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2 Department of Engineering Sciences, Izmir Katip Celebi University, 35620 Izmir, Turkey;

haliscan.koyuncuoglu@ikcu.edu.tr
3 Department of Mathematical Analysis, Mathematics Faculty, Chelyabinsk State University, Kashirin Brothers

St. 129, Chelyabinsk 454001, Russia; kar@csu.ru
* Correspondence: marco.s@verat.net

Abstract: In the present work, we concentrate on a certain class of nonlinear difference equations
and propose sufficient conditions for the existence of their almost automorphic solutions. In our
analysis, we invert an appropriate mapping and obtain the main existence outcomes by utilizing
the contraction mapping principle. As the second objective of the manuscript, we reconsider one of
the landmark results, namely the Bohr–Neugebauer theorem, in the qualitative theory of dynamical
equations, and we investigate the relationship between the existence of almost automorphic solutions
and the existence of solutions with a relatively compact range for the proposed difference equation
type. Thus, we provide a discrete counterpart of the Bohr–Neugebauer theorem due to the almost
automorphy notion under some technical conditions.
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1. Introduction

In the theory of dynamic equations, investigation of the existence and uniqueness
of periodic solutions has become a very popular research topic for mathematicians, and
there is a vast amount of literature on this research direction, which focuses on the real-
life models constructed on continuous, discrete, or hybrid time domains with periodic
structures. Indeed, the analysis of difference equations has taken as much of a prominent
position as differential equations, and the studies based on periodicity for the solutions
of differential equations have been carried on to discrete domains. Consequentially, the
literature on differential and difference equations has grown simultaneously.

Conventional periodicity is a strong but relaxable condition for some classes of func-
tions. The studies concentrating on the existence of conventionally periodic solutions of
dynamic equations may not cover many mathematical models that involve not exactly
periodic but nearly periodic arguments, roughly speaking. It is possible to see such real-life
models in signal processing or in astrophysics (see [1–3]). As a relaxation of the conven-
tional periodicity, the almost periodicity notion was first introduced by H. Bohr [4], and
the theory of almost periodic functions has been developed by the contributions of several
scientists including A.S. Besicovitch, S. Bochner, J. von Neumann, and W. Stepanoff who
are very well-known in the mathematics community (see [5–8]). The first definition of an
almost periodic function was introduced as a topological property; that is, a continuous
function f : R→R is said to be almost periodic if the set

E(ε, f (t)) := {τ : | f (t + τ)− f (t)| < ε for all t ∈ R}
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is relatively dense in R for all ε > 0. Subsequently, Bochner proposed a normality con-
dition as an almost periodicity criterion, i.e., a continuous function f (·) is called almost
periodic if for every real sequence {v′n} there exists a subsequence {vn} of {v′n} such that
limn→∞ f (t + vn) = f̄ (t) uniformly for all t (see [6]). Afterwards, the theory of almost
automorphic functions was introduced by S. Bochner ([9]) by relaxing the uniform con-
vergence from the normality condition. That is, a continuous function f : R→R is called
almost automorphic if for every real sequence {v′n} one can extract a subsequence {vn}
of {v′n} such that limn→∞ limm→∞ f (t + vn − vm) = f (t) for each t ∈ R. Thus, the almost
automorphy notion can be regarded as a weaker version of almost periodicity. It is obvious
that the following relationship holds between the periodicity notions

conventional periodicity⇒ almost periodicity⇒ almost automorphy,

while the inverse of the implication may not be correct. For example, the function

f (t) = sin(2πt) + sin
(
2
√

2πt
)
, t ∈ R,

is almost periodic but not conventionally periodic, and

g(t) =
2 + exp(it) + exp

(
i
√

2t
)

∣∣∣2 + exp(it) + exp
(

i
√

2t
)∣∣∣ , t ∈ R,

is an almost automorphic function that is not almost periodic (see [10,11]). In the recent past,
the theories of almost periodic and almost automorphic functions have taken prominent
attention from scholars, and the existence of almost periodic and almost automorphic
solutions of dynamic equations has become a hot research topic on time domains with
continuous, discrete, and hybrid structures. We refer readers to the monographs [10,12–15],
papers [16–27], and references therein.

Analysis of the linkage between the existence of bounded and periodic solutions of
dynamic equations has always been an interesting research topic in applied mathematics.
Massera’s theorem is the primary result for the qualitative theory of differential equations
since it commentates on the boundedness and periodicity of the solutions (see [28]). Since
then, various versions of Massera’s theorem have been studied for linear and nonlinear
dynamic equations over the last five decades. Undoubtedly, when the dynamic equation
contains almost periodic or almost automorphic arguments, it becomes a grueling task to
relate the existence of bounded and almost periodic (almost automorphic) solutions. In [29],
Bohr and Neugebauer concentrated on the linear system

x′(t) = Ax(t) + f (t),

and showed that all bounded solutions of the almost periodic system of this form are
almost periodic on R. Actually, this crucial result can be regarded as an almost periodic
analogue of the Massera’s theorem. Moreover, it should be noted that when A = A(t), and
A is conventionally periodic, then it is possible to pursue a similar approach in the light
of Floquet theory [30]. On the other hand, the nonautonomous linear system with almost
periodic coefficients

x′(t) = A(t)x(t) + f (t), t ∈ R,

is handled by Favard [31], and it is shown that the linear system has at least one almost
periodic solution if it has a bounded solution under a separation assumption; that is, each
bounded nontrivial solution of the system

x′(t) = B(t)x(t), t ∈ R,

satisfies inft∈R|x(t)| > 0 where B is in the hull of A. This conception is known as Favard’s
theory in the existing literature. These milestone results have motivated researchers remark-
ably, and it is possible to find detailed literature providing Massera-, Bohr–Neugebauer-,
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and Favard-type theorems for various kind of dynamic equations based on conventional
periodicity, almost periodicity, or almost automorphy notions. We refer to [21,32–40] as
pioneering studies. However, we must point out that there is a poor research backlog
on Massera- or Bohr–Neugebauer-type theorems on the almost automorphic solutions of
difference equations unlike the enormous amount of literature on differential equations.
Thus, one of the main objectives of this research is to make a new contribution to the
qualitative theory of difference equations by filling the above-mentioned gap.

In this paper, we are inspired by the recent work [21] of A. Chávez, M. Pinto, and
U. Zavaleta. We introduce a certain kind of nonlinear summation equation, namely a
difference equation,

x(t + 1) = a(t)x(t) +
t−1

∑
j=−∞

Λ1(t, j, x(j)) +
∞

∑
j=t

Λ2(t, j, x(j))

with discrete almost automorphic arguments. As the initial task of the study, we focus on
the existence and uniqueness of discrete almost automorphic solutions of the nonlinear
difference equation by employing fixed point theory. Then, we propose a Bohr–Neugebauer-
type theorem that relates to the existence of bounded and discrete almost automorphic
solutions. To the best of our knowledge, our study is the first of its kind since it introduces
a discrete counterpart of the Bohr–Neugebauer theorem, which has not been considered so
far, and consequently, it contributes to the ongoing theory of difference equations.

2. Background Material

In this section, we aim to give a precise review on discrete almost automorphic
functions, and their basic characteristics. For the presentation of the preliminary content,
we first assume that X stands for a real (or complex) Banach space endowed with the norm
‖·‖X .

Definition 1 (Discrete almost automorphy ([19])). A function f : Z→X is said to be discrete
almost automorphic if for every integer sequence {v′n}n∈Z there exists a subsequence {vn}n∈Z of
{v′n}n∈Z such that

lim
n→∞

f (t + vn) =: f̄ (t) (1)

is well defined for each t ∈ Z, and

lim
n→∞

f̄ (t− vn) = f (t) (2)

for each t ∈ Z.

As is underlined in [19] (Remark 2.2), if the convergence in Definition 1 is uniform,
then the concept of discrete almost automorphy turns into a more specific notion, namely
discrete almost periodicity. It is clear that every discrete almost periodic function is discrete
almost automorphic; however, the inverse of the assertion may not be true. In the existing
literature, it is possible to find some studies that propose examples of discrete almost
automorphic functions that are not discrete almost periodic. For example, Bochner gave an
example of a discrete almost automorphic function that is not discrete almost periodic

f (t) =: sgn(sin(2πtΩ)), t ∈ Z,

for an irrational number Ω in his pioneering work [9] (see also [41]).

Definition 2 ([19]). A function g : Z×X →X is said to be discrete almost automorphic in t for
each x ∈ X if for every integer sequence {v′n}n∈Z there exists a subsequence {vn}n∈Z of {v′n}n∈Z
such that

lim
n→∞

g(t + vn, x) =: ḡ(t, x)

is well defined for both t ∈ Z and x ∈ X , and
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lim
n→∞

ḡ(t− vn, x) =: g(t, x)

for both t ∈ Z and x ∈ X .

We refer to [19] (Theorems 2.4 and 2.9) (see also [14]) for a review of the well-known
properties of discrete almost automorphic functions.

Next, we provide the notion of discrete bi-almost automorphy in the light of [21] (Defini-
tion 2.7) for multivariable functions.

Definition 3 (Discrete bi-almost automorphy). A function Λ : Z×Z× X → X is called
discrete bi-almost automorphic in (t, s) ∈ Z×Z uniformly for x on bounded subsets of X if given
any integer sequence {v′n}n∈Z and a bounded set B ⊂ X ; then, there exists a subsequence {vn}n∈Z
of {v′n}n∈Z such that

lim
n→∞

Λ(t + vn, s + vn, x) = Λ̄(t, s, x)

is well defined for both (t, s) ∈ Z×Z and x ∈ B, and

lim
n→∞

Λ̄(t− vn, s− vn, x) = Λ(t, s, x)

for both (t, s) ∈ Z×Z and x ∈ B.

Let AA(Z,X ) denote the set of all discrete almost automorphic functions defined on
Z. Then, AA(Z,X ) is a Banach space when it is endowed with the norm

‖ f ‖AA(Z,X ) := sup
t∈Z
‖ f (t)‖X . (3)

The next result is crucial for the setup of the main outcomes.

Theorem 1 ([19]). Let g : Z×X →X be discrete almost automorphic in t, for each x ∈ X , and
suppose that it satisfies the Lipschitz condition in x uniformly in t; that is,

‖g(t, x)− g(t, y)‖X ≤ L‖x− y‖X , x, y ∈ X .

Then, the function g(t, ϕ(t)) is a discrete almost automorphic function whenever ϕ : Z→X
is discrete almost automorphic.

For more details about multidimensional almost automorphic sequences and their
applications, we refer the reader to our recent research paper [24].

3. Setup and Main Results

Consider the following abstract nonlinear difference equation

x(t + 1) = a(t)x(t) +
t−1

∑
j=−∞

Λ1(t, j, x(j)) +
∞

∑
j=t

Λ2(t, j, x(j)), (4)

where a : Z→ C, a(t) 6= 0 for all t ∈ Z, and Λ1,2 : Z×Z×X → X .
In the sequel, we give the following fundamental result, which is essential for the

outcomes of the manuscript:

Lemma 1. The function x(·) is a solution of (4) with the initial data x(t0) = x0 if and only if

x(t) = x0

t−1

∏
s=t0

a(s) +
t−1

∑
k=t0

(
t−1

∏
s=k+1

a(s)

)(
k

∑
j=−∞

Λ1(k, j, x(j)) +
∞

∑
j=k+1

Λ2(k, j, x(j))

)
. (5)

Proof. We multiply both sides of (4) with
t−1

∏
s=t0

a−1(s), and obtain
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x(t + 1)
t−1

∏
s=t0

a−1(s)− a(t)x(t)
t−1

∏
s=t0

a−1(s) =
t−1

∏
s=t0

a−1(s)

(
t−1

∑
j=−∞

Λ1(t, j, x(j)) +
∞

∑
j=t

Λ2(t, j, x(j))

)
.

By writing the above expression in the following form

x(t + 1)a(t)
t

∏
s=t0

a−1(s)− a(t)x(t)
t−1

∏
s=t0

a−1(s)

=
t−1

∏
s=t0

a−1(s)

(
t−1

∑
j=−∞

Λ1(t, j, x(j)) +
∞

∑
j=t

Λ2(t, j, x(j))

)
,

we obtain

∆

(
x(t)

t−1

∏
s=t0

a−1(s)

)
=

t−1

∏
s=t0

a−1(s)

(
t−1

∑
j=−∞

Λ1(t, j, x(j)) +
∞

∑
j=t

Λ2(t, j, x(j))

)
,

where ∆ stands for the forward difference operator. Next, we take the summation from t0
to t− 1

t−1

∑
k=t0

∆

(
x(k)

k−1

∏
s=t0

a−1(s)

)
=

t−1

∑
k=t0

(
k

∏
s=t0

a−1(s)

)(
k

∑
j=−∞

Λ1(k, j, x(j)) +
∞

∑
j=k+1

Λ2(k, j, x(j))

)
.

This yields to

x(t)
t−1

∏
s=t0

a−1(s)− x0 =
t−1

∑
k=t0

(
k

∏
s=t0

a−1(s)

)(
k

∑
j=−∞

Λ1(k, j, x(j)) +
∞

∑
j=k+1

Λ2(k, j, x(j))

)
,

and one may easily obtain (5). Since every step is reversible, the proof is complete.

Henceforth, we assume that the following conditions are satisfied throughout the
manuscript:

C1 The function a(·) is discrete almost automorphic.

C2 Λ1,2 are discrete bi-almost automorphic in t and s, uniformly for x.

C3 For u1,2 ∈ X , the Lipschitz inequalities

‖Λ1(t, s, u1)−Λ1(t, s, u2)‖X ≤ m1(t, s)‖u1 − u2‖X

and
‖Λ2(t, s, u1)−Λ2(t, s, u2)‖X ≤ m2(t, s)‖u1 − u2‖X

hold together with

sup
t∈Z

t−1

∑
j=−∞

m1(t, j) = M1 < ∞,

sup
t∈Z

∞

∑
j=t

m2(t, j) = M2 < ∞.

Subsequently, we introduce the mapping H : X → X given by

(Hx)(t) := x0

t−1

∏
s=t0

a(s) +
t−1

∑
k=t0

(
t−1

∏
s=k+1

a(s)

)
(S1(k, x(k)) + S2(k, x(k))), (6)
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where

S1(k, x(k)) :=
k

∑
j=−∞

Λ1(k, j, x(j)), (7)

and

S2(k, x(k)) :=
∞

∑
j=k+1

Λ2(k, j, x(j)). (8)

Lemma 2. If x ∈ AA(Z,X ), then S1(·, x(·)) and S2(·, x(·)) are discrete almost automorphic.

Proof. Suppose that ξ, ϕ ∈ AA(Z,X ). Then we have

‖S1(k, ξ)− S1(k, ϕ)‖X =

∥∥∥∥∥ k

∑
j=−∞

Λ1(k, j, ξ(j))−
k

∑
j=−∞

Λ1(k, j, ϕ(j))

∥∥∥∥∥
X

≤ sup
k∈Z

k

∑
j=−∞

‖Λ1(k, j, ξ(j))−Λ1(k, j, ϕ(j))‖X

≤ sup
k∈Z

k

∑
j=−∞

m1(k, j)‖ξ − ϕ‖X

= M1‖ξ − ϕ‖X .

Similarly, we easily observe that

‖S2(k, ξ)− S2(k, ϕ)‖X ≤ M2‖ξ − ϕ‖X .

By Theorem 1, the proof of the assertion is complete.

Lemma 3. In addition to C1–C3, also assume that the condition

C4 For every integer sequence {v′n}n∈Z there exists a subsequence {vn}n∈Z of {v′n}n∈Z such that

lim
n→∞

x(t0 ± vn) = x(t0) = x0

holds. Then, H maps AA(Z,X ) into AA(Z,X ).

Proof. Suppose that x ∈ AA(Z,X ). By Lemma 2, the functions S1(t, x(t)) and S2(t, x(t)),
which are defined in (7) and (8), are discrete almost automorphic functions in t for each x.
That is, for every integer sequence {v′n}n∈Z there exists a subsequence {vn}n∈Z of {v′n}n∈Z
such that

lim
n→∞

S1(t + vn, x(t + vn)) =: S1(t, x(t)),

lim
n→∞

S1(t− vn, x(t− vn)) := S1(t, x(t))

and

lim
n→∞

S2(t + vn, x(t + vn)) =: S2(t, x(t)),

lim
n→∞

S2(t− vn, x(t− vn)) := S2(t, x(t))
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for each t ∈ Z. Let us write

(Hx)(t + vn) = x(t0 + vn)
t+vn−1

∏
s=t0+vn

a(s) +
t+vn−1

∑
k=t0+vn

(
t+vn−1

∏
s=k+1

a(s)

)
(S1(k, x(k)) + S2(k, x(k)))

= x(t0 + vn)
t−1

∏
s=t0

a(s + vn)

+
t−1

∑
k=t0

(
t+vn−1

∏
s=k+vn+1

a(s)

)
(S1(k + vn, x(k + vn)) + S2(k + vn, x(k + vn)))

= x(t0 + vn)
t−1

∏
s=t0

a(s + vn)

+
t−1

∑
k=t0

(
t−1

∏
s=k+1

a(s + vn)

)
(S1(k + vn, x(k + vn)) + S2(k + vn, x(k + vn))).

If we take the limit of (Hx)(t + vn) as n→ ∞ and utilize the Lebesgue convergence
theorem, then we have(

Hx
)
(t) = x0

t−1

∏
s=t0

ā(s) +
t−1

∑
k=t0

(
t−1

∏
s=k+1

ā(s)

)(
S1(k, x̄(k)) + S2(k, x̄(k))

)
.

For the converse part, we can follow a similar procedure. Consider

(
Hx
)
(t− vn) = x(t0 − vn)

t−vn−1

∏
s=t0−vn

ā(s) +
t−vn−1

∑
k=t0−vn

(
t−vn−1

∏
s=k+1

ā(s)

)(
S1(k, x̄(k)) + S2(k, x̄(k))

)
= x(t0 − vn)

t−1

∏
s=t0

ā(s− vn)

+
t−1

∑
k=t0

(
t−vn−1

∏
s=k−vn+1

ā(s)

)(
S1(k− vn, x̄(k− vn)) + S2(k− vn, x̄(k− vn))

)
,

which results in(
Hx
)
(t− vn) = x(t0 − vn)

t−1

∏
s=t0

ā(s− vn)

+
t−1

∑
k=t0

(
t−1

∏
s=k+1

ā(s− vn)

)(
S1(k− vn, x̄(k− vn)) + S2(k− vn, x̄(k− vn))

)
.

By taking the limit of
(

Hx
)
(t− vn) as n → ∞, and using the Lebesgue convergence

theorem, we obtain limn→∞
(

Hx
)
(t− vn) = (Hx)(t). This completes the proof.

Remark 1. It should be highlighted that the condition C4 is a compulsory technical condition for
the construction of existence results. A similar condition can be found in the pioneering work of
Bohner and Mesquita (see [20] (Theorem 3.10)). On the other hand, the main results of [21] do
not require such an abstract condition since the authors concentrate on the solutions of integral
equations rather than the solutions of integro-differential equations.

3.1. Existence Results

Now, we are ready to present our first existence result.

Theorem 2. Assume that C1–C4 hold, and the condition
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C5

sup
t∈Z

t−1

∑
k=t0

∥∥∥∥∥ t−1

∏
s=k+1

a(s)

∥∥∥∥∥
X
(M1 + M2) = κ < 1

is satisfied. Then, the abstract difference Equation (4) has a unique discrete almost automorphic
solution.

Proof. In addition to C1–C4, also suppose that C5 holds. By taking Lemmas 2 and 3 into
consideration, it remains to show that the mapping H(·) given in (6) is a contraction. Let
ξ, ϕ ∈ AA(Z,X ), then we have the following:

‖Hξ − Hϕ‖AA(Z,X )

= sup
t∈Z

∥∥∥∥∥ t−1

∑
k=t0

(
t−1

∏
s=k+1

a(s)

)
(S1(k, ξ(k))− S1(k, ϕ(k)) + S2(k, ξ(k))− S2(k, ϕ(k)))

∥∥∥∥∥
X

≤ sup
t∈Z

t−1

∑
k=t0

∥∥∥∥∥ t−1

∏
s=k+1

a(s)

∥∥∥∥∥
X
(M1 + M2)‖ξ − ϕ‖X

≤ κ‖ξ − ϕ‖AA(Z,X ).

This indicates that H is a contraction; by the Banach fixed point theorem, it has a
unique fixed point. Thus, the nonlinear difference Equation (4) has a unique discrete almost
automorphic solution.

Theorem 3. Assume that the conditions C1–C5 hold. For a positive constant γ, we define the set

Wγ =

{
x ∈ AA(Z,X ) :

∥∥∥x− x0
∥∥∥
AA(Z,X )

≤ γ

}
, (9)

where

x0(t) =
t−1

∑
k=t0

(
t−1

∏
s=k+1

a(s)

)
(S1(k, 0) + S2(k, 0)). (10)

Let ‖x‖AA(Z,X ) ≤ γ and

C6

∥∥∥∥∥ t−1

∏
s=t0

a(s)

∥∥∥∥∥
AA(Z,X )

≤ ψ for all t.

If
‖x0‖Xψ + κγ ≤ γ, (11)

then the nonlinear difference Equation (4) has a unique discrete almost automorphic solution in Wγ.

Proof. Consider the operator H, which is defined in (6). In the proof of Theorem 2, it is
already shown that H is a contraction when the condition C5 holds. Thus, we have to prove
that H maps Wγ into Wγ to conclude the proof. We suppose that x ∈Wγ, and condition (11)
holds. Then, we obtain∥∥∥(Hx)(t)− x0(t)

∥∥∥
AA(Z,X )

≤ ‖x0‖X

∥∥∥∥∥ t−1

∏
s=t0

a(s)

∥∥∥∥∥
AA(Z,X )

+

∥∥∥∥∥ t−1

∑
k=t0

(
t−1

∏
s=k+1

a(s)

)
(S1(k, x(k))− S1(k, 0) + S2(k, x(k))− S2(k, 0))

∥∥∥∥∥
AA(Z,X )
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≤ ‖x0‖Xψ + sup
t∈Z

t−1

∑
k=t0

∥∥∥∥∥ t−1

∏
s=k+1

a(s)

∥∥∥∥∥
X
(M1 + M2)‖x‖X

≤ ‖x0‖Xψ + κγ ≤ γ.

Thus H(Wγ) ⊂Wγ. This implies that H has a unique fixed point due to the contraction
mapping principle, and consequentially, (4) has a unique almost automorphic solution
in Wγ.

Theorem 4. Suppose that the conditions C1–C6 hold, and x0 is as in (10). Consider the closed ball

Wφ =

{
x ∈ AA(Z,X ) :

∥∥∥x− x0
∥∥∥
AA(Z,X )

≤ φ

}
.

If
‖x0‖Xψ + κφ +

∥∥∥Hx0 − x0
∥∥∥
AA(Z,X )

≤ φ, (12)

then (4) has a unique discrete almost automorphic solution in Wφ.

Proof. Pick x ∈Wφ, and assume that (12) is satisfied. Then,∥∥∥(Hx)(t)− x0(t)
∥∥∥
AA(Z,X )

≤
∥∥∥(Hx)(t)−

(
Hx0

)
(t)
∥∥∥
AA(Z,X )

+
∥∥∥(Hx0

)
(t)− x0(t)

∥∥∥
AA(Z,X )

≤ ‖x0‖X

∥∥∥∥∥ t−1

∏
s=t0

a(s)

∥∥∥∥∥
AA(Z,X )

+

∥∥∥∥∥ t−1

∑
k=t0

(
t−1

∏
s=k+1

a(s)

)(
S1(k, x(k))− S1(k, x0(k)) + S2(k, x(k))− S2(k, x0(k))

)∥∥∥∥∥
AA(Z,X )

+
∥∥∥(Hx0

)
(t)− x0(t)

∥∥∥
AA(Z,X )

≤ ‖x0‖Xψ + sup
t∈Z

t−1

∑
k=t0

∥∥∥∥∥ t−1

∏
s=k+1

a(s)

∥∥∥∥∥
X
(M1 + M2)

∥∥∥x− x0
∥∥∥
X
+
∥∥∥(Hx0

)
(t)− x0(t)

∥∥∥
AA(Z,X )

.

This implies∥∥∥(Hx)(t)− x0(t)
∥∥∥
AA(Z,X )

≤ ‖x0‖Xψ + κφ +
∥∥∥Hx0 − x0

∥∥∥
AA(Z,X )

≤ φ,

and consequentially, H
(
Wφ

)
⊂ Wφ. Since the mapping H is a contraction, we deduce

that (4) has a unique discrete almost automorphic solution in Wφ.

Example 1. Consider the nonlinear difference equation given by

x(t + 1) =
1
2

sgn(cos 2πtΩ)x(t)

+
t−1

∑
j=−∞

1
20

(
1
4

(
sin
(π

2
j
)
+ sin

(π

2
j
√

2
)))t−j

x(j) +
∞

∑
j=t

1
20

arctan
(

3t−jx(j)
)

, (13)

where Ω is an irrational number, and x(0) = x0. A comparison between (4) and (13) results in

a(t) =
1
2

sgn(cos 2πtΩ),

Λ1(t, s, x) =
1

20

(
1
4

(
sin
(π

2
s
)
+ sin

(π

2
s
√

2
)))t−s

x,
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and
Λ2(t, s, x) =

1
20

arctan
(
3t−sx

)
.

The function a(·) is discrete almost automorphic for any irrational number Ω (see [41]).
In addition to that, the function f (t) = sin

(
π
2 t
)
+ sin

(
π
2 t
√

2
)

is discrete almost periodic, and
consequently, discrete almost automorphic. Thus, the function Λ1 is discrete bi-almost automorphic.
Despite the fact that the function Λ2 does not contain any almost automorphic arguments, it can be
considered as a discrete bi-almost automorphic function since it is a convolution term. Next, we
analyze Λ1 and Λ2 in detail. We focus on

‖Λ1(t, s, x1)−Λ1(t, s, x2)‖X ≤
∣∣∣∣∣ 1
20

(
1
4

(
sin
(π

2
s
)
+ sin

(π

2
s
√

2
)))t−s

∣∣∣∣∣‖x1 − x2‖X ,

and set

m1(t, s) =

∣∣∣∣∣ 1
20

(
1
4

(
sin
(π

2
s
)
+ sin

(π

2
s
√

2
)))t−s

∣∣∣∣∣.
Subsequently, we write

sup
t∈Z

t−1

∑
j=−∞

m1(t, j) ≤ sup
t∈Z

t−1

∑
j=−∞

1
20

(
1
2

)t−j
,

and obtain the constant M1 = 1
20 . Similarly, we consider

‖Λ2(t, s, x1)−Λ2(t, s, x2)‖X ≤
1

20
3t−s‖x1 − x2‖X ,

and obtain m2(t, s) = 1
20 3t−s. Accordingly, we have the constant M2 = 3

40 . Thus, the conditions
C1–C3 are satisfied. Furthermore, the condition C5 holds since

sup
t∈Z

t−1

∑
k=0

∥∥∥∥∥ t−1

∏
s=k+1

a(s)

∥∥∥∥∥
X
(M1 + M2) = sup

t∈Z

t−1

∑
k=0

1
8

∥∥∥∥∥ t−1

∏
s=k+1

1
2

sgn(cos 2πsΩ)

∥∥∥∥∥
X
≤ 1

16
.

Then, Theorem 2 implies that the nonlinear difference Equation (13) has a unique discrete
almost automorphic solution whenever the technical condition C4 holds.

Furthermore, it is obvious that∥∥∥∥∥t−1

∏
s=0

1
2

sgn(cos 2πsΩ)

∥∥∥∥∥
AA(Z,X )

≤ 1.

If we concentrate on Theorem 3, then we obtain the existence of a unique discrete almost
automorphic solution of (13) in the set

Wγ =

{
x ∈ AA(Z,X ) :

∥∥∥x− x0
∥∥∥
AA(Z,X )

≤ γ

}
for 16

15‖x0‖X ≤ γ by tacitly assuming that the condition C4 holds.

3.2. Bohr–Neugebauer Criterion

In this part of the manuscript, we focus on the connection between the existence
of discrete almost automorphic solutions and bounded solutions of nonlinear difference
equations with almost automorphic arguments. Since this result originated as the Bohr–
Neugebauer theorem, the next result can be regarded as a discrete variant of the Bohr–
Neugebauer theorem for a particular class of nonlinear difference equations.
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Theorem 5. Suppose that the conditions C1–C5 are satisfied. Then, a bounded solution of a
nonlinear abstract difference equation is discrete almost automorphic if and only if it has a relatively
compact range.

Proof. Suppose that x(·) is an almost automorphic solution of (4). This directly implies
that its rangeR is relatively compact.

Assume that C1–C5 hold, and x(·) is a bounded solution of (4) with a relatively
compact rangeR; that is, R̄ is compact. By C1 and C2, for any arbitrary integer sequence
{v′′n}, there exists a subsequence {v′n} of {v′′n} such that the following limits hold:

lim
n→∞

a(t + v′n) = ā(t), lim
n→∞

ā(t− v′n) = a(t),

and

lim
n→∞

Λ1,2
(
t + v′n, s + v′n, x

)
= Λ̄1,2(t, s, x), lim

n→∞
Λ̄1,2

(
t− v′n, s− v′n, x

)
= Λ1,2(t, s, x).

Next, it is clear that x(t + v′n) is a sequence in R̄, and by sequential compactness there
exists a subsequence {vn} of {v′n} so that x(t + vn)→ x̄(t) as n→ ∞. For the sequel, define

ς(t) := x(t0)

(
t−1

∏
s=t0

ā(s)

)
+

t−1

∑
k=t0

(
t−1

∏
s=k+1

ā(s)

)(
S1(k, x(k)) + S2(k, x(k))

)
, (14)

where

S1(k, x(k)) =
k

∑
j=−∞

Λ̄1(k, j, x̄(j)),

and

S2(k, x(k)) =
∞

∑
j=k+1

Λ̄2(k, j, x̄(j)).

We have

‖x(t + vn)− ς(t)‖X

=

∥∥∥∥∥x(t0 + vn)
t+vn−1

∏
s=t0+vn

a(s) +
t+vn−1

∑
k=t0+vn

(
t+vn−1

∏
s=k+1

a(s)

)
(S1(k, x(k)) + S2(k, x(k)))

−x(t0)
t−1

∏
s=t0

ā(s) +
t−1

∑
k=t0

(
t−1

∏
s=k+1

ā(s)

)(
S1(k, x(k)) + S2(k, x(k))

)∥∥∥∥∥
X

≤
∥∥∥∥∥x(t0 + vn)

t−1

∏
s=t0

a(s + vn)− x(t0)
t−1

∏
s=t0

ā(s)

∥∥∥∥∥
X

+

∥∥∥∥∥ t−1

∑
k=t0

(
t−1

∏
s=k+1

a(s + vn)

)
(S1(k + vn, x(k + vn)) + S2(k + vn, x(k + vn)))

−x(t0)

(
t−1

∏
s=t0

ā(s)

)
+

t−1

∑
k=t0

(
t−1

∏
s=k+1

ā(s)

)(
S1(k, x(k)) + S2(k, x(k))

)∥∥∥∥∥
X
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≤
∥∥∥∥∥x(t0 + vn)

t−1

∏
s=t0

a(s + vn)− x(t0)
t−1

∏
s=t0

ā(s)

∥∥∥∥∥
X

+

∥∥∥∥∥ t−1

∑
k=t0

(
t−1

∏
s=k+1

a(s + vn)−
t−1

∏
s=t0

ā(s)

)
(S1(k + vn, x(k + vn)) + S2(k + vn, x(k + vn)))

∥∥∥∥∥
X

+

∥∥∥∥∥ t−1

∑
k=t0

(
t−1

∏
s=t0

ā(s)

)
(S1(k + vn, x(k + vn)) + S2(k + vn, x(k + vn))

−S1(k, x(k))− S2(k, x(k))
)∥∥
X

≤
∥∥∥∥∥x(t0 + vn)

t−1

∏
s=t0

a(s + vn)− x(t0)
t−1

∏
s=t0

ā(s)

∥∥∥∥∥
X

+
t−1

∑
k=t0

∥∥∥∥∥ t−1

∏
s=k+1

a(s + vn)−
t−1

∏
s=t0

ā(s)

∥∥∥∥∥
X
‖S1(k + vn, x(k + vn)) + S2(k + vn, x(k + vn))‖X

+
t−1

∑
k=t0

∥∥∥∥∥ t−1

∏
s=t0

ā(s)

∥∥∥∥∥(∥∥S1(k + vn, x(k + vn))− S1(k, x(k))
∥∥
X

+
∥∥S2(k + vn, x(k + vn))− S2(k, x(k))

∥∥
X
)
.

In the light of Lebesgue convergence theorem, we obtain ‖x(t + vn)− ς(t)‖X →
0 as n → ∞. Thus, x̄(t) = ς(t), and x̄ satisfies (14). Now, it remains to show that
limn→∞ x̄(t− vn) = x(t) for each t ∈ Z. We focus on

‖x̄(t− vn)− x(t)‖X

≤
∥∥∥∥∥x(t0 − vn)

t−vn−1

∏
s=t0−vn

ā(s)− x(t0)
t−1

∏
s=t0

a(s)

∥∥∥∥∥
X

+

∥∥∥∥∥ t−vn−1

∑
k=t0−vn

(
t−vn−1

∏
s=k+1

ā(s)

)(
S1(k, x(k)) + S2(k, x(k))

)
−

t−1

∑
k=t0

(
t−1

∏
s=k+1

a(s)

)
(S1(k, x(k)) + S2(k, x(k)))

∥∥∥∥∥
X

=

∥∥∥∥∥x(t0 − vn)
t−vn−1

∏
s=t0−vn

ā(s)− x(t0)
t−1

∏
s=t0

a(s)

∥∥∥∥∥
X

+

∥∥∥∥∥ t−1

∑
k=t0

(
t−1

∏
s=k+1

ā(s− vn)

)(
k

∑
j=−∞

Λ̄1(k− vn, j− vn, x̄(j− vn))

+
∞

∑
j=k+1

Λ̄2(k− vn, j− vn, x̄(j− vn))

)
−

t−1

∑
k=t0

(
t−1

∏
s=k+1

a(s)

)(
k

∑
j=−∞

Λ1(k, j, x(j))

+
∞

∑
j=k+1

Λ2(k, j, x(j))

)∥∥∥∥∥
X

≤
∥∥∥∥∥x(t0 − vn)

t−1

∏
s=t0

ā(s− vn)− x(t0)
t−1

∏
s=t0

a(s)

∥∥∥∥∥
X
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+

∥∥∥∥∥ t−1

∑
k=t0

(
t−1

∏
s=k+1

ā(s− vn)

)(
k

∑
j=−∞

Λ̄1(k− vn, j− vn, x̄(j− vn))

+
∞

∑
j=k+1

Λ̄2(k− vn, j− vn, x̄(j− vn))−
k

∑
j=−∞

Λ1(k, j, x̄(j− vn))−
∞

∑
j=k+1

Λ2(k, j, x̄(j− vn))

)∥∥∥∥∥
X

+

∥∥∥∥∥ t−1

∑
k=t0

(
t−1

∏
s=k+1

ā(s− vn)−
t−1

∏
s=k+1

a(s)

)(
k

∑
j=−∞

Λ1(k, j, x̄(j− vn)) +
∞

∑
j=k+1

Λ2(k, j, x̄(j− vn))

)∥∥∥∥∥
X

+

∥∥∥∥∥ t−1

∑
k=t0

(
t−1

∏
s=k+1

a(s)

)(
k

∑
j=−∞

(Λ1(k, j, x̄(j− vn))−Λ1(k, j, x(j)))

+
∞

∑
j=k+1

(Λ2(k, j, x̄(j− vn))−Λ2(k, j, x(j)))

)∥∥∥∥∥
X

≤
∥∥∥∥∥x(t0 − vn)

t−1

∏
s=t0

ā(s− vn)− x(t0)
t−1

∏
s=t0

a(s)

∥∥∥∥∥
X

(15)

+
t−1

∑
k=t0

∥∥∥∥∥ t−1

∏
s=k+1

ā(s− vn)

∥∥∥∥∥
X

(
k

∑
j=−∞

∥∥Λ̄1(k− vn, j− vn, x̄(j− vn))−Λ1(k, j, x̄(j− vn))
∥∥
X (16)

+
∞

∑
j=k+1

∥∥Λ̄2(k− vn, j− vn, x̄(j− vn))−Λ2(k, j, x̄(j− vn))
∥∥
X

)
(17)

+
t−1

∑
k=t0

∥∥∥∥∥ t−1

∏
s=k+1

ā(s− vn)−
t−1

∏
s=k+1

a(s)

∥∥∥∥∥
X

∥∥∥∥∥ k

∑
j=−∞

Λ1(k, j, x̄(j− vn)) +
∞

∑
j=k+1

Λ2(k, j, x̄(j− vn))

∥∥∥∥∥
X

(18)

+
t−1

∑
k=t0

∥∥∥∥∥ t−1

∏
s=k+1

a(s)

∥∥∥∥∥
X

(
k

∑
j=−∞

‖Λ1(k, j, x̄(j− vn))−Λ1(k, j, x(j))‖X (19)

+
∞

∑
j=k+1

‖Λ2(k, j, x̄(j− vn))−Λ2(k, j, x(j))‖X

)
. (20)

The expressions in (15)–(18) converge to 0 as n → ∞. On the other hand, from
(19) and (20), we obtain

t−1

∑
k=t0

∥∥∥∥∥ t−1

∏
s=k+1

a(s)

∥∥∥∥∥
X

×
(

k

∑
j=−∞

‖Λ1(k, j, x̄(j− vn))−Λ1(k, j, x(j))‖X +
∞

∑
j=k+1

‖Λ2(k, j, x̄(j− vn))−Λ2(k, j, x(j))‖X

)

≤
t−1

∑
k=t0

∥∥∥∥∥ t−1

∏
s=k+1

a(s)

∥∥∥∥∥
X

(
k

∑
j=−∞

m1(k, j)‖x̄(j− vn)− x(j)‖X +
∞

∑
j=k+1

m2(k, j)‖x̄(j− vn)− x(j)‖X

)
,

where we employed C3. Since x is bounded, ‖x̄(j− vn)− x(j)‖X forms a bounded se-
quence, and consequently, there exists a subsequence

{
vp
}

of {vn} so that∥∥x̄
(
t− vp

)
− x(t)

∥∥
X → θ(t)

as p→ ∞. This implies the inequality

θ(t) ≤
t−1

∑
k=t0

∥∥∥∥∥ t−1

∏
s=k+1

a(s)

∥∥∥∥∥
X

(
k

∑
j=−∞

m1(k, j)θ(j) +
∞

∑
j=k+1

m2(k, j)θ(j)

)
,
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and results in θ(t) = 0 due to C5. Therefore, x(·) is a discrete almost automorphic solution
of (4). The proof is complete.

Remark 2. As underlined in [21] (Remark 4.5), it is worth noting that relative compactness can be
replaced with boundedness in the statement of Theorem 5 when X is finite dimensional.

Remark 3. As a direct consequence of Theorem 5, one may easily conclude that any solution of the
nonlinear difference Equation (13) given in Example 1 with a relatively compact range is discrete
almost automorphic.

Example 2. Let X =R and Ω be an irrational number. Consider the following infinite delayed
Volterra difference equation

x(t + 1) =
1
4

sin
(

1
2 + cos t + cos(Ωt)

)
+

t−1

∑
j=−∞

1
10

(
1
2

cos
(

π j
4

))t−j 1
1 + x2(j)

, (21)

which is a particular form of (4). A direct comparison between (21) and (4) results in

a(t) =
1
4

sin
(

1
2 + cos t + cos(Ωt)

)
,

Λ1(t, s, x) =
1
10

(
1
2

cos
(

π j
4

))t−j 1
1 + x2(j)

,

and
Λ2(t, s, x) = 0.

Here we use the initial data x(0) = x0 by assuming C4 holds. Notice that a is discrete almost
automorphic (see [42] (Remark 2.2) and [19] (Remark 2.2)) and Λ1 is bi-periodic in t and s; therefore,
it is discrete bi-almost automorphic in t and s, uniformly for x. Thus, the conditions C1 and C2 are
satisfied. Moreover, we have

|Λ1(t, s, x)−Λ1(t, s, y)| ≤ 1
10

∣∣∣∣∣
(

1
2

cos
(

π j
4

))t−j
∣∣∣∣∣
∣∣∣∣ 1
1 + x2 −

1
1 + y2

∣∣∣∣
≤ 1

10

∣∣∣∣∣
(

1
2

cos
(

π j
4

))t−j
∣∣∣∣∣|x− y|,

where

m1(t, s) =
1
10

∣∣∣∣∣
(

1
2

cos
(

π j
4

))t−j
∣∣∣∣∣.

Consequentially, the condition C3 is satisfied. In addition, one may easily verify that C5 holds.
Due to Lemma 1, the solution of (21) can be written as

x(t) = x0

t−1

∏
k=0

(
1
4

sin
(

1
2 + cos k + cos(Ωk)

))

+
t−1

∑
k=0

(
t−1

∏
s=k+1

(
1
4

sin
(

1
2 + cos s + cos(Ωs)

))) k

∑
j=−∞

1
10

(
1
2

cos
(

π j
4

))k−j 1
1 + x2(j)

,

and it is bounded. Then, Theorem 5 implies that it is discrete almost automorphic.

4. Conclusions

This study focuses on certain kinds of nonlinear difference equations, and provides an
elaborative analysis on the existence of discrete almost automorphic solutions under suffi-
cient conditions by fixed point theory. Utilization of the contraction mapping principle in
the construction of the main results enables us to obtain the sufficient conditions regarding
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the existence and uniqueness of the solutions swiftly and elementarily. In addition to the
main outcomes regarding the existence and uniqueness of almost automorphic solutions,
the present work provides a discrete Bohr–Neugebauer-type theorem, and polishes the rela-
tionship between the existence of bounded and discrete almost automorphic solutions. To
the best of our knowledge, our paper is the first to propose a Bohr–Neugebauer-type result
for difference equations. Below, we exhibit our concluding remarks and future directions.

A. Difference equations are a very nice outlet to study some real-life models with a
biological background. From our mathematical point of view, it may be an interesting
task to relate almost periodic and almost automorphic functions with biological
models in a similar direction as paper [43], which focuses on periodic functions.
Moreover, the abstract outcomes of this study can be implemented on some particular
models in real-life processes.

B. As is well-known, there are various classes of almost automorphic functions, such as
asymptotically almost automorphic functions, Weyl almost automorphic functions,
Besicovitch almost automorphic functions, and Stepanov almost automorphic func-
tions. These specific notions can be adapted to the abstract difference equations that
are considered in this work, and the outcomes of this manuscript can be reestablished.

C. The theory of time scales has become a hot topic in the last two decades since it avoids
separate studies of differential and difference equations. In the existing literature,
scholars have generalized already established theories on hybrid time domains. Moti-
vated by this popularity, one may unify the main outcomes of this research on time
scales that are translation invariant.

D. Quantum difference equations are an alternative to ordinary difference equations
for discretization of differential equations. Indeed, q-difference equations provide
better approximations for differential equations in particular cases. It is always
an attracting task to focus on periodic and almost periodic structures on quantum
domains since they are not translation invariant, i.e., quantum domains are not closed
under addition. As a continuation of this study, it might be an interesting task to
obtain a Bohr–Neugebauer-type theorem for q-difference equations by drawing on
inspiration from the manuscripts [20,44].
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