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Abstract: Lauricella, G. in 1893 defined four multidimensional hypergeometric functions FA, FB, FC

and FD. These functions depended on three variables but were later generalized to many variables.
Lauricella’s functions are infinite sums of products of variables and corresponding parameters, each
of them has its own parameters. In the present work for Lauricella’s function F(n)

A , the limit formulas
are established, some expansion formulas are obtained that are used to write recurrence relations,
and new integral representations and a number of differentiation formulas are obtained that are used
to obtain the finite and infinite sums. In the presentation and proof of the obtained formulas, already
known expansions and integral representations of the considered F(n)

A function, definitions of gamma
and beta functions, and the Gaussian hypergeometric function of one variable are used.

Keywords: Appell functions; Lauricella functions; expansion formulas; integral representation;
differentiation formulas; summation formulas
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1. Introduction and Preliminaries

The great success of the theory of hypergeometric functions of a single variable has
stimulated the development of a corresponding theory in two or more variables. Multiple hy-
pergeometric functions arise in many areas of modern mathematics, and they enable one
to solve constructively many topical problems important for theory and applications [1,2].

In this paper we consider the function F(n)
A (a, b1, ..., bn;c1, ..., cn;x1, ..., xn) introduced

by Lauricella [3] as one of the most natural generalizations of the Gauss hypergeometric
function F(a, b; c; x) to the case of n complex variables (x1, ..., xn) := x ∈ Cn and complex
parameters a ∈ C, (b1, ..., bn) := b ∈ Cn and (c1, ..., cn) := c ∈ Cn. Recall that the
Gauss function (of a single complex variable) is defined by the series

F(a, b; c; x) :=
∞

∑
k=0

(a)k(b)k
(c)k

xk

k!
, (1)

which converges in the unit disk U : {x ∈ C : |x| < 1}. Outside U this function is an
analytic continuation of (1). Here, the expression (a)k, called the Pochhammer symbol, is
defined in terms of the gamma function Γ(s) by

(a)k :=
Γ(a + k)

Γ(a)
. (2)

For an integer k ≥ 0 it is a product of the form

Mathematics 2023, 11, 4978. https://doi.org/10.3390/math11244978 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11244978
https://doi.org/10.3390/math11244978
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8764-4751
https://orcid.org/0000-0003-3542-8309
https://doi.org/10.3390/math11244978
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11244978?type=check_update&version=2


Mathematics 2023, 11, 4978 2 of 10

(a)0 = 1, (a)k = a(a + 1)...(a + k − 1), k = 1, 2, ....

It is assumed in (1) that the parameters a, b, and c can take arbitrary complex values,
with the exception that c cannot be a non-positive integer (c /∈ Z−) .

Gauss hypergeometric function (1) is contained in the generalized hypergeometric
function pFq involving p numerator parameters, a1, ..., ap, and q denominator parameters,
b1, ..., bq, as special case. Following the standard notations and conventions, we define it
here as follows [4] p. 182:

pFq
(
a1, ..., ap; b1, ..., bq; x

)
:=

∞

∑
k=0

∏
p
j=1

(
aj
)

k

∏
q
j=1

(
bj
)

k

xk

k!
.

An interesting further generalization of the Gaussian series F(a, b; c; x) is due to Appell
who has defined, in 1880, four series, F1 to F4, for example, one of which is defined
as follows [5]

F2(a, b1, b2; c1, c2; x, y) =
∞

∑
m,n=0

(a)m+n(b1)m(b2)n
(c1)m(c2)n

xm

m!
yn

n!
(c1, c2 ̸= 0,−1,−2, ...). (3)

The Appell function F2(a, b1, b2; c1, c2; x, y) converges in the squared |x|+ |y| < 1.
The Appel function F2 has been studied quite well [6,7] and has found its application

in the theory of boundary value problems and potential theory for partial differential
equations with singular coefficients [8].

The first Lauricella function, which we denote by F(n)
A (a, b;c;x) for brevity, is defined

for (c /∈ Z−) by the n−variate hypergeometric series

F(n)
A (a, b;c;x) =

∞

∑
|k|=0

(a)|k|(b1)k1 ...(bn)kn

(c1)k1 ...(cn)kn

xk1
1

k1!
...

xkn
n

kn!
(
cj ̸= 0,−1,−2, ...j = 1, n

)
, (4)

which converges in |x1|+ ... + |xn| < 1. The sum in (4) is taken over the multi-indices
k := (k1, ..., kn) with non-negative integer components k1 ≥ 0, ..., kn ≥ 0, and we de-
fine |k| := k1 + ... + kn.

Lauricella, G. gave several elementary properties of this series including, for instance,
integral representations of the Eulerian type, transformations and reducible cases, and the
system of partial differential equations associated with him. A summary of Lauricella’s
work is given by Appell and Kampé de Fériet [9]. Note that fundamental solutions and ex-
plicit solutions of some boundary value problems for multidimensional singular equations
are expressed through the Lauricella function F(n)

A [10].
Clearly, we have

F(1)
A = F, F(2)

A = F2,

where F and F2 are the Gauss and Appell series defined by (1) and (3), respectively.
In 2013 for the Appell function F2(a, b, b; c, c; w, z) and confluent Appell functions,

Humbert functions, new relations and transformation formulas were obtained. These re-
lations included limit formulas, integral representations, differentiation and recurrence
formulas. Summation formulas for F2, and Humbert functions were derived [11]. In this
work, we will try to generalize the results to the Lauricella function F(n)

A .

2. The Limit Formulas

The existing experience of the authors in the field of research methods for constructing
fundamental solutions for second-order degenerate elliptic equations and solvability of
boundary value problems for non-classical partial differential equations shows that hy-
pergeometric Gaussian or Appel’s functions arise in many cases [12,13]. The properties
of these functions have been very well studied, so reducing hypergeometric functions of
many variables to well-known functions is always a pressing problem. In this section, we



Mathematics 2023, 11, 4978 3 of 10

represent the multidimensional Lauricella’s function Fn
A (4) as the product of n generalized

Gaussian functions converging to the limit.

lim
ϵ→0

F(n)
A

( a
ϵ

, b;c;ϵx
)
=

n

∏
j=1

1F1
(
bj; cj; axj

)
, (5)

lim
ϵ→0

F(n)
A

(
a
ϵ

,
b
ϵ

;
c1

ϵ
, ...,

cr

ϵ
,cr+1, ..., cn;ϵx1, ..., ϵxr, ϵ2xr+1, ..., ϵ2xn

)
=

r

∏
i=1

eabixi/ci
n

∏
j=r+1

0F1
(
−; cj; abjxj

)
, (6)

lim
ϵ→0

F(n)
A

(
a
ϵ

, b1, ..., br,
br+1

ϵ
, ...,

bn

ϵ
;c;ϵx1, ..., ϵxr, ϵ2xr+1, ..., ϵ2xn

)
=

r

∏
i=1

1F1(bi; ci; axi)
n

∏
j=r+1

0F1
(
−; cj; abjxj

)
, (7)

lim
ϵ→0

F(n)
A

(
a
ϵ

,
b
ϵ

;c;ϵ2x
)
=

n

∏
j=1

0F1
(
−; cj; abjxj

)
. (8)

The obtained limit formulas reduce a function of many variables to the generalized
Gaussian functions of one variable 0F1 and 1F1.

3. Some Decomposition Formulas Associated With the Lauricella Function F(n)
A

For a given multiple hypergeometric function, it is useful to find a decomposition
formula that would express the multivariable hypergeometric function in terms of products
of several simpler hypergeometric functions of fewer variables.

Burchnall and Chaundy [6,14] systematically presented a number of expansion and
decomposition formulas for some double hypergeometric functions in a series of sim-
pler hypergeometric functions. For example, the Appell function F2 defined by (3) has
the expansion:

F2(a, b1, b2; c1, c2; x, y) =
∞

∑
i=0

(a)i(b1)i(b2)i
i!(c1)i(c2)i

×

× xiyiF(a + i, b1 + i; c1 + i; x)F(a + i, b2 + i; c2 + i; y).

(9)

Following the works [6,14] Hasanov and Srivastava [15] proved that for all n ∈ N\{1}
the following recurring formula is true [16]

F(n)
A (a, b;c;x) =

∞

∑
|k′ |=0

(a)|k′ |(b1)|k′ |(b2)k2 ...(bn)kn

k2!...kn!(c1)|k′ |(c2)k2 ...(cn)kn

x|k
′ |

1 xk2
2 ...xkn

n ×

F
(
a + |k′|, b1 + |k′|;c1 + |k′|;x1

)
×

F(n−1)
A

(
a + |k′|, b2 + k2, ..., bn + kn; c2 + k2, ...., cn + kn; x2, ..., xn

)
,

(10)

where |k′| := k2 + ... + kn.
However, due to the recurrence of formula (10), additional difficulties may arise in the

applications of this expansion. Further study of the properties of the Lauricella function
F(n)

A showed that formula (10) can be reduced to a more convenient form.
Before proceeding to the presentation of the main result of this section, we introduce

the notations

A(k, n) =
k+1

∑
i=2

n

∑
j=i

mi,j, B(k, n) =
k

∑
i=2

mi,k +
n

∑
i=k+1

mk+1,i,
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|mn| :=
n

∑
i=2

n

∑
j=i

mi,j, Mn! :=
n

∏
i=2

n

∏
j=i

mi,j!

where k and n are natural numbers with k ≤ n; mi,j are nonnegative integers for 2 ≤ i ≤ j ≤ n.
Let a, b1,. . . , bn are real numbers with a ̸= 0, −1, −2, ... and a > |b|, where |b| :=

b1 + ... + bn. Then the following decomposition formula holds true at n ∈ N

F(n)
A (a, b; c; x) =

∞

∑
|mn |=0

(a)A(n,n)

Mn!

n

∏
k=1

(bk)B(k,n)

(ck)B(k,n)
×

×
n

∏
k=1

xB(k,n)
k F(a + A(k, n), bk + B(k, n); ck + B(k, n); xk).

(11)

The main result obtained in this section is the expansion Formula (11). We carry out
the proof of the equality (11) by the method of mathematical induction.

In the case n = 1 the equality (11) is obvious, that is, the Gaussian hypergeometric
function (1) is easily derived.

Let n = 2. Since A(1, 2) = A(2, 2) = B(1, 2) = B(2, 2) = m2,2 := i, we obtain
the expansion Formula (9). So the Formula (11) works for n = 1 and n = 2. Further,
for details, see [17].

4. Integral Representations

The function F(n)
A can be initially represented by the following integral [9] p. 115,

Equation (5) (see, also [18] p. 451, Equation 7.2.4 (54))

F(n)
A (a, b;c;x) =

n

∏
j=1

Γ
(
cj
)

Γ
(
bj
)
Γ
(
cj − bj

) ×
×

1∫
0

...
1∫

0︸ ︷︷ ︸
n times

n

∏
j=1

[
t
bj−1
j

(
1 − tj

)cj−bj−1
]
(1 − t1x1 − ... − tnxn)

−adt1...dtn, (12)

where Re (cj) > Re (bj) > 0 (j = 1, n). By integrating with respect to tr+1, ..., tn and using

the integral representation (12) for F(r)
A , (1 ≤ r ≤ n), a right side of (12) we can reduce the

right side of (12) to:

F(n)
A (a, b;c;x) =

r

∏
j=1

Γ
(
cj
)

Γ
(
bj
)
Γ
(
cj − bj

) 1∫
0

...
1∫

0︸ ︷︷ ︸
r times

r

∏
j=1

[
t
bj−1
j

(
1 − tj

)cj−bj−1
]
(1 − TrXr)

−a ×

×F(n−r)
A

(
a, br+1, ..., bn;cr+1, ..., cn;

xr+1

1 − TrXr
, ...,

xn

1 − TrXr

)
dt1...dtr, (13)

where Re (cj) > Re (bj) > 0 (j = 1, r), TrXr = t1x1 + ... + trxr.
If we put r = 1 in the Formula (13), then we obtain

F(n)
A (a, b;c;x) =

Γ(cn)

Γ(bn)Γ(cn − bn)

1∫
0

tbn−1(1 − t)cn−bn−1(1 − txn)
−a ×

×F(n−1)
A

(
a, b′;c′;

x′

1 − txn

)
dt, (14)

where Re (cn) > Re (bn) > 0 . With a change of variables t → (t − 1)/(txn) we obtain
the following:
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F(n)
A (a, b;c;x) =

Γ(cn)

Γ(bn)Γ(cn − bn)

(
1
xn

)cn−1
×

×
1/(1−xn)∫

1

ta−cn(t − 1)bn−1(1 − t + txn)
cn−bn−1F(n−1)

A
(
a, b′;c′;tx′

)
dt, (15)

where Re (cn) > Re (bn) > 0 . With a simple change of parameter t → 1 − v/t followed by
change of variable t → t/v, Equation (15) implies

F(n)
A

(
a, b;c;vx′, 1 − v

z

)
=

vcn−bn−azbn(z − v)1−cn

B(bn, cn − bn)
×

×
z∫

v

ta−cn(t − v)bn−1(z − t)cn−bn−1F(n−1)
A

(
a, b′;c′;tx′

)
dt, (16)

where Re (cn) > Re (bn) > 0 , |vx1|+ ... + |vxn−1|+ |1 − v/z| < 1, and B(bn, cn − bn) is the
beta function, whence

z∫
v

ts−1(t − v)u−1(z − t)a−s−1F(n−1)
A

(
a, b′;c′;tx′

)
dt = B(u, a − s − u + 1)×

×vs+u−1z−u(z − v)a−sF(n)
A

(
a, b′, u;c′, a − s + 1;vx′, 1 − v

z

)
(17)

for Re (a − s + 1) > Re (u) > 0 , |vx1|+ ... + |vxn−1|+ |1 − v/z| < 1.
Another representation of the Lauricella function F(n)

A has the form

F(n)
A (a, b;c;x) =

1
Γ(a)

∞∫
0

ta−1e−t
n

∏
j=1

1F1
(
bj; cj; txj

)
dt (18)

with Re (a) > 0 and |x1|+ ... + |xn| < 1. From this formula, we obtain the equality
∞∫

0

ts−1e−pt
n

∏
j=1

1F1
(
bj; cj; txj

)
dt =

Γ(s)
ps F(n)

A

(
s, b;c;

x
p

)
, (19)

that can be regarded as the Laplace transform

L[ f ](p) =
∞∫

0

e−pt f (t)dt, (20)

here Re (s) > 0, Re (p) > 0,

M[ f ](s) =
∞∫

0

ts−1 f (t)dt, (21)

of the functions

ts−1
n

∏
j=1

1F1
(
bj; cj; txj

)
and e−pt

n

∏
j=1

1F1
(
bj; cj; txj

)
, (22)

accordingly. This Equation (19) can be used to derive new formulas of Laplace and Mellin
transformations. For example, the Laplace transform of the product of n incomplete gamma
functions is

L
[
ts−1 ∏n

j=1 γ
(
µj, ajt

)]
(p) =

Γ(s + µ)

ps+µ

n

∏
j=1

a
µj
j

µj
F(n)

A

[
s + µ, µ1, ..., µn;

µ1 + 1, ..., µn + 1;
− a1

p
, ...,− an

p

]
, (23)
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µ := µ1 + ... + µn, Re (s) > 0. Re (p) > Re (a1) + ...+ Re (an). The Mellin transform of
the product of the error functions is

M
[
e−ct2

∏n
j=1 er f

(
ajt
)]
(s) =

=
2n−1Γ

( s
2 + n − 1

)
∏n

j=1 aj

πn/2c
s
2+n−1

F(n)
A

[
s
2 + n − 1, 1

2 , ..., 1
2 ;

3
2 , ..., 3

2 ;
−

a2
1
c

, ...,− a2
n
c

]
, (24)

where Re (s) > 2 − 2n. Re (c) > Re (a2
1) + ...+ Re (a2

n). By multiplying Equation (4) by
ts−1(w − t)bn−s−1 and integrating over the interval [0, w], we obtain

w∫
0

ts−1(w − t)bn−s−1F(n)
A
(
a, b;c;x′, txn

)
dt =

= wbn−1B(s, bn − s)F(n)
A
(
a, b′, s;c;x′, wxn

)
, (25)

where 0 < Re (s) < Re (bn) , |x1|+ ... + |xn−1|+ |wxn| < 1. Similarly,
w∫

0

tcn−1(w − t)s−cn−1F(n)
A
(
a, b;c;x′, txn

)
dt =

= ws−1B(cn, s − cn)F(n)
A
(
a, b;c′, cn;x′, wxn

)
, (26)

where 0 < Re (c) < Re (s) , |x1|+ ... + |xn−1|+ |wxn| < 1,
w∫

0

ts−1(w − t)a−s−1F(n)
A (a, b;c;tx)dt = wa−1B(s, a − s)F(n)

A (s, b;c;wx), (27)

where 0 < Re (s) < Re (a) , |x1|+ ... + |xn| < 1/w.
The purpose of the study of this section is to obtain a new formula for the integral

representation of the function F(n)
A , thus equality (18) is formulated and by means of the

Laplace and Mellin transforms Formulas (26) and (27) for it are obtained.

5. Differentiation Formulas

This section provides formulas for differentiation of the Lauricella’s function F(n)
A .

Denoting Dxj f = d f /dxj, we have

Dr
xj

[
F(n)

A (a, b;c;x)
]
=

(a)r
(
bj
)

r(
cj
)

r

F(n)
A
(
a, b + rej;c + rej;x

)
, (28)

Dr
t

[
ta+r−1F(n)

A (a, b;c;tx)
]
= (a)rta−1F(n)

A (a + r, b;c;tx), (29)

Dr
xj

[
x

bj+r−1
j F(n)

A (a, b;c;x)
]
=
(
bj
)

rx
bj−1
j F(n)

A
(
a, b + rej;c;x

)
, (30)

Dr
xj

[
x

cj−1
j F(n)

A (a, b;c;x)
]
= (−1)k(1 − cj

)
rx

cj−r−1
j F(n)

A
(
a, b;c − rej;x

)
, (31)(

x2
j Dxj

)r[
x

bj
j F(n)

A (a, b;c;x)
]
=
(
bj
)

rx
bj+r
j F(n)

A
(
a, b + rej;c;x

)
, (32)(

Dxj x
2
j

)r[
x

bj−2
j F(n)

A (a, b;c;x)
]
=
(
bj
)

rx
bj+r−2
j F(n)

A
(
a, b + rej;c;x

)
, (33)(

t2Dt

)r[
taF(n)

A (a, b;c;tx)
]
= (a)rta+rF(n)

A (a + r, b;c;tx), (34)
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Dr
xj

[
x

bj+r−1
j

(
1 + xj

)−bj F(n)
A

(
a, b;c;x1, ..., xj−1,

xj

xj + 1
, xj+1, ..., xn

)]

=

(
bj
)

rx
bj−1
j(

1 + xj
)bj+r F(n)

A

(
a, b + rej;c;x1, ..., xj−1,

xj

xj + 1
, xj+1, ..., xn

)
, (35)

where ej := (0, ..., 1, ..., 0) denote the vectors with j–th component equal to 1 and the others
equal to 0. (

Dtt2
)r[

ta−2F(n)
A (a, b;c;tx)

]
= (a)rta+r−2F(n)

A (a + r, b;c;tx). (36)

These new differentiation Formulas (28)–(36) can be proved by using the definition (4)
or the expansion Formula (11).

6. Finite Sums

The differentiation formulas derived in the preceding section can be applied to derive
new finite sums that involve the Lauricella function F(n)

A . Utilizing the generalized Leibnitz
formula for differentiating a product of two functions, the differentiation formula (28) leads
to the following relationship:

Dr
xj

[
x

1−cj
j x

cj−1
j F(n)

A (a, b;c;x)
]

=
r

∑
k=0

(
r
k

)
Dr−k

xj

[
x

1−cj
j

]
Dk

xj

[
x

cj−1
j F(n)

A (a, b;c;x)
]

=
r

∑
k=0

(
r
k

)(cj − 1
)

r

(
1 − cj

)
k(

2 − cj − r
)

k

x−r
j F(n)

A
(
a, b;c − kej;x

)
,

whence

r

∑
k=0

(−1)k
(

r
k

) (
1 − cj

)
k(

2 − cj − r
)

k

F(n)
A
(
a, b;c − kej;x

)
= (−1)r (a)r

(
bj
)

r(
cj
)

r

(
cj − 1

)
r

xr
j F(n)

A
(
a + r, b + rej;c + rej;x

)
, (37)

r

∑
k=0

(−1)k
(

r
k

)(cj + r − 1
)

k(
cj
)

k

F(n)
A
(
a, b;c + kej;x

)
= (−1)r (a)r

(
bj
)

r(
cj
)

2r

xr
j F(n)

A
(
a + r, b + rej;c + 2rej;x

)
, (38)

r

∑
k=0

(−1)k
(

r
k

)
F(n)

A
(
a, b′,−k; c; x

)
=

(a)r

(cn)r
xr

nF(n−1)
A

(
a + r, b′;c′;x′

)
, (39)

r

∑
k=0

F(n)
A
(
b′,−k; c; x

)
=

cn − 1
(a − 1)xn

[
F(n−1)

A
(
a − 1, b′;c′;x′

)
− F(n)

A
(
a − 1, b′,−r − 1;c′, cn − 1;x

)]
. (40)

7. Infinite Sums

Various infinite series with F(n)
A can be obtained using the definition (4) and the

expansion Formula (11).
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∞

∑
k=0

(a)k
k!

tkF(n)
A (a + k, b;c;x) =

∞

∑
k=0

(a)k
k!

tk
∞

∑
|k|=0

(a + k)|k|(b1)k1 ...(bn)kn

(c1)k1 ...(cn)kn

xk1
1

k1!
...

xkn
n

kn!

=
∞

∑
|k|=0

∞

∑
k=0

(a)k
k!

tk (a + k)|k|(b1)k1 ...(bn)kn

(c1)k1 ...(cn)kn

xk1
1

k1!
...

xkn
n

kn!

=
∞

∑
|k|=0

(1 − t)−a−|k| (a)|k|(b1)k1 ...(bn)kn

(c1)k1 ...(cn)kn

xk1
1

k1!
...

xkn
n

kn!

= (1 − t)−aF(n)
A

(
a, b;c;

x
1 − t

)
,

whence
∞

∑
k=0

(a)k
k!

tkF(n)
A (a + k, b;c;x) = (1 − t)−aF(n)

A

(
a, b;c;

x
1 − t

)
, (41)

where |t| < 1,
n
∑

s=1
|xs| < |1 − t|. Similarly,

∞
∑

k=0

(bj)k
k! tkF(n)

A
(
a, b + kej;c;x

)
= (1 − t)−bj F(n)

A

(
a, b;c;x1, ..., xj−1,

xj
1−t , xj+1, ..., xn

)
, (42)

where |t| < 1,
n

∑
s=1,s ̸=j

|xs|+
xj

1 − t
< 1,

∞
∑

k=0

(a)k(bj)k
k!(cj)k

tkF(n)
A
(
a + k, b + kej;c + kej;x

)
= F(n)

A
(
a, b;c;x1, ..., xj−1, xj + t, xj+1, ..., xn

)
, (43)

where |t| < 1,
n

∑
s=1,s ̸=j

|xs|+ |t + xj| < 1,

∞

∑
k=0

(a)k
(
bj
)

k
(2k)!

(
−xj

)kF(n)
A
(
a + k, b;c1, ..., cj−1, 2k + 1, cj+1, ..., cn;x

)
= F(n−1)

A
(
a, bj;cj;xj

)
+ F(n)

A
(
a, b;c1, ..., cj−1, 1, cj+1, ..., cn;x

)
, (44)

where
n

∑
j=1

|xj| < 1, xj :=
(
x1, ..., xj−1, xj+1, ..., xn

)
,

∞

∑
k=0

(a)k
(
bj
)

k
(2k + 1)!

xk
j F(n)

A
(
a + k, b1, ..., bj−1, bj + k, bj+1, ..., bn;c1, ..., cj−1, 2k + 3, cj+1, ..., cn;x

)
= F(n)

A
(
a, b;c1, ..., cj−1, 2, cj+1, ..., cn;x

)
, (45)

where
n

∑
j=1

|xj| < 1.

8. Recurrence-Type Relations

Corresponding relations for the Gauss hypergeometric function [4] and the expansion
Formula (11) can be used to obtain the following recurrence formulas:

F(n)
A (a, b;c;x) = F(n)

A
(
a, b;c − ej;x

)
−

abjxj

cj
(
cj − 1

) F(n)
A
(
a + 1, b + ej;c + ej;x

)
, (46)
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F(n)
A (a, b;c;x) =

bj

bj − cj + 1
F(n)

A
(
a, b + ej;c;x

)
−

cj − 1
bj − cj + 1

F(n)
A
(
a, b;c − ej;x

)
, (47)

F(n)
A (a, b;c;x) =

bj

cj
F(n)

A
(
a, b + ej;c + ej;x

)
−

bj − cj

cj
F(n)

A
(
a, b;c + ej;x

)
, (48)

F(n)
A (a, b;c;x) = F(n)

A
(
a, b;c + ej;x

)
+

axj

cj
F(n)

A
(
a + 1, b;c + ej;x

)
+

a
(
bj − cj − 1

)
xj

cj
(
cj + 1

) F(n)
A
(
a + 1, b;c + 2ej;x

)
, (49)

F(n)
A (a + r, b;c;x) = F(n)

A (a, b;c;x) +
r−1

∑
k=0

n

∑
j=1

bjxj

cj
F(n)

A
(
a + 1 + k, b + ej;c + ej;x

)
. (50)

The resulting formulas differ in coefficients and parameters and can be applied in
many different cases. Recurrence relations allow us to obtain analytic continuation formulas
for hypergeometric functions.

9. Conclusions

The paper focuses on generalizing the results of a function F2 and applying it to one of
Lauricella’s functions F(n)

A . By using the definition of the function F(n)
A , the limit formulas

are derived, which are expressed by the generalized Gaussian function.
The Burchnall–Chaundy and Shrivastava–Hasanov operators are used to obtain an

expansion formula that decomposes the function F(n)
A as the sum of products of a one-

dimensional hypergeometric function. The expansion formula is then used to prove several
differentiation formulas. Additionally, an integral representation of Lauricella’s func-
tion F(n)

A is derived, leading to new formulas for the Mellin and Laplace transformations.
The paper also introduces finite sum formulas using the generalized Leibniz function
and the differentiation formula. Infinite sum formulas are determined by applying the
expansion formula.

Furthermore, the paper establishes various recurrence relations for the multidimen-
sional function F(n)

A . The methods presented in this work can potentially be applied to
obtain similar results for other hypergeometric series in future research.
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