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Abstract: The Josephus Problem is a mathematical counting-out problem with a grim description:
given a group of n persons arranged in a circle under the edict that every kth person will be executed
going around the circle until only one remains, find the position L(n, k) in which you should stand in
order to be the last survivor. Let Jn be the order in which the first person is executed on counting
when k = 2. In this paper, we consider the sequence (Jn)n>1 in order to introduce new expressions
for the generating functions of the number of strict plane partitions and the number of symmetric
plane partitions. This approach allows us to express the number of strict plane partitions of n and
the number of symmetric plane partitions of n as sums over partitions of n in terms of binomial
coefficients involving Jn. Also, we introduce interpretations for the strict plane partitions and the
symmetric plane partitions in terms of colored partitions. Connections between the sum of the
divisors’ functions and Jn are provided in this context.

Keywords: Josephus problem; partitions; plane partitions; divisors; binomial coefficients

MSC: 11P81; 11P82; 05A19; 05A20

1. Introduction

According to ([1], pp. 341–366, 387–391), in the Romano–Jewish conflict of 67 A. D.,
the Romans took the town Jotapata which Flavius Josephus was commanding. Josephus
and 40 of his comrades escaped and were trapped in a cave. Fearing capture, they decided
to kill themselves. Josephus and a friend did not agree with this proposal but did not dare
to speak out openly against it. They agreed that they should arrange them in a circle and
that, always counting in the same sense around the circle, every third man should be killed
until there was only one survivor who would kill himself. By choosing positions 31 and 16
in the circle, Josephus and his friend saved their lives and joined the Romans, i.e.,

3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 1, 5, 10, 14, 19, 23, 28, 32,

37, 41, 7, 13, 20, 26, 34, 40, 8, 17, 29, 38, 11, 25, 2, 22, 4, 35, 16, 31.

In mathematics and computer science, the Josephus problem is usually stated as follows:
given a group of n men arranged in a circle under the edict that every kth man will be
executed going around the circle until only one remains, find the position L(n, k) in which
you should stand in order to be the last survivor.

We are interested in the case k = 2 of the Josephus problem. Thus, for k = 2, we
denote by Jn the order in which the first person is executed on counting. For example, if
there are n = 7 persons to begin with, they are executed in the following order:

2, 4, 6, 1, 5, 3, 7.

So, the first person is eliminated as number 4. Therefore, J7 = 4.
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We remark that the sequence

(Jn)n>1 = (1, 2, 2, 4, 3, 5, 4, 8, 5, 8, 6, 11, 7, 11, 8, 16, 9, 14, 10, . . .)

is known and can be seen in the On-Line Encyclopedia of Integer Sequence ([2], A225381).
The sequence (Jn)n>1 can be defined as follows:

Jn = dn/2e+ 1 + (−1)n

2
· Jn/2,

with the initial condition J1 = 1. When n is odd, it is clear that Jn = (n + 1)/2. We
introduced the sequence Jn to provide new formulae for two types of plane partitions.

Recall that a plane partition π of the positive integer n is a 2-dimensional array
π = (πi,j)i,j>1 of non-negative integers πi,j such that

n = ∑
i,j>1

πi,j,

which is weakly decreasing in rows and columns:

πi,j > πi+1,j, πi,j > πi,j+1, for all i, j > 1.

It can be seen as the filling of a Young diagram with weakly decreasing rows and columns,
where the sum of all these numbers equals n. This is a natural generalization of the concept
of classical partitions [3]. Different configurations are counted as different plane partitions.
The plane partitions of 4 are presented in Figure 1.

4 3 1 2 2 2 1 1 1 1 1 1

3
1

2
2

2 1
1

1 1 1
1

2
1
1

1 1
1 1

1 1
1
1

1
1
1
1

Figure 1. The plane partitions of 4.

Recently, Merca and Radu [4] considered the specialization of complete homogeneous
symmetric functions and provided a new formula for PL(n), which is the number of plane
partitions of n:

PL(n) = ∑
t1+2t2+···+ntn=n

(
1 + t2

t2

)(
2 + t3

t3

)
· · ·
(

n− 1 + tn

tn

)
.

As can be seen, this formula expresses the number of plane partitions of n in terms of
binomial coefficients as a sum over all the partitions of n, taking into account the multiplicity
of the parts. They obtained similar results for the number of strict plane partitions of n and
the number of symmetric plane partitions of n. In this paper, we consider the sequence
(Jn)>1 and obtain new formulas for the number of strict plane partitions of n and the
number of symmetric plane partitions of n as sums over partitions of n.



Mathematics 2023, 11, 4996 3 of 15

2. Strict Plane Partitions

Recall that a strict plane partition π of the positive integer n is a plane partition
π = (πi,j)i,j>1 of n which is decreasing in rows, i.e.,

πi,j > πi+1,j, for all i, j > 1.

In [4], we denoted by SPL(n) the number of strict plane partitions of n and, for convenience,
we defined SPL(0) = 1. The strict plane partitions of 4 are presented in Figure 2. We see
that SPL(4) = 7.

4 3 1 2 2 2 1 1 1 1 1 1

3
1

2 1
1

Figure 2. The strict plane partitions of 4.

According to Gordon and Houten [5], the generating function for the number of strict
plane partitions of n is given by

∞

∑
n=0

SPL(n) qn =
∞

∏
n=1

1
(1− qn)dn/2e

and the expansion starts as

∞

∏
n=1

1
(1− qn)dn/2e = 1 + q + 2 q2 + 4 q3 + 7 q4 + 12 q5 + 21 q6 + 34 q7 + 56 q8 + · · · . (1)

For any positive integer m, we denote by SPL(m)(n) the number of m-tuples of strict
plane partitions of non-negative integers n1, n2, . . . , nm where n1 + n2 + · · ·+ nm = n. It is
clear that SPL(n) = SPL(1)(n) and

SPL(m)(n) = ∑
n1+n2+···+nm=n

SPL(n1) SPL(n2) · · · SPL(nm).

For r ∈ {−1, 0, 1}, we define the SPL(m,r)(n) as follows:

SPL(m,r)(n) =


SPL(m)(n), for r = 0,
SPL(m)(n)− PL(m)(n− 1), for r = −1,

n
∑

k=0
SPL(m)(k), for r = 1.

(2)

In [4], Merca and Radu considered specializations of complete homogeneous symmet-
ric functions and provide the following formula for SPL(m,r)(n).

Theorem 1. For m > 1, r ∈ {−1, 0, 1} and n > 0,

SPL(m,r)(n) = ∑
t1+2t2+···+ntn=n

(
m− 1 + r + t1

t1

) n

∏
j=2

(
dj/2em− 1 + tj

tj

)
.

In this section, we shall provide another decomposition of SPL(m,r)(n) as a sum over
partitions of n in terms of binomial coefficients. This time, in addition to the multiplicity of
a part of size k, we also need to consider Jk.
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Theorem 2. For m > 1, r ∈ {−1, 0, 1} and n > 0,

SPL(m,r)(n) = ∑
t1+2t2+···+ntn=n

n

∏
k=1

(
J(m,r)
k
tk

)
,

where

J(m,r)
n =

{
m · Jn + r, for n = 2k, k = 0, 1, 2, . . .,
m · Jn, otherwise.

Proof. Applying elementary techniques in the theory of partitions [3], we obtain the
following generating function:

∞

∑
n=0

SPL(m,r)(n) qn =
1

(1− q)r

∞

∏
n=1

1
(1− qn)m·dn/2e , |q| < 1. (3)

In order to prove our theorem, we consider the identity

1
1− q

=
∞

∏
k=0

(1 + q2k
), |q| < 1. (4)

In addition, by (4), with q replaced by qn, we obtain

1
1− qn =

∞

∏
k=0

(1 + q2k ·n), |q| < 1. (5)

For |q| < 1, considering (5), the generating function of SPL(m,r)(n) can be rewritten
as follows:

∞

∑
n=0

SPL(m,r)(n) qn

=
∞

∏
k=0

(1 + q2k
)r ·

∞

∏
n=1

∞

∏
k=0

(1 + q2k ·n)m·dn/2e

=
∞

∏
n=1

(1 + qn)J(m,r)
n (6)

=
∞

∏
n=1

J(m,r)
n

∑
k=0

(
J(m,r)
n

k

)
qk·n


=

∞

∑
n=0

qn ∑
t1+2t2+···+ntn=n

n

∏
k=1

(
J(m,r)
k
tk

)
,

where we have invoked Cauchy multiplication of the power series.

The cases m = 1 and r = 0 of Theorem 2 reads as follows.

Corollary 1. For n > 0,

SPL(n) = ∑
t1+2t2+···+ntn=n

(
J1

t1

)(
J2

t2

)
· · ·
(

Jn

tn

)
.

The sum in the right-hand side of this equation runs over all the partitions of n, but
not all terms are nonzero. Since for tk > Jk we have (Jk

tk
) = 0, in this sum, we can consider
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only the partitions of n into, at most, the Jk copy of parts of size k, for each k ∈ {1, 2, . . . , n}.
For example, the partitions of 4 that satisfy this condition can be rewritten as:

1 · 0 + 2 · 0 + 3 · 0 + 4 · 1,

1 · 1 + 2 · 0 + 3 · 1 + 4 · 0,

1 · 0 + 2 · 2 + 3 · 0 + 4 · 0. (7)

So, the case n = 4 of Corollary 1 reads as follows:

SPL(4) =
(

1
0

)(
2
0

)(
2
0

)(
4
1

)
+

(
1
1

)(
2
0

)(
2
1

)(
4
0

)
+

(
1
0

)(
2
2

)(
2
0

)(
4
0

)
= 4 + 2 + 1 = 7.

The cases m = 2 and r = 0 of Theorem 2 gives the following identity.

Corollary 2. For n > 0,

n

∑
k=0

SPL(k) SPL(n− k) = ∑
t1+2t2+···+ntn=n

(
2J1

t1

)(
2J2

t2

)
· · ·
(

2Jn

tn

)
.

Considering the partitions of 4 with the property tk 6 2Jk, the case n = 4 of Corollary 2
reads as follows:

4

∑
k=0

SPL(k) SPL(4− k) =
(

2
0

)(
4
0

)(
4
0

)(
8
1

)
+

(
2
1

)(
4
0

)(
4
1

)(
8
0

)
+

(
2
0

)(
4
2

)(
4
0

)(
8
0

)
+

(
2
2

)(
4
1

)(
4
0

)(
8
0

)
= 8 + 8 + 6 + 4 = 26.

On the other hand, according to the expansion (1), we can write:

4

∑
k=0

SPL(k) SPL(4− k) = 1 · 7 + 1 · 4 + 2 · 2 + 4 · 1 + 7 · 1

= 7 + 4 + 4 + 4 + 7 = 26.

By Corollary 2, we easily deduce the following congruence identity.

Corollary 3. For n > 0,

∑
t1+2t2+···+ntn=n

(
2J1

t1

)(
2J2

t2

)
· · ·
(

2Jn

tn

)
≡ SPL

(n
2

)
(mod 2),

where SPL(x) = 0 if x is not a positive integer.

The following identity can be easily derived as an immediate consequence of
Theorems 1 and 2.

Corollary 4. For m > 1, r ∈ {−1, 0, 1} and n > 0,

∑
t1+2t2+···+ntn=n

(
m− 1 + r + t1

t1

) n

∏
k=2

(
dk/2em− 1 + tk

tk

)
= ∑

t1+2t2+···+ntn=n

n

∏
k=1

(
J(m,r)
k
tk

)
.
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3. Symmetric Plane Partitions

A symmetric plane partition π of the positive integer n is a plane partition
π = (πi,j)i,j>1 of n such that

πi,j = πj,i, for all i, j > 1.

We denote by sPL(n) the number of symmetric plane partitions of n. The symmetric plane
partitions of 6 are presented in Figure 3. We see that sPL(6) = 6. For convenience, we
define sPL(0) = 1.

6
4 1
1

3 1
1 1

2 2
2

2 1 1
1
1

1 1 1
1 1
1

Figure 3. The symmetric plane partitions of 6.

According to Gordon [6], the generating function for the number of symmetric plane
partitions of n is given by

∞

∑
n=0

sPL(n) qn =
∞

∏
n=1

1
(1− qn)an

, (8)

where

an =

{
1, n odd,
bn/4c, n even.

The expansion starts as

∞

∏
n=1

1
(1− qn)an

= 1 + q + q2 + 2 q3 + 3 q4 + 4 q5 + 6 q6 + 8 q7 + 12 q8 + · · · . (9)

We recall that the number of symmetric plane partitions of n is equal to the number of
strict plane partitions of n into odd parts [6]. The strict plane partitions of 6 into odd parts
are presented in Figure 4.

5 1
5
1 3 3 3 1 1 1

3 1 1
1 1 1 1 1 1 1

Figure 4. The strict plane partitions of 6 into odd parts.

For any positive integer m, we denote by sPL(m)(n) the number of m-tuples of symmet-
ric plane partitions of non-negative integers n1, n2, . . . , nm where n1 + n2 + · · ·+ nm = n.
It is clear that sPL(n) = sPL(1)(n) and

sPL(m)(n) = ∑
n1+n2+···+nm=n

sPL(n1) sPL(n2) · · · sPL(nm).

For r ∈ {−1, 0, 1}, we define the sPL(m,r)(n) as follows:

sPL(m,r)(n) =


sPL(m)(n), for r = 0,
sPL(m)(n)− PL(m)(n− 1), for r = −1,

n
∑

k=0
sPL(m)(k), for r = 1.

(10)

In [4], Merca and Radu consider specializations of complete homogeneous symmetric
functions and provide the following formula for sPL(m,r)(n).
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Theorem 3. For m > 1, r ∈ {−1, 0, 1} and n > 0,

sPL(m,r)(n) = ∑
t1+2t2+···+ntn=n

(
m− 1 + r + t1

t1

) n

∏
j=2

(
aj ·m− 1 + tj

tj

)
.

In this section, we shall provide another decomposition of sPL(m,r)(n) as a sum over
partitions of n in terms of binomial coefficients. This time, in addition to the multiplicity of
a part of size k, we also need the sequence (Jn)n>1 defined as follows:

Jn =

{
1, for n odd,
Jn/2, for n even,

where (Jn)n>1 is the sequence introduced in the previous section in connection with the
Josephus problem.

Theorem 4. For m > 1, r ∈ {−1, 0, 1} and n > 0,

sPL(m,r)(n) = ∑
t1+2t2+···+ntn=n

n

∏
k=1

(
J (m,r)

k
tk

)
,

where

J (m,r)
n =

{
m · Jn + r, for n = 2k, k = 0, 1, 2, . . .,
m · Jn, otherwise.

Proof. The proof of this theorem is quite similar to the proof of Theorem 2. Therefore, we
omit some details:

∞

∑
n=0

sPL(m,r)(n) qn

=
1

(1− q)r

∞

∏
n=1

1
(1− qn)m·an

=
∞

∏
k=0

(1 + q2k
)r ·

∞

∏
n=1

∞

∏
k=0

(1 + q2k(2n−1))m(1 + q2k(2n))m·bn/2c

=
∞

∏
k=0

(1 + q2k
)r ·

∞

∏
n=1

(1 + qn)m·Jn

=
∞

∏
n=1

(1 + qn)J
(m,r)
n (11)

=
∞

∏
n=1

J (m,r)
n

∑
k=0

(
J (m,r)

n
k

)
qk·n


=

∞

∑
n=0

qn ∑
t1+2t2+···+ntn=n

n

∏
k=1

(
J (m,r)

k
tk

)
,

where we have invoked Cauchy multiplication of the power series.

In analogy with Corollary 1, the cases m = 1 and r = 0 of Theorem 4 can be written
as follows.

Corollary 5. For n > 0,

sPL(n) = ∑
t1+2t2+···+ntn=n

(
J1

t1

)(
J2

t2

)
· · ·
(
Jn

tn

)
.
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The sum in the right-hand side of this equation runs over all the partitions of n, but
not all terms are nonzero. Since for tk > Jk we have (Jk

tk
) = 0, in this sum, we can consider

only the partitions of n into, at most, the Jk copy of parts of size k, for each k ∈ {1, 2, . . . , n}.
For example, the partitions of 6 that satisfy this condition can be rewritten as:

1 · 0 + 2 · 0 + 3 · 0 + 4 · 0 + 5 · 0 + 6 · 1,

1 · 1 + 2 · 0 + 3 · 0 + 4 · 0 + 5 · 1 + 6 · 0,

1 · 0 + 2 · 1 + 3 · 0 + 4 · 1 + 5 · 0 + 6 · 0,

1 · 1 + 2 · 1 + 3 · 1 + 4 · 0 + 5 · 0 + 6 · 0.

So, the case n = 6 of Corollary 5 reads as follows:

sPL(6) =
(

1
0

)(
1
0

)(
1
0

)(
2
0

)(
1
0

)(
2
1

)
+

(
1
1

)(
1
0

)(
1
0

)(
2
0

)(
1
1

)(
2
0

)
+

(
1
0

)(
1
1

)(
1
0

)(
2
1

)(
1
0

)(
2
0

)
+

(
1
1

)(
1
1

)(
1
1

)(
2
0

)(
1
0

)(
2
0

)
= 2 + 1 + 2 + 1 = 6.

In analogy with Corollary 2, the cases m = 2 and r = 0 of Theorem 4 gives the
following identity.

Corollary 6. For n > 0,

n

∑
k=0

sPL(k) sPL(n− k) = ∑
t1+2t2+···+ntn=n

(
2J1

t1

)(
2J2

t2

)
· · ·
(

2Jn

tn

)
.

For example, the partitions of 6 with the property tk 6 2Jk are:

1 · 0 + 2 · 0 + 3 · 0 + 4 · 0 + 5 · 0 + 6 · 1,

1 · 1 + 2 · 0 + 3 · 0 + 4 · 0 + 5 · 1 + 6 · 0,

1 · 0 + 2 · 1 + 3 · 0 + 4 · 1 + 5 · 0 + 6 · 0,

1 · 2 + 2 · 0 + 3 · 0 + 4 · 1 + 5 · 0 + 6 · 0,

1 · 0 + 2 · 0 + 3 · 2 + 4 · 0 + 5 · 0 + 6 · 0,

1 · 1 + 2 · 1 + 3 · 1 + 4 · 0 + 5 · 0 + 6 · 0,

1 · 2 + 2 · 2 + 3 · 0 + 4 · 0 + 5 · 0 + 6 · 0.

Thus, the case n = 6 of Corollary 6 reads as follows:

6

∑
k=0

sPL(k) sPL(6− k) =
(

2
0

)(
2
0

)(
2
0

)(
4
0

)(
2
0

)(
4
1

)
+

(
2
1

)(
2
0

)(
2
0

)(
4
0

)(
2
1

)(
4
0

)
+

(
2
0

)(
2
1

)(
2
0

)(
4
1

)(
2
0

)(
4
0

)
+

(
2
2

)(
2
0

)(
2
0

)(
4
1

)(
2
0

)(
4
0

)
+

(
2
0

)(
2
0

)(
2
2

)(
4
0

)(
2
0

)(
4
0

)
+

(
2
1

)(
2
1

)(
2
1

)(
4
0

)(
2
0

)(
4
0

)
+

(
2
2

)(
2
2

)(
2
0

)(
4
0

)(
2
0

)(
4
0

)
= 4 + 4 + 8 + 4 + 1 + 8 + 1 = 30.
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On the other hand, according to expansion (9), we can write:

6

∑
k=0

SPL(k) SPL(6− k) = 1 · 6 + 1 · 4 + 1 · 3 + 2 · 2 + 3 · 1 + 4 · 1 + 6 · 1

= 6 + 4 + 3 + 4 + 3 + 4 + 6 = 30.

By Corollary 6, in analogy with Corollary 3, we easily deduce the following congru-
ence identity.

Corollary 7. For n > 0,

∑
t1+2t2+···+ntn=n

(
2J1

t1

)(
2J2

t2

)
· · ·
(

2Jn

tn

)
≡ sPL

(n
2

)
(mod 2),

where sPL(x) = 0 if x is not a positive integer.

As a consequence of Theorems 3 and 4, in analogy with Corollary 4, we remark the
following identity.

Corollary 8. For m > 1, r ∈ {−1, 0, 1} and n > 0,

∑
t1+2t2+···+ntn=n

(
m− 1 + r + t1

t1

) n

∏
k=2

(
ak ·m− 1 + tk

tk

)
= ∑

t1+2t2+···+ntn=n

n

∏
k=1

(
J (m,r)

k
tk

)
.

4. Connections between Divisors and Jn

This section is inspired by the following well-known connection between plane parti-
tions and divisors

PL(n) =
1
n

n

∑
k=1

σ2(k) PL(n− k),

where, for a real or complex number z, the sum of positive divisors’ function σz(n) is
defined as the sum of the zth powers of the positive divisors of n, i.e.,

σz(n) = ∑
d|n

dz.

It is well known that the generating function of σz(n) is given by the following
Lambert series:

∞

∑
n=1

σz(n) qn =
∞

∑
n=1

nz qn

1− qn , |q| < 1.

Related to strict plane partitions, we remark the following analogous result.

Theorem 5. Let n be a positive integer. Then

SPL(n) =
1
n

∞

∑
k=1

σ(k) SPL(n− k),

where
σ(n) = ∑

d|n
d dd/2e.
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Proof. The logarithmic differentiation of the generating function of SPL(n) can be
written as:

∂

∂q
ln

∞

∏
n=1

1
(1− qn)dn/2e =

∞

∑
n=1

∂

∂q
ln

1
(1− qn)dn/2e =

∞

∑
n=1

ndn/2e qn−1

1− qn

=
∞

∑
n=1

σ(n) qn−1. (12)

On the other hand, we have:

∂

∂q
ln

∞

∏
n=1

1
(1− qn)dn/2e =

(
∂

∂q

∞

∏
n=1

1
(1− qn)dn/2e

)(
∞

∏
n=1

1
(1− qn)dn/2e

)−1

=

(
∂

∂q

∞

∑
n=0

SPL(n) qn

)(
∞

∑
n=0

SPL(n) qn

)−1

=

(
∞

∑
n=0

n SPL(n) qn−1

)(
∞

∑
n=0

SPL(n) qn

)−1

.

Thus, we deduce that

∞

∑
n=0

n SPL(n) qn =

(
∞

∑
n=1

σ(n) qn

)(
∞

∑
n=0

SPL(n) qn

)

=
∞

∑
n=0

qn
n

∑
k=0

σ(k) SPL(n− k),

where we have invoked Cauchy multiplication of two power series. This concludes
the proof.

The sum of the divisors’ function σ(n) can be expressed in terms of σz(n) as we can
see in the following result.

Theorem 6. Let n be a positive integer. Then

σ(n) =
σ2(n) + σ1(2n)

2
− σ1(n).

Proof. Considering the generation of σz(n), we can write:

∞

∑
n=1

σ1(2n) q2n =
1
2

(
∞

∑
n=1

n qn

1− qn +
∞

∑
n=1

n (−q)n

1− (−q)n

)

=
1
2

∞

∑
n=1

n odd

(
n qn

1− qn +
n (−q)n

1− (−q)n

)
+

1
2

∞

∑
n=1

n even

(
n qn

1− qn +
n (−q)n

1− (−q)n

)

=
∞

∑
n=1

n odd

n q2n

1− q2n +
∞

∑
n=1

n even

n qn

1− qn

=
∞

∑
n=1

(2n− 1) q2(2n−1)

1− q2(2n−1)
+

∞

∑
n=1

2n q2n

1− q2n .

By this relation, with q2 replaced by q, we obtain:

∞

∑
n=1

(2n− 1) q2n−1

1− q2n−1 =
∞

∑
n=1

σ1(2n) qn − 2
∞

∑
n=1

σ1(n) qn. (13)
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The generating function of σ(n) can be written as follows:

∞

∑
n=1

σ(n) qn =
∞

∑
n=1

ndn/2e qn

1− qn

=
1
2

∞

∑
n=1

n even

n2 qn

1− qn +
1
2

∞

∑
n=1

n odd

n(n + 1) qn

1− qn

=
1
2

∞

∑
n=1

n2 qn

1− qn +
1
2

∞

∑
n=1

n odd

n qn

1− qn

=
1
2

∞

∑
n=1

σ2(n) qn +
1
2

∞

∑
n=1

(2n− 1) q2n−1

1− q2n−1

=
1
2

∞

∑
n=1

σ2(n) qn +
1
2

∞

∑
n=1

σ1(2n) qn −
∞

∑
n=1

σ1(n) qn.

This concludes the proof.

In this context, we remark the following connection between σ(n) and Jn.

Theorem 7. Let n be a positive integer. Then

σ(n) = ∑
d|n

(−1)1+n/d d Jd.

Proof. The cases m = 1 and r = 0 of (6) gives the following expression for the generating
function of SPL(n):

∞

∑
n=1

SPL(n) qn =
∞

∏
n=1

(1 + qn)Jn .

The logarithmic differentiation of this generating function reads as follows:

∂

∂q
ln

∞

∏
n=1

(1 + qn)Jn =
∞

∑
n=1

∂

∂q
ln(1 + qn)Jn =

∞

∑
n=1

n Jn qn−1

1 + qn .

According to (12), we obtain:

∞

∑
n=1

σ(n) qn =
∞

∑
n=1

n Jn qn

1− qn

=
∞

∑
n=1

qn ∑
d|n

(−1)1+n/dd Jd.

This concludes the proof.

For example, for n = 6, it has:

σ(6) = 1 · d1/2e+ 2 · d2/2e+ 3 · d3/2e+ 6 · d6/2e = 27.

The case n = 6 of Theorem 6 is given by:

σ(6) =
(12 + 22 + 32 + 62) + (1 + 2 + 3 + 4 + 6 + 12)

2
− (1 + 2 + 3 + 6)

=
50 + 28

2
− 12 = 27.
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Taking into account Theorem 7, we can write:

σ(6) = −1 · 1 + 2 · 2− 3 · 2 + 6 · 5 = 27.

In analogy with Theorem 5, we have the following result.

Theorem 8. Let n be a positive integer. Then

sPL(n) =
1
n

∞

∑
k=1

σ∗(k) sPL(n− k),

where
σ∗(n) = ∑

d|n
d odd

d + ∑
d|n

d even

d bd/4c.

Proof. The proof is quite similar to the proof of Theorem 5 and invokes the logarithmic
differentiation of (8). We omit the details.

In analogy with Theorem 6, we have the following representation of σ∗(n) in terms of
the sum of positive divisors’ function σz(n).

Theorem 9. Let n be a positive integer. Then

σ∗(n) =

{
σ1(n), for n odd,
σ2(n/2), for n even.

Proof. The generating function of σ∗(n) can be written as:

∞

∑
n=1

σ∗(n) qn =
∞

∑
n=1

n odd

n qn

1− qn +
∞

∑
n=1

n even

n bn/4c qn

1− qn

=
∞

∑
n=1

(2n− 1) q2n−1

1− q2n−1 + 2
∞

∑
n=1

n bn/2c q2n

1− q2n . (14)

On the other hand, we can write:

∞

∑
n=1

n bn/2c qn

1− qn =
1
2

∞

∑
n=1

n even

n2 qn

1− qn +
1
2

∞

∑
n=1

n odd

n(n− 1) qn

1− qn

=
1
2

∞

∑
n=1

n2 qn

1− qn −
1
2

∞

∑
n=1

n odd

n qn

1− qn

=
1
2

∞

∑
n=1

σ2(n) qn − 1
2

∞

∑
n=1

(2n− 1) q2n−1

1− q2n−1 . (15)

By (14) and (15), we obtain:

∞

∑
n=1

σ∗(n) qn =
∞

∑
n=1

(2n− 1) q2n−1

1− q2n−1 −
∞

∑
n=1

(2n− 1) q2(2n−1)

1− q2(2n−1)
+

∞

∑
n=1

σ2(n) q2n

=
∞

∑
n=1

(2n− 1) q2n−1

1− q2(2n−1)
+

∞

∑
n=1

σ2(n) q2n

=
∞

∑
n=1

σ1(2n− 1) q2n−1 +
∞

∑
n=1

σ2(n) q2n,
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where we have invoked the following bisection of the generating function of σ1(n):

∞

∑
n=1

σ1(2n− 1) q2n−1 =
1
2

(
∞

∑
n=1

n qn

1− qn −
∞

∑
n=1

n (−q)n

1− (−q)n

)

=
1
2

 ∞

∑
n=1

n odd

n qn

1− qn +
∞

∑
n=1

n odd

n qn

1 + qn


=

∞

∑
n=1

n odd

n qn

1− q2n .

This concludes the proof.

In analogy with Theorem 7, we have the following connection between σ∗(n) and Jn.

Theorem 10. Let n be a positive integer. Then

σ∗(n) = ∑
d|n

d odd

(−1)1+n/d d + ∑
d|n

d even

(−1)1+n/dd Jd/2.

Proof. The proof is quite similar to the proof of Theorem 7 and invokes the following
expression for the generating function of sPL(n):

∞

∑
n=0

sPL(n) qn =
∞

∏
n=1

(1 + qn)Jn , |q| < 1.

This follows from (11) with m replaced by 1 and r replaced by 0. We omit the details.

For example, for n = 6, it has:

σ∗(6) = 1 + 2 · b2/4c+ 3 + 6 · b6/4c = 10.

The case n = 6 of Theorem 9 is given by:

σ∗(6) = 12 + 32 = 10.

Taking into account Theorem 10, we can write:

σ∗(6) = −1− 3 + 2 · J1 + 6 · J3 = −1− 3 + 2 + 12 = 10.

5. Concluding Remarks

An n-color partition of a positive integer m is a partition in which a part of size n can
come in n different colors denoted by subscripts: n1, n2, . . . , nn. The parts satisfy the order:

11 < 21 < 22 < 31 < 32 < 33 < 41 < 42 < 43 < 44 < . . .

We remark that n-color partitions were introduced to mathematics in 1987 by A. K. Agarwal
and G. E. Andrews [7]. For example, there are thirteen n-color partitions of 4:

(44), (43), (42), (41), (33, 11), (32, 11), (31, 11), (22, 22)

(22, 21), (21, 21), (22, 11, 11), (21, 11, 11), (11, 11, 11, 11).

According to [7], the plane partitions and the n-color partitions have a common generating
function. This is equivalent to the following result.
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Theorem 11. The number of plane partitions of m equals the number of n-color partitions of m.

Similarly, we introduce the following definition.

Definition 1. Let n be a positive integer.

1. A Jn-color partition of the first kind of a positive integer m is a partition in which a part of
size n can come in Jn different colors denoted by subscripts: n1, n2, . . . , nsn . The parts satisfy
the order:

11 < 21 < 22 < 31 < 32 < 41 < 42 < 43 < 44 < . . .

2. A Jn-color partition of the second kind of a positive integer m is a partition in which a part of
size 2n can come in Jn different colors denoted by subscripts: n1, n2, . . . , nsn . The parts satisfy
the order:

11 < 21 < 31 < 41 < 42 < 51 < 61 < 62 < 63 < . . .

We denote by QJ1(m) the number of Jn-color partitions of the first kind of m into
distinct parts. For convenience, we define QJ1(0) = 1. For example, there are seven Jn-color
partitions of the first kind into distinct parts of 4:

(44), (43), (42), (41), (32, 11), (31, 11), (22, 21).

We denote by QJ2(m) the number of Jn-color partitions of the second kind of m into
distinct parts. For convenience, we define QJ2(0) = 1. For example, there are six Jn-color
partitions of the second kind into distinct parts of 6:

(62), (61), (51, 11), (42, 21), (41, 21), (31, 21, 11).

Applying elementary techniques in the theory of partitions [3], we obtain the following
generating functions:

∞

∑
n=0

QJ1(n) qn =
∞

∏
n=1

(1 + qn)Jn , |q| < 1,

and
∞

∑
n=0

QJ2(n) qn =
∞

∏
n=1

(1 + q2n−1)(1 + q2n)Jn , |q| < 1.

In this way, we deduce the following results.

Theorem 12. The number of strict plane partitions of m equals the number of Jn-color partitions of
the first kind into distinct parts of m.

Theorem 13. The number of symmetric plane partitions of m equals the number of Jn-color
partitions of the second kind into distinct parts of m.

Combinatorial proofs of Theorems 12 and 13 would be very interesting.
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