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Abstract: Consider a sequence (Xn)n≥1 of i.i.d. 2× 2 stochastic matrices with each Xn distributed as
µ. This µ is described as follows. Let (Cn, Dn)T denote the first column of Xn and for a given real
r with 0 < r < 1, let r−1Cn and r−1Dn each be Bernoulli distributions with parameters p1 and p2,
respectively, and 0 < p1, p2 < 1 . Clearly, the weak limit of the sequence µn, namely λ, is known to
exist, whose support is contained in the set of all 2× 2 rank one stochastic matrices. In a previous
paper, we considered 0 < r ≤ 1

2 and obtained λ explicitly. We showed that λ is supported countably
on many points, each with positive λ-mass. Of course, the case 0 < r ≤ 1

2 is tractable, but the case
r > 1

2 is very challenging. Considering the extreme nontriviality of this case, we stick to a very special

such r, namely, r =
√

5−1
2 (the reciprocal of the golden ratio), briefly mention the challenges in this

nontrivial case, and completely identify λ for a very special situation.
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1. Introduction

As the title of the paper suggests, the reader can understand that this paper deals
with a situation where one considers products of independent and identically distributed
random 2× 2 stochastic matrices and their limiting behavior. In other words, here we
are considering a probability measure µ on a collection of 2× 2 stochastic matrices and
studying the limiting behavior of the convolution sequence µn. To a reader new to this area,
the author would like to refer the reader to the book by Hognas and Mukherjea [1]. This
book starts from the very basic concepts, such as the definition of a semigroup, topological
semigroups, semigroups of matrices, etc., in chapter 1 and then moves forward to more
complex concepts, such as probability measures of semigroups, convolution products of
probabilities and convergence, random walks on semigroups, random walks on semigroups
of nonnegative matrices (and in particular stochastic matrices), etc. The current author
collaborated on a few papers in this area [2–6].

For complete understanding of this article, we will go over a few details about con-
vergence of convolution products of probability measures on semigroups of matrices. If B
denotes the collection of Borel subsets of a set S, then P(S) can be the set of all regular
probability measures µ on B. Then, denoting the collection of continuous functions on S as
C(S), for µ, ν ∈ P(S), and f ∈ C(S), one defines the following iterated integral:

I( f ) =
∫ ∫

f (xy)µ(dx)ν(dy)

By the Riesz representation theorem, there exists a unique regular probability measure
λ such that for any function f ∈ C(S) with compact support, we have
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I( f ) =
∫

f dλ

Then, λ is called the convolution of the probability measures µ and ν. There is a
proposition in [1] that shows that for µ, ν ∈ P(S), and B ∈ B,

µ ∗ ν(B) =
∫

µ(Bx−1)ν(dx) =
∫

ν(x−1B)µ(dx)

Having defined the convolution product of regular probability measures on semi-
groups, one can consider a sequence of regular probability measures µ1, µ2, µ3, . . ., construct
a sequence of convolution products of these regular probability measures µ1, µ1 ? µ2, µ1 ?
µ2 ? µ3, . . ., and talk about conditions when such convolution sequences will converge.
Then, one can specialize to the independent identically distributed situation where for
each i, we have, µi = µ for i = 1, 2, 3, . . .. Then, the convolution sequence looks like µn

for n = 1, 2, 3, . . .. In all these situations, [1] assumes that S is a locally compact, second
countable Hausdorff topological semigroup.

Then, if someone further specializes to the situation when S is a semigroup of non-
negative matrices or say, stochatic matrices of a fixed order d, then one considers the usual
matrix topology. There have been quite a few papers that study the conditions when the
convolution sequence µn converges. Mukherjea [7] first gave conditions when such a se-
quence converges for i.i.d. 2× 2 stochastic matrices. Then, subsequently such conditions for
higher order stochastic matrices were obtained [5,6]. But none of these papers performed
detailed study on the nature of the corresponding limiting measures. But motivated by a
paper by Chamayou and Letac [8], we have investigated the nature of the limiting measure
λ for a very special µ on 2× 2 i.i.d. stochastic matrices.

Before proceeding further, let us denote the probability measure on stochastic matrices
of a fixed order d by µ and its support by S(µ). So, S(µ) is a subcollection of stochastic
matrices of a fixed order d. Thus, for any convolution product µn, we will denote its support
by S(µn) and the support of the limiting measure λ (if it exists) by S(λ).

If we denote the closure of an arbirary set E by E, then

S(µn) = {A1 A2 · · · An | for each i, Ai ∈ S(µ), 1 ≤ i ≤ n}

where n is a positive integer and

S = ∪∞
n=1S(µn)

Also, denote P to be the set of d× d strictly positive stochastic matrices in S .
Chamayou and Letac [8] proved that if (Xn)n≥1 is a sequence of d× d i.i.d. stochastic

matrices such that P(mini,j(X1)ij = 0) < 1, then Y = limn→∞ XnXn−1 · · ·X1 exists almost
surely and P(Y has rank 1) = 1; furthermore, if for any Borel B of d× d stochastic matrices
(with usual Rd2

-topology), we denote µ(B) = P(X1 ∈ B) and λ(B) = P(Y ∈ B), and then
λ is the unique solution of the convolution equation λ ? µ = λ.

Then, in [2], we noted that this wonderful result of Chamayou and Letac also holds un-
der the (slightly weaker) condition that µm(P) > 0 for some positive integer m (as opposed
to just 1, instead of m, taken in [8]) where µm is the distribution of the product Xm · · · X1
and P is the set of d × d strictly positive stochastic matrices. The reason is as follows:
the Chamayou and Letac result shows that under the weaker condition, the subsequence
Ynm = XnmXnm−1 · · ·X1 converges almost surely to some d× d rank one stochastic matrix,
Y0, and consequently, any subsequence Xnk Xnk−1 · · ·X1 with nk > skm (for some sk) will
also converge almost surely to a d × d stochastc matrix VY0(= Y0, as Y0 has rank one),
where V is a limit point of the product subsequence Xnk Xnk−1 · · ·Xskm+1. This establishes
our observation.

Next we mention below some situations when S(λ) consists of all rank one matrices:
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Situation 1: If (Xi)i≥1, as before, is i.i.d. d× d stochastic matrices such that for some
positive integer m ≥ 1,

µm(P) > 0 (1)

then the sequence µn, where µ(B) = P(X1 ∈ B) for Borel sets B of d× d stochastic matrices,
converges weakly to a probability measure λ and S(λ) consists of all rank one stochastic
matrices in S such that λ(P) > 0.

Situation 2: When λ is the weak limit of (µn)n≥1 and S contains a rank one matrix,
then the support of λ, S(λ) consists of all rank one stochastic matrices in S . This is an
algebraic fact for the support of an idempotent probability measure (note that λ = λ ? λ;
see [1]).

In the same paper, Chamayou and Letac (see also [9]) tried to identify λ in the case
when the rows of X1 above are independent, and for 1 ≤ i ≤ d, the i-th row of X1 has
Dirichlet distribution with positive parameters αi1, αi2, . . . , αid, and they were successful in
the case when ∑d

j=1 αij = ∑d
j=1 αji, 1 ≤ i ≤ d. Indeed, there are only very few (other than

those given in [8–10]) examples in the literature even for 2× 2 stochastic matrices when the
limit distribution λ has been identified completely in the above context. Our paper [2] is
an example.

In [2], we considered 2× 2 i.i.d. stochastic matrices (Xn)n≥1 with Xn =

(
Cn 1−Cn
Dn 1−Dn

)
,

each Xn is distributed as µ and r−1Cn and r−1Dn are each Bernoulli distributions (with possibly
different parameters p1 and p2, 0 < p1, p2 < 1) for a real r satisfying 0 < r ≤ 1. Our goal was
to identify λ, the distribution of limn→∞XnXn−1 · · ·X1. Clearly, there are exactly four matrices
in the support of µ, each with positive mass. It is well known that that µn converges weakly
to a limiting measure λ and the support of λ consists of rank one matrices. In particular, if r

equals 1, the support of λ has exactly two matrices, namely,
(

0 1
0 1

)
and

(
1 0
1 0

)
. In [2],

a complete solution is given to the problem for 0 < r ≤ 1
2 and also for r = 1.

The situation 1
2 < r < 1 is much more challenging. Before explaining where the

challenge lies, let us make the following convention:

From now on, we will often denote the matrix
(

x 1− x
x 1− x

)
by simply x when there is

no fear of confusion. Thus, for the limiting measure λ, λ(x) will mean λ

(
x 1− x
x 1− x

)
and

if we write that the support of λ, S(λ) is contained in [0, 1], then this means the following:

S(λ) ⊂
{(

x 1− x
x 1− x

)
: 0 ≤ x ≤ 1

}
Now, we are going to explain why the case 1

2 < r < 1 is more challenging. Al-
though we find it quite easy to observe that λ(0) and λ(r) have the same expressions as in
the previous case, it is indeed hard to exhibit a point in (0, r) with positive λ-mass.

However, there is a special situation when things are more tractable, namely, r =
√

5−1
2

(the reciprocal of the golden ratio). We denote this special r as rg. Notice that rg satisfies
the equation r2

g + rg − 1 = 0. Using this equation extensively, we completely solve for λ in
this particular situation. It can be seen that although this is just one case, the proof is highly
nontrivial. According to the author, the reason why rg works for us is because of the fact
that λ(1− rg) could be found out easily and so this technique of proof worked.

It may be mentioned here that there have been numerous studies in the literature
involving the golden ratio. One very recent study invloving golden ratio is in the context
of machine learning [11].

As in the case of 0 < r ≤ 1
2 , here also λ is discrete with masses at countably many

points. Our main theorem appears in Section 4.
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One gets a feeling that for any other r satisfying 1
2 < r < 1, finding the value of

λ(1− r) itself will be a challenge, making it quite nontrivial. Thus, for a general 1
2 < r < 1,

a different technique of proof might be needed to obtain a complete solution.
In the next section (Section 2), we describe our set up, state the results proved in [2]

for 0 < r ≤ 1
2 , and briefly discuss the more challenging situation 1

2 < r < 1. In Section 3,

we focus on r = rg =
√

5−1
2 (reciprocal of the golden ratio) and prove two important

propostions. We prove our main theorem and a series of lemmas leading to it in Section 4.
We have some concluding remarks and comments in Section 5.

2. Preliminaries

In our case, we are considering the case of a probability measure µ on 2× 2 stochastic
matrices. S(µ) denotes its support, which is a subcollection of 2× 2 stochastic matrices.
S(µn) denotes the support of µn where µn is the convolution sequence. As pointed out
in [7], µn converges if and only if S(µ) is not a singleton:

S(µ) 6=
{(

0 1
1 0

)}
And in case there is a strictly positive matrix in S(µ), then the support S(λ) of the

limiting measure λ consists of rank one matrices. Our special case satisfies that condition:

We consider 2× 2 i.i.d. stochastic matrices (Xn)n≥1 with Xn =

(
Cn 1− Cn
Dn 1− Dn

)
,

such that each Xn is distributed as µ. Also, assume that for a given r with 0 < r ≤ 1, both
r−1Cn and r−1Dn are Bernoulli distributions with parameters p1 and p2 respectively .

Then, the support of µ has exactly four matrices as S(µ) is given by:

S(µ) =
{(

0 1
0 1

)
,
(

0 1
r 1− r

)
,
(

r 1− r
0 1

)
,
(

r 1− r
r 1− r

)}
Let the µ-masses at these points be denoted by p00, p01, p10, p11 respectively so that

p00 + p01 = 1− p1, p00 + p10 = 1− p2, p10 + p11 = p1 and p01 + p11 = p2.
Let λ be the distribution of limn→∞ XnXn−1 · · ·X1.
In case r equals 1, one can easily observe that λ is a Bernoulli distribution with

parameters entirely dependent on the probability mass function of µ, namely,

λ(0) =
p00 + p01

1− p10 + p01

This follows by solving for λ(0) and λ(1) in the convolution equation λ ? µ = λ.
For 0 < r < 1, the support of µn, S(µn) and consequently S is contained in the set{(

x 1− x
y 1− y

)
: 0 ≤ x ≤ r, 0 ≤ y ≤ r

}
This can be proved using induction on n. One assumes up to some positive integer l

and proves for l + 1 by noticing that when one multiplies a matrix in S(µl) by a matrix in
S(µ), the entiries in the product matrix satisfies the condition that each entry in the first
column is between 0 and r because each entry in the first column of the matrices from S(µl)
and S(µ) is so.

Also, since the relation λ ? µ = λ holds, the support of λ, namely, S(λ) consists
of all rank one matrices in S . As a result, S(λ) ⊂ {x : 0 ≤ x ≤ r}, where x stands for(

x 1− x
x 1− x

)
. Moreover, exploiting the identity λ ? µ = λ, we have

λ(0) =
p00

1− p10
, λ(r) = p11 + λ(0)p01 =

p11(1− p10) + p00 p01

1− p10
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and for other points x with 0 < x < r with positive λ-masses, we have

λ(x) = λ(r−1x)p10 + λ(1− r−1x)p01 (2)

Next, we state the results proved in [2] for 0 < r ≤ 1
2 :

2.1. Case: 0 < r ≤ 1
2

First of all, we introduce some notations. For each i ≥ 1, define

Ai =

{
k

∑
j=1

(−1)j−1rij : 1 ≤ i1 < i2 < i3 < · · · < ik = i, k ≤ i

}
, A = ∪∞

i=1 Ai

We have two propositions for taking care of the cases 0 < r < 1
2 and r = 1

2 :

Proposition 1. For 0 < r < 1
2 , we have the following:

(i) For every positive integer i ≥ 1, |Ai| = 2i−1 and each point in Ai has positive λ-mass. These
are the only points of degree i in the support of λ with positive λ-mass.

(ii) Each such point has λ-measure equal to λ(r)pi−1−k
10 pk

01. For every i > 1,
λ(Ai) = λ(r)[p10 + p01]

i−1.
(i) λ(0) + ∑∞

i=1 λ(Ai) = λ(0) + λ(r) ·
[
∑∞

i=1(p10 + p01)
i−1
]
= 1 .

Proposition 2. For r = 1
2 , we have the following:

(i) The only points that have positive λ-masses are the dyadic rationals in [0, 1
2 ]. Thus, for every

i, there are exactly 2i−2 dyadic rationals of the form k
2i with k ≤ 2i−1 and k odd with positive

λ-mass. Ai consists of exactly these points. Also, |Ai| = 2i−2.
(ii) A typical point in Ai has λ-measure equal to λ

(
1
2

)
(p10 + p01)pi−1−k

10 pk−1
01 for some positive

integer k. For every i > 1, λ(Ai) = λ
(

1
2

)
[p10 + p01]

i−1.

(iii) The sum of the λ-masses of all dyadic rationals in
[
0, 1

2

]
along with the λ-mass at zero equals

1. Equivalently, λ(0) + ∑∞
i=1 λ(Ai) = λ(0) + λ

(
1
2

)
·
[
∑∞

i=1(p10 + p01)
i−1
]
= 1

The case 1
2 < r < 1 turns out to be quite nontrivial. We briefly introduce that

case below:

2.2. Case: 1
2 < r < 1

The case 1
2 < r < 1 is distinctly different from the case r < 1

2 because now we have
1− r < r. Since for each r, λ has masses at 0 and r, it is not absolutely continuous for any r.
Now, suppose we continue with the same notation of A introduced in the case 0 < r ≤ 1

2 .
Thus, A = ∪∞

i=1 Ai where, for every positive integer i,

Ai =

{
k

∑
j=1

(−1)j−1rij : 1 ≤ i1 < i2 < i3 < · · · < ik = i, k ≤ i

}

It then easily follows that each of these points in A also has positive mass even in the
case 1

2 < r < 1. However, it is indeed a challenge to calculate λ-masses at these points.
Also, since 1− r ∈ (0, r), it is natural to have points of the form 1 + ∑k

j=1(−1)jrij ,
1 ≤ i1 < i2 < i3 < · · · < ik = i, k ≤ i for any positive integer i in the interval (0, r) (to see
this, notice that ri1 > ∑k

j=2(−1)jrij ). Accordingly, define A∗ = ∪∞
i=1 A∗i , where

A∗i =

{
1 +

k

∑
j=1

(−1)jrij : 1 ≤ i1 < i2 < i3 < · · · < ik = i, k ≤ i

}
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Recall that, for 0 < r ≤ 1
2 , each point in A has positive λ-mass and each point in A∗ is

outside (0, r) and has zero λ-mass.
For 1

2 < r < 1, of course, each polynomial in A is in (0, r). But, although some
polynomials in A∗ are numerically less than r, it is not easy to see which of these points
have positive λ-masses. Clearly, some polynomials in A∗i are outside (0, r) and have zero
λ-measure if i is large enough. For example, for a fixed r, it is possible to get a positive
integer m > 1 such that 1− rm ≥ r > 1− rm−1. Next, consider i1 = l with l ≥ m for a
polynomial 1 + ∑k

1(−1)jrij in A∗i with 1 ≤ i1 < i2 < i3 < · · · < ik = i, k ≤ i . Then, this
polynomial is greater than or equal to 1− rm + ∑k

2(−1)jrij , which is obviously greater than
r and has λ-measure zero. But, it is a possibility that some points in A∗ could have positive
λ-masses too.

Recall the very special r, r = rg, the reciprocal of the golden ratio. We know rg satisfies
the equation r2

g + rg − 1 = 0 and 1− rg actually equals r2
g, whose λ-measure can be found

out easily. The next two sections deal with this special case.

3. r = rg : Main Results

In this section and also in the next section, we deal with r = rg =
√

5−1
2 unless stated

otherwise. This is a very special case of 1
2 < r < 1. Note that rg is the reciprocal of the

golden ratio and is the positive solution of the equation r2 + r− 1 = 0. To avoid dealing
with too many radical signs and complicating matters, we will continue to use rg in these
two sections for this particluar choice of r.

Remark 1. A polynomial 1 + ∑k
1(−1)jr

ij
g in A∗i with 1 ≤ i1 < i2 < i3 < · · · < ik = i, k ≤ i

and i1 ≥ 2 has zero λ-measure.

This is because, 1 − r2
g = rg implies that such a polynomial is greater than rg in

magnitude. However, for i1 = 1, such a polynomial may have positive λ-measure as well.
In order to notice this, first observe that, λ(1− rg) > 0. This is because, using (2),

we have
λ(1− rg) = λ(r2

g) = λ(rg)p10 + λ(1− rg)p01

implying that λ(1− rg) =
p10

1−p01
λ(rg) where λ(rg) is already known.

Next, consider a nontrivial example, say, the polynomial 1− rg + r2
g − r3

g. Using (2)
repeatedly and Remark 2, we find that its λ- measure equals

λ(r2
g)p2

10 p01 + λ(1− r2
g)p10 p2

01 = λ(1− rg)p2
10 p01 + λ(rg)p10 p2

01

implying that the polynomial under consideration has non-zero λ-measure. Since we know
λ(rg) and λ(1− rg), it is possible to find out λ(1− rg + r2

g − r3
g) explicitly.

But, this is only a particular example. Can we make a general observation? Yes. Look
at the following result.

Proposition 3. Any polynomial in A∗ either has λ-measure 0 or can be written as a polynomial
in A.

Proof. To fix ideas, we assume that our polynomial in A∗ is 1 + ∑k
j=1(−1)jr

ij
g with 1 ≤ i1 <

i2 < i3 < · · · < ik = i and k ≤ i. Because of Remark 3.0, we can assume that i1 = 1 . Then,
we consider the following cases:

Case 1: ij = j for j = 2, 3, . . . , k.
Then, the given polynomial equals 1− rg + r2

g − · · ·+ (−1)krk
g

Subcase 1: k is even, say, k = 2m. Then, the above polynomial equals 1− rg + r2
g −

· · ·+ r2m
g . Notice that rj

g − rj+1
g = rj+1

g − rj+3
g for j = 0, 1, 2, . . .. Thus, the given polynomial
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equals rg − r3
g + r3

g − r5
g + · · ·+ r2m−1

g − r2m+1
g + r2m

g which equals rg − r2m+1
g + r2m

g > rg.
So, it has λ-measure 0.

Subcase 2: k is odd, k = 2m + 1. Then, the above polynomial equals 1− rg + r2
g − · · ·+

r2m
g − r2m+1

g . Once again recall that rj
g − rj+1

g = rj+1
g − rj+3

g for j = 0, 1, 2, . . .. So, the given
polynoimal equals rg − r3

g + r3
g − r5

g + · · ·+ r2m−1
g − r2m+1

g + r2m+1
g − r2m+3

g = rg − r2m+3
g .

And it is a polynomial in A.
Case 2: There exists an l such that il > l and ij = j for j < l. Then, the given polynomial

equals 1− rg + r2
g − · · ·+ (−1)l−1rl−1

g + ∑k
j=l(−1)jr

ij
g .

Subcase 1: l is even, say, l = 2m. Then, the polynomial equals 1− rg + r2
g − · · · −

r2m−1
g + ∑k

j=2m(−1)jr
ij
g . Again, we use rj

g − rj+1
g = rj+1

g − rj+3
g for j = 0, 1, 2, . . . so that

the given polynomial equals rg − r3
g + r3

g − r5
g + · · ·+ r2m−1

g − r2m+1
g + ∑k

j=2m(−1)jr
ij
g . If

i2m = 2m+ 1, then this polynomial equals rg− r3
g + r3

g− r5
g + · · ·+ r2m−1

g − r2m+1
g + r2m+1

g +

∑k
j=2m+1(−1)jr

ij
g , which equals rg + ∑k

j=2m+1(−1)jr
ij
g . This is, of course, a polynomial in

A . On the other hand, if i2m > 2m + 1, then the above polynomial equals rg − r2m+1
g +

∑k
j=2m(−1)jr

ij
g . Once again, it is a polynomial in A.

Subcase 2: l is odd, say, l = 2m + 1. Then, the given polynomial equals 1 − rg +

r2
g − · · · − r2m−1

g + r2m
g + ∑k

j=2m+1(−1)jr
ij
g . Applying once again rj

g − rj+1
g = rj+1

g − rj+3
g

for j = 0, 1, 2, . . ., this polynomial equals rg − r3
g + r3

g − r5
g + · · ·+ r2m−1

g − r2m+1
g + r2m

g +

∑k
j=2m+1(−1)jr

ij
g . This simplifies to rg − r2m+1

g + r2m
g + ∑k

j=2m+1(−1)jr
ij
g = rg + r2m+2

g +

∑k
j=2m+1(−1)jr

ij
g . If i2m+1 = 2m + 2, then the above equals rg + ∑k

j=2m+2(−1)jr
ij
g > rg. So,

it has λ-measure zero. If i2m+1 > 2m + 2, then the given polynomial equals rg + r2m+2
g +

∑k
j=2m+1(−1)jr

ij
g which is same as rg + r2m+2

g − ri2m+1
g + ∑k

j=2m+2(−1)jr
ij
g > rg. So, it has

λ-measure equal to zero.

Remark 2. Because of the above proposition, it is good enough to consider only polynomials in A.
We will rather consider the same polynomials as in the case 0 < r < 1

2 and will try to work out their
λ-measures.

We have seen in Section 2 that the number of elements in An equals 2n−1. But, because of the
relationship 1− rg = r2

g in the current situation, there will be redundancy and all polynomials are
not distinct. So, we will see that we need to consider at most 2n−2 elements from An for each n ≥ 3:

Proposition 4. There are at most 2n−2 distinct elements in An for each n ≥ 3.

Proof. Once again, the identity 1− rg = r2
g has a big role to play. For n = 1, 2, 3 or 4, it

is trivial to observe. For general n, first notice that rn
g = rn−2

g − rn−1
g , and so rn

g can be
considered to be in An−1. More generally, define

Qn =
{

rn
g

}
∪
{

k

∑
j=1

(−1)j−1r
ij
g : 1 ≤ i1 < · · · < ik−1 < ik; ik−1 < n, ik = n; k < n; n− ik−1 ≥ 2

}
and

Rn =

{
k

∑
j=1

(−1)j−1r
ij
g : 1 ≤ i1 < · · · < ik−1 < ik; ik−1 = n− 1, ik = n, k ≤ n

}

Let Q = ∪∞
n=3Qn and R = ∪∞

n=3Rn. Then, observe that each polynomial in Q is
numerically equal to a polynomial in R of less degree.

We see this as follows:
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Consider an n > 2. Take a polynomial in Qn. If it is rn
g , we have already provided the

argument, that is, rn
g = rn−2

g − rn−1
g ∈ Rn−1. Otherwise, consider a typical element from Qn,

say, ri1
g − ri2

g + · · ·+ (−1)k−1rik−1
g + (−1)krn

g with 1 ≤ i1 < i2 < · · · < n and for some k < n.

If n− ik−1 = 2 , then rik−1
g − rn

g = rn−2
g − rn

g = rn−1
g = rn−3

g − rn−2
g . As a result, the given

polynomial equals ri1
g − ri2

g + · · ·++(−1)k−1rn−3
g +(−1)krn−2

g . So, it is a polynomial in R of

less degree (n− 2). On the other hand, if n− ik−1 > 2, then rik−1
g − rn

g = rik−1
g − rn−2

g + rn−1
g .

So, the given polynomial equals ri1
g − ri2

g + · · ·+ (−1)k−1rik−1
g + (−1)krn−2

g + (−1)k+1rn−1
g .

Once again, this is a polynomial in R of less degree (n− 1).
It is clear that for each n, An = Qn ∪ Rn and hence A = Q ∪ R. So, because of this

observation, the only polynomials in A that can be considered for λ-mass calculation are
the ones in R. Also, it follows that for n ≥ 3, Rn has at most 2n−2 distinct polynomi-
als. Consequently, An also has at the most 2n−2 distinct elements and the proposition
follows.

Remark 3. Thus, for each n, we have fewer polynomials of degree n compared to the situation
0 < r < 1

2 .

Now, it is time we prove our main theorem. We prove it in the next section.

4. r = rg : Proof of the Main Theorem

Here is our main theorem:

Theorem 1. Consider r = rg =
√

5−1
2 . Then

λ(0) + λ(rg) + λ(r2
g) + λ(rg − r2

g) + λ(R) = 1

where R = ∪∞
n=3Rn with

Rn =

{
k

∑
j=1

(−1)j−1r
ij
g : 1 ≤ i1 < i2 < · · · < ik−2 < ik−1 < ik; ik−1 = n− 1, ik = n, k ≤ n

}

First, notice that, using (2), it follows that λ(r2
g) = p10

1−p01
λ(rg) and λ(rg − r2

g) =(
p2

10
1−p01

+ p01

)
λ(rg). Thus, in order to prove the theorem, it is enough to prove:

λ(R) =
p10 + p01

1− p10 − p01
λ(rg − r2

g) (3)

because then,

λ(rg − r2
g) + λ(R) =

(
1 +

p10 + p01

1− p10 − p01

)
λ(rg − r2

g)

As a result,

λ(0) + λ(rg) + λ(r2
g) + λ(rg − r2

g) + λ(R) = λ(0) +
1

1− p10 − p01
λ(rg)

But, recall from Section 3:

λ(0) =
p00

1− p10
, λ

(
rg
)
= p11 + λ(0)p01 =

p11(1− p10) + p00 p01

1− p10
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This implies that

λ(0) +
1

1− p10 − p01
λ(rg) = 1

This is the reason that it is good enough to prove (3). For this, we proceed as follows.
First of all, notice that R3 = {r2

g − r3
g, rg − r2

g + r3
g}, R4 = {r3

g − r4
g, r2

g − r3
g + r4

g, rg −
r3

g + r4
g, rg − r2

g + r3
g − r4

g} etc. and in general

Rn = {rn−1
g − rn

g , rn−2
g − rn−1

g + rn
g , . . . , rg − rn−1

g + rn
g , . . . , rg − r2

g + · · ·+ rn−1
g − rn

g}

Next, we introduce some notations for any 0 < r < 1.
Define g : R→ R and fj : R→ R for every positive integer j as follows: g(p) = rp and

fj(p) = rj − p. Thus, R3 = { f2
(
r3), f1 f2

(
r3)}, R4 = { f3

(
r4), f2 f3

(
r4), f1 f3

(
r4), f1 f2 f3

(
r4)}

etc., and in general,

Rn = { fn−1(rn), fn−2 fn−1(rn), . . . , f1 fn−1(rn), . . . , f1 f2 · · · fn−1(rn)}

We further define operators Fj for j ≥ 2 on R as follows: F2 = { f2, f1 f2}, F3 =
{ f3, f2 f3, f1 f3, f1 f2 f3} etc., and in general,

Fn−1 = { fn−1, fn−2 fn−1, . . . , f1 fn−1, . . . , f1 f2 · · · fn−1}

Thus, Rj = Fj−1
(
rj) for j = 3, 4, . . . and

Fj−1(p) = { f j−1(p), f j−2 f j−1(p), . . . , f1 f j−1(p), . . . , f1 f2 · · · f j−1(p)}

In general, one would anticipate |F2(p)| = 2, |F3(p)| = 4, . . . , |Fj−1(p)| = 2j−2. But,
for r = rg, equality is replaced by ≤ for some ps.

Now, in order to prove (3), we will use a series of Lemmas 1–5. Lemma 1 identifies that
connsecutive Ris have nonempty overlaps for i ≥ 3, Lemma 2 evaluates the cardinality of
the consecutive overlaps, Lemma 3 evaluates the cardinality of the consecutive differences,
Lemma 4 calculates the λ- measures of these differences, and, finally, Lemma 5 puts them
together to evaluate the λ-measure of R thereby proving (3). Thus, once Lemmas 1–5 are
proved, (3) is proved and the proof of the theorem is complete.

Lemma 1. Consecutive Ris (Ri and Ri+1) have nonempty intersections for i ≥ 3. In fact, R4 ∩
R3 = ∅ but Rj+1 ∩ Rj 6= ∅ for j > 3

Proof. It is trivial to observe that R4 ∩ R3 = φ. Now, notice that r2
g − r4

g + r5
g, rg − r2

g + r4
g −

r5
g ∈ R5 ∩ R4 because r2

g− r4
g + r5

g = rg− r2
g + r5

g = rg− r2
g + r3

g− r4
g ∈ R4 and automatically,

rg− r2
g + r4

g− r5
g = rg− (rg− r2

g + r3
g− r4

g) = r2
g− r3

g + r4
g ∈ R4. Thus, R5 ∩ R4 = F2(r4

g− r5
g)

and |R5∩R4| = 2. In general, Rj+1∩Rj ⊇ Fj−2(r
j
g− rj+1

g )∪ Fj−4(r
j
g− rj+1

g ) for j ≥ 6. In fact,
we can show that for positive integers k ≥ 3

R2k−1 ∩ R2k−2 = F2k−4(r2k−2
g − r2k−1

g ) ∪ F2k−6(r2k−2
g − r2k−1

g ) ∪ · · · ∪ F2(r2k−2
g − r2k−1

g )

R2k ∩ R2k−1 = F2k−3(r2k−1
g − r2k

g ) ∪ F2k−5(r2k−1
g − r2k

g ) ∪ · · · ∪ F3(r2k−1
g − r2k

g )

So, Lemma 1 is proved.

Lemma 2. For i ≥ 4, |Ri ∩ Ri+1|s are evaluated upper bounds for |Ri+1 − Ri| are determined
as follows:

For k ≥ 3, we have,

|R2k−1 ∩ R2k−2| =
2
3
(22k−4 − 1), |R2k ∩ R2k−1| =

4
3
(22k−4 − 1)
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so that

|R2k−1 − R2k−2| ≤
22k−2 + 2

3
, |R2k − R2k−1| ≤

22k−1 + 4
3

Proof. From Lemma 1, it follows that |R5 ∩ R4| = 2 implying |R5 − R4| ≤ 23 − 2 = 6,
|R6 ∩ R5| = 4 implying |R6 − R5| ≤ 24 − 4 = 12.

In general, notice that for k ≥ 4,

|F2k−2l(r2k−2l+2
g − r2k−2l+3

g )| = 22k−2l−1

and
|F2k−2l+1(r2k−2l+3

g − r2k−2l+4
g )| = 22k−2l

for 2 ≤ l ≤ k− 1. Also,

|R2k−1 ∩ R2k−2| = 22k−5 + 22k−7 + · · ·+ 2 =
2
3

(
22k−4 − 1

)
implying that |R2k−1 − R2k−2| ≤ 22k−3 − 2

3

(
22k−4 − 1

)
= 22k−2+2

3 and

|R2k ∩ R2k−1| = 22k−4 + 22k−6 + · · ·+ 22 =
4
3

(
22k−4 − 1

)
implying that |R2k − R2k−1| ≤ 22k−2 − 4

3

(
22k−4 − 1

)
= 22k−1+4

3 .
Thus, Lemma 2 is proved.

Lemma 3. For i ≥ 4, |Ri+1 − Ri|s are evaluated exactly by getting rid of the redundancies:
More explicitly, for j ≥ 6, not all elements in Rj are distinct. In fact, for k ≥ 3, R2k has

22k−4 − 2 and R2k+1 has 22k−3 − 2 pairs of elements which are numerically equal so that

|R2k − R2k−1| =
5 · 22k−4 + 10

3
, |R2k+1 − R2k| =

5 · 22k−3 + 8
3

Proof. From now on, we refer to duplicates as those pairs of polynomials or elements
in R which have different algebraic expressions, but becaue of our choice of r, they are
numerically equal. In order to exactly evaluate |Ri+1 − Ri| for i ≥ 4, we need to identify
such pairs.

Thus, R6− R5 has two pairs of duplicates, namely, r2
g− r5

g + r6
g & rg− r2

g + r4
g− r5

g + r6
g;

rg − r2
g + r5

g − r6
g and r2

g − r4
g + r5

g − r6
g because

rg − r2
g + r4

g − r5
g + r6

g = r2
g − r4

g + r4
g − r5

g + r6
g = r2

g − r5
g + r6

g

rg − r2
g + r5

g − r6
g = r2

g − r4
g + r5

g − r6
g

In general, R2k − R2k−1 has 2 + 4 + · · · + 22k−5 pairs of duplicates implying that
|R2k − R2k−1| = 22k−1+4

3 − (22k−4 − 2) = 5·22k−4+10
3 . Here, each pair in the union are

disjoint sets.
Also, R2k+1 − R2k has 2 + 4 + · · ·+ 22k−5 pairs of duplicates implying that |R2k+1 −

R2k| = 22k+2
3 − (22k−3 − 2) = 5·22k−3+8

3 . Again, each pair in the union are disjoint sets.
Thus, Lemma 3 is proved.

Lemma 4. λ-measures of Ri+1 − Ri for i ≥ 3 are calculated as:
First of all, λ(R3) = λ(rg − r2

g)(p10 + p01) and for k ≥ 2,

λ(R2k − R2k−1) = λ(R2k−1 − R2k−2)(p10 + p01) + λ(rg − r2
g)p2k−3

10 p01(p10 + p01)

which equals
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λ(R2k − R2k−1) = λ
(

rg − r2
g

)
(p10 + p01)

2k−2

[
1 +

k−2

∑
l=0

p2l+1
10 p01 (p10 + p01)

−2l−1 −
k−3

∑
l=1

p2l+1
10 p01 (p10 + p01)

−2l−2

]
(4)

where for k = 2, the last sum in the above equation is absent. Also, we have,

λ(R2k+1 − R2k) = λ(R2k − R2k−1)(p10 + p01)− λ
(

rg − r2
g

)
p2k−3

10 p01(p10 + p01)

which equals

λ(R2k+1 − R2k) = λ
(

rg − r2
g

)
(p10 + p01)

2k−1

[
1 +

k−2

∑
l=0

p2l+1
10 p01

[
(p10 + p01)

−2l−1 − (p10 + p01)
−2l−2

]]
(5)

where for k = 2, R2k − R2k−1 = R4 − R3 = R4 and R2k−1 − R2k−2 = R3 − R2 = R3.

Proof. Recall that R3 = F2(r3
g) = {r2

g − r3
g, rg − r2

g + r3
g}. Then, using (2) and Proposition 3,

we have
λ(R3) = λ(r2

g − r3
g) + λ(rg − r2

g + r3
g) = λ(rg − r2

g)(p10 + p01)

Next, we have R4 = F3

(
r4

g

)
= {r3

g − r4
g, r2

g − r3
g + r4

g, rg − r3
g + r4

g, rg − r2
g + r3

g − r4
g}.

We find λ-measures of these points by making use of (2) and Remark 2. Thus, we notice that

λ(1− rg + r2
g − r3

g) = λ(rg − r3
g + r4

g) = λ(rg − r2
g)p10 p01

Putting all these together, λ(R4 − R3) equals

λ(rg − r2
g)(p10 + p01)

2 + λ(1− rg + r2
g − r3

g)(p10 + p01) = λ(rg − r2
g)(p10 + p01)

2 + λ(rg − r2
g) p10 p01(p10 + p01)

In other words,

λ(R4 − R3) = λ(R3)(p10 + p01) + λ(rg − r2
g) p10 p01(p10 + p01) (6)

It is to be noted that R4 ∩ R3 = ∅, and so R4 − R3 = R4 which implies λ(R4 − R3) =
λ(R4).

Before proceeding further, we notice that Fj

(
rj+1

g

)
= g

(
Fj−1(r

j
g)
)
∪ f1 ◦ g

(
Fj−1(r

j
g)
)

for j ≥ 4 and Rj+1 − Rj equals g
(

Rj − Rj−1
)
∪ f1 ◦ g

(
Rj − Rj−1

)
for j ≥ 5.

However, at the next stage, we have already noticed that R5 ∩ R4 6= ∅, and so
R5 − R4 6= R5. In fact,

R5 = F4

(
r5

g

)
and

R5 − R4 = F4

(
r5

g

)
− F2

(
r4

g − r5
g

)
Now, notice that

F4

(
r5

g

)
= g(R4 − R3) ∪ f1 ◦ g(R4 − R3)

So,
R5 − R4 = g(R4 − R3) ∪ f1 ◦ g(R4 − R3)− F2

(
r4

g − r5
g

)
This is the same as[

g(R4 − R3)− g
(

rg − r3
g + r4

g

)]
∪
[

f1 ◦ g(R4 − R3)− f1 ◦ g
(

rg − r3
g + r4

g

)]
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Since g(R4 − R3)− g
(

rg − r3
g + r4

g

)
and f1 ◦ g(R4 − R3)− f1 ◦ g

(
rg − r3

g + r4
g

)
do not

have overlaps, we deduce that

λ(R5 − R4) = λ(R4 − R3)(p10 + p01)− λ
(

rg − r2
g

)
p10 p01(p10 + p01) (7)

which equals

λ(R5 − R4) = λ
(

rg − r2
g

)
(p10 + p01)

3 + λ(rg − r2
g) p10 p01(p10 + p01)

2 − λ(rg − r2
g) p10 p01(p10 + p01) (8)

Thus, from Equations (6) and (8), we observe that Lemma 4 is proved for k = 2.
For general k, one can use induction on k and carefully sort out the issues with the duplicates
to complete the proof of the lemma.

Lemma 5. Finally, we calculate λ-measure of R:

λ(R) =
∞

∑
j=3

λ
(

Rj − Rj−1
)
=

∞

∑
j=1

λ
(

rg − r2
g

)
(p10 + p01)

j = λ
(

rg − r2
g

)
· p10 + p01

1− p10 − p01

where we put R2 = ∅.

Proof. Using (4) and (5) for k ≥ 2, Lemma 5 follows trivially and the proof of the theorem
is complete.

5. Concluding Remarks

In the present context, it is interesting to recall an older problem, first introduced in [7].
It is as follows: consider the very simple situation of a µ that is supported on exactly two

2× 2 stochastic matrices, namely,
(

a1 1− a1
b1 1− b1

)
and

(
a2 1− a2
b2 1− b2

)
with ai > bi for

i = 1, 2. Let the µ-masses at these two points be p and 1− p, respectively, where 0 < p < 1.
Let λ be the weak limit of the convolution sequence µn. What is the nature of λ? If we
denote a1 − b1 = s and a2 − b2 = t, then, in [12], some partial solution to this problem was
mentioned. In the special case scenario when s = t and p = 1

2 , it was observed in [13] that
it is precisely the case of Bernoulli convolutions. In fact, the following proposition is stated
in [13]:

Proposition 5. Let µ be a probability measure giving equal mass to the matrices
(

a1 1− a1
b1 1− b1

)
and

(
a2 1− a2
b2 1− b2

)
with ai > bi for i = 1, 2. Let, say, a1− b1 = a2− b2 = t. Then, the limiting

measure λ of the convolution sequence µn is absolutely continuous (where the limt λ is identified
as a probability on [0, 1]) iff the law of ∑∞

n=0 tnεn is absolutely continuous where εn’s are i.i.d. +1
and −1 with equal probabilities.

Although the century old problem of Bernoulli convolutions was finally solved in [14],
there had been a lot of previous studies at various times in different directions in spite of
it being apparently a simple problem with µ concentrated on two points only. Thus, it is
quite possible that under our current set up of µ being concentrated on four matrices with
1
2 < r < 1, the problem may be at least as challenging as the Bernoulli convolution problem.

We bring in the context of Bernoulli convolutions here to make readers aware that
for a nontrivial 1

2 < r < 1, one needs to explore a number of ideas to proceed towards a
complete solution for our problem.
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