. Design of MHER

At t > N, based on the MHE method, the cost function is as follows:

J = ‖x̂t−N,t− x̄t−N‖2
G +

t

∑
i=t−N

‖yi− Cx̂i,t‖2, (15)

where yi = ȳi− εi− gi , and G is the weighted positive-definite matrix. A vector mi = gi + εi
is introduced to represent the difference between the measurement output of the sensor
and the available information on the state estimator, which satisfies the following relation:

Ψ = {mi ∈ Rny ,
∥∥mt

t−N
∥∥ =

∥∥εt
t−N + gt

t−N
∥∥ 6 ∥∥εt

t−N
∥∥+ ∥∥gt

t−N
∥∥ 6 ϕ, ϕ > 0}, (16)

Therefore, Equation (8) can be written as

J = ‖x̂t−N,t− x̄t−N‖2
G +

t

∑
i=t−N

‖ȳi− Cx̂i,t −mi‖2. (17)

To account for the effect of the uncertain parameters δAi, i = t− N, . . . , t− 1 and the
output mismatch caused by mi, this paper utilizes the robust least squares optimization
method mentioned in [12,14]. Then, the following problems are introduced.

Problem 1. x̄t−N and ȳt
t−N are known, and the optimal estimate of the state x̂∗t−N,t satisfies

x̂∗t−N,t = arg min
x̂t−N,t

max
mi ,δAi

J(x̂t−N,t, mi, δAi), i = t− N, . . . , t, (18)

where x̂∗i,t = Ax̂∗i−1,t; the prior estimate of state xt−N is represented as

x̄t−N =

{
Ax̂∗t−N−1,t−1, if rt−1 = 1,
Ax̃t−N−1,t−1, if rt−1 = 0,

(19)

where t > N; and x̄0 represents the initial estimate of x0.
To facilitate the subsequent computations, define the following terms in the corresponding

manner:

Q =


C

CA
...

CAN

, Q̂t =


C

C(A + δAt−N)
...

C
N
∏
i=1

(A + δAt−i)

,

Θt =


0 · · · 0 0
C · · · 0 0
...

...
...

...

C
N−1
∏
i=1

(A + δAt−i) · · · C(A + δAt−i) C

.

Therefore, we can obtain the following:

x̂∗t−N,t = arg min
x̂t−N,t

max
mt

t−N ,δAt−N ,...δAt

[
‖x̂t−N,t − x̄t−N‖2

G +
∥∥ȳt

t−N − Q̂t x̂t−N,t −mt
t−N

∥∥]. (20)

By utilizing Equation (20) and Theorem 3.3 from [12], Problem 2 can be obtained.
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Problem 2. x̄t−N and ȳt
t−N are known. The optimal estimate of state x̂∗t−N,t satisfies

x̂∗t−N,t = arg min
x̂t−N,t

max
‖ ft‖6η1‖x̂t−N,t−x̄t−N,t‖+η2

J̃(x̂t−N,t, ft), (21)

where

J̃(x̂t−N,t, ft) = ‖x̂t−N,t − x̄t−N‖2
G +

∥∥∥∥(Q +
^

Qt) (x̂t−N,t − x̄t−N)−

(ȳt
t−N −Qx̄t−N − (

^

Qt x̄t−N + mt
t−N))

∥∥∥∥2
,

(22)

x̂∗i+1,t = Ax̂∗i,t, i = t− N, . . . , t− 1, (23)

where
^

Qt = Q̂t−Q,
∥∥∥∥^

Qt

∥∥∥∥ 6 η1,
∥∥∥∥^

Qt x̄t−N + mt
t−N

∥∥∥∥ 6 η2 and ‖ ft‖ 6 η1‖x̂t−N,t − x̄t−N‖+ η2,

while η1 and η2 are two scalar parameters.

Regarding Problem 2, considering the case where x̂∗t−N,t 6= 0 and introducing a scalar
parameter θt, (θt > 1), we can obtain the following expression:

x̂∗t−N,t =
(

Ĝt +
(
θ∗t
/

θ∗t − 1
)
QTQ

)−1((
θ∗t
/

θ∗t − 1
)
QT ȳt

t−N + Ĝt x̄t−N

)
, (24)

where θ∗t represents the solution that minimizes θt, whose expression is as follows:

θ∗t = arg min
θt>1

Λ(θt). (25)

The expression of Λ(θt) is as follows:

Λ(θt) =
∥∥(x̂t−N,t − x̄t−N,t)

∗(θt)
∥∥2

G + θtS2((x̂t−N,t − x̄t−N,t)
∗(θt))

+
∥∥Q(x̂t−N,t − x̄t−N,t)

∗(θt)− (ȳt
t−N −Qx̄t−N)

∥∥2
(θt/θt−1)I ,

(26)

where S(x̂t−N,t − x̄t−N,t) = η1‖(x̂t−N,t − x̄t−N,t)‖+ η2.

In Equation (24), Ĝt satisfies Ĝt = G + θ∗t η1(η1 + η2
/

α∗t (θ
∗
t ))I; here, α∗t (θt) is the

unique solution of the following equation:

α2
t = ((θt

/
θt − 1)QT(ȳt

t−N −Qx̄t−N))
T [G + (θt

/
θt − 1)QTQ

+θtη1(η1 + η2
/

αt)I]−2((θt
/

θt − 1)QT(ȳt
t−N −Qx̄t−N)),

(27)

where αt = ‖x̂t−N,t − x̄t−N,t‖.

Remark 3. Equation (24) is obtained by solving a min–max problem using the regularized robust
least squares optimization method with bounded uncertainties. The specific solution process is
detailed in [12].

Remark 4. As shown in Algorithm 1, the ETM only works when the time exceeds the length of
the state estimation window N, and the MHER is always used for state estimation when the time
is not exceeded. Unlike the methods in [25,26], this paper designs the ETM after remote network
transmission has occurred, so the step involving the transmission of the estimated results to the
plant side is omitted. The efficiency of state estimation is further improved.
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Algorithm 1: The state estimation algorithm designed in this paper.
Step 1: At t ≤ N, execute the following steps:
Step 1.1: Based on binary encoding transmission scheme, yt is transmitted to obtain _y t.
Step 1.2: Based on the design of the MHER, x̂∗0,t, . . . , x̂∗t,t is obtained.

Step 2: At t > N, execute the following steps:
Step 2.1: Based on binary encoding transmission scheme, yt is transmitted to obtain _y t.
Step 2.2: Based on Equations (12)–(14), OLER1 calculates the value of x̃t−N,t, . . . , x̃t,t.
Step 2.3: Based on Equation (6), the event scheduler calculates the value of rt.
If rt = 1, based on Equations (21)–(24), the MHER obtains x̂∗0,t, . . . , x̂∗t,t .
If rt = 0, based on Equations (12)–(14), OLER2 obtains x̃t−N,t, . . . , x̃t,t

Step 3: To update ȳt
t−N , let t = t + 1 and proceed to step 1.

4. Stability Analysis

The purpose of this section is to analyze whether the error of the designed event-
triggered state estimation method is bounded under different event-triggered situations.

Referring to the relevant knowledge of linear matrix inequalities in [14], define the
following as represented: 

γδa = max
δAi,i=t−N,...,t−1

‖δAi‖,

γ^
Q
= max

δAi,i=t−N,...,t−1

∥∥∥∥^

Qt

∥∥∥∥,

γΘ = max
δAi,i=t−N,...,t−1

‖Θt‖.

(28)

Based on the needs of stability analysis [35–37], define the following terms as they are
shown: 

σ− = λmin(Ĝt),

σ̄ = λmax(Ĝt),

q
−
= λmin(QTQ),

γa = ‖A‖,
γQ = ‖Q‖.

(29)

Theorem 1 is introduced to analyze whether the state estimation error is bounded
when OLER2 is used.

Theorem 1. Under the conditions that Assumptions 1 and 2 are satisfied, if rt = 0, the open-loop
estimated value x̃t−N,t of the state satisfies

‖xt−N − x̃t−N,t‖ 6 Υ, (30)

where Υ = 1
/√q(ϕ + γΘ

√
Nρω +

√
N + 1ρυ + γ^

Q
ρx).

Proof of Theorem 1. Based on Equations (1) and (7), we can determine that

yt
t−N − ỹt

t−N = (Q +
^

Qt)xt−N + Θtω
t−1
t−N + υt

t−N −Qx̃t−N,t, (31)

Then, we can obtain the following:

Q(xt−N − x̃t−N,t) = (yt
t−N − ỹt

t−N)− (Θtω
t−1
t−N + υt

t−N +
^

Qtxt−N). (32)
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If Assumptions 1 and 2 are satisfied, then q
−
> 0 holds; thus, it can be concluded that∥∥∥xt−N − x̃t−N,t

∥∥∥ 6 1√
q−

(∥∥yt
t−N − ỹt

t−N
∥∥+ ‖Θt‖

∥∥∥ω t−1
t−N

∥∥∥
+
∥∥υt

t−N
∥∥+ ∥∥∥∥^

Qt

∥∥∥∥∥∥xt−N
∥∥)

6 1√
q−

(
ϕ + γΘ

√
Nρω +

√
N + 1ρυ + γ^

Q
ρx

)
= Υ < +∞.

(33)

Thus, the proof of Theorem 1 is complete.

Theorem 1 proves that the state estimation error of the system is bounded when an
event is not triggered. To analyze whether the state estimation error of system is bounded
when an event is triggered, Theorem 2 is introduced.

Theorem 2. Under the conditions that Assumptions 1 and 2 are satisfied, if rt = 1, the optimal
estimate of the state obtained via the MHER satisfies∥∥xt−N − x̂∗t−N,t

∥∥ < Υt−N , (34)

where Υt−N is defined below.

Proof of Theorem 2. Define êt−N,t = xt−N − x̂∗t−N,t and Ξ(h) = Ĝt(h) + (h
/
(h− 1))QTQ,

h > 1. From Equation (11), we are left with

ȳt
t−N = Q̂xt−N + Θω t−1

t−N + υt
t−N + mt

t−N . (35)

Based on Equations (24) and (35), êt−N,t is expressed as follows:

êt−N,t = Ξ(θ∗t )
−1[Ĝt(xt−N − x̄t−N)− (θ∗t

/
θ∗t − 1)QT

(
^

Qxt−N + Θωt−1
t−N + υt

t−N + mt
t−N)].

(36)

At t > N, it can be derived from Equation (19) that

xt−N − x̄t−N =

{
(A + δAt−N−1)xt−N−1 − Ax̂∗t−N−1,t−1 + ωt−N−1, if rt−1 = 1,
(A + δAt−N−1)xt−N−1 − Ax̃t−N−1,t−1 + ωt−N−1, if rt−1 = 0.

(37)

Additionally, the state estimation error satisfies

et−N−1,t−1 =

{
xt−N−1 − x̂∗t−N−1,t−1, if rt−1 = 1,
xt−N−1 − x̃t−N−1,t−1, if rt−1= 0.

(38)

By utilizing Equations (36)–(38), we can obtain the following:

‖êt−N,t‖ 6
∥∥∥Ξ(θ∗t )

−1
∥∥∥∥∥Ĝt

∥∥‖A‖‖et−N−1,t−1‖+
∥∥∥Ξ(θ∗t )

−1
∥∥∥∥∥Ĝt

∥∥‖δAt−N−1‖‖xt−N−1‖

+
∥∥∥Ξ(θ∗t )

−1
∥∥∥∥∥Ĝt

∥∥‖ωt−N−1‖+ Π(θ∗t )
∥∥QT

∥∥∥∥∥^

Qt

∥∥∥‖xt−N‖

+ Π(θ∗t )
∥∥QT

∥∥‖Θt‖
∥∥∥ω t−1

t−N

∥∥∥+ Π(θ∗t )‖Q‖
∥∥υt

t−N
∥∥

+ Π(θ∗t )‖Q‖
∥∥mt

t−N
∥∥,

(39)
where Π(θ∗t ) = (θ∗t

/
θ∗t − 1)

∥∥∥Ξ(θ∗t )
−1
∥∥∥.
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When h > 1 ,
∥∥∥Ξ(h)−1

∥∥∥ = (1
/

λmin(Ξ(h))) is satisfied, and λmin(Ĝt) + (h
/

h− 1)λmin

(QTQ) 6 λmin(Ξ(h)) is also satisfied. Then, for θ∗t > 1, we can determine that

∥∥∥Ξ(θ∗t )
−1
∥∥∥∥∥Ĝt

∥∥ 6 (λmin
(
Ĝt
)
+

(
θ∗t

θ∗t − 1

)
λmin

(
QTQ

))−1
λmax(Ĝt). (40)

If Assumptions 1 and 2 are satisfied, based on λmin(QTQ) > 0 and Equations (28),
(29), and (40), we can conclude that

∥∥∥Ξ(θ∗t )
−1
∥∥∥∥∥Ĝt

∥∥‖A‖ <
λmax

(
Ĝt
)
‖A‖(

λmin
(
Ĝt
)
+ λmin(QTQ)

) =
σ̄γa

σ− + q
−

, (41)

∥∥∥Ξ(θ∗t )
−1
∥∥∥∥∥Ĝt

∥∥‖δAt−N−1‖‖xt−N−1‖ <
λmax

(
Ĝt
)
‖δAt−N−1‖‖xt−N−1‖(

λmin
(
Ĝt
)
+ λmin(QTQ)

) =
σ̄γδaρx

σ− + q
−

, (42)

∥∥∥Ξ(θ∗t )
−1
∥∥∥∥∥Ĝt

∥∥‖ωt−N−1‖ <
λmax

(
Ĝt
)
ρω(

λmin
(
Ĝt
)
+ λmin(QTQ)

) =
σ̄ρω

σ− + q
−

. (43)

The remaining terms in Equation (39) are processed as follows:

Π(θ∗t ) =
(

θ∗t
θ∗t −1

)∥∥∥Ξ(θ∗t )
−1
∥∥∥ 6 ( θ∗t

θ∗t −1

)
× 1(

λmin(Ĝt)+

(
θ∗t

θ∗t −1

)
λmin(QT Q)

)
< 1

λmin(QT Q)
= 1

q−
.

(44)

Based on Equations (28), (29), and (44), we can derive the following:

Π(θ∗t )
∥∥∥QT

∥∥∥∥∥∥∥^

Qt

∥∥∥∥‖xt−N‖ <
γQγ^

Q
ρx

q
−

, (45)

Π(θ∗t )
∥∥∥QT

∥∥∥‖Θ‖∥∥∥ω t−1
t−N

∥∥∥ <
γQγΘ(

√
Nρω)

q
−

, (46)

Π(θ∗t )‖Q‖
∥∥υt

t−N
∥∥ <

γQ(
√

N + 1ρυ)

q
−

, (47)

Π(θ∗t )‖Q‖
∥∥mt

t−N
∥∥ <

γQ ϕ

q
−

. (48)

If Assumptions 1 and 2 are satisfied, we can design a set of scalar parameters{
Υ0 = d1‖x0 − x̄0‖+ d2,
Υt−N = d3‖et−N−1,t−1‖+ d4 + d5.

(49)
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where 

d1 =
σ̄

σ− + q
−

,

d2 =

(γQ(γ^
Q
(
√

Nρω) + γΘρx + (
√

N + 1ρυ) + ϕ))

q
−

,

d3 =
σ̄γa

σ− + q
−

,

d4 =
σ̄(γδaρx + ρω)

σ− + q
−

,

d5 =

γQ(γ^
Q

ρx + γΘ(
√

Nρω) + (
√

N + 1ρυ) + ϕ)

q
−

.

(50)

By utilizing Equations (36), (41)–(43), and (45)–(50), we can transform Equation (39) into

‖êt−N,t‖ <
σ̄γa

σ− + q
−

‖et−N−1,t−1‖+
σ̄γδaρx

σ− + q
−

+
σ̄ρω

σ− + q
−

+

γQγ^
Q

ρx

q
−

+
γQγΘ

(√
Nρω

)
q
−

+
γQ
(√

N + 1ρυ

)
q
−

+
γQ ϕ

q
−

= d3‖et−N−1,t−1‖+ d4 + d5 = Υt−N .

(51)

Similarly, at t 6 N, ‖e0,t‖ satisfies

‖e0,t‖ = ‖x0 − x̂0,t‖ <
σ̄

σ− + q
−

‖x0 − x̄0‖+
γQγ^

Q

(√
Nρω

)
q
−

+
γQγΘρx

q
−

+
γQ
(√

N + 1ρυ

)
q
−

+
γQ ϕ

q
−

= d1‖x0 − x̄0‖+ d2 = Υ0.

(52)

In Equation (51), ‖et−N−1,t−1‖ needs to be discussed. If rt−1 = 0, ‖et−N−1,t−1‖ =

‖xt−N−1 − x̃t−N−1‖ ≤ Υ is obtained from Theorem 1, then
∥∥∥xt−N − x̂∗t−N,t

∥∥∥ = ‖êt−N,t‖ ≤

d3Υ + d4 + d5 can be obtained. If rt−1 = 1, ‖et−N−1,t−1‖ =
∥∥∥xt−N−1 − x̂∗t−N−1,t−1

∥∥∥ <

Υt−N−1 is obtained from Equations (38) and (51); then,
∥∥∥xt−N − x̂∗t−N,t

∥∥∥ = ‖êt−N,t‖ <

d3Υt−N−1 + d4 + d5 can be obtained. Ĝt is selected such that
∥∥∥Ξ(θ∗t )

−1
∥∥∥∥∥Ĝt

∥∥‖A‖ < 1 and∥∥∥Ξ(θ∗t )
−1
∥∥∥∥∥Ĝt

∥∥ 6= 1, (θ∗t > 1), then d3 = σ̄γa

/
(σ− + q

−
) 6 1 and d1 6= 1 can be obtained. At

the same time, it can be surmised from Ref. [14] and Equation (50) that d1, d2, d4, and d5
are bounded parameters. Therefore, we ultimately arrive at the fact that Υt−N is bounded.

Thus, the proof of Theorem 2 is complete.

Based on the Theorems 1 and 2 and Ref. [25], we can conclude that the state estimation
error et−N,t always satisfies ‖et−N,t‖ 6 max{Υt−N , Υ, Υss}, regardless of whether the event
at the previous time has been triggered. Υss represents the steady-state value of Υt−N ,
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Υss = d2 + d3
/

1− d1. Therefore, the stability of the event-triggered state estimation
method proposed in this paper has been proven.

5. Simulation Example

A simulation example is introduced in this section to demonstrate that the proposed
event state estimation method for uncertain systems with binary-coded communication
schemes is feasible.

Consider the uncertain systems described by Equation (1) and let A =

[
1.57 0.54
−0.27 0.91

]
,

C =
[

0.9 0
]
, δAt = diag[0.06× sin t 0.09× cos t], ρx = 2, ρω = 0.3, ρυ = 0.5, and

G = diag
[

1.5 1.5
]
. The state estimation window length N is set to 4, the event-triggered

threshold ∆ is set to 0.21, and the simulation times are set to 150.
The event-triggered situations of the proposed method with ∆ = 0.21 are shown in

Figure 4. As we can see from Figure 4, based on the ETM, the MHER and OLER2 in the
state estimator operate alternately and efficiently, thus indicating that the efficiency of state
estimation has been improved.

Figure 4. Event-triggered situations at ∆ = 0.21.

To demonstrate the good performance of the proposed method (EHME method), this
paper compares the EMHE method with the H∞ Extended Kalman Filter method (HEKF
method) proposed in [9] and the robust state estimation method (RBSE method) proposed
in [3]. The state estimation results output by the EHME method, the HEKF method, and
the RBSE method are shown in Figures 5 and 6, while the state estimation error of the three
methods is presented in Figure 7. Figures 5–7 indicate that the EMHE method has a better
state-tracking trajectory and a smaller state estimation error compared to the HEKF method
and the RBSE method. Therefore, we can conclude that although the proposed method
introduces the ETM and the binary encoding transmission scheme, it can still maintain
good estimation performance.
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Figure 5. Estimation situations of the state x1.

Figure 6. Estimation situations of the state x2.

In order to further validate the practical application value of the method proposed in
this paper, we calculated the times of the EMHE method, the method without an ETM, the
HEKF method, and the RBSE method under the same simulation times and summarized
them in Table 1. Since the method without an ETM always uses the MHER with a relatively
complex algorithm to estimate the state, its calculation time is the longest. At the same
time, since both the HEKF method and the RBSE method are designed on the basis of the
Extended Kalman Filter method, the corresponding state estimation also takes a long time.
However, the EMHE method reduces the use of the MHER and significantly shortens the
computational time by introducing the an ETM. When the simulation times are set to 150,
compared with the method without an ETM, the HEKF method, and the RBSE method, the
EMHE method reduced the required time by 63.05% , 45.36%, and 51.69%, respectively.
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Figure 7. State estimation error of the three methods.

Table 1. Calculation time(s) of the four methods at different simulation times j.

j 50 100 150

EMHE method 0.3572 1.0386 2.1563
The method without an ETM 1.4847 3.3549 5.8354

HEKF method 1.2131 2.5514 3.9462
RBSE method 1.3524 2.8647 4.4635

According to the above analysis, we can conclude that the method proposed in this
paper saves network communication resources, reduces the computational burden of
the estimator, ensures the stability of state estimation, and improves the state estimation
performance of uncertain systems.

6. Conclusions

This paper proposes an event-triggered state estimation method for uncertain systems
with a binary encoding transmission scheme. A binary encoding transmission scheme
is introduced to ensure the remote and efficient transmission of information between a
state estimator and a system. An ETM is incorporated to save network bandwidth and
improve computational efficiency. an MHER is designed for optimal state estimation using
the robust least squares optimization approach when an event is triggered, and the simpler
OLER is used for state estimation when an event is not triggered. Stability analysis proved
that the state estimation error is bounded. Finally, the proposed method’s improvement in
addressing estimation problems was validated through a simulation example.

Future work will investigate the design of an adaptive event-triggered mechanism
for uncertain linear systems and distributed uncertain systems to further optimize state
estimation methods.
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