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Abstract: Historically, humans have been infected by mosquito-borne diseases, including dengue
fever and malaria fever. There is an urgent need for comprehensive methods in the prevention, control,
and awareness of the hazards posed by dengue and malaria fever to public health. We propose
a new mathematical model for dengue and malaria co-infection with the aim of comprehending
disease dynamics better and developing more efficient control strategies in light of the threat posed
to public health by co-infection. The proposed mathematical model comprises four time-dependent
vector population classes (SEIdIm) and seven host population classes (SEIdImIdmTR). First, we
show that the proposed model is well defined by proving that it is bounded and positive in a feasible
region. We further identify the equilibrium states of the model, including disease-free and endemic
equilibrium points, where we perform stability analysis at equilibrium points. Then, we determine
the reproduction number R0 to measure the level of disease containment. We perform a sensitivity
analysis of the model’s parameters to identify the most critical ones for potential control strategies.
We also prove that the proposed model is well posed. Finally, the article examines three distinct
co-infection control measures, including spraying or killing vectors, taking precautions for one’s own
safety, and reducing the infectious contact between the host and vector populations. The control
analysis of the proposed model reveals that all control parameters are effective in disease control.
However, self-precaution is the most effective and accessible method, and the reduction of the vector
population through spraying is the second most effective strategy to implement. Disease eradication
is attainable as the vector population decreases. The effectiveness of the implemented strategies is
also illustrated with the help of graphs.

Keywords: mathematical model; dengue–malaria co-infection; stability analysis; sensitivity analysis;
control analysis

MSC: 34H05; 49K15; 65K10

1. Introduction

Dengue fever is a dangerous vector-borne disease. The disease-causing dengue virus
is transmitted through the bites of female Aedes mosquitoes, as documented in various
sources [1–3]. When a mosquito bites an infectious human, the dengue virus moves from
the human into the mosquito’s bloodstream. Subsequently, when the same mosquito bites
a healthy human, the dengue virus is transmitted to the new host [4,5]. A 2012 report
indicates that more than a hundred countries worldwide have a population at risk of
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contracting dengue fever [6,7]. In recent years, there have been several outbreaks of dengue
infections in various countries that have caused significant harm to society [8–11]. Dengue
fever can cause the destruction of white blood cells and a rapid decrease in platelet count,
as noted in Ref. [12]. Other symptoms of dengue fever include high fever, vomiting,
abdominal pain or tenderness, persistent vomiting, clinical fluid accumulation, mucosal
bleeding, lethargy, and liver enlargement [13].

The malaria disease is caused by the plasmodium parasite and is transmitted through
female anopheles mosquitoes to humans, as stated by the World Health Organization
(WHO) [14]. Malaria has a more dangerous and ancient history than other mosquito-borne
diseases like dengue. According to the WHO malaria report, the number of malaria cases
increased from 216 million in 2016 to 320 million in 2017 [15,16] and reported around
241 million malaria cases globally, with 627,000 malaria deaths predicted in 2020 [17].
Africa was the dominant region in 2020, with 95% of malaria cases and 96% of malaria
deaths [17,18]. In that location, 80% of the total casualties were youngsters under the age of
five. Despite decades of global eradication and control attempts, the disease has resurfaced
in locations where control measures were previously effective [18]. The common symptoms
of malaria include fever, sweating, shivering or cold, vomiting, headache, diarrhea, and
muscle aches. The latent period of malaria lasts from 7 to 14 days [14–19].

The diseases dengue and malaria share the same vector (mosquito) and have similar
initial symptoms, making it possible for a person to be affected by both at the same
time [20–25]. Dengue fever and malaria are comparable in terms of transmission and
impact on human health. Both illnesses are vector-borne, which means they are spread to
people via the bites of infected mosquitoes. Mosquitoes of some species serve as carriers
for the viruses that cause dengue fever and the parasites that cause malaria. Furthermore,
these illnesses have been present throughout human history, impacting communities all
over the world. Both dengue and malaria can cause high fevers, lethargy, and body pains,
causing severe suffering for those who are infected. Furthermore, if left undiagnosed
or poorly managed, these illnesses can cause serious consequences and, in extreme
situations, even death. In light of the fact that these two diseases have a number of
similarities in common, it is of the utmost importance to give priority to implementation
of comprehensive preventive and control measures in order to successfully combat the
spread of both dengue and malaria. As highlighted in [20], the documented instances of
dengue–malaria co-infection in 2016 were 26 in India, 4 in Pakistan, 1 in Cambodia, 1 in
Malaysia, 1 in Bangladesh, 1 in Japan, and 1 in East Timor. Taking into account these
facts, we will develop a comprehensive mathematical model to effectively capture the
complexities of dengue and malaria dynamics, while also addressing the occurrence of
co-infection of these two diseases. This model will also provide a solid foundation for
practical and reliable analysis.

Mathematical modeling is a highly reliable and effective tool for understanding bi-
ological and physical problems, and patterns [26–29]. In the domain of epidemiology,
mathematical models have played a crucial role in understanding the disease transmission
dynamics for disease control and analysis [30–32]. By combining mathematical techniques
with epidemiological knowledge, researchers can simulate various scenarios, explore dif-
ferent interventions, and guide public health decision making [33–35]. The foundation
of epidemiological models can be traced back to Kermack and McKendrick [36], who
developed the deterministic SIR epidemic model in 1927 and later expanded it to SEIR.
Over time, numerous mathematical models have been proposed in the literature for various
diseases, e.g., coronavirus, tuberculous, whooping cough, and lumpy skin disease [37–39].

In [6], the authors developed a modified SEIR host population and SI vector popula-
tion fractional-order model for dengue dynamics, incorporating the well-known Atangana
Baleanu derivative in the Caputo sense. The authors introduced additional compartments
in the host population, namely the treatment compartment and the protected traveler’s
compartment, and formulated an optimal control problem using treatment as the control
variable. Similarly, in [7], the authors proposed an SEIHR dengue model with optimal
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control for real-world data, demonstrating the significance of the proposed model and
control strategies. The authors in [8] introduced a mathematical model based on the Caputo
fractional calculus. This model partitions the overall human population into four distinct
compartments, namely susceptible, infected (both symptomatic and carriers), partially
immunized individuals, and the recovered class. Likewise, the total vector population is
categorized into susceptible and infected groups. The authors demonstrated and substan-
tiated the fundamental characteristics of the proposed epidemic model utilizing Caputo
fractional derivatives. Additionally, they highlighted the benefits associated with fractional
derivatives, such as the incorporation of memory effects.

Various mathematical models exist for malaria as well, each based on different as-
sumptions and control strategies, such as those presented in [15–17]. In [15], the focus was
on mathematical modeling and two control strategies: human precautions and mosquito
sprays. Both strategies exert a noteworthy influence on disease control; however, self-
precaution emerges as the more efficacious approach. The system attains a disease-free
state when a minimum of 40% of susceptible humans undertake the requisite precautions.
Similarly, in [17], the authors presented an effective control approach called awareness-
based intervention employing media for malaria management. Their mathematical model
evaluates interventions (e.g., mosquito nets) and includes a dynamic awareness variable.
This model categorizes people by awareness, considering shifts from awareness to un-
awareness, connecting recovery to awareness-dependent treatments. The model features
time-dependent control functions for treatment, insecticides, and social media campaigns,
aiming to minimize malaria control costs. In Ref. [19], the authors developed a new math-
ematical model for malaria using partial differential equations, dividing vector and host
populations into distinct compartments. They investigated the effectiveness of spraying in
malaria control, utilizing both classical and impulsive methods. Their findings suggested
that uniform spraying yielded results comparable to a non-spatial model.

Limited articles are available in the existing literature that focus on the co-infection
of dengue and malaria. One notable instance is found in [20], where an exhaustive and
comprehensive examination of dengue–malaria co-infection is presented. This study
encompassed a thorough exploration of clinical manifestations and diagnostic challenges
associated with the co-infection. Similarly, in another study, the authors shed light on the
particulars of the initial instance of dengue–malaria co-infection documented in Nepal [23].
Both of these articles contribute to a broader understanding of dengue–malaria co-infection
by offering comprehensive case studies. The mathematical model for co-infection between
malaria and dengue is represented by a deterministic system of non-linear ODEs in [25].
The authors proposed a deterministic model for dengue and malaria co-infection that deals
with two submodels, dengue only and malaria only, and then combines them into a dengue
and malaria co-infection model. The purpose of the proposed mathematical model is to
provide a brief introduction to the disease as well as the stability analysis of the proposed
model through analytical and numerical methods. The article is basic and comprehensive
for the motivation of epidemiologists, but it covers a very short area of the field, and
more work can be conducted, e.g., sensitivity and control analysis. However, no article
currently provides comprehensive insight, detailed analysis, and valuable control strategies
specifically for the co-infection of dengue and malaria. To fill these gaps in the literature,
we proposed an extended mathematical model for the dengue–malaria co-infection.

In the current manuscript, we present a mathematical model for dengue–malaria
fever, which is a vector-borne disease. We divide the total vector population N into four
sub-compartments, including susceptible mosquitoes S , exposed mosquitoes E , dengue-
infectious mosquitoes Id, and malaria-infectious mosquitoes Im. Similarly, the human
population N is divided into seven sub-departments, including susceptible humans S,
exposed humans E, dengue-infectious humans Id, malaria-infectious humans Im, dengue–
malaria-infectious humans Idm, under-treatment humans T, and recovered humans R. We
assume that the susceptible populations, both vector and host, are non-infectious and can
contract the virus from infectious populations. The exposed class includes both types
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of viruses and remains exposed before identification of symptoms. Id and Id represent
dengue-infectious vector and dengue-infectious human, respectively. Similarly, Im and Im
represent malaria-infectious vector and malaria-infectious human, respectively. We also
introduce a dengue–malaria-infectious human class, represented by Idm, for people who
have both diseases at the same time. All treatments or precautions taken by infectious
humans at home or in the hospital to reduce the effects of dengue, malaria, and dengue–
malaria co-infection are represented by T. Finally, the recovered or removed people are
categorized as R. The transmission rates, which vary from compartment to compartment,
are given in Table 1 along with their descriptions, values and references. The main purpose
of constructing such a model is to understand the transmission dynamics of the dengue–
malaria co-infection in order to propose a reliable and comprehensive control strategy.

Table 1. Parametric description and the corresponding values.

Parameter Description Value Source

Π Recruitment rate of mosquito 3839.9 [7]
ν Natural death rate of mosquito 0.05244 Assumed
Φ1 Interaction rate of S and Id 1.197 × 0.8541 [7]
Φ2 Interaction rate of S and Im 0.729255 [15]
Φ3 Interaction rate of S and Idm 0.00002181 Assumed
Φ4 Translation from E to Id 0.7186 [7]
Φ5 Translation from E to Im 0.291499 [15]
Ψ Recruitment rate of humans 1525.1426 [7]
µ Natural death rate of humans 1/(70.97 × 365) [7]
β1 Interaction rate of S and Id 0.01971 × 0.06794 [7]
α1 Interaction rate of S and Im 0.5837773 [15]
β2 Translation from E to Id 0.0555 [7]
α2 Translation from E to Im 0.0140705 [15]
γ1 Translation from E to Idm 0.02 Assumed
β3 Medication rate of Id 0.0904 [7]
α3 Medication rate of Im 0.01325 Assumed
γ2 Medication rate of Idm 0.02 Assumed
γ3 Recovery rate of T 0.0840 [7]
δId

Dengue induced mortality of Id 0.08 Assumed
δIm Malaria induced mortality of Im 0.08 Assumed
δIdm

Dengue–malaria induced mortality of IDm 0.1 Assumed
δT Disease induced mortality of T 0.05 Assumed

This paper is organized as follows: Section 2 discusses the formulation of the dengue–
malaria co-infection model. Section 3 deals with the fundamental properties of the solution,
e.g., the existence of uniqueness and positive bounded solution. Section 4 of the paper
analyzes the equilibrium points and reproduction number (R0), while Section 5 discusses
the local and global asymptotic stability of both the disease-free and endemic equilibrium
points. In Section 6, a comprehensive sensitivity analysis of the reproduction number to
parameters is carried out. The paper then addresses various controls with different levels
of control values in Section 7, and numerical simulations are also presented in this section.
Finally, Section 8 summarizes the findings of the manuscript.

2. Formulation of Dengue–Malaria Model

We classify the overall population of vectors and hosts as N (t) and N(t), respectively,
into four and seven time-dependent classes. The vector population is divided into suscepti-
ble S(t), exposed E(t), dengue-infectious Id(t), and malaria-infectious Im(t) categories.
Therefore, the complete vector population N (t) at any given time t can be expressed as:

N (t) = S(t) + E(t) + Id(t) + Im(t). (1)



Mathematics 2023, 11, 4600 5 of 28

Assuming that the recruitment and death rates of susceptible vectors are Π and ν,
respectively, the mosquitoes become exposed by biting infectious humans at the rates of
Φ1, Φ2, and Φ3. The exposed mosquitoes are then converted to dengue-infectious and
malaria-infectious vectors at rates of Φ4 and Φ5, respectively. Under these assumptions,
we obtain the following system of differential equations:

dS
dt

=Π− (Φ1Id + Φ2Im + Φ3Idm)S
N − νS , (2a)

dE
dt

=
(Φ1Id + Φ2Im + Φ3Idm)S

N − (Φ4 + Φ5 + ν)E , (2b)

dId
dt

=Φ4E − νId, (2c)

dIm

dt
=Φ5E − νIm, (2d)

with non-negative initial conditions:

S(0) = S0 > 0, E(0) = E0 ≥ 0, Id(0) = Id0 ≥ 0, Im(0) = Im0 ≥ 0. (2e)

As mentioned above, the total host population N(t) is divided into seven classes. The
first host class is given as the susceptible S(t) class. In this class, we take those individuals
who are at risk and can be infected after being bitten by one or both types of infectious
mosquitoes. After the biting of mosquitoes, the susceptible people become exposed E(t).
During the latent period, the host does not show any symptoms of dengue or malaria.
After the latent period, a host patient may get an infection from dengue, malaria, or both
at the same time. Therefore, exposure may move to dengue-infectious Id(t), malaria-
infectious Im(t) and both dengue–malaria-infectious Idm(t) compartments. It also assumes
that infectious humans who are receiving treatment at home or in a hospital are taken in
T(t). In the end, recovered or removed are taken in R(t). Hence, the total host population,
denoted by N(t), is given by:

N(t) = S(t) +E(t) + Id(t) + Im(t) + Idm(t) +T(t) +R(t). (3)

We assume that Ψ and µ represent the recruitment and natural death rates of the
host population, respectively, and βi, αi and γi, i = 1, 2, 3 represent the transmission
and translations within the host populations. The values and complete description of the
parameters are given in Table 1.

Under the above-mentioned assumptions and considerations, the mathematical model
of the host population is given by the following system of differential equations.

dS
dt

=Ψ− (β1Id + α1Im)S
N − µS, (4a)

dE
dt

=
(β1Id + α1Im)S

N − (β2 + α2 + γ1 + µ)E, (4b)

dId
dt

=β2E− (β3 + µ + δId
)Id, (4c)

dIm

dt
=α2E− (α3 + µ + δIm)Im, (4d)

dIdm
dt

=γ1E− (γ2 + µ + δIdm
)Idm, (4e)

dT
dt

=β3Id + α3Im + γ2Idm − (γ3 + µ + δT)T, (4f)

dR
dt

=γ3T− µR, (4g)



Mathematics 2023, 11, 4600 6 of 28

with non-negative initial conditions:

S(0) = S0 > 0, E(0) = E0 ≥ 0, Id(0) = Id0 ≥ 0, Im(0) = Im0 ≥ 0,

Idm(0) = Idm0 ≥ 0, T(0) = T0 ≥ 0, R(0) = R0 ≥ 0.
(4h)

A flow diagram of dengue–malaria co-infection is given in Figure 1. From this figure,
we write the following system of non-linear ODEs that describe the dynamics of the
dengue–malaria co-infection.
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Figure 1. The flow diagram for dengue–malaria co-infection visually shows how the diseases spread.
Pink and blue lines depict mosquito bites on healthy and infected humans. Black lines show how the
mosquito and host populations move between compartments.

dS
dt

=Π− (Φ1Id + Φ2Im + Φ3Idm)S
N − νS , (5a)

dE
dt

=
(Φ1Id + Φ2Im + Φ3Idm)S

N − (Φ4 + Φ5 + ν)E , (5b)

dId
dt

=Φ4E − νId, (5c)

dIm

dt
=Φ5E − νIm, (5d)

dS
dt

=Ψ− (β1Id + α1Im)S
N − µS, (5e)

dE
dt

=
(β1Id + α1Im)S

N − (β2 + α2 + γ1 + µ)E, (5f)

dId
dt

=β2E− (β3 + µ + δId
)Id, (5g)

dIm

dt
=α2E− (α3 + µ + δIm)Im, (5h)

dIdm
dt

=γ1E− (γ2 + µ + δIdm
)Idm, (5i)

dT
dt

=β3Id + α3Im + γ2Idm − (γ3 + µ + δT)T, (5j)

dR
dt

=γ3T− µR, (5k)
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with non-negative initial conditions:

S(0) =S0 > 0, E(0) = E0 ≥ 0, Id(0) = Id0 ≥ 0, Im(0) = Im0 ≥ 0,

S(0) =S0 > 0, E(0) = E0 ≥ 0, Id(0) = Id0 ≥ 0, Im(0) = Im0 ≥ 0,

Idm(0) =Idm0 ≥ 0, T(0) = T0 ≥ 0, R(0) = R0. (5l)

3. Theoretical Properties of the Dengue–Malaria Co-Infection Model

In this section, we will prove the essential properties of the proposed mathematical
model (5), e.g., the existence of a unique solution and feasible region for the system solution.

3.1. Existence of a Unique Solution

Model (5) can be re-written as

ẋ(t) = G(t, x(t)), x(0) = x0 ≥ 0, (6)

where G(t, x) represent the compact form of the right-hand sides of equations of Model (5),
x(t) =

(
S , E , Id, Im,S,E, Id, Im, Idm,T,R

)T ∈ R11, and x0(t) =
(
S0, E0, Id0, Im0,S0,E0, Id0,

Im0, Idm0,T0,R0
)T is the initial vector. Now, to prove the existence of the unique solution

of (5), it is enough to prove that (6) has a unique solution. We will prove the existence of a
unique solution by using fundamental and well-known results of calculus and functional
analysis.

Definition 1 (Picard Mapping [40]). Given a point (t0, z0) ∈ R×Rn and a differential equation

dz
dt

= h(t, z),

where z ∈ Rn and h is a vector field over R× Rn, identify the Picard mapping towards mapping ψ
that takes a function φ : t→ z to the function ψφ : t→ z, such as

(ψφ)(t) = z0 +
∫ t

t0

h(τ, φ(τ))dτ,

with
(ψφ)(t0) = z0.

Theorem 1 ([40]). The mapping φ : R→ Rn is a solution to

dz
dt

= h(t, z),

with initial condition
φ(t0) = z0,

if and only if
ψφ = φ,

where

(ψφ)(t) = z0 +
∫ t

t0

h(τ, φ(τ))dτ,

with
(ψφ)(t0) = z0.

Theorem 2. The right-hand-side function G(t, x(t)) of (6) is Lipschitz continuous in the second
argument x if G(t, x(t)) ∈ C1[0, Tf ].
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Proof. Let S be a convex compact subset of

X = {(t, x(t))| 0 ≤ t ≤ Tf , x(t) ∈ R11}.

Let (t, x̂(t)), (t, x̃(t)) ∈ S, then by the mean value theorem for differentiation ∃ ξ(t) ∈
(x̂(t), x̃(t)) such that

G(t, x̂(t))− G(t, x̃(t))
x̂(t)− x̃(t)

=G′(t, ξ(t)),

where

G′(t, ξ(t)) =
7

∑
i=1

∂G(t, ξ(t))
∂xi

.

Hence,

G(t, x̂(t))− G(t, x̃(t)) =G′(t, ξ(t)).(x̂(t)− x̃).

| G(t, x̂(t))− G(t, x̃(t)) | =| G′(t, ξ(t)).(x̂(t)− x̃) |,
≤ ‖G′(t, ξ(t))‖‖(x̂(t)− x̃(t))‖.

Since G ∈ C1[0, Tf ], over convex compact set S, ∃ β > 0 such that

‖G′(t, ξ(t))‖ ≤ β,

hence,

| G(t, x̂(t))− G(t, x̃) | ≤ β‖(x̂(t)− x̃(t))‖,
sup

t∈[0,Tf ]

| G(t, x̂(t))− G(t, x̃(t)) | ≤ β sup
t∈[0,Tf ]

‖(x̂(t)− x̃(t))‖,

‖G(t, x̂(t))− G(t, x̃(t))‖ ≤ β‖x̂(t)− x̃(t)‖.

Hence, G(t, x(t)) is Lipschitz in the second argument.

Lemma 1 ([41]). Let T : X −→ X be a continuous mapping on a complete metric space X = (X,
d), and suppose that Tm is a contraction on X for some positive integer m. Then, T has a unique
fixed point.

Theorem 3. The solution of (6) exists and is unique provided G(t, x(t)) is Lipchitz continuous
and 0 < Tf β < 1.

Proof. According to the Picard fixed-point theorem 1, any solution x(t) of (6) exist if it is
the fixed point of the Picard mapping. Therefore, the solution will satisfy the following
equation:

x(t) = (ψx)(t) = x0 +
∫ t

0
G(τ, x(τ))dτ, along with (ψx)(t0) = x0. (7)

Let x(t) be a solution of (6). Then, by the fundamental theorem of calculus (FTOC),
G(t, x(t)) is continuous and hence integrable. Applying the integral on both sides of (6),
we obtain

x(t) = x0 +
∫ t

0
G(τ, x(τ))dτ,
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which is equivalent to (7); hence, x(t) is the fixed point of the Picard mapping. Now for
inverse implication, we define a Picard mapping ψ and will show that x(t) is the fixed
point of this mapping. Let the Picard mapping ψ, define as

(ψx)(t) = x0 +
∫ t

0
G(τ, x(τ))dτ, (ψx)(0) = x0.

By Lemma 1, the Picard mapping ψ has a unique fixed point if the mapping is a contraction.
Let x1(t) and x2(t) ∈ R11, then

d(ψ(x1), ψ(x2)) = sup
τ∈[0,Tf ]

|
∫ Tf

0
G(τ, x1(τ))dτ −

∫ t

0
G(τ, x2(τ))|dτ,

≤
∫ Tf

0
sup

τ∈[0,Tf ]

|G(τ, x1(τ))− G(τ, x2(τ))|dτ.

Since G(τ, x(τ)) is Lipchitz in the second argument,

d(ψ(x1), ψ(x2)) ≤
∫ Tf

0
β sup

τ∈[0,Tf ]

|x1(τ)− x2(τ)|dτ,

≤ β‖x1 − x2‖
∫ Tf

0
dτ,

≤ β Tf d(x1, x2).

If βTf < 1, then the Picard mapping ψ is a contraction. Hence, ψ has a unique fixed point
x(t) such that

(ψx)(t) = x0 +
∫ t

0
G(τ, x(τ))dτ.

Using Theorem 1, x(t) is the solution of (6).

Uniqueness

To prove uniqueness of the solution, we let x′ and x′′ be two different solutions of (6),
then both will be the fixed points of the Picard mapping ψ, such that

(ψx′)(t) =x′(t), (8)

(ψx′′)(t) =x′′(t), (9)

where

(ψx′)(t) =x′0 +
∫ t

0
G(τ, x′(τ))dτ,

(ψx′′)(t) =x′′0 +
∫ t

0
G(τ, x′′(τ))dτ.

Subtracting Equations (8) and (9), and then taking the norm, we obtain

‖x′(t)− x′′(t)‖ = ‖x′0 +
∫ t

0
G(τ, x′(τ))dτ − x′′0 −

∫ t

0
G(τ, x′′(τ))dτ‖.
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Since (ψx′)(0) = (ψx′′)(0) = (ψx(0) = x0,

‖x′(t)− x′′(t)‖ =‖
∫ t

0
G(τ, x′(τ))dτ −

∫ t

0
G(τ, x′′(τ))dτ‖,

≤
∫ t

0
‖G(τ, x′(τ))− G(τ, x′′(τ))‖dτ,

≤ βTf ‖x′(t)− x′′(t)‖,
(1− βTf )‖x′(t)− x′′(t)‖ ≤ 0⇒ ‖x′(t)− x′′(t)‖ = 0 ⇒ x′(t) = x′′(t).

Hence, the solution of System (6) is unique.

3.2. Boundedness and Positivity

To examine the fundamental properties of Model (5), we show that in a feasible region,
the state variables of vector and host populations are bounded and non-negative within
a feasible region. First, we show the boundedness of the vector population and the host
population, and then prove the positivity of the population.

Theorem 4. The state variables {S , E , Id, Im} of the vector population model (2) are bounded

within Ω1 = {(S , E , Id, Im)|0 ≤ N ≤
Π
ν
}, ∀ t ≥ 0.

Proof. Using Equation (1), we can write

dN
dt

=
dS
dt

+
dE
dt

+
dId
dt

+
dIm

dt
. (10)

Putting the right-hand side of (2) in Equation (10), the following equation is obtained:

dN
dt

= Π− νN , (11)

with the condition
N (0) ≤ Π

ν
.

Applying the Laplace transformation on (11), we obtain

L
[dN (t)

dt
]
= L[Π]− νL

[
νN (t)

]
,

s(N (s))−N (0) =
Π
s
− νN (s),

s(N (s)) + νN (s) =
Π
s
+N (0),

N (s) =
Π

s(s + ν)
+
N (0)
s + ν

.

Using partial fractions, we obtain

N (s) =
Π
ν

1
s
− Π

ν

1
(s + ν)

+
N (0)
s + ν

. (12)

Applying the inverse Laplace transformation on both sides of (12), we obtain

N (t) =
Π
ν
− Π

ν
exp(−νt) +N (0) exp(−νt),

=
Π
ν
−
[Π

ν
−N (0)

]
exp(−νt).
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Hence, we deduce that

lim
t→∞
N (t) ≤ Π

ν
.

Theorem 5. The state variables = {S,E, Id, Im, Idm,T,R} of the host population Model (4) are

also bounded within the feasible region Ω2 = {(S,E, Id, Im, Idm,T,R)|0 ≤ N ≤ Ψ
µ
}, ∀ t ≥ 0.

Proof. Taking the derivative of Equation (3) and then substituting the values of the differ-
ential equations from (4), we obtain

dN
dt

= Ψ− µN− (δId
Id + δImIm + δIdm

Idm + δTT). (13)

Since (δId
Id + δImIm + δIdm

Idm + δTT) ≥ 0, Equation (13) can be written as

dN
dt
≤ Ψ− µN, (14)

with the condition
N(0) ≤ Ψ

µ
.

Applying the Laplace transformation to (14) and simplifying gives

N(s) ≤ Ψ
µ

1
s
− Ψ

µ

1
(s + µ)

+
N(0)
s + µ

. (15)

Applying the inverse Laplace transformation on both sides of (15), we obtain

N(t) ≤ Ψ
µ
−
[Ψ

µ
−N(0)

]
exp(−µt).

Hence, we can state

lim
t→∞

N(t) ≤ Ψ
µ

.

Thus, we proved that the state variables (S , E , Id, Im,S,E, Id, Im, Idm,T,R) of the vec-
tors and human population remains bounded in the feasible region Ω = max{Ω1, Ω2}.

Now, we will show that all state variables of vector and host populations are non-
negative for all time t > 0. For the sake of simplicity, we prove the positivity of one
equation and leave the others to be proved in the same way.

Theorem 6. Consider Model (5) with non-negative initial conditions (5l), the solution
(S , E , Id, Im,S,E, Id, Im, Idm,T,R)) of Model (5) is non-negative ∀ t ≥ 0.

Proof. Let us consider the Equation (5a) of the model, i.e.,

dS
dt

= Π− (Φ1Id + Φ2Im + Φ3Idm)S
N − νS . (16)

Since we have proved that all the state variables are bounded, it follows that ∃ Υ ≥ 0 such
that:

Υ = sup
[Φ1Id + Φ2Im + Φ2Idm

N + ν
]
.
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Thus,
dS
dt
≥ Π− ΥS(t). (17)

Applying the Laplace transformation and simplifying, we obtain

S(s) ≥ Π
s(s + Υ)

+
S(0)
s + Υ

.

Using partial fractions, we obtain

S(s) ≥ Π
Υ

1
s
− Π

Υ
1

(s + Υ)
+
S(0)
s + Υ

. (18)

Applying the inverse Laplace transformation on both sides of (18), we obtain

S(t) ≥ Π
Υ
− Π

Υ
exp(−Υt) + S(0) exp(−Υt). (19)

Since 0 ≤ exp(−Υt) ≤ 1,
Π
Υ
≥ Π

Υ
exp(−Υt) and also S(0) exp(−Υt) ≥ 0.

Thus, it is clear from Equation (19) that S(t) > 0, ∀ t ≥ 0. Using a similar approach,
we can easily show that all other state variables are also positive ∀ t ≥ 0.

4. Equilibrium Points

Two types of equilibrium points exist for an epidemic model: disease-free equilibrium
point and endemic equilibrium point. The disease-free equilibrium (DFE) point of the
proposed model is determined to give:

P0 =
(
S0, E0, I0

d , I0
m,S0,E0, I0

d, I0
m, Imd

0,T0,R0
)
=

(
Π
ν

, 0, 0, 0,
Ψ
µ

, 0, 0, 0, 0, 0, 0
)

, (20)

and the endemic equilibrium (EE) point of the proposed model is found to give

P1 = (S1, E1, I1
d , I1

m,S1,E1, I1
d, I1

m, Imd
1,T1,R1), (21)

where

E1 =
[Π− νS1

k1

]
, I1

d =
Φ4

ν

[Π− νS1

k1

]
, I1

m =
Φ5

ν

[Π− νS1

k1

]
,

E1 =
[Ψ− µS1

k2

]
, I1

d =
β2

k3

[Ψ− µS1

k2

]
, I1

m =
α2

k4

[Ψ− µS1

k2

]
, Imd

1 =
γ1

k5

[Ψ− µS1

k2

]
,

T1 =
[ β2β3

k3
+

α2α3

k4
+

γ1γ2

k5

][Ψ− µS1

k6k2

]
, R1 =

[ β2β3

k3
+

α2α3

k4
+

γ1γ2

k5

][γ3(Ψ− µS1)

k6k2µ

]
,

with

k1 = Φ4 + Φ5 + ν, k2 = β2 + α2 + γ1 + µ, k3 = β3 + µ + δId
,

k4 = α3 + µ + δIm , k5 = γ2 + µ + δIdm
, k6 = γ3 + µ + δT.

Reproduction Number R0

The reproduction number R0 is a mathematical parameter that ascertains the disper-
sion of the disease. It signifies the mean or average number of new infections generated
by a single infected individual across the entire population. Additionally, it provides the
criteria that determine the system’s stability. To develop and determine the reproduction
number, a next-generation matrix approach is used. The rate at which a disease spreads
through a population is substantially reduced if the basic reproduction number R0 is less
than 1. Under these conditions, the infection will recede and eventually go away. If the
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basic reproduction number R0 is 1, then each infected person will produce exactly a single
further case. Therefore, the disease’s prevalence in the population does not fluctuate over
the course of its entire duration. The disease spreads more swiftly across the population if
the basic reproduction number R0 is greater than 1. To compute R0 for the proposed model,
we subdivide the classes with infected individuals into F and V , where

F =



(Φ1Id + Φ2Im + Φ3Idm)S
N
0
0

(β1Id + α1Im)S
N
0
0
0


,

V =



(Φ4 + Φ5 + ν)E
−Φ4E + νId
−Φ5E + νIm

(β2 + α2 + γ1 + µ)E
−β2E+ (β3 + µ + δId

)Id
−α2E+ (α3 + µ + δIm)Im
−γ1E+ (γ2 + µ + δIdm

)Idm


=



k1E
−Φ4E + νId
−Φ5E + νIm

k2E
−β2E+ k3Id
−α2E+ k4Im
−γ1E+ k5Idm


,

and then we compute their Jacobian

F =

(
∂Fj

∂Xi

)
P0

, i, j = 1, 2, 3, 4, 5, 6, 7,

V =

(
∂Vj

∂Xi

)
P0

,

to give the matrices

F =



0 0 0 0 Φ1 Φ2 Φ3
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 β1 α1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

V =



k1 0 0 0 0 0 0
−Φ4 ν 0 0 0 0 0
−Φ5 0 ν 0 0 0 0

0 0 0 k2 0 0 0
0 0 0 −β2 k3 0 0
0 0 0 −α2 0 k4 0
0 0 0 −γ1 0 0 k5


.

where {X1,X2,X3,X4,X5,X6,X7} = {E , Id, Im,E, Id, Im, Idm}, and at DFE point, S0 =
N 0 = Π

ν and S0 = N0 = Ψ
µ .

The absolute maximum eigenvalue of the matrix FV−1 is computed to give the repro-
duction number R0 as:

R0 =
β1Φ4 + α1Φ5

k1ν
=

β1Φ4 + α1Φ5

(Φ4 + Φ5 + ν)ν
. (22)
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The reproduction number (R0) is 3.07 for the values of the parameters given in Table 1.
It is clear from Equation (22) that death rate of the mosquitoes are inversely proportional to
R0 and interaction of infectious mosquitoes is directly proportional to the R0.

5. Stability Analysis

In this section, the local and global stabilities of the dengue–malaria co-infection
model (5) are investigated at the DFE and EE points, respectively. When investigating
global stabilities, both the Castillo-Chavez approach [42] and the Lyapunov theory with
the LaSalle invariance principle [29] are utilized as analytical tools.

5.1. Local Stability at DFE

The Jacobian matrix method is adopted for Model (5) to evaluate its local stability at
the DFE point. The Jacobian matrix computed at P0 is given by

JP0 =



−ν 0 0 0 0 0 −Φ1 −Φ2 −Φ3 0 0
0 −k1 0 0 0 0 Φ1 Φ2 Φ3 0 0
0 Φ4 −ν 0 0 0 0 0 0 0 0
0 Φ5 0 −ν 0 0 0 0 0 0 0
0 0 −β1 −α1 −µ 0 0 0 0 0 0
0 0 β1 α1 0 −k2 0 0 0 0 0
0 0 0 0 0 β2 −k3 0 0 0 0
0 0 0 0 0 α2 0 −k4 0 0 0
0 0 0 0 0 γ1 0 0 −k5 0 0
0 0 0 0 0 0 β3 α3 γ2 −k6 0
0 0 0 0 0 0 0 0 0 γ3 −µ



. (23)

We present the following theorem for local stability of Model (5) at the DFE point P0.

Theorem 7. Model (5) is locally asymptotically stable (LAS) at P0 if R0 < 1 and unstable for
R0 > 1.

Proof. With the assistance of Maple software, we obtain the following eigenvalues of the
Jacobian matrix (23).

λ1 =− ν, (24a)

λ2 =− ν, (24b)

λ3 =− ν, (24c)

λ4 =− µ, (24d)

λ5 =− µ, (24e)

λ6 =− k1, (24f)

λ7 =− k2, (24g)

λ8 =− k6, (24h)

λ9 =− k3β2Φ1

k2

(
1− R0

)
, (24i)

λ10 =− k4

(
1− α2Φ2k3R0

λ9k1k2µ

)
, (24j)

λ11 =− k5

(
1− k3k4γ1R0

λ9λ10k1k2k5µ

)
. (24k)

It is apparent from Equation (24) that all the eigenvalues are negative when the value of R0
is less than 1, but not when R0 is greater than 1. Therefore, it has been demonstrated that
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the model represented by System (5) exhibits local asymptotic stability (LAS) when R0 < 1,
and instability when R0 > 1.

5.2. Global Stability at DFE

To demonstrate the global stability of the DFE point P0, we employ the methodology
proposed by Castillo-Chavez [42].

Theorem 8. The DFE point P0 of Model (5) is GAS if R0 < 1, and Conditions (H1) and (H2)
are fulfilled:

(H1)
dX
dt

= K(X , 0) = 0, X 0 is GAS,

(H2)
dY
dt

= N (X ,Y) = BY − N̄ (X ,Y),

where N̄ (X ,Y) ≥ 0 ∀ t ≥ 0 and B = DYN (X 0, 0) is an M-matrix.

Proof. Let X = (S ,S) represent non-infectious classes and Y = (E , Id, Im,E, Id, Im, Idm,T)
represent infectious classes, and P0 = (X 0, 0) is the DFE point. So,

dX
dt

= K(X ,Y) =

Π− (
Φ1Id + Φ2Im + Φ3Idm

N + ν)S

Ψ− (
β1Id + α1Im

N + µ)S

. (25)

If X = X 0, then K(X , 0) = 0, i.e.,

dX
dt

=

[
Π− νS0

Ψ− µS0

]
=

[
0
0

]
. (26)

From Equation (26), t→ ∞, X → X 0. Therefore, X 0 is GAS. Now,

BY − N̄ (X ,Y) =



−k1 0 0 0 Φ1 Φ2 Φ3 0
Φ4 −ν 0 0 0 0 0 0
Φ5 0 −ν 0 0 0 0 0
0 β1 α1 −k2 0 0 0 0
0 0 0 β2 −k3 0 0 0
0 0 0 α2 0 −k4 0 0
0 0 0 γ1 0 0 −k5 0
0 0 0 0 β3 α3 γ2 −γ3





E
Id
Im
E
Id
Im
Idm
T


−



κ1
0
0
κ2
0
0
0
0


, (27)

where

B =



−k1 0 0 0 Φ1 Φ2 Φ3 0
Φ4 −ν 0 0 0 0 0 0
Φ5 0 −ν 0 0 0 0 0
0 β1 α1 −k2 0 0 0 0
0 0 0 β2 −k3 0 0 0
0 0 0 α2 0 −k4 0 0
0 0 0 γ1 0 0 −k5 0
0 0 0 0 β3 α3 γ2 −γ3


, Y =



E
Id
Im
E
Id
Im
Idm
T


, N̄ (X ,Y) =



κ1
0
0
κ2
0
0
0
0


,

and κ1 =
Φ1Id + Φ2Im + Φ2Idm

N (S0 − S), κ2 =
β1Id + α1Im

N (S0 − S).
It is evident that B is an M-matrix. At the DFE point N = S0 and N = S0, matrix

N̄ (X ,Y) ≥ 0. So, the DFE point P0 is GAS.

This means that regardless of the initial circumstances, the model forecasts that the
disease will be completely eradicated over time. This consistency shows that public health
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initiatives and interventions can successfully slow the disease’s spread, ultimately causing
it to go extinct in the community.

5.3. Global Stability at EE

We present the next theorem that shows the global stability of the model (5) EE point P1.

Theorem 9. The EE point P1 of Model (5) is globally stable provided R0 > 1 and unstable when
R0 < 1.

Proof. We consider a Volterra-type Lyapunov function defined as

Ł(S , E , Id, Im,S,E, Id, Im, Idm,T,R) =
[
S − S1 − S1 log

S
S1

]
+
[
E − E1 − E1 log

E
E1

]
+
[
Id − I1

d − I
1
d log

Id

I1
d

]
+
[
Im − I1

m − I1
m log

Im

I1
m

]
+
[
S− S1 − S1 log

S
S1

]
+
[
E−E1 −E1 log

E
E1

]
+
[
Id − I1

d − I1
d log

Id

I1
d

]
+
[
Im − I1

m − I1
m log

Im

I1
m

]
+
[
Idm − I1

dm − I1
dm log

Idm

I1
dm

]
+
[
T−T1 −T1 log

T
T1

]
+
[
R−R1 −R1 log

R
R1

]
,

(28)

where P1 = (S1, E1, I1
d , I1

m,S1,E1, I1
d, I1

m, I1
dm,T1,R1) is an EE point.

Taking the derivative of Equation (28) with respect to time t and then simplifying,
we obtain

dŁ
dt

=
[S − S1

S

]dS
dt

+
[E − E1

E

]dE
dt

+
[Id − I1

d
Id

]dId
dt

+
[S− S1

S

]dS
dt

+
[E−E1

E

]dE
dt

+[ Id − I1
d

Id

]dId
dt

+
[ Im − I1

m
Im

]dIm

dt
+
[ Idm − I1

dm
Idm

]dIdm
dt

+
[T−T1

T

]dT
dt

++
[R−R1

R

]dR
dt

.

Replacing the time derivatives of state variables with the right-hand sides of the ODEs
of Model (5), we reach

dŁ
dt

= ξ1 − ξ2,

where

ξ1 =
[
Π + (

Φ1Id + Φ2Im + Φ3Idm
N + ν)

(S1)2

S +
(Φ1Id + Φ2Im + Φ3Idm)S

N + (Φ4 + Φ5 + ν)
(E1)2

E

+ Φ4E + (ν)
(I1

d )
2

Id
+ Φ5E + (ν)

(I1
m)

2

Im
+ Ψ + (

β1Id + α1Im

N + µ)
(S1)2

S +
(β1Id + α1Im)S

N

+ β2E+ (β2 + α2 + γ1 + µ)
(E1)2

E + (β3 + µ + δId
)
(I1

d)
2

Id
+ α2E+ (α3 + µ + δIm)

(I1
m)

2

Im

+ γ1E+ (γ2 + µ + δIdm
)
(I1

dm)
2

Idm
+ β3Id + α3Im + γ2Idm + (γ3 + µ + δT)

(T1)2

T + γ3T

+ µ
(R1)2

R

]
,
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and

ξ2 =
[
(

Φ1Id + Φ2Im + Φ3Idm
N + ν)

(S − S1)2

S + Π
S1

S + (
Φ1Id + Φ2Im + Φ3Idm

N + ν)S1

+
I1

d
Id

Φ4E +
(E − E1)2

E (Φ4 + Φ5 + ν) +
E1

E (
Φ1Id + Φ2Im + Φ3Idm

N )S + (Φ4 + Φ5 + ν)E1

+
(Id − I1

d )
2

Id
ν +

(Im − I1
m)

2

Im
ν +
I1

m
Im

Φ5E + νI1
m + (

β1Id + α1Im

N + µ)
(S− S1)2

S

+ Ψ
S1

S + (
β1Id + α1Im

N + µ)S1 +
(E−E1)2

E (β2 + α2 + γ1 + µ) +
E1

E (
β1Id + α1Im

N )S

+ (β2 + α2 + γ1 + µ)E1 +
(Id − I1

d)
2

Id
(β3 + µ + δId

) + νI1
d +

I1
d
Id

β2E+ (β3 + µ + δId
)I1

d

+
(Im − I1

m)
2

Im
(α3 + µ + δIm) +

I1
m
Im

α2E+ (α3 + µ + δIm)I
1
m +

(Idm − I1
dm)

2

Idm
(γ2 + µ + δIdm

)

+
I1

dm
Idm

γ1E+ (γ2 + µ + δIdm
)I1

dm +
(T−T1)2

T (γ3 + µ + δT) +
T1

T (β3Id + α3Im + γ2Idm)

+ (γ3 + µ + δT)T1 + µ
(R−R1)2

R + µR1 +
R1

R (γ3T)
]
.

As we know for R0 < 1, N = S , E = Id = Im = 0 and N = S, E = Id = Im = Idm =
T = R = 0. Therefore, for R0 > 1, all the state variables are increasing functions except S
and S (that are decreasing) and bounded by endemic equilibrium point P1. Now it is clear

that ξ2 > ξ1 and
dŁ
dt

< 0 except at EE point.

Now, if we put EE point, S = S1, E = E1, Id = Id
1, Im = Im

1, S = S1, E = E1,
Id = Id

1, Im = Im
1, Idm = Idm

1, T = T1, and R = R1, then

ξ1 =
[
Π + (

Φ1Id
1 + Φ2Im

1 + Φ3Idm
1

N 1 + ν)(S1) +
(Φ1Id

1 + Φ2Im
1 + Φ3Idm

1)S1

N 1 + Φ4E1

+ (Φ4 + Φ5 + ν)(E1) + (ν)(I1
d ) + Φ5E1 + (ν)(I1

m) + Ψ + (
β1I1

d + α1I1
m

N1 + µ)(S1)

+
(β1I1

d + α1I1
m)S1

N1 + β2E1 + (β2 + α2 + γ1 + µ)(E1) + (β3 + µ + δId
)(Id

1) + α2E1

+ (α3 + µ + δIm)(Im
1) + γ1E1 + (γ2 + µ + δIdm

)(I1
dm) + β3I1

d + α3I1
m + γ2Idm

1

+ (γ3 + µ + δT)(T1) + γ3T1 + µ(R1)
]
,

and

ξ2 =
[
Π + (

Φ1Id
1 + Φ2Im

1 + Φ3Idm
1

N 1 + ν)S1 + Φ4E1 + (
Φ1Id

1 + Φ2Im
1 + Φ3Idm

1

N 1 )S1

+ (Φ4 + Φ5 + ν)E1 + Φ5E1 + νI1
m + Ψ + (

β1Id
1 + α1Im

1

N1 + µ)S1 + (
β1Id

1 + α1Im
1

N1 )S1

+ (β2 + α2 + γ1 + µ)E1 + νI1
d + β2E1 + (β3 + µ + δId

)Id
1 + α2E1 + (α3 + µ + δIm)Im

1

+ γ1E1 + (γ2 + µ + δIdm
)Idm

1 + β3Id
1 + α3Im

1 + γ2Idm
1 + (γ3 + µ + δT)T1 + µR1 + (γ3T1)

]
.

Thus,
dŁ
dt

= 0 at EE point P1.
dŁ
dt
≤ 0.

Thus, according to LaSalle’s invariance principle [43], the EE point P1 is globally asymptot-
ically stable.
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6. Sensitivity Analysis

Developing effective methods for controlling the spread of viruses requires critical
sensitivity analysis. This analytical process involves identifying parameters that are highly
sensitive to R0, the basic reproduction number. Parameters with a high sensitivity index
are considered highly sensitive to R0 and can be targeted for epidemic control efforts. In
this study, we utilized the approach, outlined in [44], to calculate the sensitivity index of a
parameter p using the following formula:

⋂R0

p
=

∂R0

∂p
p

R0
.

We compute sensitivity indices of all parameters that are involved in R0 and present the
results in Table 2. The sensitivity analysis gives the information that α1, the interaction rate
of malaria, and Φ5, the transmission rate of malaria infection are the most sensitive param-
eters to R0. Overall, sensitivity analysis is a valuable tool for identifying the parameters
that are most important in controlling the spread of viruses.

Table 2. Sensitivity index for R0.

Parameter Sensitivity Index Relationship

ν −1.049353483 Inverse

β1 0.005622975459 Direct

α1 2.451326865 Direct

Φ4 −0.6706816119 Inverse

Φ5 0.7200350942 Direct

Table 2 presents the results indicating that the variables β1, α1, and φ5 have a positive
impact on the R0, while the variables ν and φ4 have a negative impact on the R0. This
implies that a variation of 10% in these factors would lead to a proportional 10% change
in the R0. For instance, an increase of 10% in the values of β1, α1, and φ5 results in a
corresponding increase of 0.0562%, 24.5132%, and 7.2003% in R0, respectively. In a similar
manner, an increase of 10% in the values of ν and φ4 results in a decrease of 10.4935%
and 6.7068% respectively in the value of Tables 3 and 4 represent the qualitative (numeric)
version of the Figure 2 and validate the graphical results. Our sensitivity analysis indicates
that the death rate of mosquitoes and the interaction rate of the infectious mosquitoes
have a direct impact on the dengue–malaria co-infection spreads and are the most suitable
parameters to serve as control variables to control the spread of the disease. Therefore,
we use these rates (parameters) as control parameters and show the importance of these
control strategies in the next section with details. To understand the influence of the two
parameters on R0, we vary Φ5 and ν (Figure 3). Similarly, we investigate the effect on R0
when varying β1 and Φ4 (Figure 4) and varying α1 and ν (Figure 5).

Table 3. ν vs. R0.

ν R0

0.100 1.5415

0.200 0.7071

0.300 0.4354

0.400 0.3034
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Table 3. Cont.

ν R0

0.500 0.2266

0.600 0.1771

0.700 0.1429

0.800 0.1181

0.900 0.0995

1.000 0.0851

Table 4. β1 vs. R0.

β1 R0

0.000 3.0540

0.100 4.3437

0.200 5.6334

0.300 6.9230

0.400 8.2127

0.500 9.5024

0.600 10.7920

0.700 12.0817

0.800 13.3714

0.900 14.6611

1.000 15.9507
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Figure 2. Effect of each parameter on R0.
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7. Effects of the Control Strategies

In order to manage the dengue–malaria disease, we incorporate three new control
parameters into Model (5), named as u1, u2, and u3. Specifically, u1 represents the use of
spray, u2 represents self-precaution, and u3 represents the reduction of human–mosquito
interaction. We evaluate the impact of each of these parameters separately. The model
updates are illustrated as a flow diagram, see Figure 6, and as model equations for co-
infection given as:

dS
dt

=Π− (Φ1Id + Φ2Im + Φ3Idm)S
N − (ν + u1)S , (29a)

dE
dt

=
(Φ1Id + Φ2Im + Φ3Idm)S

N − (Φ4 + Φ5 + ν + u1)E , (29b)

dId
dt

=Φ4E − (ν + u1)Id, (29c)

dIm

dt
=Φ5E − (ν + u1)Im, (29d)

dS
dt

=Ψ− (1− u3)
(β1Id + α1Im)S

N − (µ + u2)S, (29e)

dE
dt

=(1− u3)
(β1Id + α1Im)S

N − (β2 + α2 + γ1 + µ)E, (29f)

dId
dt

=β2E− (β3 + µ + δId
)Id, (29g)

dIm

dt
=α2E− (α3 + µ + δIm)Im, (29h)

dIdm
dt

=γ1E− (γ2 + µ + δIdm
)Idm, (29i)

dT
dt

=β3Id + α3Im + γ2Idm − (γ3 + µ + δT)T, (29j)

dR
dt

=γ3T− µR+ u2S, (29k)

with non-negative initial conditions:

S(0) =S0 > 0, E(0) = E0 ≥ 0, Id(0) = Id0 ≥ 0, Im(0) = Im0 ≥ 0, S(0) = S0 > 0,

E(0) =E0 ≥ 0, Id(0) = Id0 ≥ 0, Im(0) = Im0 ≥ 0, Idm(0) = Idm0 ≥ 0, T(0) = T0 ≥ 0,

R(0) =R0. (29l)

7.1. Numerical Discretization and Results

We divide the continuous domain [0, Tf ] into N + 1 evenly spaced discrete points

tj = jh, j = 0, 1, 2, ..N, where h =
Tf
N , Tf represents the final time and N is the number of

intervals. To solve the system of differential equations described in (29) on this discretized
domain, we utilize the widely recognized and dependable numerical method known
as the fourth-order Runge–Kutta method (RK-4). The subsequent section of this work
includes three distinct cases, each featuring a different spray and non-pharmaceutical
control strategy. Further elaboration and discussion on each case can be found below.

7.2. Effect of Spray (Case 1)

For Case 1, we consider u1 6= 0 and take u2 = u3 = 0, in our proposed model (i.e., we
only intend to study the impact of mosquito killing spray on disease control). Our findings
indicate that this control strategy had a significant impact in managing the dengue–malaria
co-infection disease (Figures 7 and 8). As a vector-borne disease, reducing the population
of disease-carrying mosquitoes directly translates to a decrease in the interactions between
healthy humans and infected mosquitoes and vice versa. Our analysis of the effectiveness
of the spray control strategy strongly supports this assertion, as we observe a shift in
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the system dynamics from an endemic state to a disease-free state. Overall, our results
suggest that the use of spray is a valuable control measure for managing dengue–malaria
co-infection.
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Figure 6. Updated co-infection flow diagram: Similar to Figure 1 but with three additional control
parameters, named as spray for mosquitoes (u1), self-precautions (u2), and intervention to reduce the
humans-mosquitoes interactions (u3).
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Figure 7. Effect of spray rate u1 on the infectious human state variables. The dynamics indicate that
we can control the spread of disease by eradicating the mosquitoes using spray.
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Figure 8. Effect of spray rate u1 on the mosquitoes state variables.

7.3. Self-Protection (Case 2)

In Case 2, susceptible humans adopt a control parameter for self-protection denoted
by u2, which varies in value, while u1 and u3 remain constantly zero. The control parameter
u2 represents self-precaution measures, such as using bed nets, mosquito repellent lotion,
and full sleeves. There is a significant effect of control parameter u2 on human and
vector populations (Figures 9 and 10) and on controlling the spread of dengue–malaria
co-infection. Our mathematical analysis indicates that the disease will die out from the
community if 35% of the susceptible follow the precautions. The results also indicate that
the dynamical system shifts rapidly from the endemic position to the disease-free position
when self-precaution is practiced. Thus, self-precaution is an easy and effective measure
for controlling dengue–malaria co-infection.

7.4. Reduction in the Infectious Interactions (Case 3)

For Case 3, we consider various levels of u3, which correspond to different degrees of
reduction in interaction rates. In this scenario, the controls u1 and u2 are set to zero. We
conducted an analysis by gradually decreasing the interaction level from 100% to 35% by
increasing u3 from 0% to 65% and found that the system did not transition to an endemic
state as in the previous two cases (Figures 11 and 12). However, reducing interactions is
often difficult in practice as it incurs significant financial costs. By decreasing the interaction
between infectious vector populations and susceptible humans, we indirectly reduce the
recruitment rate of the infection and directly impact the rate of interaction with infectious
humans. This is because the reduction in infectious humans leads to a decrease in the
rate of interaction. Our analysis illustrates that all strategies reduce the disease burden
(Figures 7–12), but the most effective and feasible one is to take self-precautionary measures,
such as cleaning and drying stored water, and wearing appropriate clothing. According
to our mathematical analysis, the second most effective strategy is to spray or eliminate
infected vectors from houses and other potential resistance points.
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Figure 9. Effect of self-precaution rate u2 on the infectious human state variables. If more people
adopt the self-precaution, then chance of interaction of human and mosquitoes decreases and disease
will die.
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Figure 10. Effect of self-precaution rate u2 on the mosquitoes’ state variables.
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Figure 11. Effect of the interaction rate (u3) of infectious mosquitoes and humans on the infectious
human state variables.
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Figure 12. Effect of the interaction rate (u3) of infectious mosquitoes and humans on the mosquitoes’
state variables.

8. Conclusions

We proposed a new mathematical model for dengue–malaria co-infection to observe
the disease-spreading pattern and control analysis. We proved the physical and biological
properties associated with the model, (i.e., the existence of unique positive and bounded
solutions in a physical region). To understand the dynamics of the disease, both equilib-
rium points (disease-free and endemic) were also calculated. At equilibrium points, we
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demonstrated that the model is both locally and globally stable. We also performed a
sensitivity analysis to see how the parameters of the model affect the reproduction number
R0 and identified the most influential parameters.

We updated our proposed mathematical model with three additional control parame-
ters, representing spray for mosquitoes, self-precaution, and reduction in mosquito–human
interaction rates. We analyzed the effect of each varying control parameter. Control analysis
for the proposed model tells us that all the control parameters are beneficial to control
disease, but the most reasonable and easy to adopt is self-precaution or self-protection. Hu-
mans can protect themselves easily by taking basic precautions. The second most effective
parameter is spray on the vector’s population. It is also obvious that disease will die out if
the vector population decreases.

Our research highlights a significant advancement in the field of disease prevention
by adding three new control parameters representing mosquito spraying, self-precaution,
and reduction of mosquito–human contact to the proposed mathematical model. A careful
examination of these factors revealed their significant influence on the treatment of illness.
The main conclusions show that all control parameters are successful in preventing the
spread of disease; however, self-precaution stands out as the most workable and accessible
tactic, highlighting the significance of taking simple precautions for personal safety. More-
over, spraying is the second most successful method for managing the mosquito vector
population. Notably, the study shows that the disease may be eliminated as long as the
vector population is steadily decreasing, highlighting the importance of these results in
developing more approachable and effective disease management methods.

In order to see how fractional order affects the dynamics of dengue–malaria co-
infection, a future study is going to involve a clear picture of the disease dispersion using
a fractional model with an ABC derivative operator and various intervention options.
The ABC operator was selected because its kernel is non-local and non-singular. When
compared to other fractional operators (Caputo, Caputo-Fabrizio), the ABC operator is able
to capture more susceptibilities while simultaneously reducing infections. We will also
analyze a fractional-order optimal control problem to find the best strategies for vaccination
and hospitalization.
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