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Abstract: In this paper, we propose a new fifth-order family of derivative-free iterative methods
for solving nonlinear equations. Numerous iterative schemes found in the existing literature either
exhibit divergence or fail to work when the function derivative is zero. However, the proposed family
of methods successfully works even in such scenarios. We extended this idea to memory-based
iterative methods by utilizing self-accelerating parameters derived from the current and previous
approximations. As a result, we increased the convergence order from five to ten without requiring
additional function evaluations. Analytical proofs of the proposed family of derivative-free methods,
both with and without memory, are provided. Furthermore, numerical experimentation on diverse
problems reveals the effectiveness and good performance of the proposed methods when compared
with well-known existing methods.
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1. Introduction

Developing iterative methods to solve nonlinear equations poses an interesting and sig-
nificant challenge in the fields of applied mathematics and engineering. In practice, analytical
techniques often fall short in determining the roots of nonlinear problems. As a result, re-
searchers have developed a variety of iterative methods to solve nonlinear equations.

There are a variety of numerical strategies that can be applied and were recently up-
dated, i.e., Adomian decomposition [1], Aitken extrapolation [2], bisection [3], Chebyshev–
Halley [4], Chun–Neta [5], collocation [6], Galerkin [7], homotopy perturbation [8] and
Jarratt [9] methods, Nash–Moser iteration [10], Newton–Raphson [11], Osada [12] and Os-
trowski [13] methods, Picard iteration [14], quadrature formulas [15,16], super-Halley [17]
and Thukral [18] and Traub–Steffensen [19] methods.

Multi-point iterations surpass the limitations of one-point algorithms, demonstrating
superior convergence rates and computational efficiency, thereby emerging as the most powerful
technique for root finding. The development of iterative methods for finding the roots of
nonlinear equations holds a crucial position in the field of numerical analysis, generating
considerable interest and significance. The Newton–Raphson method stands as a widely
renowned iterative approach that operates without memory, defined as follows [20]:

Mathematics 2023, 11, 4512. https://doi.org/10.3390/math11214512 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11214512
https://doi.org/10.3390/math11214512
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3501-8457
https://orcid.org/0000-0002-6860-5220
https://orcid.org/0009-0009-4555-2160
https://orcid.org/0000-0001-7398-570X
https://orcid.org/0000-0001-8277-1113
https://orcid.org/0000-0001-8524-743X
https://doi.org/10.3390/math11214512
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11214512?type=check_update&version=1


Mathematics 2023, 11, 4512 2 of 13

sn+1 = sn −
Θ(sn)

Θ′(sn)
, n = 0, 1, 2, . . . (1)

where Θ is the function and Θ′ is its derivative.
The Newton–Raphson method requires the evaluation of two functions in each itera-

tion and exhibits a second-order convergence rate. It aligns with Kung–Traub’s hypothe-
sis [21], which asserts that a memory-less multi-point method can achieve a maximum order
of 2γ−1 by performing γ function evaluations per iteration. The Chebyshev–Halley [21]
and Ostrowski [22] methods are two iterative techniques devised for solving nonlinear
equations of third and fourth orders, respectively. Researchers commonly strive to enhance
the convergence rate of iterative methods. However, as the convergence rate improves, the
associated increase in the number of required function evaluations may lead to a reduc-
tion in the efficiency index of these methods. The efficiency index of an iterative method
quantifies its performance, as defined by [21,22]:

E = ρ1/γ (2)

where ρ symbolizes the convergence rate of the iterative method and γ denotes the number
of function and derivative evaluations performed per iteration. Recent advancements
in the field have witnessed remarkable contributions to the development of iterative
techniques for solving nonlinear equations. Kumar et al. [23] introduced a derivative-
free fifth-order method, while Choubey et al. [24] presented an eighth-order approach
that removes the derivatives by employing techniques such as divided differences and
weight functions. Sharma et al. [25] proposed an optimal fourth-order iterative method
that incorporates derivatives, and Panday et al. [26] formulated both fourth and eighth-
order optimal iterative approaches. Singh and Singh [27] devised an optimal eighth-order
method in 2021, while Solaiman and Hashim [28] introduced an optimal eighth-order
approach employing the modified Halley’s method. Chanu and Panday [29] contributed a
non-optimal tenth-order method for solving nonlinear equations. The methods developed
in [22,30,31] required evaluation of the first and second-order derivatives, which is a
cumbersome task. Also, when the derivative value is zero, the application of these methods
is not possible. The exploration of nonlinear equation solving has also led to the formulation
of derivative-free methods with memory, as showcased by B. Neta [32], who utilized Traub’s
method and Newton’s method. Furthermore, Chanu et al. [33] proposed optimal memory-
less techniques of fourth and eighth orders, extending them to incorporate memory. In
the pursuit of resolving nonlinear equations with multiple roots, Thangkhenpau et al. [34]
introduced a novel scheme that offers both with- and without-memory-based variants.

In this research article, we present a novel fifth-order derivative-free iterative method
for solving simple roots of nonlinear equations. Moreover, it excels in scenarios where
the derivative is zero at initial or successive iterative approximations. The method ex-
hibits an efficiency index of 51/4 = 1.4953. Building upon this foundation, we extend
the technique to a tenth-order method with memory by incorporating self-accelerating
parameters without requiring any additional function evaluation. The efficiency index
of the tenth-order method with memory is 101/4 = 1.7783. The subsequent sections of
this document are meticulously organized to provide comprehensive insights. Section 2
delves into the utilization of divided difference and weight function techniques in the
formulation of the methods, while also analyzing the convergence rates for both with- and
without-memory approaches. Section 3 presents a thorough examination of numerical
tests, meticulously comparing the proposed method with other well-established techniques.
Finally, Section 4 concludes the study, offering a comprehensive summary of the findings
and their implications.
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2. Construction of New Iterative Schemes and Their Convergence Analysis

In this section, we have developed novel iterative techniques of both fifth and tenth
orders, which are specifically designed for solving nonlinear equations without the need
for derivatives. The new three-step fifth-order iterative without-memory method is out-
lined below:

yn = sn −
Θ(sn)

Θ[sn, wn] + αΘ(wn)
, wn = sn + βΘ(sn), α, β ∈ R,

zn = yn −
(

1 +
Θ(yn)

Θ(sn)− 2Θ(yn)

)(
Θ(yn)

Θ[sn, wn]

)
,

sn+1 = zn −
Θ(zn)

Θ[sn, wn]
(P(tn) + K(un, vn)), (3)

where Θ[sn, wn] =
Θ(sn)−Θ(wn)

sn−wn
and P : C→C is an analytic function in the neighbourhood

of 0 with tn = Θ(zn)
Θ(yn)

and K : C×C→C is another analytic function in the neighbourhood

of (0, 0) with un = Θ(yn)
Θ(sn)

and vn = Θ(zn)
Θ(sn)

. This new family (3) requires four function
evaluations at each iteration.

Theorem 1. Suppose that Θ : D ⊆ C→ C is an analytic function that is sufficiently differentiable.
Let ξ ∈ D be a simple root of Θ, and x0 be a value that is sufficiently near to ξ. If P(tn) and
K(un, vn) satisfy the conditions outlined below, the iterative process defined in (3) is of fifth-order
convergence. The conditions are as follows: P(0) = 0, P′(0) = 1, P′′(0) = 2, P′′′(0) = 6,
P(4)(0) = 24, P(5)(0) = 120, K(0, 0) = 1, K(1,0)(0, 0) = 1, and K(0,1)(0, 0) = 2. Furthermore,
the iterative process (3) fulfills the error equation below:

en+1 = −α(1 + Θ′(ξ)β)3(α + Θ′(ξ)αβ− c2)(α + c2)
2e5

n + O(e6
n) (4)

where cj =
Θ(j)(ξ)
j!Θ′(ξ) , j = 2, 3, 4, . . .

Proof of Theorem 1. Let ξ be the simple root of Θ(s) = 0 and let en = sn − ξ be the error
of nth iteration. Using Taylor expansion, we obtain

Θ(sn) = Θ′(ξ)
[
en + c2e2

n + c3e3
n + c4e4

n + c5e5
n + O(e6

n)
]

(5)

where en = sn − ξ and cj =
Θ(j)(ξ)
j!Θ′(ξ) , j = 2, 3, 4, . . .

Now, using Equation (5) in the first step of method given by (3), we have

wn − ξ = (1 + Θ′(ξ)β)en + Θ′(ξ)βc2e2
n + Θ′(ξ)βc2e3

n + Θ′(ξ)βc2e4
n + Θ′(ξ)βc2e5

n + O
(
e6

n
)

(6)

and

Θ(wn) =Θ′(ξ)(Θ′(ξ)β + 1)en + Θ′(ξ)c2(Θ′(ξ)β(Θ′(ξ)β + 3) + 1)e2
n

+ Θ′(ξ)
(
c3(Θ′(ξ)β + 1)3 + 2Θ′(ξ)βc2

2(Θ
′(ξ)β + 1) + Θ′(ξ)βc3

)
e3

n

+ Θ′(ξ)
(
Θ′(ξ)β

(
Θ′(ξ)βc3

2 + c3c2(Θ′(ξ)β + 1)(3Θ′(ξ)β + 5)

+ c4(Θ′(ξ)β(Θ′(ξ)β(Θ′(ξ)β + 4) + 6) + 5)
)
+ c4

)
e4

n + Θ′(ξ)
(
c5(Θ′(ξ)β + 1)5

+ 4Θ′(ξ)βc2c4(Θ′(ξ)β + 1)3 + 3Θ′(ξ)βc3(Θ′(ξ)β + 1)
(
Θ′(ξ)β

(
c2

2 + c3
)
+ c3

)
+ 2Θ′(ξ)βc2

(
Θ′(ξ)β

(
c2c3 + c4

)
+ c4

)
+ Θ′(ξ)βc5

)
e5

n + O
(
e6

n
)

(7)
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Now, using Equations (5)–(7), the divided difference Θ[sn, wn] can be expressed as:

Θ[sn, wn] =Θ′(ξ) + Θ′(ξ)c2(Θ′(ξ)β + 2)en + Θ′(ξ)
(
Θ′(ξ)βc2

2 + c3(Θ′(ξ)β(Θ′(ξ)β + 3) + 3)
)
e2

n

+ Θ′(ξ)(Θ′(ξ)β + 2)
(
2Θ′(ξ)βc2c3 + c4(Θ′(ξ)β(Θ′(ξ)β + 2) + 2)

)
e3

n

+ Θ′(ξ)
(
Θ′(ξ)β

(
Θ′(ξ)βc3c2

2 + c4c2(Θ′(ξ)β(3Θ′(ξ)β + 8) + 7) + c2
3(2Θ′(ξ)β + 3)

+ c5(Θ′(ξ)β(Θ′(ξ)β(Θ′(ξ)β + 5) + 10) + 10)
)
+ 5c5

)
e4

n

+ Θ′(ξ)
(
Θ′(ξ)β

(
Θ′(ξ)βc4c2

2(3Θ′(ξ)β + 4) + c2
(
2Θ′(ξ)βc2

3+

c5(Θ′(ξ)β(Θ′(ξ)β(4Θ′(ξ)β + 15) + 20) + 11)
)

+ c3c4(Θ′(ξ)β(3Θ′(ξ)β + 10) + 9)+

c6(Θ′(ξ)β(Θ′(ξ)β(Θ′(ξ)β(Θ′(ξ)β + 6) + 15) + 20) + 15)
)

+ 6c6
)
e5

n + O
(
e6

n
)

(8)

By using Equations (5)–(8) in the second step of the method (3), we obtain

yn − ξ =
(
1 + Θ′(ξ)β

)(
α + c2

)
e2

n +
(
−
(
α + Θ′(ξ)αβ

)2 −
(
2 + Θ′(ξ)β

(
2 + Θ′(ξ)β

))
c2
(
α + c2

)
+ 2c3 + Θ′(ξ)β

(
3 + Θ′(ξ)β

)
c3
)
e3

n + . . . . . . + O
(
e6

n
)

(9)

and

Θ(yn) =Θ′(ξ)
(
1 + Θ′(ξ)β

)(
α + c2

)
e2

n + Θ′(ξ)
(
−
(
α + Θ′(ξ)αβ

)2

−
(
2 + Θ′(ξ)β

(
2 + Θ′(ξ)β

))
c2
(
α + c2

)
+ 2c3 + Θ′(ξ)β

(
3 + Θ′(ξ)β

)
c3
)
e3

n + . . . . . . + O
(
e6

n
)

(10)

Now, after using Equations (5) to (9), we obtain the third step zn and Θ(zn) as

zn − ξ =−
(
1 + Θ′(ξ)β

)(
α + Θ′(ξ)αβ− c2

)(
α + c2

)
e3

n + . . . . . . + O
(
e6

n
)

(11)

Θ(zn) =−Θ′(ξ)
(
1 + Θ′(ξ)β

)(
α + Θ′(ξ)αβ− c2

)(
α + c2

)
e3

n + . . . . . . + O
(
e6

n
)

(12)

Now, we obtain tn = Θ(zn)
Θ(yn)

, un =
Θ(yn)
Θ(sn)

and vn = Θ(zn)
Θ(sn)

by using Equations (5), (10) and (12);
thus, we have

tn =
(
− α
(
1 + Θ′(ξ)β

)
+ c2

)
en +

(
−
(
α + Θ′(ξ)αβ

)2 −Θ′(ξ)αβ
(
3 + 2Θ′(ξ)β

)
c2

−
(
2 + Θ′(ξ)β

(
2 + Θ′(ξ)β

))
c2

2 + c3
)
e2

n + . . . . . . + O
(
e6

n
)

(13)

un =
(
1 + Θ′(ξ)β

)(
α + c2

)
en +

(
−
(
α + Θ′(ξ)αβ

)2 −
(
3 + Θ′(ξ)β

(
3 + Θ′(ξ)β

))
c2
(
α + c2

)
+ 2c3 + Θ′(ξ)β

(
3 + Θ′(ξ)β

)
c3
)
e2

n + . . . . . . + O
(
e6

n
)

(14)

and

vn =−
(
1 + Θ′(ξ)β

)(
α + Θ′(ξ)αβ− c2

)(
α + c2

)
e2

n + . . . . . . + O
(
e6

n
)

(15)

Now, by using Equations (5)–(15), we obtain the fourth step as

sn+1 − ξ = en+1 = (1 + Θ′(ξ)β)P(0)
(
α + Θ′(ξ)αβ− c2

)(
α + c2

)
e3

n + γ4e4
n + γ5e5

n + O
(
e6

n
)

(16)

where
γ4 =

(
c2(Θ′(ξ)β + 1)

(
α2(Θ′(ξ)β − 1)

(
Θ′(ξ)β − (Θ′(ξ)β + 1)P′(0) + Θ′(ξ)βP(0) + 2P(0) + 1

)
−

c3P(0)(Θ′(ξ)β + 3)
)
+ αc2

2
(
Θ′(ξ)β

(
Θ′(ξ)β

(
P(0)(Θ′(ξ)β + 3) + 2

(
P′(0) − 1

))
+ 3

(
P′(0) + P(0) −

1
))

+ P′(0) + 2P(0)− 1
)
+ α(Θ′(ξ)β+ 1)

(
c3P(0)(Θ′(ξ)β(Θ′(ξ)β+ 3) + 1)−

(
P′(0)− 1

)
(α+ αΘ′(ξ)

β)2)+ c3
2
(
Θ′(ξ)β

(
P(0)(Θ′(ξ)β(Θ′(ξ)β + 5) + 9)− P′(0) + 1

)
− P′(0) + 6P(0) + 1

))
and
γ5 = 1

2
(
c2

2
(
− 2P′(0)

(
α2Θ′(ξ)β(Θ′(ξ)β(Θ′(ξ)β(4Θ′(ξ)β+ 11)+ 11)+ 9)+ c3(Θ′(ξ)β+ 1)(Θ′(ξ)β+

4)
)
+ 2c3(Θ′(ξ)β(Θ′(ξ)β + P(0)(Θ′(ξ)β(Θ′(ξ)β(3Θ′(ξ)β + 19) + 45) + 53) + 5) + 27P(0) + 4) +

2α2(Θ′(ξ)β(Θ′(ξ)β(Θ′(ξ)β(3Θ′(ξ)β(P(0)+ 1)+ 4(P(0)+ 3))− 7P(0)+ 17)− 10P(0)+ 14)− 5P′(0)
− P(0) + 6

)
− 3Θ′(ξ)βP′′(0)(α + αΘ′(ξ)β)2)+ c2

(
(Θ′(ξ)β + 1)

(
α3(Θ′(ξ)β + 1)

(
2Θ′(ξ)β

(
Θ′(ξ)β−
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(4Θ′(ξ)β + 5)P′(0) + 3Θ′(ξ)βP(0) + 3P(0) + 3
)
+ (Θ′(ξ)β− 2)(Θ′(ξ)β + 1)P′′(0) + 4P′(0)− 2

)
−

2c4P(0)(Θ′(ξ)β(Θ′(ξ)β + 3) + 4)
)
+ 4αc3

(
Θ′(ξ)β(Θ′(ξ)β + 3)

(
Θ′(ξ)β

(
P(0)(Θ′(ξ)β + 2) + P′(0)−

1
)
+ 2P′(0)+ P(0)− 2

)
+ 2P′(0)+ P(0)− 2

))
+(Θ′(ξ)β+ 1)

(
2α2c3

(
Θ′(ξ)β

(
Θ′(ξ)β

(
Θ′(ξ)β− (Θ′(ξ)

β + 4)P′(0) + Θ′(ξ)βP(0) + 2P(0) + 4
)
− 3P′(0)− P(0) + 3

)
− 4P(0)

)
+ 2αc4P(0)(Θ′(ξ)β(Θ′(ξ)β

(Θ′(ξ)β + 4) + 6) + 2)− 2c2
3P(0)(Θ′(ξ)β + 2) + α4(Θ′(ξ)β + 1)3(− 2P′(0) + P′′(0) + 2P(0)− 2

))
+

αc3
2
(
2Θ′(ξ)β

(
Θ′(ξ)β

(
Θ′(ξ)β

(
2Θ′(ξ)β− 2(Θ′(ξ)β + 3)P′(0)− 10P(0) + 7

)
− 10P′(0)− 33P(0) + 10

)
− 11P′(0)− 37P(0) + 9

)
+ (Θ′(ξ)β + 1)(3Θ′(ξ)β + 2)P′′(0)− 8P′(0)− 32P(0) + 6

)
−
(
c4

2
(
Θ′(ξ)β

(
2

Θ′(ξ)β
(
Θ′(ξ)β

(
P(0)(2Θ′(ξ)β+ 15)− 2P′(0)+ 2

)
− 8P′(0)+ 39P(0)+ 8

)
− 26P′(0)+ P′′(0)+ 96P(0)

+ 24
)
− 16P′(0) + P′′(0) + 50P(0) + 14

)))
.

After substituting the values P(0) = 0, P′(0) = 1 and P′′(0) = 2, we have derived the error
equation below:

sn+1 − ξ = en+1 = −α(1 + Θ′(ξ)β)3(α + Θ′(ξ)αβ− c2)(α + c2)
2e5

n + O(e6
n) (17)

By examining Equation (17), we can infer that the method described by Equation (3) exhibits a
fifth-order convergence. This conclusion serves as the completion of the proof.

Based on the conditions for P(tn) and K(un, vn), as presented in Theorem 1 we are adopting the
particular forms for the weight functions: P(tn) = t5

n + t4
n + t3

n + t2
n + tn and K(un, vn) = un + 2vn + 1

within the newly proposed method described by Equation (3).

Parametric Family of Three-Point with-Memory Method and its Convergence Analysis

We shall now proceed to enhance the method described by Equation (3) by incorpo-
rating the with-memory feature, introducing two additional parameters. Upon analyzing
Equation (4), it becomes evident that the convergence order of the method (3) reaches ten
when α = −c2 and β = − 1

Θ′(ξ) . By selecting α = −c2 = − Θ′′(ξ)
2Θ′(ξ) and β = − 1

Θ′(ξ) , we can
transform the error Equation (4) into the following form:

en+1 = c3
2(5c2

2 − c3)c2
3e10

n + O(e11
n ) (18)

To derive the method with memory, we introduce the parameters α = αn and β = βn,

which evolve as the iteration progresses according to the formulas αn = − Θ′′(ξ)
2Θ′(ξ)

and

βn = − 1
Θ′(ξ)

. In the method (3), we make use of the following approximation:

αn = − Θ′′(ξ)

2Θ′(ξ)
≈ −

N′′5 (wn)

2N′5(wn)

βn = − 1

Θ′(ξ)
≈ − 1

N′4(sn)
(19)

Let us define Newton’s interpolating polynomials of fourth and fifth degrees as follows:
N4(u) = N4(u; sn, zn−1, yn−1, xn−1, wn−1) and N5(u) = N5(u; wn, sn, zn−1, yn−1, xn−1,

wn−1)
Now, we can express the iterative method with memory as follows:

wn = sn + βnΘ(sn),

yn = sn −
Θ(sn)

Θ[sn, wn] + αnΘ(wn)
,

zn = yn −
(

1 +
Θ(yn)

Θ(sn)− 2Θ(yn)

)(
Θ(yn)

Θ[sn, wn]

)
,

sn+1 = zn −
Θ(zn)

Θ[sn, wn]
(P(tn) + K(un, vn)). (20)
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Remark 1. It is important to note that the approach of iteratively calculating independent pa-
rameters, as employed in this method, is commonly known as a self-accelerating method. Prior to
initiating the iterative process, it is crucial to determine the initial values of α0 and β0, as highlighted
in [35].

Our objective is to analyze the convergence properties of the method with memory.
Specifically, we are interested in investigating the behavior of the sequence sn as it converges
to the root ξ of Θ, as well as determining the rate at which this convergence occurs. To
quantify the convergence rate, we define the difference between sn and ξ as en = sn − ξ. If
the sequence sn approaches the root ξ with an order of p, we can express it as en+1 ∼ ep

n.
In order to establish the convergence order of the method (20), we can make use of the
following lemma, which has been presented in [36].

Lemma 1. If αn = − N′′5 (wn)

2N′5(wn)
and βn = − 1

N′4(sn)
, n = 1, 2, 3, . . . the estimates 1 + Θ′(ξ)βn ∼

en−1,zen−1,yen−1,wen−1 αn + c2 ∼ en−1,zen−1,yen−1,wen−1 hold.

Let us consider the following theorem.

Theorem 2. If the initial estimate s0 is in close vicinity to the unique root ξ of the real and suitably
smooth function Θ(s) = 0, method (20) will possess a convergence rate of at least 10.8151.

Proof of Theorem 2. Let us assume that the iterative process described in (20) produces
a sequence of estimations denoted as sn. If this sequence converges to the root ξ of the
function Θ with a convergence order of q, we can deduce the following:

en+1 ∼ eq
n, where en = sn − ξ (21)

en+1 ∼ (eq
n−1)

q = eq2

n−1 (22)

Let us assume that the iterative sequences wn, yn and zn have the order q1, q2 and q3,
respectively. Then, Equations (21) and (22) give the following:

en,w ∼ (eq1
n ) = eqq1

n−1 (23)

en,y ∼ (eq2
n ) = eqq2

n−1 (24)

en,z ∼ (eq3
n ) = eqq3

n−1 (25)

By Theorem 1, we can write

en,w ∼ (1 + Θ′(ξ)β)en (26)

en,y ∼
(
1 + Θ′(ξ)β

)(
α + c2

)
e2

n (27)

en,z ∼ −
(
1 + Θ′(ξ)β

)(
α + Θ′(ξ)αβ− c2

)(
α + c2

)
e3

n (28)

en+1 ∼ −α(1 + Θ′(ξ)β)3(α + Θ′(ξ)αβ− c2)(α + c2)
2e5

n (29)

Using Lemma 1, we obtain the following:

en,w ∼ (1 + Θ′(ξ)β)en ∼ (en−1,zen−1,yen−1,wen−1)en ∼ eq+q1+q2+q3+1
n−1 (30)
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en,y ∼
(
1 + Θ′(ξ)β

)(
α + c2

)
e2

n ∼ (en−1,zen−1,yen−1,wen−1)
2e2

n ∼ e2q+2q1+2q2+2q3+2
n−1 (31)

en,z ∼ −
(
1 + Θ′(ξ)β

)(
α + Θ′(ξ)αβ− c2

)(
α + c2

)
e3

n ∼ (en−1,zen−1,yen−1,wen−1)
3e3

n

∼ e3q+3q1+3q2+3q3+3
n−1 (32)

en+1 ∼ −α(1 + Θ′(ξ)β)3(α + Θ′(ξ)αβ− c2)(α + c2)
2e5

n ∼ (en−1,zen−1,yen−1,wen−1)
4e5

n

∼ e5q+4q1+4q2+4q3+4
n−1 (33)

Comparing the power of en−1 of Equations (23)–(30), (24)–(31), (25)–(32) and (22)–(33),
we obtain the following system of equations:

qq1 − q− q1 − q2 − q3 − 1 = 0

qq2 − 2q− 2q1 − 2q2 − 2q3 − 2 = 0

qq3 − 3q− 3q1 − 3q2 − 3q3 − 3 = 0

q2 − 5q− 4q1 − 4q2 − 4q3 − 4 = 0 (34)

After, solving the above system of equations, we obtain q1 = 2.4538, q2 = 4.9075,
q3 = 7.3613 and q = 10.8151. Thus, the proof is complete.

3. Numerical Discussion

In this section, our objective is to elucidate the efficacy of recently introduced iterative
families of methods through their application to various nonlinear equations. We will
compare the results with some well-known existing methods available in the literature. In
particular, the following iterative methods, in addition to Newton’s method, are considered
for comparison.

The well-known fourth-order multipoint without-memory Ostrowski’s method (OM)
is given as [22]:

yn = sn −
Θ(sn)

Θ′(sn)
,

zn = yn +
Θ(sn)

Θ(sn)− 2Θ(yn)

Θ(yn)

Θ′(sn)
. (35)

In 2020, Nouri et al. [30] developed the following fifth-order method (NRTM):

yn = sn −
Θ(sn)

Θ′(sn)
,

zn = sn +
Θ(sn)

Θ′(sn)
,

sn+1 = sn −
(sn − yn)Θ(sn)2(Θ(yn) + Θ(zn))

Θ(sn)2(Θ(zn)−Θ(yn))− 4Θ(sn)Θ(yn)2 − 6Θ(yn)3 . (36)
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The fifth-order method (GM) developed by Grau et al. [31]:

yn = sn −
Θ(sn)

Θ′(sn)
,

zn = sn −
(

1 +
1
2

Θ′′(sn)Θ(sn)

Θ′(sn)2

)
Θ(sn)

Θ′(sn)
,

sn+1 = sn −
(

1 +
Θ′′(sn)(Θ(sn) + Θ(zn))

2Θ′(sn)2

)
Θ(sn) + Θ(zn)

Θ′(sn)
. (37)

We selected the method [30,31] for comparison so as to have a fair and uniform
comparison. This is because, like our proposed methods, they have the same order of
convergence and the same number of function evaluations per iteration.

The nonlinear test functions utilized for comparative analysis, along with their corre-
sponding initial approximations, are provided below.
Example 1 : Θ1(s) = e−s2

(1 + s3 + s6)(s− 2), s0 = 2.1

Example 2 : Θ2(s) = sin2 s + s, s0 = −0.07

Example 3 : Θ3(s) = 10se−s2 − 1, s0 = 1.7

Example 4 : Θ4(s) = e−s2+s+2 − 1, s0 = 2.001

Example 5 : Θ5(s) = s2 + 1, s0 = 2ι̇
3

Example 6 : Θ6(s) = s2 + s + 1, s0 =
√

3ι̇− 2

Example 7: We consider the following Planck’s radiation law problem, which calculates the energy

density within an isothermal blackbody and is given by [37]:

v(λ) =
8πcPλ−5

e
cP

λBT − 1
(38)

where λ is the wavelength of the radiation, T is the absolute temperature of the blackbody, B is
the Boltzmann constant, P is the Planck constant and c is the speed of light. We are interested in
determining the wavelength λ that corresponds to maximum energy density v(λ).

From (38), we obtain

v′(λ) =

(
8πcPλ−6

e
cP

λBT − 1

)(
cP

λBT e
cP

λBT

e
cP

λBT − 1
− 5

)
(39)

so that the maxima of v occur when

cP
λBT e

cP
λBT

e
cP

λBT − 1
= 5 (40)

After that, if s = cP
λBT , then (40) is satisfied if

Θ7(s) = e−s +
s
5
− 1; s0 = 4.965 (41)

Therefore, the solutions of Θ7(s) = 0 give the maximum wavelength of radiation λ by
means of the following formula:

λ ≈ cP
s∗BT

(42)

where s∗ is a solution of (41).
Example 8: In the study of the multi-factor effect, the trajectory of an electron in the air gap
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between two parallel plates is given by [37]

s(t) = s0 +

(
υ0 + e

E0

nω
sin(ωt0 + α)

)
(t− t0)

+ e
E0

mω2 (cos(ωt + α) + sin(ω + α)) (43)

where e and m are the charge and the mass of the electron at rest, s0 and υ0 are the position and
velocity of the electron at the time t0 and E0sin(ωt + α) is the RF electric field between the plates.
We choose the particular parameters in the expression in order to deal with a simpler expression,
which is defined as follows:

Θ8(s) = s− 1
2

cos(s) +
π

4
(44)

with s0 = −0.309.
The comparative results for all the methods, including NM (1), NDM1 (3), NDM2 (20),

NTRM (36) and GM (37), are summarized in Tables 1–8. In these tables, we have presented
the following metrics for each of the compared methods after the first three full iterations
on every test function: the approximated roots (sn), absolute residual error (|Θ(sn)|), the
difference between the last two successive iterations (|sn − sn−1|) and the computational
rate of convergence (COC). Also in Figure 1, we provide a comparison of methods based
on the error in the consecutive iterations, |sn − sn−1|, after the first three iterations. The
determination of COC is achieved using the following equation [38]:

COC =
log|Θ(sn)/Θ(sn−1)|

log|Θ(sn−1)/Θ(sn−2)|
(45)

For all numerical calculations, the programming software Mathematica 12.2 was
utilized. For the with-memory method NDM2, we have selected the parameter values
α0 = 0.1 and β0 = 0.01 to start the initial iteration.

Table 1. Comparisons of without-memory and with-memory methods after first three (n = 3) iterations
for Θ1(s).

Method |(s1− s0)| |(s2− s1)| |(s3− s2)| |Θ(s3)| COC

NM 0.11779 1.7434× 10−1 3.5679× 10−4 2.0508× 10−7 2.0000
OM 0.10048 4.8190× 10−4 1.4662× 10−13 1.6842× 10−51 4.0000
NRTM 0.099122 8.7833× 10−4 8.2482× 10−15 7.9485× 10−70 5.0000
GM 0.098037 1.9631× 10−3 1.2383× 10−12 1.6115× 10−58 5.0000
NDM1 (α = 1,
β = 1) 0.10105 1.0533× 10−3 1.3616× 10−15 7.0363× 10−75 5.0000

NDM2 0.99749 2.5101× 10−4 6.0861× 10−35 5.7271× 10−341 10.0000

Table 2. Comparisons of without-memory and with-memory methods after first three (n = 3) iterations
for Θ2(s).

Method |(s1− s0)| |(s2− s1)| |(s3− s2)| |Θ(s3)| COC

NM 0.075667 5.6350× 10−3 3.1750× 10−5 1.0081× 10−9 2.0000
OM 0.070030 3.0385× 10−5 8.5226× 10−19 5.2758× 10−73 4.0000
NRTM 0.069979 2.1309× 10−5 2.7830× 10−23 1.0574× 10−112 5.0000
GM 0.069961 3.9227× 10−5 1.1149× 10−21 2.0673× 10−104 5.0000
NDM1 (α = 1,
β = 1) 0.070006 6.1200× 10−6 1.3737× 10−24 7.8257× 10−118 5.0000

NDM2 0.069984 1.5860× 10−5 3.9187× 10−56 3.9040× 10−577 10.0000
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Table 3. Comparisons of without-memory and with-memory methods after first three (n = 3) iterations
for Θ3(s).

Method |(s1− s0)| |(s2− s1)| |(s3− s2)| |Θ(s3)| COC

NM 0.020781 4.1098× 10−4 1.6149× 10−7 6.8908× 10−14 2.0000
OM 0.020370 1.4498× 10−7 3.5630× 10−28 3.5916× 10−110 4.0000
NRTM 0.020369 1.8841× 10−8 1.0645× 10−38 1.6942× 10−189 5.0000
GM 0.020369 3.7534× 10−8 6.9025× 10−37 4.0127× 10−180 5.0000
NDM1 (α = 1, β = 1) 0.020369 1.0344× 10−10 1.1052× 10−52 4.2540× 10−262 5.0000
NDM2 0.020369 2.7829× 10−9 2.4637× 10−84 2.0132× 10−834 10.0000

Table 4. Comparisons of without-memory and with-memory methods after first three (n = 3) iterations
for Θ4(s).

Method |(s1− s0)| |(s2− s1)| |(s3− s2)| |Θ(s3)| COC

NM 0.0010012 1.1684× 10−6 1.5927× 10−12 8.8779× 10−24 2.0000
OM 0.0010000 1.0065× 10−12 1.0311× 10−48 3.4070× 10−192 4.0000
NRTM 0.0010000 9.7700× 10−15 8.6879× 10−70 1.4493× 10−344 5.0000
GM 0.0010000 1.4655× 10−14 1.0014× 10−68 4.4761× 10−339 5.0000
NDM1 (α = 1,
β = 1) 0.0010000 1.2108× 10−16 3.2123× 10−81 1.2667× 10−403 5.0000

NDM2 0.0010000 1.5040× 10−15 9.7884× 10−147 4.0028× 10−1458 10.0000

Table 5. Comparisons of without-memory and with-memory methods after first three (n = 3) iterations
for Θ5(s).

Method |(s1− s0)| |(s2− s1)| |(s3− s2)| |Θ(s3)| COC

NM 0.41667 8.0128× 10−2 3.2000× 10−3 1.0240× 10−4 1.9990
OM 0.33654 3.2051× 10−3 1.3107× 10−11 7.3787× 10−45 4.0000
NRTM 0.31962 1.3711× 10−2 2.2606× 10−10 5.1662× 10−49 5.0000
GM 0.30867 2.4662× 10−2 7.7382× 10−9 4.1619× 10−41 5.0000
NDM1 (α = 0.1,
β = 0.01) 0.33269 1.3872× 10−3 7.1489× 10−16 1.3430× 10−78 5.1293

NDM2 0.33216 1.8261× 10−3 4.8530× 10−29 1.6984× 10−284 10.0000

Table 6. Comparisons of without-memory and with-memory methods after first three (n = 3) iterations
for Θ6(s).

Method |(s1− s0)| |(s2− s1)| |(s3− s2)| |Θ(s3)| COC

NM 1.1339 5.4470× 10−1 1.9126× 10−1 3.6580× 10−2 2.0935
OM 1.6641 1.8131× 10−1 2.6397× 10−4 1.6190× 10−15 4.0000
NRTM 1.6753 1.7655× 10−1 2.2683× 10−4 8.0963× 10−19 5.0000
GM 1.6385 2.1410× 10−1 1.0058× 10−3 2.3909× 10−15 5.0003
NDM1 (α = 0.1,
β = 0.01) 1.7591 1.3677× 10−1 1.9137× 10−5 1.0706× 10−24 5.1009

NDM2 1.7514 1.3873× 10−1 1.8773× 10−9 3.2210× 10−88 10.0000

From all the numerical results in Tables 1–8 and from Figure 1, it is concluded that the
proposed family of methods NDM1 and NDM2 is highly competitive and possesses fast
convergence toward the roots with minimal absolute residual error and a minimum error
value in consecutive iteration as compared to the other existing methods. Additionally, the
numerical results indicate that the computational order of convergence supports the theo-
retical convergence order of the newly presented family of methods in the test functions.
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Table 7. Comparisons of without-memory and with-memory methods after first three (n = 3) iterations
for Θ7(s).

Method |(s1− s0)| |(s2− s1)| |(s3− s2)| |Θ(s3)| COC

NM 0.00011423 2.3586× 10−10 1.0054× 10−21 3.5263× 10−45 2.0000
OM 0.00011423 2.8491× 10−16 7.5636× 10−67 7.2512× 10−270 4.0000
NRTM 0.00011423 2.8491× 10−16 1.1839× 10−82 2.8305× 10−415 5.0000
GM 0.00011423 2.8491× 10−16 2.5115× 10−82 2.5802× 10−413 5.0000
NDM1 (α = 1,
β = 1) 0.00011423 1.2212× 10−19 1.7056× 10−94 1.7490× 10−469 5.0000

NDM2 0.00011423 1.0938× 10−23 1.4380× 10−233 2.4917× 10−2341 10.0000

Table 8. Comparisons of without-memory and with-memory methods after first three (n = 3) iterations
for Θ8(s).

Method |(s1− s0)| |(s2− s1)| |(s3− s2)| |Θ(s3)| COC

NM 0.000093269 2.4434× 10−9 1.6769× 10−18 6.6965× 10−37 2.0000
OM 0.000093272 7.7299× 10−18 4.9129× 10−71 6.7973× 10−284 4.0000
NRTM 0.000093272 7.7299× 10−18 5.7906× 10−88 1.1583× 10−438 5.0000
GM 0.000093272 7.7299× 10−18 1.3540× 10−87 1.8930× 10−436 5.0000
NDM1 (α = 1,
β = 1) 0.000093272 4.0787× 10−19 6.5223× 10−91 5.7827× 10−450 5.0000

NDM2 0.000093272 2.7995× 10−22 5.0470× 10−217 6.7502× 10−2169 10.0000
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Figure 1. Comparison of the methods based on the error in consecutive iterations, |sn−sn−1|, after
the first three iterations.

4. Conclusions

In this paper, we have presented two families of iterative methods for solving nonlinear
equations. The first is a memoryless, derivative-free family of fifth-order methods, while the
second is a three-point family of with-memory methods. We obtained the fifth-order family
of methods by employing a composition technique along with a modified Newton’s method
and a weighted function approach. The memory-based extension of the fifth-order family
of methods employs two acceleration parameters calculated using Newton interpolating
polynomials and enhancing convergence from the 5th to 10th order without requiring
additional function evaluations and subsequently increasing its efficiency index from 1.495
to 1.778. Analysis of the numerical results has revealed the effectiveness and enhanced
capabilities of the newly proposed methods in terms of minimal absolute residual error
and minimal error in consecutive iterations. The results demonstrate that the proposed
methods NDM1 and NDM2 exhibit faster convergence with smaller asymptotic constant
values compared to other existing methods. Moreover, the overall performance of the
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newly proposed work is quite impressive, offering a fast convergence speed, and making it
a promising alternative for solving nonlinear equations.
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