
Citation: Al-Sarayrah, T.A.; Li, Z.;

Zhu, G.; El-Meligy, M.A.; Sharaf, M.

Verification and Enforcement of

(ϵ, ξ)-Differential Privacy over Finite

Steps in Discrete Event Systems.

Mathematics 2023, 11, 4991. https://

doi.org/10.3390/math11244991

Academic Editor: Qingshan Jiang

Received: 7 November 2023

Revised: 14 December 2023

Accepted: 15 December 2023

Published: 18 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Verification and Enforcement of (ϵ, ξ)-Differential Privacy over
Finite Steps in Discrete Event Systems
Tareq Ahmad Al-Sarayrah 1, Zhiwu Li 2,*, Guanghui Zhu 3, Mohammed A. El-Meligy 4 and Mohamed Sharaf 4

1 School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China
2 Institute of Systems Engineering, Macau University of Science and Technology,

Taipa 999078, Macau SAR, China
3 School of Electrical and Mechanical Engineering, Xuchang University, Xuchang 461000, China
4 Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800,

Riyadh 11421, Saudi Arabia
* Correspondence: zwli@must.edu.mo

Abstract: In the realm of data protection strategies, differential privacy ensures that unauthorized
entities cannot reconstruct original data from system outputs. This study explores discrete event
systems, specifically through probabilistic automata. Central is the protection of state data, partic-
ularly the initial state privacy of multiple starting states. We introduce an evaluation criterion to
safeguard initial states. Using advanced algorithms, the proposed method counters the probabilistic
identification of any state within this collection by adversaries from observed data points. The
efficacy is confirmed when the probability distributions of data observations tied to these states
converge. If a system’s architecture does not meet state differential privacy demands, we propose
an enhanced supervisory control mechanism. This control upholds state differential privacy across
all initial states, maintaining operational flexibility within the probabilistic automaton framework.
Concluding, a numerical analysis validates the approach’s strength in probabilistic automata and
discrete event systems.

Keywords: differential privacy; discrete event system; probabilistic automaton; initial state privacy;
supervisory control

MSC: 93C83

1. Introduction

In the context of expansive data analytics and the handling of large, sensitive datasets,
the RibsNet architecture [1] presents a significant advancement in data center networks,
enhancing the management and confidentiality of extensive data collections. This inno-
vation aligns with the ongoing efforts in data privacy, where methodologies like nearest
similarity-based clustering [2], k-anonymity [3], and augmented l-diversity [4] have been
developed, and both the scholarly community and the industrial sphere are diligently
strengthening the confidentiality of sensitive elements within extensive databases. These
advanced methods strive to balance the essential benefits of big data analytics with the
ethical need for individual privacy [2]. Especially in domains of heightened sensitivity,
such as healthcare, these mechanisms for preserving privacy serve as a sine qua non for en-
gendering data-driven insights while mitigating the inherent risks posed by the disclosure
of personalized data [3,4].

In data privacy, advanced anonymity architectures are being carefully improved to
protect sensitive information in transactional databases. These pioneering algorithms,
frequently modulated by bespoke sensitivity indices dictated by the end users, epitomize a
finely calibrated balance between data obfuscation and utility. Surpassing extant paradigms
in terms of computational frugality and data preservation, these algorithms prioritize

Mathematics 2023, 11, 4991. https://doi.org/10.3390/math11244991 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11244991
https://doi.org/10.3390/math11244991
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7967-4259
https://orcid.org/0000-0001-6722-8366
https://doi.org/10.3390/math11244991
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11244991?type=check_update&version=2

Mathematics 2023, 11, 4991 2 of 25

the diminution of information attrition [5]. In synchrony with the emergent paradigms
in the data privacy landscape, bio-inspired computational strategies such as the black
hole algorithm are being judiciously employed to surmount the conventional limitations
endemic to k-anonymity models. Preliminary empirical evidence substantiates the black
hole algorithm’s superior capacity for amplifying data utility when juxtaposing against
existing frameworks [6].

Differential privacy is a game-changing concept that precisely measures the privacy
risks associated with using statistical databases. Transcending classical paradigms, this
framework contends with privacy infirmities that affect even those individuals who are
conspicuously absent from the database’s annals. Through the deployment of a sophisti-
cated suite of algorithms, differential privacy navigates an impeccable equilibrium between
maximizing data utility and furnishing unassailable privacy guarantees. As a result, it
carves out a novel ambit in the realm of secure, yet perspicacious, data analytics [7,8].

The incorporation of stochastic noise has solidified its role as a quintessential instru-
ment for attaining differential privacy, providing a rigorous framework for individual
data safeguarding within collective data assemblages. Employing exacting mathematical
formulations such as ϵ-differential [9] and (ϵ, δ)-differential privacy [10], this approach
critically evaluates the performance metrics of assorted noise-introduction protocols. It
furnishes a nuanced exegesis of the intrinsic trade-offs between data concealment and
utility, notably in the realm of consensus algorithms.

Advanced frameworks that integrate noise have been developed to protect the subtle
differences between similar datasets using differential privacy principles. These frame-
works facilitate the injection of stochastic noise, which adheres to various probabilistic
distributions, such as the Laplacian or Gaussian models, into the results of data queries. By
doing so, they fulfill the stipulated privacy assurances [10,11].

In the evolving field of differential privacy, especially for qualitative data, moving from
global sensitivity models to localized sensitivity approaches is a significant change. While
the exponential mechanism [12] has long served as the bedrock for global sensitivity-centric
strategies, the recently unveiled local dampening mechanism [13] inaugurates a more
sophisticated and malleable architecture for safeguarding data privacy. This innovative
development exploits local sensitivity metrics to furnish more contextually nuanced and
granular privacy assurances, thereby pioneering new frontiers in the intricate realm of
qualitative data protection.

Discrete event systems (DESs) function as a formidable paradigm for the conceptual-
ization, scrutiny, and governance of a diverse gamut of systems, wherein the conceptual
entity of an ‘event’ is pivotal in dictating systemic dynamics. Ranging from industrial man-
ufacturing sequences and computational networks to telecommunication infrastructures
and operations research, the scope of DESs effortlessly straddles conventional disciplinary
demarcations. Within this multifaceted domain, a salient focal point comprises the assess-
ment and amelioration of security susceptibilities, especially in scenarios characterized by
incomplete observability [14].

Opacity [15] stands as an indispensable facet of security within the ambit of DESs,
concentrating on the extent to which a system discloses its internal confidentialities to an
extraneous, non-active observer-frequently denominated as either the intruder or malev-
olent scrutineer. In this intellectual landscape, the notion of language-based opacity [16]
takes on considerable weight. This concept delves into the inherent restrictions that come
with an outsider’s incomplete surveillance of a system. The critical inquiry here is whether
these observational limitations inhibit the outsider from discerning whether the unfolding
sequence of events betrays confidential or delicate matters.

State-based opacity [17] augments the analytical tableau by imbuing it with discrete
temporal dimensions that enrich the overarching conceptual framework. Contingent
upon the particular temporal instances at which a system transits through confidential
states, this genre of opacity can be meticulously categorized into four seminal subclasses:
initial-state opacity [18], current-state opacity [19], k-step opacity [20], and infinite-step

Mathematics 2023, 11, 4991 3 of 25

opacity [21]. Each of these refined categories furnishes a stratified comprehension of a
system’s robustness vis-à-vis unauthorized external examination across diverse temporal
vicissitudes. Notwithstanding its pivotal significance, the authentication of opacity within
the frameworks of DESs is anything but elementary, frequently confronting formidable
computational impediments. Cutting-edge inquiries in the discipline delve into the ar-
chitectural constituents of automata paradigms that could potentially facilitate the more
manageable verification of opacity [22].

Within the intricate nexus of differential privacy and symbolic control architectures,
the transposition of statistical privacy schemata to non-quantitative datasets establishes
a pioneering standard. Leveraging exponential methodologies and specialized automata
configurations, sensitive alphanumeric sequences are skillfully approximated. This is
executed with a dual objective: the preservation of informational sanctity and the retention
of data utility. The governance of this intricate process is underscored by the employment
of distance metrics such as the Levenshtein distance [23].

At this interdisciplinary juncture, the enhancement of data security is amplified across
a diverse spectrum of fields, ranging from natural language processing to intricate industrial
systems. Predicated upon this foundational understanding, the current scholarly endeavor
aims to further elevate this paradigm. The focus is sharpened on safeguarding the opacity
of initial states within DESs, utilizing probabilistic automata embedded within the stringent
confines of differential privacy. Within the realm of discrete-event systems, the notion
of initial state opacity emerges as an indispensable yardstick for assessing the system’s
prowess in concealing its nascent state from unauthorized external entities.

Classical deterministic frameworks for initial state opacity have developed to encom-
pass probabilistic and stochastic paradigms, thus facilitating a more textured comprehen-
sion of security dynamics in volatile environments. To cater to elevated privacy requisites,
especially in situations where an intrusive entity possesses comprehensive structural aware-
ness of the system, advanced iterations of opacity, such as robust initial state opacity, have
been formulated [19,24,25].

Techniques for substantiating these robust opacity conditions are undergoing refine-
ment via innovative approaches, including parallel composition techniques and integer
linear programming algorithms [26]. Initial state opacity is a crucial area that combines
verification methods, probability models, and cybersecurity concepts to effectively assess
data protection in dynamic systems. Cutting-edge computational schemas, such as Petri net
models, facilitate the expeditious verification of initial state opacity, obviating the necessity
for laborious state space enumeration. Contemporary real-time validation methodologies,
encompassing linear programming algorithms, further enhance the relevance and applica-
bility of initial state opacity in intricate network architectures, including those inherent to
defense systems and mobile communications networks [27,28].

In architectures delineated via non-deterministic finite automata and their probabilistic
counterparts, i.e., probabilistic finite automata, the verification of initial state opacity neces-
sitates sophisticated computational modalities and analytical techniques. The complexity
is exacerbated when extended to non-deterministic transition systems, particularly in the
instances where state spaces are potentially unbounded. The exploration of initial state
opacity thus constitutes a critical nexus between formal computational methodologies,
automata theory, and information security, engendering both algorithmic intricacies and
theoretical conundrums [29,30]. Differential privacy was delicately integrated into discrete
event systems using probabilistic automata in a vital piece of research [31]. The major goal
was to protect state information illustrating system resource settings. This technique was
designed to provide state differential privacy, with an emphasis on thorough, step-by-step
validation. This method made it difficult for potential adversaries to infer the system’s
starting state from a limited collection of observations.

In an era where the landscape of extensive data analysis is rapidly evolving, the
necessity for impregnable data privacy frameworks becomes ever more apparent. The
research presented herein constitutes a substantial breakthrough in the sphere of differential

Mathematics 2023, 11, 4991 4 of 25

privacy within the context of DESs. This study introduces the concept of the privacy
decay factor [32], denoted as ξ, a groundbreaking development that diverges markedly
from preceding research. Prior studies primarily concentrated on the protection of state
information within DESs through the utilization of probabilistic automata. This research,
however, forges new paths by integrating this innovative parameter. The implementation
of ξ has proven to be particularly efficacious in ensuring the privacy of initial states
or conditions, thereby guaranteeing the secure concealment of sensitive data from the
very outset of data processing a pivotal requirement in the face of continually evolving
privacy standards.

By broadening the scope to encompass an expanded range of initial state conditions
and databases, this approach markedly bolsters the method’s resilience and adaptability.
The incorporation of ξ addresses a significant void in existing methodologies, providing
a more fortified framework for preserving the privacy of initial states against potential
adversaries. This methodical consideration of an extensive array of starting conditions
not only augments the theoretical foundations of differential privacy within DESs but also
showcases its tangible applicability across a spectrum of intricate systems.

Building on this essential understanding, the present scholarly pursuit endeavors
to advance this paradigm further. It concentrates on the fortification of the privacy of
initial states within DESs, employing probabilistic automata encased within the stringent
parameters of differential privacy. As a consequence, this research establishes a new bench-
mark in the domain of privacy preservation, signaling a shift in data security strategies
across diverse sectors. This is particularly pertinent in industries where stringent privacy
measures from the commencement of data processing are of the utmost importance. The
following lines describe the main contributions of this scientific endeavor:

• The research introduces a novel model of (ϵ, ξ)-differential privacy for discrete event
systems (DESs) formulated by probabilistic automata, ensuring equitable resource
distribution across multiple initial states.

• A novel verification strategy is introduced, originating from distinct observations of
a vast set of initial states and evaluating adherence to the tenets of (ϵ, ξ)-differential
privacy across defined observational sequences.

• By seamlessly integrating probabilistic automata with a diverse set of initial states,
the study presents a tailored verification approach. Should systems deviate from the
privacy standards, a specialized control mechanism is deployed, conveying (ϵ, ξ)-
differential privacy within the overarching closed-loop system.

• The research’s potency is exemplified through a detailed numerical case study, illus-
trating the verification method’s acumen in assessing the privacy integrity of specific
automata classes.

The rest of this paper is organized in a way that facilitates a comprehensive study of
the relevant topics. Section 2 sets the foundation by introducing the basics of probabilistic
automata and the important principles of (ϵ, ξ)-differential privacy in the context of data
security. Section 3 serves as the main investigative focus of the study. The approach to
the verification of (ϵ, ξ)-differential privacy over finite steps is detailed in Section 4. In
Section 5, we describe a method for ensuring (ϵ, ξ)-differential privacy via supervisory
control. A numerical case study is presented in Section 6 to offer empirical support for
the methodologies proposed. Finally, Section 7 concludes the paper, summarizing the key
findings and their implications.

2. Preliminaries

This section introduces the concept of probabilistic automata within the framework of
discrete event systems and discusses the conventional notion of (ϵ, ξ)-differential privacy.

2.1. Probabilistic Automata in Discrete Event Systems (DESs)

In the study of DESs, the use of deterministic finite automata is crucial. A deterministic
finite automaton can be formally described by a structure D = (S, Σ, δ, s0) [33], where S

Mathematics 2023, 11, 4991 5 of 25

is a finite set of states, and Σ is the set of events, which can be further divided into Σo for
the set of observable events and Σuo for that of unobservable events. The partial transition
function δ : S× Σ→ S defines the deterministic behavior of the DES, mapping a state and
an event to a subsequent state. Finally, s0 denotes the initial state, taken from the set S,
before any events have occurred.

To grasp the operation of the deterministic finite automaton, consider δ(s, e) to be
defined if event e from the set Σ can trigger a transition from state s. Adapting δ for event
sequences or strings, we have δ : S× Σ∗ → S. This function operates as per δ(s, ε) = s and
δ(s, ue) = δ(δ(s, u), e), given that both δ(s, u) and δ(δ(s, u), e) are defined for a state s and a
string combination u. For any state s and a string u, if δ is appropriately defined for the
string u at state s, it is denoted as δ(s, u)!. The length of a string u, indicating the number of
events in it, is denoted by |u|.

For an automaton D = (S, Σ, δ, s0) and a specific state s, the language that the automa-
ton generates, starting from state s, is given by L(D, s) = {u ∈ Σ∗|δ(s, u)!}. In scenarios
in which potential attackers can observe and log only the observable events, a key tool
to consider is the natural projection, denoted by P : Σ∗ → Σ∗o . This projection effectively
translates any executed string within the system into a corresponding sequence of observ-
able events, termed an observation. The definition of this projection is recursive: for any
string u from Σ∗ and an event e from Σ, the projection is defined as P(ue) = P(u)P(e). It is
important to note that P(e) is equal to e when e belongs to Σo, and it becomes the empty
string ε when e belongs to Σuo. Building on this, the set of observations generated by an
automaton D = (S, Σ, δ, s0) starting from a state s in S can be defined as

Lo(D, s) = {ω ∈ Σ∗o |∃u ∈ L(D, s) : P(u) = ω}.

This essentially captures all observable sequences corresponding to the possible be-
haviors of the automaton from the state s.

Definition 1 (Probabilistic automaton [34]). A probabilistic automaton is defined as a tuple
G = (D, ρ), where
• D = (S, Σ, δ, s0) denotes the underlying deterministic finite automaton,
• ρ : S× Σ→ [0, 1] serves as a probability distribution function over transitions.
Again, S is the set of states, and s0 ∈ S is the initial state. Given a state s ∈ S and an event e ∈ Σ,

ρ(s, e) =

{
0, if δ(s, e) is undefined
> 0, if δ(s, e) is defined,

the set of feasible events at a given state s is E(s) = {e ∈ Σ | ρ(s, e) > 0}, subject to the constraint
∑e∈E(s) ρ(s, e) = 1.

When the underlying structure is implied, the probabilistic automaton G can be
denoted succinctly as G(s0). Given a probabilistic automaton G = (S, Σ, δ, s0, ρ), the metric
Prσ plays a pivotal role in determining the likelihood of generating a string ue in Σ∗ from
state s [34]. When the string ue consists of u ∈ Σ∗ and an event e ∈ Σ, Prσ is recursively
defined as

Prσ(s, ue) =

1, if ue = ε

Prσ(s, u)× ρ(δ(s, u), e), if δ(s, u)
0, otherwise,

where ε within Σ∗ is the empty string. At its core, Prσ(s, u) signifies the probability that the
string u is executed starting from state s in the automaton G. A positive value of Prσ(s, u) is
realized if δ(s, u) for every u ∈ Σ∗. In this framework, strings and observations emerge as
foundational constructs. A string, represented within Σ∗, takes the form u : N→ Σ, where
Σ is the finite alphabet set of events. Such a string can be visualized as a deterministic

Mathematics 2023, 11, 4991 6 of 25

sequence, u = u1u2 . . . un, with each ui ∈ Σ. The automaton’s transition function estab-
lishes that the combination of a state and a string leads to a unique subsequent state, as
represented by δ : S× Σ∗ → S. Further, the language emerging from state s is denoted by

L(G, s) = {u ∈ Σ∗ | Prσ(s, u) > 0},

highlighting all strings that can be produced from state s with a non-zero probability.
Contrasting with strings, observations are denoted as ω within Σ∗o . They are defined

as ω : N → Σo, with Σo ⊆ Σ being the observation alphabet set of events. Observations
stem from a potentially non-bijective projection, formalized as P : Σ∗ → Σ∗o .

This suggests that multiple strings might map to the same observation. Essentially,
observations capture a more abstract or condensed perspective of the automaton’s behavior.
The observations generated from a state s are defined as

ℓ(G, s) = {ω ∈ Σ∗o | ∃u ∈ L(G, s) : ω = P(u)}.

This definition describes all possible observations inferred from the strings originating
at state s. To further delineate the relationship between strings and observations, we
can define the set of strings that are consistent with a particular observation when the
automaton is in state s, which is given by

U(s, ω) = {u ∈ Σ∗ | u ∈ L(G, s), P(u) = ω}.

The probability of generating a specific observation from a state s is calculated as

Pr(s, ω) = ∑
u∈U(s,ω)

Prσ(s, u).

While strings u outline the explicit sequences of transitions an automaton undergoes,
observations ω act as potential aggregated or abstracted representations of these sequences.
These mathematical representations and definitions bind the automaton’s dynamics, bridg-
ing the states to the strings and the resultant observations.

Example 1. Consider the probabilistic automaton structure G = (S, Σ, δ, ρ) illustrated in Figure 1.
The automaton initiates from the state s0, leading us to denote the automaton configured in this
manner as G(s0). This configuration comprises a set of states S = {s0, s1, s2, s3, s4, s5, s6} and
partitions the event set Σ into observable events Σo = {α, β, λ, γ, µ} and unobservable events
Σuo = {τ}. For this configuration, ρ(s0, α) = 0.8 and ρ(s0, λ) = 0.2. Moreover, we ascertain
that ∑e∈E(s0)

ρ(s0, e) = 1 with E(s0) = {α, λ}. Considering a string u = αγτ, the probability of
generating the string u from s0 is given by Prσ(s0, αγτ) = ρ(s0, α)× ρ(s1, γ)× ρ(s2, τ) = 0.24.
However, let ω = αγ. Then, the probability of generating this sequence of observation is given by
Pr(s0, ω) = Prσ(s0, αγ) + Prσ(s0, αγτ) = 0.84.

Given an automaton G, the set of states reached by generating a string consistent with
observation ω from state s is

ϕ(s, ω) = {s′ ∈ S|∃u ∈ U(s, ω) : δ(s, u) = s′}.

The probability of transitioning from state s0 to state s given observation ω is denoted
as Pr(s|ϕ(s0, ω)). For a state s′ that is reachable after generating an observation ω from
the initial state s0, the probability of generating a string u is given by Prσ(s0, ω, s, u) =
Pr(s|ϕ(s0, ω)) × Prσ(s, u). For the purpose of elucidating the mathematical constructs
utilized in our analysis, we define an indicator function, denoted as I, which ascertains the
validity of state transitions. Formally, it is defined as

Iδ(s0,u)=s =

{
1, if δ(s0, u) = s
0, otherwise.

Mathematics 2023, 11, 4991 7 of 25

s0 s1 s2

s3 s4 s5

s6

α : 0.8 γ : 0.75

λ : 0.2
α : 0.6

τ : 0.4

µ : 0.55α : 1

β : 1

µ : 0.25

λ : 0.25

β : 1

γ : 0.2

Figure 1. A probabilistic automaton G.

In complex mathematical models, the relationship between system changes and obser-
vations is subtle. Although not immediately obvious, the system’s current state becomes
clear after careful analysis of these observation sequences [35]. Delving deeper into such
structures, a crucial concept that becomes intertwined with our discussion is the expec-
tation under a specific distribution. In the provided formulation, Eu∼U(s0,ω) signifies the
expected value (or average) taken over all strings u drawn from the set U(s0, ω). This
encapsulates the average behavior or outcome under the distribution of strings originating
from s0 and culminating in observations ω. Furthermore, by harnessing the power of the
indicator function, the probability Pr(s|ϕ(s0, ω)) undergoes a modification, being redefined
as an expectation:

Pr(s|ϕ(s0, ω)) =
Eu∼U(s0,ω)[Iδ(s0,u)=s × Prσ(s0, u)]

Eu∼U(s0,ω)[Prσ(s0, u)]
.

This expression quantifies the likelihood that the automaton, initiating its sequence at
state s0 and transitioning with strings from the set U(s0, ω), lands on state s. Subsequently,
the probability Prσ(s0, ω, s, u) integrates the indicator function and the expectation concept:

Prσ(s0, ω, s, u) =

∑u∈U(s0,ω) Iδ(s0,u)=s×Prσ(s0,u)

∑u∈U(s0,ω) Prσ(s0,u) × Prσ(s, u) if s ∈ ϕ(s0, ω)

0 otherwise.

This formulation captures the normalized probability of the system transitioning from
s0 to s under the observation ω and then executing string u from state s.

Example 2. Consider the probabilistic automaton depicted in Figure 1, with the initial state s0.
Let Σo = {α, β, λ, γ, µ} and Σuo = {τ}. For the observation ω = αγ, define U(s0, αγ) as the
set of all strings originating from s0 that are consistent with ω, i.e., U(s0, αγ) = {αγτ, αγ}.
The cumulative conditional probabilities for transitions from s0 to either state s2 or state s5 using
expectations are:

Pr(s2|ϕ(s0, αγ)) =
Eu∼U(s0,αγ)[Iδ(s0,u)=s2

× Prσ(s0, u)]
Eu∼U(s0,αγ)[Prσ(s0, u)]

= 0.6/(0.6 + 0.24) = 5/7;

Pr(s5|ϕ(s0, αγ)) =
Eu∼U(s0,αγ)[Iδ(s0,u)=s5

× Prσ(s0, u)]
Eu∼U(s0,αγ)[Prσ(s0, u)]

= 0.24/(0.6 + 0.24) = 2/7.

Consider the transition scenario from the initial state s0 to state s2. In this instance, the
probability of executing the string u = τβλ from state s2 is calculated as Prσ(s0, αγ, s2, τβλ) =
5/7× 0.4× 1× 0.25 = 1/14. Conversely, considering the transition to state s5, the probability

Mathematics 2023, 11, 4991 8 of 25

of executing the string u = βλµ from state s5 is denoted as Prσ(s0, αγ, s5, βλµ) = 2/7× 1×
0.25× 0.55 = 11/280.

Let N be the set of natural numbers, and N+ be the set of positive natural numbers,
i.e., N+ = {x|x > 0∧ x ∈ N}. For an observation ω ∈ Σ∗o , the collection of all observations
produced from a state s ∈ ϕ(s0, ω) at k ∈ N+ step is defined as [34]

ℓ(s0, ω, s, k) = {ω′ ∈ Σ∗o |ω′ ∈ ℓ(G, s), |ω′| = k}.

The comprehensive set of all possible observations that arise from k-step observation
extensions with k ∈ N+, following the generation of an observation ω from state s0, is

ℓ(s0, ω, k) =
⋃

s∈ϕ(s0,ω)

ℓ(s0, ω, s, k).

The likelihood of producing ω′ ∈ ℓ(s0, ω, k) after the system has yielded an observa-
tion ω from s0 is defined as

Pr(s0, ω, k, ω′) = ∑
s∈ϕ(s0,ω)

∑
u∈U(s,ω′)

Prσ(s0, ω, s, u).

It should be highlighted that Pr(s0, ω, k, ω′) denotes the probability of observing ω′

after a k-step extension, assuming the prior generation of ω from s0.

Example 3. Consider the probabilistic automaton illustrated in Figure 1, where s0 serves as the
initial state. Suppose Σo = {α, γ, λ, β, µ} and Σuo = {τ}. Let us assume k = 2. For the
observation sequence ω = αγ generated from state s0, we can represent the sequence of observation
extensions over two steps from either state s2 or s5 as follows: ℓ(s0, αγ, s2, 2) = {αγ, αλ, αµ},
and ℓ(s0, αγ, s5, 2) = {βµ, βγ, βλ}. Combining these sequences, we find the set of sequences
that lead to either s2 or s5 over two steps after generating the observation sequence ω = αγ from
state s0 are ℓ(s0, αγ, 2) = ℓ(s0, αγ, s2, 2) ∪ ℓ(s0, αγ, s5, 2) = {αγ, αλ, αµ, βµ, βγ, βλ}. Here,
Pr(s0, ω, 2, ω′) is calculated for each possible sequence as follows:

For ω′ = αλ : Pr(s0, αγ, 2, αλ) = 5/7× 0.6× 0.25 = 3/28;

For ω′ = αγ : Pr(s0, αγ, 2, αγ) = 5/7× 0.6× 0.2 = 3/35;

For ω′ = αµ : Pr(s0, αγ, 2, αµ) = 5/7× 0.6× 0.55 = 33/140;

For ω′ = βµ : Pr(s0, αγ, 2, βµ) = Prσ(s0, αγ, s2, τβµ) + Prσ(s0, αγ, s5, βµ)

= 5/7× 0.4× 1× 0.55 + 2/7× 0.55× 1 = 11/35;

For ω′ = βλ : Pr(s0, αγ, 2, βλ) = Prσ(s0, αγ, s2, τβλ) + Prσ(s0, αγ, s5, βλ)

= 5/7× 0.25× 1× 0.4 + 2/7× 0.25× 1 = 1/7;

For ω′ = βγ : Pr(s0, αγ, 2, βγ) = Prσ(s0, αγ, s2, τβγ) + Prσ(s0, αγ, s5, βγ)

= 5/7× 0.2× 1× 0.4 + 2/7× 0.2× 1 = 4/35.

2.2. Differential Privacy

Differential privacy is a framework that quantifies the privacy guarantees offered by a
randomized algorithm. It provides a measure ensuring that the output of a computation
remains approximately the same, even if one record in the input dataset is altered. This
ensures that an adversary cannot determine whether a specific individual’s information
is included in the input to the function. Formally, given a threshold ϵ > 0, a randomized
algorithm M adheres to ϵ-differential privacy if, for any pair of datasets A1 and A2 that
differ by at most one record, and for any output set O, the following inequality holds [36]:

e−ϵ ≤ P(M(A1) ∈ O)

P(M(A2) ∈ O)
≤ eϵ,

Mathematics 2023, 11, 4991 9 of 25

where M(A1) and M(A2) denote the outputs of algorithm M when run on datasets A1
and A2, respectively. The function P assigns a probability to a potential output of M.
The parameter ϵ, often referred to as the privacy budget, sets a limit on the allowable
information leakage, where ϵ ∈ R and ϵ is a non-negative real number.

In the field of differential privacy, one of the central challenges emerges from the recur-
rent utilization of a privacy-preserving mechanism. As this mechanism is used repeatedly,
the cumulative privacy guarantees can degrade, potentially weakening the overall privacy
assurance [32]. Addressing this issue necessitates a more refined strategy, and introducing
a decay factor serves this purpose. This factor places emphasis on the time-dependent mod-
ification of privacy loss parameters. Consider a scenario where mechanism M is invoked in
an iterative fashion. A direct or naïve summation of the privacy loss parameter ϵ over each
use could swiftly consume the allotted privacy budget, compromising the robustness of
the privacy safeguards in place. This predicament underscores the relevance of the decay
factor. When expressed as

ϵ′ = ϵe−ξi,

it signifies an exponential decay in the privacy loss parameter. This ensures that with
each subsequent application or iteration, there is a diminishing allowance for deviation
in privacy guarantees, thereby systematically curtailing potential privacy breaches. From
a mathematical perspective, the compounded degradation in differential privacy over
n iterations can be encapsulated by: ϵtotal = ∑n

i=1 ϵe−ξi. This culminates in the refined
differential privacy relationship:

e−ϵtotal ≤ P(M(Ai) ∈ O)

P(M(Bi) ∈ O)
≤ eϵtotal .

This integration suggests that the privacy safeguard, when enhanced with a decay
factor, does not merely sum over multiple invocations. Instead, it decays, emphasizing
a gradual tightening of privacy constraints. This sophisticated model ensures that our
differential privacy implementations remain robust and effective, even with repeated
applications. While ϵtotal is crucial in a broad range of differential privacy applications,
the study in this paper specifically emphasizes the application of differential privacy to
automata initial states over finite steps. We deliberately choose to focus on the decay of ϵ
across iterations and, consequently, omit the consideration of ϵtotal to maintain a concise
and focused presentation.

Definition 2 (Decay factor ξ). A decay factor ξ in the context of differential privacy is a measure
that determines the rate at which the privacy loss parameter ϵ decreases for each iteration of a
privacy-preserving algorithm. It quantifies the exponential reduction in the potential privacy loss,
thus ensuring enhanced long-term protection of privacy in iterative processes.

The role of ξ includes (1) exponential decay—ξ results in an exponential decrease in
ϵ′ with each iteration; (2) privacy degradation control—adjusting ξ fine-tunes the privacy
degradation rate, with a higher ξ enhancing protection; (3) robustness in repeated use—ξ
limits cumulative privacy loss, ensuring robustness in differential privacy mechanisms
over multiple iterations.

3. Investigative Focus

This section delves into the complexity of maintaining (ϵ, ξ)-differential privacy within
an ensemble of probabilistic automata with multiple initial states. Two main situations
are examined: the first deals with the verification of privacy parameters across automata,
and the second presents an oversight framework to assure compliance operations under
defined privacy restrictions.

3.1. Proximate States and Differential Privacy

Definition 3. (Proximate states for n initials). Given a probabilistic automaton structure G =
(S, Σ, δ, ρ) and a set of initial states {s1

0, s2
0, . . . , sn

0} ⊆ S, the states in this set are said to be

Mathematics 2023, 11, 4991 10 of 25

collectively proximate if there exists an observation ω ∈ Σ∗o \ {ε} such that for any si
0 with

1 ≤ i ≤ n, Pr(si
0, ω) > 0. The collective contiguity implies that an observation that is not the

empty string can be generated from every initial state in the set.

Definition 4 (K-step (ϵ, ξ)-differential privacy for n initials). Let G = (S, Σ, δ, ρ) denote a proba-
bilistic automaton structure. Given a set of collectively proximate initial states {s1

0, s2
0, . . . , sn

0} ⊆ S,
this leads to n distinct probabilistic automata G(s1

0),G(s2
0), . . . ,G(sn

0). These automata are said to
uphold (ϵ, ξ)-differential privacy over a k-step observation extension, modulated by a decay factor ξ,
if for each automaton G(si

0) and any observation ω ∈ Σ∗o originating from si
0, there exists a set of

subsequent observations Ωk′ such that for each k′ ≤ k, Ωk′ =
⋃n

i=1 ℓ(s
i
0, ω, k′), where ℓ denotes an

observation likelihood function.

Additionally, for any two distinct initial states si
0 and sj

0 ∈ S , and for all k′ ≤ k,
given any observation ω′ ∈ Ωk′ , where ω′, the (ϵ, ξ)-differential privacy condition
|Pr(si

0, ω, k′, ω′)− Pr(sj
0, ω, k′, ω′)| ≤ ϵe−ξk′ must hold. The privacy parameter ϵ under-

goes exponential decay influenced by k′ steps of observation, guided by the decay rate ξ.
As observations accrue, the (ϵ, ξ)-differential privacy assurance wanes, underscoring the
inherent challenge in preserving privacy as more data emerges.

3.2. Verification Concerns

Within an ensemble of n probabilistic automata, derived from a foundational au-
tomaton with n distinct initial states as {G(s1

0),G(s2
0), . . . ,G(sn

0)}, the verification process
is paramount. It is essential to ascertain that each automaton in the ensemble genuinely
observes the principles of (ϵ, ξ)-differential privacy over a k-step observation extension,
particularly when influenced by a decay factor ξ.

A dedicated verifier, Vk
ω, is posited to play this crucial role. Its function is to assess

whether each automaton in the ensemble, when initialized from its respective initial state
within the set {s1

0, s2
0, . . . , sn

0}, indeed adheres to the (ϵ, ξ)-differential privacy criteria. More
specifically, given any observation ω that originates from these initial states, following the
definition of proximate states, Vk

ω must validate:

• The emergence and integrity of subsequent observations Ωk′ based on the defined
observation likelihood function ℓ.

• The preservation of the (ϵ, ξ)-differential privacy condition between any two distinct
initial states for all possible k′ ≤ k steps of observation.

This verification serves as a continuous safeguard, ensuring that the (ϵ, ξ)-differential
privacy guarantees, despite the probabilistic behaviors and intertwined initial states, remain
uncompromised and robust.

4. Verification of (ϵ, ξ)-Differential Privacy over Finite Steps

For the intricate analysis of probabilistic automaton with multiple initial states, the
verifier emerges as a pivotal tool. It meticulously dissects each initial state, treating it as
the epicenter of an independent probabilistic automaton system. Through this isolated
examination, the verifier offers a holistic understanding of every conceivable behavior that
might emanate from a particular initial state. In essence, by simulating each initial state
coupled with its observation sequence as a stand-alone probabilistic automaton, the verifier
elucidates the potential trajectory of the entire automaton. This methodology, delineated in
Algorithm 1, crafts a refined lens for researchers to discern the nuances of behaviors within
a multi-initial-state probabilistic automaton framework.

Consider a set of n probabilistic automata, denoted as G = [G(s1
0),G(s2

0), . . . ,G(sn
0)],

with each automaton defined by G(si
0) = (S, Σ, δ, si

0, ρ). The goal of the algorithm is to
compute a Verifier for an observation ω, denoted as Vk

ω = (Sv, Σo, δv, S0). In the heart
of our algorithm lies the concept of memoization, a ubiquitous technique in algorithmic
optimization. We introduce a memoization function, defined as M : (S× Σ)→ 2S, where
the domain of M encapsulates the Cartesian product of states and events, and its codomain

Mathematics 2023, 11, 4991 11 of 25

is the power set of S, embracing all conceivable subsets of reachable states. Formally
articulated, for any state-event pair (s, e), we have

M(s, e) = {s′ ∈ S : δ(s, e) = s′}.

At the inception of the algorithm, M is initialized as an empty function. As the
algorithm progresses and each state-event pair is encountered, the resulting set of reachable
states is cached in M to prevent redundant computations in future iterations. With the
memoization table M established, the algorithm begins by iterating through each initial
state si

0 of G. Depending on the current segment of the observation sequence and the state
under consideration, the set of reachable states is either computed afresh using the transition
function δ or promptly retrieved from M. As the algorithm traverses the observation
sequence, it accumulates the resulting reachable states into S0. Subsequently, the algorithm
embarks on computing the product states, represented as Q1 × Q2 × . . . × Qn. These
product states are deduced based on observable events and the current state, leading to the
formation of Sv, which is synthesized from the collection Sr. The worst-case approximated
complexity of Algorithm 1 is O

(
2n × n2 × |Σo| × |Σuo|

)
.

Definition 5 (Verifier). Given a probabilistic automaton structure G = (S, Σ, δ, ρ), and a list
of proximate initial states [s1

0, s2
0, . . . , sn

0] leading to n distinct lists of probabilistic automata
[G(s1

0),G(s2
0), . . . ,G(sn

0)], a differentially private verifier Vk
ω for a k-step observation extension

modulated by a decay factor ξ is defined as a 4-tuple Vk
ω = (Sv, Σo, δv, S0). Here, Sv is the cross-

product of states in the automata set, S = Q1 × Q2 × . . .× Qn, with each Qi being a subset of
states from G(si

0), Σo denotes all observable events, δv : Sv × Σo → 2Sv represents the transition
function of the verifier, and S0 is redefined as the Cartesian product of sets obtained from the function
ϕ applied to each initial state and the observation ω, specifically S0 = ϕ(s1

0, ω)× . . .× ϕ(sn
0 , ω).

This verifier Vk
ω encapsulates the collective behaviors of the original probabilistic automata set, over

a k-step of observation.

Theorem 1. Given a verifier Vk
ω that integrates the state-transition model with respect to obser-

vation ω up to step k, an initial positive parameter ϵ, a decay factor ξ, and a list of n initial states
[s1

0, s2
0, . . . , sn

0], Algorithm 2 will ascertain whether the system upholds (ϵ, ξ)-differential privacy
across k steps within the modulating privacy parameter ϵ that evolves with each step.

Proof. Initiating with the assignment of a unit probability to each originating state s at
t = 0, the procedure warrants unequivocal certainty for these foundational states. The
algorithm then invokes Algorithm 1 to procure the transition probabilities ϕ(si

0, ωω′),
thereby forming a probabilistic mapping from any state si

0 to another sj
0 contingent on

the observation sequence ω. Iteratively, the algorithm explores the subsequent potential
states for each event in the observation sequence, thereby crafting a dynamic probabilistic
landscape for each state s.

Central to the verification of privacy is the computation of the absolute deviation
between the transition probabilities of any two initial states si

0 and sj
0. If any such devia-

tion surpasses ϵ, the algorithm returns a negative result. As the observation progresses,
the state set S undergoes updates to encompass new feasible states, symbolized as S∗.
Should the algorithm traverse all k steps without infringing the evolving (ϵ, ξ)-differential
privacy constraint, it returns an affirmative outcome. This, by induction, validates the algo-
rithm’s fidelity to (ϵ, ξ)-differential privacy for all inaugural states across steps 1 ≤ k′ ≤ k,
culminating in the affirmation of the theorem.

Mathematics 2023, 11, 4991 12 of 25

Algorithm 1: Construction of a k-step verifier
Input : A list of n probabilistic automata G = [G(s1

0), . . . ,G(sn
0)], and observation ω of length k

Output : A verifier Vk
ω = (Sv, Σo , δv, S0)

1 M← ∅; Sr ← ∅; St← ∅
2 foreach s in [s1

0, . . . , sn
0] do

3 M[s, ω[1]]← ∅; e← ω[1]; ϕ(s, e)← ∅; Ws← {s}
4 foreach s′ in Ws do
5 Ws←Ws \ {s′}
6 foreach e′ in {e} ∪ Σuo do
7 if δ(s′, e′) = s′′ then
8 ϕ(s, e)← ϕ(s, e) ∪ {s′′} // If e′ = e
9 Ws←Ws ∪ {s′′} // If e′ ∈ Σuo

10 S0 ← ϕ(s1
0, ω)× . . .× ϕ(sn

0 , ω)

11 foreach s in [s1
0, . . . , sn

0] do
12 for i = 2 to |ω| do
13 e← ω[i]; ω′ ← ω[1] . . . ω[i− 1]; ω′′ ← ω[i]; ϕ(s, ω′′)← ∅
14 foreach s′ in ϕ(s, ω′) do
15 if M[s′, e] ̸= ∅ then
16 ϕ(s′, e)← M[s′, e]
17 else
18 Ws← {s′}
19 foreach s′′ in Ws do
20 Ws←Ws \ {s′′}
21 foreach e′ in {e} ∪ Σuo do
22 if δ(s′′, e′) = s′′′ then
23 ϕ(s′, e)← ϕ(s′, e) ∪ {s′′′} // If e′ = e
24 Ws←Ws ∪ {s′′′} // If e′ ∈ Σuo

25 M[s′, e]← ϕ(s′, e)

26 ϕ(s, ω′′)← ϕ(s, ω′′) ∪ ϕ(s′, e)

27 Sr ← {{S0}}; St← {{S0}}
28 foreach S = Q1 × . . .×Qn in St do
29 St← St \ {S}
30 foreach e in Σo do
31 Q′ ← ∅
32 foreach s in Q1 ∪ . . . ∪Qn do
33 Ws← {s}
34 foreach s′ in Ws do
35 Ws←Ws \ {s′}
36 foreach e′ in {e} ∪ Σuo do
37 if δ(s′, e′) = s′′ then
38 ϕ(s′, e)← ϕ(s′, e) ∪ {s′′′} // If e′ = e
39 Ws←Ws ∪ {s′′′} // If e′ ∈ Σuo

40 foreach i = 1 to n do
41 foreach s in Qi do
42 Q′ ← Q′ ∪ ϕ(s, e)

43 S′ = Q′1 × . . .×Q′n; where S′ ← δv(S, e)
44 Sr ← Sr ∪ {S′}; St← St ∪ {S′}

45 Sv ← Sr

Algorithm 2 conducts (ϵ, ξ)-differential privacy verification for a specified number
of steps, k. It takes inputs including a verifier Vk

ω, step count k, privacy threshold ϵ, and
n initial states. Initially, each state in S0 has a transition probability of 1. The algorithm
iteratively examines state transitions and probability distributions up to step k. A critical
aspect of this process is the decay factor ξ, crucial for upholding rigorous privacy constraints.
This factor adjusts the influence of the privacy parameter over time, ensuring consistent
adherence to privacy norms throughout the algorithm’s execution.

Crucially, the algorithm juxtaposes privacy probabilities across all conceivable state
pairings. Should any disparity surpass ϵ, the algorithm promptly returns ’false’. This

Mathematics 2023, 11, 4991 13 of 25

guarantees a uniform privacy assessment, irrespective of initial state variances, encom-
passing a predictable future scope. Considering its design and operations, the worst-case
computational complexity of Algorithm 2 is gauged at O(k× 2n × |Σo| × n3 × |Σuo|). This
provides an understanding of the resource demands for larger input sizes, crucial for
practical implementations.

Algorithm 2: Differential privacy verification over finite steps with ϵ decay
Input: A verifier Vk

ω = (Sv, Σo , δv, S0), a finite step k, an initial positive parameter ϵ, a decay factor ξ,
and a list of n initial states [s1

0, s2
0, . . . , sn

0]
Output: True or False

1 St ← {S0}
2 for i← 1 to n do
3 Pri(S0, ϵ)← 1

4 for k′ ← 1 to k do
5 ϵ′ ← ϵe−ξk′

6 foreach S = Q1 ×Q2 × . . .×Qn ∈ St and δv(S0, ω′) = S do
7 Obtain from Algorithm 1 ϕ(s1

0, ωω′), ϕ(s2
0, ωω′), ..., ϕ(sn

0 , ωω′)
8 foreach e ∈ Σo and δv(S, e) is defined do
9 foreach s ∈ Q1 ∪Q2 ∪ . . . ∪Qn do

10 σ(s, e)← ∅
11 ωα ← ϵ′

12 Ws ← {(ωα, s)}
13 foreach (ωα, sα) ∈Ws do
14 Ws ←Ws \ {(ωα, sα)}
15 foreach e′ ∈ {e} ∪ Σuo do
16 ωα ← ωαe′

17 if δ(sα, e′) = sβ and e′ = e then
18 σ(s, e)← σ(s, e) ∪ {ωα}
19 if δ(sα, e′) = sβ and e′ ∈ Σuo then
20 Ws ←Ws ∪ {(ωα, sβ)}

21 Pi ← 0 for each i ∈ {1, ..., n}
22 si ← si

0 for each i ∈ {1, ..., n}
23 foreach s ∈ Si and s ∈ σ(s, e) for each i ∈ {1, ..., n} do
24 Pi ← Pi + Pr(s|ϕ(si , ωω′))× Prσ(s, u)

25 foreach i ∈ {1, ..., n} do
26 Pri(S0, ω′e)← Pri(S0, ω′)× Pi

27 if any pair of |Pri(S0, ω′e)− Prj(S0, ω′e)| ≥ ϵ′, for i, j ∈ {1, ..., n} and i ̸= j then
28 return false

29 S∗ ← ∅
30 foreach e ∈ Σo do
31 S∗ ← S∗ ∪ {δv(S, e)}
32 St ← (St \ {S}) ∪ S∗

33 return true

Example 4. Consider the structure of a probabilistic automaton depicted in Figure 2, where we
assume that the initial states are s1 and s2, which means n = 2. The set of observable events is
Σo = {α, β, λ, γ, µ}, while the set of unobservable events is Σuo = {τ}. The verifier for the system
G(s1) and G(s2) is illustrated in Figure 3, in which the initial state S0 is defined as the Cartesian
product S0 = {s1} × {s2}.

For the state S1 and the observable event α, we can say that S1 is the Cartesian prod-
uct of ϕ(s1, α) and ϕ(s2, α), resulting in S1 = {s3, s4} × {s5}. Therefore, δ(S0, α) becomes
{s3, s4} × {s5}. Similarly, for the state S4 and the observable event λ, S4 is the Cartesian product
of ϕ((s3, s4), λ) and ϕ(s5, λ), which turns out to be {s4} × ∅. Consequently, δ(S1, λ) is also
{s4} × ∅. For the state S5 and the observable event β, S5 is {s5} × {s6}, and this results from
taking the Cartesian product of ϕ(s3, β) and ϕ(s5, β). Therefore, δ(S1, β) is {s5} × {s6}. Finally,
for the state S8 and the observable event γ, S8 is the Cartesian product of ϕ(s5, γ) and ϕ(s6, γ),
yielding S8 = {s4} × {s4}. This leads us to conclude that δ(S5, γ) is also {s4} × {s4}.

Mathematics 2023, 11, 4991 14 of 25

s1 s3 s4

s2 s5 s6

α : 0.5 τ : 0.8

β : 0.2

α : 0.9
µ : 0.1

γ
: 0.5

5

β : 0.45

γ : 1

µ : 0.38
γ : 0.12 λ : 1

Figure 2. A probabilistic automaton G*.

S0 : {s1} × {s2}start

S1 : {s3, s4} × {s5}S2 : {s1} ×∅S3 : {s1} × {s5}

S5 : {s5} × {s6}S4 : {s4} ×∅

S8 : {s4} × {s4}

S6 : {s3} ×∅ S7 : ∅× {s6}

αγµ

λ β

γ

α β

Figure 3. The verifier Vk
ω of probabilistic automaton G*.

Example 5. Let us consider the probabilistic automaton structure in Figure 2. Assume two proxi-
mate initial states s1 and s2 such that n = 2. The verifier is shown in Figure 3. We want to verify
the ϵ-differential privacy with ϵ = 0.13, decay factor ξ = 0.05 and for k′ = 1. Due to the decay
factor, our effective ϵ′ for this step is ϵe−ξk′ = 0.13e−0.05 ≈ 0.124. For state S0:

|Pr1(S0, α)− Pr2(S0, α)| = |Pr(s1|{s1})× Pr({s3, s4}|ϕ(s1, α))− Pr(s2|{s2})× Prσ(s2, α)|
= 0.5/0.5 + (0.5× 0.8) + 0.5× 0.8/0.5 + (0.5× 0.8)− 0.9

= 0.1 < ϵ′ ≈ 0.124;

|Pr1(S0, γ)− Pr2(S0, γ)| = |Pr(s1|{s1})× Prσ(s1, γ)− Pr(s2|{s2})× Prσ(s2, γ)|
= 0.120 < ϵ′ ≈ 0.124;

|Pr1(S0, µ)− Pr2(S0, µ)| = |Pr(s1|{s1})× Prσ(s1, µ)− Pr(s2|{s2})× Prσ(s2, µ)|
= 0.38− 0.1 = 0.28 > ϵ′ ≈ 0.124.

The system of two automata G(s1) and G(s2) do not satisfy (ϵ, ξ)-differential privacy at k′ = 1
with ϵ′ = 0.124.

5. Ensuring (ϵ, ξ)-Differential Privacy via Supervisory Control

In the prior section, we introduced the notion of (ϵ, ξ)-differential privacy, where an
automaton starting from distinct n initial states produces similar observation likelihoods
over a set number of steps. This concept is central to our ongoing discussion. We then
delve into supervisory control as a method for ensuring this privacy alignment over a fixed
sequence length. Our study further explores the realms of control theory, highlighting a
groundbreaking algorithm rooted in probabilistic automata and designed to predict state
transitions from observation sequences.

Consider a verifier Vk
ω = (Sv, Σo, δv, S0) and a state S ∈ Sv, where S is an element

of the state space Sv and can be expressed as a tuple of multiple state components, i.e.,
S = Q1×Q2× . . .×Qn. We define S# as a subset of Sv containing states that can be reached
from the initial state S0 for a specific observation sequence ω′. In essence, S# captures the
set of states that are intermediate in the transition from S0 to S through the sequence ω′.

The set R(S) is then introduced to encapsulate all events e that transition the system
from state S to some other state S′ that is a member of S#. Specifically, S′ represents a

Mathematics 2023, 11, 4991 15 of 25

state, analogous to S, but formed from different combinations of state components. Hence,
S′ = Q′1 ×Q′2 × . . .×Q′n where each Q′i is a potential state from the original n probabilistic
automata. This ensures the system remains within the permissible state transitions defined
by S#. Thus, R(S) can be defined as:

R(S) =
{

e ∈ Σo | ∃S′ ∈ S# \ {S} : δv(S, e) = S′
}

.

This expression underscores the events that, when executed from state S, guide
the system to another state within the permissible state transitions defined by S#. Let
Θ : Σo → R be a ranking function defined over the observation events in the context of
the verifier Vk

ω. For any event e ∈ Σo, Θ(e) designates a unique scalar value, conveying its
significance or importance.

This formulation ensures both uniqueness, where for any two distinct events e1, e2 ∈ Σo,
if e1 ̸= e2 then Θ(e1) ̸= Θ(e2), and a total order such that for any two events e1 and e2 in
Σo, the relationships Θ(e1) < Θ(e2), Θ(e1) > Θ(e2), or Θ(e1) = Θ(e2) are established.

Once the events are ranked by their Θ(e) values, each event e is assigned an index
value T(S, e), where T : Sv × Σo → N+ is a mapping function. In this context, for states
S = Q1 ×Q2 × · · · ×Qn ∈ Sv and S′ = Q′1 ×Q′2 × · · · ×Q′n ∈ S∗, the set of all events that
transition the system from S′ to S is denoted as E(S′, S) = {e ∈ Σo | δv(S′, e) = S}.

Consequently, the events in R(S) are systematically sorted based on their respective
Θ(e) values in ascending order, ensuring a structured and meaningful sequence for subse-
quent operations, reflecting both the probabilistic properties and temporal nuances of the
events within Vk

ω.
For each event e belonging to E(S′, S), we define A(S′, S, e) as a column vector with

|R(S′)| dimensions, exclusively consisting of zeros and ones. Additionally, we define a
binary scalar A(S′, S, e)[v] in the following manner:

A(S′, S, e)[c] =

{
1, if v = T(S′, e)
0, if v ̸= T(S′, e).

With v being a positive integer such that 1 ≤ v ≤ |R(S′)|, the matrix A(S′, S) can
be viewed as an expanded form of A(S′, S, e) for every event e in E(S′, S), arranged in
ascending order according to the value of T(S′, e). Given a probabilistic automaton struc-
ture G = (S, Σ, δ, ρ) with proximate initial states s(1)0 , s(2)0 , . . . , s(n)0 , and an observation
sequence ω ∈ Σ∗o , we define Vk

ω = (Sv, Σo, δv, S0) as the verification mechanism. For a
compound state S = Q1 × Q2 × . . .× Qn in Sv, and given δv(S0, ω′) = S, any of the row
vectors Cω′(S1|S), Cω′(S2|S), . . . , Cω′(Sn|S) is with the dimensioning of |R(S)|. For each
event e ∈ R(S) and index T(S, e) ∈ {1, 2, . . . , |R(S)|}, the following relationship holds for
i ∈ {1, 2, . . . , n}:

Cω′(Si|S)[T(S, e)] = ∑
s∈Si

∑
s′∈σ(s,e)

[
Prσ(s|ϕ(s(i)0 , ωω′))× Prσ(s′, u)

]
.

Given a probabilistic automaton G = (S, Σ, δ, ρ) with n initial states s(1)0 , s(2)0 , . . . , s(n)0
and an observation ω ∈ Σ∗o , let Vk

ω = (Sv, Σo, δv, S0) serve as the verificationer. For
a compound state S = Q1 × Q2 × · · · × Qn residing in the state space Sv, and given
δv(S0, ω′) = S, we define Aω′(Si|S) as the corresponding probabilistic matrix for the sub-
state Si, the composite state S, and the observation sequence ω′ ∈ Σ∗o , where i is an index
drawn from the set {1, 2, . . . , n}. The definition of Aω′(Si|S) unfolds in two scenarios:

First, in the event that S∗ = ∅, the matrix Aε(Si|S) is identified directly as Cε(Si|S);
Second, when S# ̸= ∅, for any S′ = Q′1 × Q′2 × · · · × Q′n belonging to S# such that

δv(S0, ω′′) = S′, δv(S′, e) = S, and ω′′e = ω′, the following relation holds:

Aω′
m (Si|S) =

[
Aω′′(S′i |S′)× A(S′, S)

]T
[:][m]× Cω′(Si|S);

Mathematics 2023, 11, 4991 16 of 25

Subsequently, the exhaustive probabilistic matrix Aω′(Si|S) is synthesized as

Aω′(Si|S) =
[
(Aω′

1 (Si|S))T | · · · |(Aω′
h (Si|S))T

]T
;

where h = Nr(Aω′′(S′i |S′)); this relationship reflects the intricate structure and hierarchy
inherent in the probabilistic matrices, emphasizing a crucial characteristic, possibly its
dimensionality or structural depth.

Within this setup, h is deduced by elevating N to the power of r. It is conjectured that
r represents the rank or a distinct inherent trait of the matrix Aω′′(S′i |S′). This formulation
provides a foundation for the ensuing algorithmic stages, imparting a computational
perspective to the entire procedure. A clear linkage between m and h exists, with m being
an element of the set {1, 2, . . . , h}. The strategy for computing these probabilistic matrices
for each state in the verifier is encapsulated in Algorithm 3, demonstrating a computational
complexity of O

(
|Sv|2 × (|Σo|+ |R(S′)|+ |R(S)|+ n× |Si|)

)
.

Algorithm 3: Probability matrices determination
Input: A verifier Vk

ω = (Sv, Σo , δv, S0) and a state S = Q1 ×Q2 × ...×Qn with δv(S0, ω′) = S
Output: Probability matrices Aω′ (S1|S) and Aω′ (S2|S) ... Aω′ (Sm|S)

1 S# ← ∅ foreach Sa ∈ Sv do
2 if δv(S0, ω′′) = Sa and δv(Sa, e) = S and ω′′e = ω′ then
3 S# ← S# ∪ {Sa};

4 foreach S′ = Q′1 ×Q′2 × ...×Q′n ∈ S# do
5 A(S′, S)← []; R(S′)← ∅; R(S)← ∅ foreach e ∈ Σo do
6 foreach Sa ∈ {S′, S} do
7 if δv(Sa, e) is defined and δv(Sa, e) ̸= Sa then
8 R(Sa)← R(Sa) ∪ {e}

9 foreach e ∈ Σo do
10 if δv(S′, e) = S then
11 for a = 1 to |R(S′)| do
12 if a = T(S′, e) then
13 A(S′, S, e)[a][1]← 1
14 else
15 A(S′, S, e)[a][1]← 0

16 A(S′, S)← [A(S′, S)|A(S′, S, e)]
17 foreach i ∈ {1, ..., n} do
18 Bi ← Aω′′ (S′i |S′)× A(S′, S)
19 Obtain from Algorithm 1 ϕ(s1

0, ωω′), ϕ(s2
0, ωω′), ..., ϕ(sn

0 , ωω′)
20 foreach e ∈ R(S) do
21 foreach s ∈ Si do
22 compute σ(s, e) by Algorithm 2
23 Cω′ (Si |S)[1][T(S, e)]← ∑s∈σ(s,e) ∑s∈Si

[Pr(s|ϕ(si
0, ωω′))× Prσ(s, u)]

24 t← Nr
(

Aω′′ (S′i |S′)
)

for m = 1 to t do

25 Aω′
m (Si |S)← BT

i [:, m]× Cω′ (Si |S)

26 Aω′ (Si |S)← [Aω′
1 (Si |S)T |...|Aω′

t (Si |S)T]T

Example 6. Consider the probabilistic automaton structure represented in Figure 2 and its corre-
sponding verifier illustrated in Figure 3, in which the given parameters are Σo = {α, β, λ, γ, µ}
and Σuo = {τ}. We define the function Θ as: Θ(α) = 1, Θ(β) = 2, Θ(λ) = 3, Θ(γ) = 4,
and Θ(µ) = 5. For S0, we obtain E(S0, S1) = {α}, A(S0, S1) = [Aα] with Aα = (1, 0, 0)T and
E(S0, S3) = {µ}, A(S0, S3) = [Aµ] with Aµ = (0, 0, 1)T . For S2, we obtain R(S5) = {γ} and
T(S5, γ) = 1. Thus, Cω′({s5}|S5) = Prσ(s5, γ) = 0.55 and Cω′({s6}|S5) = Prσ(s6, γ) = 1,
where ω′ = {αβ}.

Mathematics 2023, 11, 4991 17 of 25

Example 7. Consider the verification depicted in Figure 3. For the initial state S0, we have
Aε({s1}|S0) = (0.5, 0.12, 0.38) and Aε({s2}|S0) = (0.9, 0, 0.1). For state S3: Aε({s1}|S0)×
A(S0, S3) = 0.38; Aε({s2}|S0)× A(S0, S3) = 0.1. For an observable event ω′ = µ, Aω′({s1}|S3)

= (0.38)T [:][2]× Cω′({s1}|S3) = (0.19, 0)T and Aω′({s5}|S3) = (0.1)T [:][2]× Cω′({s5}|S3)
= (0, 0.045)T .

Within the intricate domain of probabilistic automata, the introduction of fake events
represents a paradigm shift in how systems interact with their observable events. This is not
a superficial addition; rather, it is a calculated stratagem where these events, ingeniously
derived from the set Σo of genuine observable events, play a pivotal role in ensuring
system integrity and privacy [37]. The origin of these fake events can be traced back
to the enforcement mechanism, which incorporates an insertion function designed to
embed any event within Σo seamlessly. While on the surface, these inserted events might
mirror the observable ones, their underlying design is distinct. The crucial aspect lies in
their deliberate ambiguity; they mirror the observable events with such precision that they
become indistinguishable upon a cursory examination. This resemblance is not coincidental
but serves a pivotal role in the broader system dynamics.

The aforementioned duality serves a higher purpose, particularly in the domain of
differential privacy. The insertion of fake events is not merely a technique for enhancing
system dynamics; it acts as a vital control strategy. When the system fails to achieve (ε, ξ)-
differential privacy through conventional means, these fake events step in to refine the
transition probabilities of the genuine events within Σo, ensuring the attainment of the
desired (ε, ξ)-differential privacy threshold. Such innovation highlights the sophistication
and flexibility of probabilistic automata theory, where privacy safeguards and operational
effectiveness are adeptly intertwined.

The supervisory control system in question operates based on observed events Σo. In
addition to these genuine events, we introduce fabricated events, denoted by Σfake. Each
fabricated event is a simulation derived from its Σo counterpart. Collectively, the universe
of all events is given by Σ = Σo

⋃
Σfake

⋃
Σuo. The matrix D is a configuration of size n× n,

with n indicating the system’s state count. An element D[i][j] delineates the difference
in actions executed at states Qi and Qj in response to a specific observation ω′. This
relationship is formally described by D[i][j] = Aω′(Qi | S)− Aω′(Qj | S). To incorporate
(ϵ, ξ)-differential privacy, we leverage an insertion function, E, which maps a state and
a genuine event to a corresponding fabricated event. Formally, Φ : S× Σo → S× Σfake.
The execution of this function results in Φ(s, e) = (s′, E(s, e)), with s′ determined by
s′ = δ(s, e). This function’s application adjusts the event probability distribution. For
instance, triggering an artificial event, efake, at state s modulates the event probabilities as
ρ′(s, e) = ρ(s, e)− ρ(s, efake)× ρ(s, e).

In the context of a supervisory control system within a probabilistic automaton, the
process of refining transition probabilities through the insertion of fake events plays a
pivotal role in adhering to differential privacy constraints. Consider a system where
the transition probability from an initial state by a particular observation sequence ω′ is
formulated as Aω′(Q | S) = Prσ(s0, ω′′e)× ρ(δ(s0, ω′′), e), with ω′ = ω′′e, where ω′′ ∈ Σ∗o
and e ∈ Σo. This formulation encapsulates the probability of the sequence ω′′e occurring
from the initial state s0 and the probability of transitioning to the next state due to event e.

The introduction of a fake event, executed by the supervisory function E, fundamen-
tally alters this transition probability. Post-insertion, the probability of the transition by the
observation sequence ω′ is refined to Aω′(Q | S) = Prσ(s0, ω′′e)× ρ(δ(s0, ω′′), e)× (1−
ρ(δ(s0, ω′′), efake)). The inclusion of the term (1− ρ(δ(s0, ω′′), efake)), which lies between 0
and 1, ensures a reduction in Aω′(Q | S) subsequent to the insertion of the fake event.

This reduction plays a crucial role in aligning the system with differential privacy
constraints. When the inequality |(Aω′(Qi | S) − (Aω′(Qj | S)| ≥ ϵ′ holds, indicating
a potential breach of privacy thresholds, the insertion of the fake event with a prede-
termined probability effectively diminishes the left-hand side of the inequality by a fac-

Mathematics 2023, 11, 4991 18 of 25

tor of (1− ρ(δ(s0, ω′′), efake)). This decrement contributes significantly to reducing the
differences in probabilities of sequences resulting from the initial states (si

0, sj
0), thus fa-

cilitating the achievement of the differential privacy constraint. Therefore, the strategic
insertion of fake events emerges as a vital mechanism for refining transition probabilities
in a manner that upholds the principles of differential privacy within the framework of
probabilistic automata.

Theorem 2. Given a supervisory control system formulated by the verifier Vω
k = (Sv, Σo, δv, S0).

The introduction of a fake event mechanism, governed by the insertion function E, that operates
within the (ϵ, ξ)-differential privacy boundary will ensure convergence towards a refined system
state such that the differential between state transitions, quantified by matrix D, remains beneath
the threshold ϵ′.

Proof. Starting with the differential matrix representation for each pair of states (Qi, Qj) in
our system, the differential is defined as D[i][j] = Aω′(Qi | S)− Aω′(Qj | S), capturing the
initial difference between the states in light of a particular observation ω. For any given
state s and an event e from Σo, the insertion function is described as E : S×Σo → Σfake, pro-
ducing a fake event efake = E(s, e). With this new event, the state transition dynamics are
altered: the state transition probabilities evolve to ρ′(s, e) = ρ(s, e)− ρ(s, efake)× ρ(s, e), en-
suring the recalculated differential remains constrained within the threshold |D′[i][j]| ≤ ϵ′.
Assuming that the introduction of the fake event modifies the state transition mecha-
nisms, the system undergoes iterative invocations of the insertion function to guarantee all
differentials in matrix D adhere to ∀i, j : |D[i][j]| ≤ ϵ′.

Given a maximum bound of iterations, denoted as k, combined with the consistent
adjustment via the insertion function E, it is implied that convergence occurs within these
iterations. Crucially, each introduction of a fake event acts as a remedial measure, aligning
the system’s dynamics closer to the (ϵ, ξ)-differential privacy conditions. Through our es-
tablished iterations, and by ensuring differentials remain within the specified boundary, the
system not only guarantees state transition convergence but also maintains the constraints
of differential privacy. Thus, the theorem is affirmed, elucidating how the supervisory
control system, using the intricate balance of fake event insertion, converges toward refined
states while upholding (ϵ, ξ)-differential privacy.

Transitioning to the algorithmic realm, Algorithm 4 stands at the intersection of
computer science, data analytics, and (ϵ, ξ)-differential privacy.

Algorithm 4 is meticulously crafted to ensure that whenever variances within matrix
D surpass a predefined threshold ϵ′, a fake event, efake, is integrated into Σo.

This intricate mechanism ensures a balance between maintaining (ϵ, ξ)-differential
privacy mandates and upholding the system’s dynamic transitions. The core of this al-
gorithm focuses on extracting the value ai from the observation matrix A′(Qi | S) while
concurrently formulating zi using zi ← ∑s∈Qi

[Pr(s|ϕ(si
0, ω′))× ρ(s, e)]. Remarkably, de-

spite its sophistication, Algorithm 4 boasts a computational efficiency with complexity of
O(k× |Sv| × n3 × |Σo|), thereby encapsulating the essence of modern supervisory control-
bridging privacy safeguards with system dynamism.

Theorem 3. For the algorithm “Iterative supervisory control refinement for multiple initial states”,
given a verifier Vk

ω = (Sv, Σo, δv, S0) and a positive integer k, the algorithm converges to a refined
set of states in at most k iterations, ensuring that the differential between state transitions, as
indicated by matrix D, remains below the threshold ϵ′.

Proof. Initiating with St set to the initial state S0, the algorithm iteratively refines states,
bounded by a maximum of k iterations. The matrix D captures state differentials, and
the algorithm ensures that none of its entries surpass ϵ′. If an entry in D breaches this
threshold, a “fake event” is introduced, adjusting state transitions to bring the differential
back within bounds.

Mathematics 2023, 11, 4991 19 of 25

The algorithm’s iterations (lines 10–18) either keep differentials in D under ϵ′ or apply
corrective mechanisms to achieve this. Hence, within k iterations, the algorithm guarantees
that state transition differentials adhere to the threshold ϵ′.

Algorithm 4: Iterative supervisory control refinement for multiple initial states
Data: A verifier Vk

ω = (Sv, Σo , δv, S0) and a positive integer k
Result: Refined set of states

1 Initialize St ← {S0}; Sm ← ∅
2 for k′ = 1 to k do
3 Update ϵ′

4 foreach S = Q1 ×Q2 × ...×Qn in St and δv(S0, ω′) = S do
5 Initialize D of size [n][n]
6 S∗ ← ∅
7 for i = 1 to n do
8 for j = i + 1 to n do
9 D[i][j]← Aω′ (Qi |S)− Aω′ (Qj|S)

10 foreach D[i][j][d] do
11 if |D[i][j][d]| > ϵ′ then
12 foreach s in Qi ∪Qj such that T(S, e) = j do
13 (s′, efake)← Φ(s, E(s, e))
14 Q′ ← Q′ ∪ {s′}
15 S′ = Q′i ×Q′j; which yields S′ ← δ(S, e)

16 Update Aω′ (Qi |S) and Aω′ (Qj|S)
17 go to line 10

18 Obtain from Algorithm 1 ϕ(s1
0, ωω′), ϕ(s2

0, ωω′), ..., ϕ(sn
0 , ωω′)

19 foreach e in Σo and δv(S, e) = S do
20 for i = 1 to n do
21 Calculate weight zi based on ϕ(s0

i , ωω′) and ρ(s, e)
22 for n = 1 to k− k′ do
23 foreach ai = Aω′ (Qi |S)[a][b] do
24 for j = 1 to n do
25 if |zn × ai − zj × aj| > ϵ′ then
26 foreach s in Q1 ∪Q2 ∪ ...∪Qn do
27 Call subroutine for adding fake event
28 go to line 19

29 foreach e in Σo and δv(S, e) ̸= S do
30 S∗ ← S∗ ∪ {δv(S, e)}

31 St ← St \ {S}, Sm ← Sm ∪ (S∗ \ {S}), St ← Sm, Sm ← ∅

6. Numerical Case Study

This section presents a numerical case study that precisely illustrates the proposed
methodology. The case study confirms the methodology’s effectiveness and applicabil-
ity to discrete event systems modeled by probabilistic automata. A DES represented
by probabilistic automata is shown in Figure 4, where Σo = {α, β, λ, γ, µ}, Σuo = {τ},
Σ f ake = {α′, β′, λ′, γ′, µ′}, and the initial states are: {s0, s1, s2}. The verifier of this system is
represented in Figure 5. Let Θ(α) = 1, Θ(β) = 2, Θ(λ) = 3, Θ(γ) = 4, Θ(µ) = 5, ϵ = 0.14,
and ξ = 0.01.

Mathematics 2023, 11, 4991 20 of 25

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s15

s11

s12

s13

s14

s17

s16

λ : 0.8

α : 0.2

γ : 0.26

β : 0.6

µ : 0.14

γ, µ : 0.1

τ : 0.55

λ : 0.3
α : 0.25

β : 1

λ : 0.05

µ : 0.2

α : 0.2

γ, β : 0.4

γ : 0.23
µ : 0.22

λ : 0.69

α : 0.31

γ : 0.3

γ : 0.2

β : 0.8

β : 0.55

λ
: 0.15

γ : 0.08

µ : 0.3

α : 0.4
λ : 0.22

γ : 1

γ : 0.4

α : 0.24
λ : 0.19

µ : 0.5

λ : 0.5

λ : 0.78

α : 0.22

β : 1

β : 0.25

µ : 0.75

µ : 0.17

µ : 1

γ : 0.5

α : 0.5

Figure 4. A probabilistic automaton G#.

For k′ = 1 and state S0 in Vk
ω′ : ϵ′1 = ϵe−0.01 = 0.139.

T(S0, α) = 1, T(S0, λ) = 2.

Aε({s0}|S0) = (0.2, 0.8);

Aε({s1}|S0) = (0.31, 0.69);

Aε({s2}|S0) = (0.22, 0.78).

Probability differences are:

(s0, s1) = (0.110, 0.110);

(s1, s2) = (0.090, 0.090);

(s2, s0) = (0.020, 0.020).

S0 : {s0} × {s1} × {s2}start

S1 : {s4} × {s6} × {s7} S2 : {s3} × {s5} × {s6}

S3 : {s9} × {s11} × {s15} S4 : ∅× {s10} ×∅S5 : ∅× {s6} ×∅

S13 :
∅× {s17}
×∅

S17 :
∅× {s17}
×∅

S14 :
{s13} ×∅
×{s15}

S15 :
{s13} × {s15}

×∅

S16 :
{s9} × {s16}
×{s16}

S7 : ∅×∅× {s10} S6 : {s8, s12} × {s10} × {s15} S8 : {s9} ×∅×∅

S9 :
{s13} × {s14}
×{s17}

S10 :
{s8, s12}×
{s15} × {s16}

S11 :
{s8, s12}×
{s10} × {s15}

S12 :
{s9 s12}×
{s14} × {s17}

α
λ

β λ
γ

α
λ β γ

µ

γ

λ β µ

α µ γλ

Figure 5. The verifier Vk
ω′ for k′ = 3 of probabilistic automaton G#.

Mathematics 2023, 11, 4991 21 of 25

For k′ = 2 : ϵ′2 = ϵe−0.02 = 0.136. For state S1:

T(S1, β) = 1, T(S1, λ) = 2, T(S1, γ) = 3.

Aε({s0}|S0)× A(S0, S1) = 0.2;

Aε({s1}|S0)× A(S0, S1) = 0.31;

Aε({s2}|S0)× A(S0, S1) = 0.22.

Then:

Aε({s4}|S1) = (0.2, 0, 0);

Aε({s6}|S1) = (0.171, 0.047, 0.093);

Aε({s7}|S1) = (0.220, 0, 0).

Probability differences are:

(s4, s6) = (0.029, 0.047, 0.093);

(s6, s7) = (0.049, 0.047, 0.093);

(s7, s4) = (0.020, 0, 0).

For k′ = 2 and state S2:

T(S2, β) = 1, T(S2, λ) = 2, T(S2, µ) = 3.

Aε({s0}|S0)× A(S0, S2) = (0.2, 0.8)× (0, 1)T = 0.8;

Aε({s1}|S0)× A(S0, S2) = (0.31, 0.69)× (0, 1)T = 0.69;

Aε({s2}|S0)× A(S0, S2) = (0.22, 0.78)× (0, 1)T = 0.78.

For s3:

Aλ({s3}|S2) = 0.8× Cλ({s3}|S2) = 0.8(0.6, 0, 0.14) = (0.480, 0, 0.112);
ρ(s3, γ) = 0.26;
(ρ(s3, γ))1 × Aλ({s3}|S2) = 0.26× (0.48, 0, 0.11) = (0.125, 0, 0.029);
(ρ(s3, γ))2 × Aλ({s3}|S2) = (0.26)2 × (0.48, 0, 0.11) = (0.032, 0, 0.007).

For s5:

Aλ({s5}|S2) = 0.69× Cλ({s5}|S2) = 0.69(0.8, 0, 0) = (0.552, 0, 0);
ρ(s5, γ) = 0.2;
(ρ(s5, γ))1 × Aλ({s5}|S2) = 0.2× (0.55, 0, 0) = (0.110, 0, 0);
(ρ(s5, γ))2 × Aλ({s5}|S2) = (0.2)2 × (0.55, 0, 0) = (0.004, 0, 0).

For s6:

Aλ({s6}|S2) = 0.8× Cλ({s6}|S2) = 0.78(0.55, 0.15, 0) = (0.429, 0.117, 0);
ρ(s6, γ) = 0.3;
(ρ(s6, γ))1 × Aλ({s6}|S2) = 0.3× (0.43, 0.12, 0) = (0.129, 0.036, 0);
(ρ(s6, γ))2 × Aλ({s6}|S2) = (0.3)2 × (0.43, 0.12, 0) = (0.039, 0.011, 0).

Mathematics 2023, 11, 4991 22 of 25

For k′ = 3: ϵ′3 = ϵe−0.03 = 0.132. For state S3:

T(S3, α) = 1, T(S3, β) = 2, T(S3, λ) = 3, T(S3, γ) = 4, T(S3, µ) = 5.
Aα({s4}|S1)× A(S1, S3) = (0.2, 0, 0)× (1, 0, 0)T = 0.2;
Aα({s6}|S1)× A(S1, S3) = (0.171, 0.047, 0.093)× (1, 0, 0)T = 0.171;
Aα({s7}|S1)× A(S1, S3) = (0.22, 0, 0)× (1, 0, 0)T = 0.22.
Aαβ({s9}|S3) = 0.2× Cαβ({s9}|S3) = 0.2× (0, 0.4, 0, 0.4, 0.2) = (0, 0.080, 0, 0.080, 0.040);
Aαβ({s15}|S3) = 0.17× Cαβ({s15}|S3) = 0.17× (0.24, 0, 0.19, 0.4, 0.17);

= (0.041, 0, 0.032, 0.068, 0.029);
Aαβ({s11}|S3) = 0.22× Cαβ({s11}|S3) = 0.22× (0, 0.25, 0, 0, 0.75);

= (0, 0.055, 0, 0, 0.165).

Probability differences are:

(s9, s15) = (0.041, 0.080, 0.032, 0.012, 0.011);
(s15, s11) = (0.041, 0.055, 0.032, 0.068, 0.136);
(s11, s9) = (0, 0.025, 0, 0.080, 0.125).

For k′ = 3 and state S6:

T(S6, α) = 1, T(S6, λ) = 2, T(S6, γ) = 3, T(S6, µ) = 4.

We then compute:

Aλ({s3}|S2)× A(S2, S6) = 0.480;
Aλ({s5}|S2)× A(S2, S6) = 0.552;
Aλ({s6}|S2)× A(S2, S6) = 0.429.

Here, the probability of choosing either (s8 or s12) by the ω′ = λβ is conditional
such that:

Pr(s12|ϕ(s0, λβ)) =
0.48× 0.55

0.48× 0.55 + 0.48
= 0.355;

Pr(s8|ϕ(s0, λβ)) =
0.48

0.48× 0.55 + 0.48
= 0.645.

Next, we have:

Aλβ|({s8, s12}|S6) = 0.48× Cλβ({s8, s12}|S6) =

Aλβ|({s8, s12}|S6) = (0.218, 0.139, 0.146, 0.143);
Aλβ({s10}|S6) = (0.221, 0.121, 0.044, 0.165);
Aλβ({s15}|S6) = (0.103, 0.081, 0.172, 0.073).

Probability differences are:

({s8, s12}, s10) = (0.003, 0.018, 0.102, 0.022);
(s10, s15) = (0.118, 0.040, 0.128, 0.920);
(s15, {s8, s12}) = (0.115, 0.058, 0.026, 0.070).

Based on the numerical investigation conducted, the automaton G# satisfies the (ϵ, ξ)-
differential privacy condition for k′ = 1 with ϵ′1 = 0.139 and for k′ = 2 with ϵ′2 = 0.136.
However, the (ϵ, ξ)-differential privacy condition is not met for k′ = 3 with ϵ′3 = 0.132
between the pair (s15, s11). For the state s11, triggering the fake µ′ via supervisory control
such that: Φ(s11, µ′) = (s11, µ′), will lead to redistribution of events probabilities as follows:
(0, 0.225, 0, 0, 0.675, 0.1). By triggering µ′ at state s15 such that Φ(s15, µ′) = (s15, µ′), the
adjusted transitions probabilities are as follows: (0.216, 0, 0.171, 0.36, 0.153, 0.1). Now, we

Mathematics 2023, 11, 4991 23 of 25

are computing the transformed probabilities, taking into account the effect of the triggered
fake event µ′:

Aαβ({s11}|S3) = 0.22× (0, 0.225, 0, 0, 0.675) = (0, 0.050, 0, 0, 0.149, 0.022);
Aαβ({s15}|S3) = 0.171× (0.216, 0, 0.171, 0.36, 0.153)

= 0.037, 0, 0.029, 0.062, 0.026, 0.017);
Aαβ({s9}|S3) = 0.2× (0, 0.4, 0, 0.4, 0.2, 0) = (0, 0.080, 0, 0.080, 0.040).

Based on the above, the supervisory mechanism successfully enforces the (ϵ, ξ)-
differential privacy for k′ = 3 with ϵ′3 = 0.132.

7. Conclusions

Our study marks a significant advancement in probabilistic automata, introducing a
verification protocol aimed at protecting initial states. Utilizing advanced mathematical
methods, this protocol evaluates privacy risks in event sequences and incorporates a super-
visory control to maintain privacy without sacrificing system functionality. Looking ahead,
we plan to explore the integration of probabilistic automata with dynamic concealment
frameworks, focusing on adaptability and responsiveness in various system environments.

Despite these advancements, we recognize areas needing further exploration and
improvement. Managing the complexity of multiple initial states in probabilistic automata
is challenging, particularly regarding scalability and efficiency in larger systems. The
reliance on precise observation sequences is another critical aspect, as any inaccuracies
could undermine the reliability of our privacy assurances. The resource-intensive nature of
our approach also necessitates consideration, especially in settings with limited resources.
Additionally, enhancing the model’s adaptability to dynamic systems with frequently
changing initial states and behaviors is a crucial future direction. Finally, broadening the
methodology’s applicability to diverse systems and domains remains an essential goal.

Thus, while our research establishes a solid foundation for differential privacy in
discrete event systems using probabilistic automata, it also underscores the need for con-
tinuous advancements in complexity management, observation accuracy, resource opti-
mization, adaptability, and application scope. These areas will be central to our ongoing
research efforts in this evolving field.

Author Contributions: Conceptualization, Z.L.; methodology, T.A.A.-S.; software, G.Z.; validation,
M.A.E.-M.; formal analysis, M.S.; investigation, T.A.A.-S. and G.Z.; resources, M.A.E.-M. and M.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This work is partially supported by the Key Technology R&D Program of Henan Province of
China (Grant No. 232102220060), National Natural Science Foundation of China (Grant No. 62103349),
and the Special Fund for Scientific and Technological Innovation Strategy of Guangdong Province
(Grant No. 2022A0505030025). The authors present their appreciation to King Saud University for
funding this research through Researchers Supporting Program number (RSPD2023R704), King Saud
University, Riyadh, Saudi Arabia.

Data Availability Statement: The experimental data used in this paper can be obtained by contacting
the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DESs Discrete Event Systems

Mathematics 2023, 11, 4991 24 of 25

References
1. Al-Makhlafi, M.; Gu, H.; Almuaalemi, A.; Almekhlafi, E.; Adam, M.M. RibsNet: A scalable, high-performance, and cost-effective

two-layer-based cloud data center network architecture. IEEE Trans. Netw. Serv. Manag. 2023, 20, 1676–1690. [CrossRef]
2. Rao, P.S.; Satyanarayana, S. Privacy-preserving data publishing based on sensitivity in context of Big Data using Hive. J. Big Data

2018, 5, 20. [CrossRef]
3. Jain, P.; Gyanchandani, M.; Khare, N. Big data privacy: A technological perspective and review. J. Big Data 2016, 3, 472–496.

[CrossRef]
4. Yao, L.; Chen, Z.; Hu, H.; Wu, G.; Wu, B. Sensitive attribute privacy preservation of trajectory data publishing based on l-diversity.

Distrib. Parallel Databases 2020, 39, 785–811. [CrossRef] [PubMed]
5. Zhang, B.; Lin, J.C.; Liu, Q.; Fournier-Viger, P.; Djenouri, Y. A(k, p)-anonymity framework to sanitize transactional database with

personalized sensitivity. J. Internet Technol. 2019, 20, 801–808.
6. Kacha, L.; Zitouni, A.; Djoudi, M. KAB: A new k-anonymity approach based on black hole algorithm. J. King Saud Univ.-Comput.

Inf. Sci. 2022, 34, 4075–4088. [CrossRef]
7. Dwork, C. Differential Privacy. In Automata, Languages and Programming. ICALP 2006; Lecture Notes in Computer Science;

Bugliesi, M., Preneel, B., Sassone, V., Wegener, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4052. [CrossRef]
8. Dwork, C.; Roth, A. The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 2013, 9, 211–407.

[CrossRef]
9. Geng, Q.; Viswanath, P. The optimal noise-adding mechanism in differential privacy. IEEE Trans. Inf. Theory 2016, 62, 925–951.

[CrossRef]
10. He, J.; Cai, L.; Guan, X. Differential private noise adding mechanism and its application on consensus algorithm. IEEE Trans.

Signal Process. 2020, 68, 4069–4082. [CrossRef]
11. Sarkar, A.; Sharma, A.; Gill, A.; Thakur, P. A differential privacy-based system for efficiently protecting data privacy. In

Proceedings of the 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS), Coimbatore, India,
14–16 June 2023; pp. 1399–1404. [CrossRef]

12. Jain, P.; Gyanchandani, M.; Khare, N. Differential privacy: Its technological prescriptive using big data. J. Big Data 2018, 5, 15.
[CrossRef]

13. Farias, V.A.; Brito, F.T.; Flynn, C.; Machado, J.C.; Majumdar, S.; Srivastava, D. Local dampening: Differential privacy for
non-numeric queries via local sensitivity. VLDB J. 2023, 32, 1191–1214. [CrossRef]

14. Cassandras, C.G.; Lafortune, S. Systems and Models. In Introduction to Discrete Event Systems; Springer: Cham, Switzerland, 2021;
pp. 1–52. [CrossRef]

15. Lin, F. Opacity of discrete event systems and its applications. Automatica 2011, 47, 496–503. [CrossRef]
16. Badouel, E.; Bednarczyk, M.A.; Borzyszkowski, A.M.; Caillaud, B.; Darondeau, P. Concurrent secrets. Discrete Event Dyn. Syst.

2007, 17, 425–446. [CrossRef]
17. Zhang, K. State-based opacity of real-time automata. In Proceedings of the 27th IFIP WG 1.5 International Workshop on Cellular

Automata and Discrete Complex Systems (AUTOMATA 2021), Marseille, France, 12–14 July 2021; Castillo-Ramirez, A., Guillon, P.,
Perrot, K., Eds.; Volume 90, pp. 12:1–12:15. [CrossRef]

18. Lai, A.; Lahaye, S.; Li, Z. Initial-state detectability and initial-state opacity of unambiguous weighted automata. Automatica 2021,
127, 109490. [CrossRef]

19. Han, X.; Zhang, K.; Zhang, J.; Li, Z.; Chen, Z. Strong current-state and initial-state opacity of discrete-event systems. Automatica
2023, 148, 110756. [CrossRef]

20. Balun, J.; Masopust, T. On verification of weak and strong k-step opacity for discrete-event systems. IFAC-PapersOnLine 2022, 55,
108–113. [CrossRef]

21. Yin, X.; Li, Z.; Wang, W.; Li, S. Infinite-step opacity and k-step opacity of stochastic discrete-event systems. Automatica 2019, 99,
266–274. [CrossRef]

22. Balun, J.; Masopust, T. On opacity verification for discrete-event systems. IFAC-PapersOnLine 2020, 53, 2075–2080. [CrossRef]
23. Jones, A.; Leahy, K.; Hale, M. Towards differential privacy for symbolic systems. In Proceedings of the 2019 American Control

Conference (ACC), Philadelphia, PA, USA, 10–12 July 2019; pp. 372–377. [CrossRef]
24. Saboori, A.; Hadjicostis, C.N. Verification of initial-state opacity in security applications of DES. In Proceedings of the 2008 9th

International Workshop on Discrete Event Systems, Gothenburg, Sweden, 28–30 May 2008; pp. 328–333. [CrossRef]
25. Keroglou, C.; Hadjicostis, C.N. Initial state opacity in stochastic DES. In Proceedings of the 2013 IEEE 18th Conf. Emerging

Technol. and Factory Autom. (ETFA), Cagliari, Italy, 10–13 September 2013; pp. 1–8. [CrossRef]
26. Basile, F.; De Tommasi, G.; Motta, C.; Sterle, C. Necessary and sufficient condition to assess initial-state-opacity in live bounded

and reversible discrete event systems. IEEE Control Syst. Lett. 2022, 6, 2683–2688. [CrossRef]
27. Tong, Y.; Li, Z.; Seatzu, C.; Giua, A. Verification of state-based opacity using Petri nets. IEEE Trans. Automat. Contr. 2017, 62,

2823–2837. [CrossRef]
28. Cong, X.; Fanti, M.P.; Mangini, A.M.; Li, Z. On-line verification of initial-state opacity by Petri nets and integer linear programming.

ISA Trans. 2019, 93, 108–114. [CrossRef] [PubMed]
29. Zhang, K.; Yin, X.; Zamani, M. Opacity of nondeterministic transition systems: A (bi)simulation relation approach. IEEE Trans.

Automat. Contr. 2019, 64, 5116–5123. [CrossRef]

http://doi.org/10.1109/TNSM.2022.3218127
http://dx.doi.org/10.1186/s40537-018-0130-y
http://dx.doi.org/10.1186/s40537-016-0059-y
http://dx.doi.org/10.1007/s10619-020-07318-7
http://www.ncbi.nlm.nih.gov/pubmed/33223614
http://dx.doi.org/10.1016/j.jksuci.2021.04.014
http://dx.doi.org/10.1007/11787006_1
http://dx.doi.org/10.1561/0400000042
http://dx.doi.org/10.1109/TIT.2015.2504967
http://dx.doi.org/10.1109/TSP.2020.3006760
http://dx.doi.org/10.1109/ICSCSS57650.2023.10169412
http://dx.doi.org/10.1186/s40537-018-0124-9
http://dx.doi.org/10.1007/s00778-022-00774-w
http://dx.doi.org/10.1007/978-3-030-72274-6_1
http://dx.doi.org/10.1016/j.automatica.2011.01.002
http://dx.doi.org/10.1007/s10626-007-0020-5
http://dx.doi.org/10.4230/OASIcs.AUTOMATA.2021.12
http://dx.doi.org/10.1016/j.automatica.2021.109490
http://dx.doi.org/10.1016/j.automatica.2022.110756
http://dx.doi.org/10.1016/j.ifacol.2022.10.331
http://dx.doi.org/10.1016/j.automatica.2018.10.049
http://dx.doi.org/10.1016/j.ifacol.2020.12.2524
http://dx.doi.org/10.23919/ACC.2019.8814723
http://dx.doi.org/10.1109/WODES.2008.4605967
http://dx.doi.org/10.1109/ETFA.2013.6648005
http://dx.doi.org/10.1109/LCSYS.2022.3174521
http://dx.doi.org/10.1109/TAC.2016.2620429
http://dx.doi.org/10.1016/j.isatra.2019.01.023
http://www.ncbi.nlm.nih.gov/pubmed/30799022
http://dx.doi.org/10.1109/TAC.2019.2908726

Mathematics 2023, 11, 4991 25 of 25

30. Hadjicostis, C.N.; Keroglou, C. Opacity formulations and verification in discrete event systems. In Proceedings of the 2014 IEEE
Emerging Technology and Factory Automation (ETFA), Barcelona, Spain, 16–19 September 2014; pp. 1–12. [CrossRef]

31. Teng, Y.; Li, Z.; Yin, L.; Wu, N. State-based differential privacy verification and enforcement for probabilistic automata. Mathematics
2023, 11, 1853. [CrossRef]

32. Steinke, T. Composition of differential privacy and privacy amplification by subsampling. arXiv 2022, arXiv:2210.00597.
33. Cassandras, C.G.; Lafortune, S. Languages and automata. In Introduction to Discrete Event Systems; Springer: Cham, Switzer-

land, 2021. [CrossRef]
34. Kumar, R.; Garg, V. Control of stochastic discrete event systems: Synthesis. In Proceedings of the IEEE Conference on Decision

and Control, Tampa, FL, USA, 18 December 1998; Volume 3, pp. 3299–3304. [CrossRef]
35. Rabiner, L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 1989, 77, 257–286.

[CrossRef]
36. McSherry, F.; Talwar, K. Mechanism design via differential privacy. In Proceedings of the 48th Annual IEEE Symposium on

Foundations of Computer Science (FOCS’07), Providence, RI, USA, 21–23 October 2007; pp. 94–103. [CrossRef]
37. Jacob, R.; Lesage, J.-J.; Faure, J.-M. Overview of discrete event systems opacity: Models, validation, and quantification. Annu. Rev.

Control 2016, 41, 135–146. Available online: https://www.sciencedirect.com/science/article/pii/S1367578816300189 (accessed on
13 July 2023). [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ETFA.2014.7005032
http://dx.doi.org/10.3390/math11081853
http://dx.doi.org/10.1007/978-3-030-72274-6_2
http://dx.doi.org/10.1109/CDC.1998.758208
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1109/FOCS.2007.66
https://www.sciencedirect.com/science/article/pii/S1367578816300189
http://dx.doi.org/10.1016/j.arcontrol.2016.04.015

	Introduction
	Preliminaries
	Probabilistic Automata in Discrete Event Systems (DESs)
	Differential Privacy

	Investigative Focus
	Proximate States and Differential Privacy
	Verification Concerns

	Verification of (,)-Differential Privacy over Finite Steps
	Ensuring (,)-Differential Privacy via Supervisory Control
	Numerical Case Study
	Conclusions
	References

