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Abstract: Knowledge proficiency refers to the extent to which students master knowledge and
reflects their cognitive status. To accurately assess knowledge proficiency, various pedagogical
theories have emerged. Bloom’s cognitive theory, proposed in 1956 as one of the classic theories,
follows the cognitive progression from foundational to advanced levels, categorizing cognition into
multiple tiers including “knowing”, “understanding”, and “application”, thereby constructing a
hierarchical cognitive structure. This theory is predominantly employed to frame the design of
teaching objectives and guide the implementation of teaching activities. Additionally, due to the large
number of students in real-world online education systems, the time required to calculate knowledge
proficiency is significantly high and unacceptable. To ensure the applicability of this method in
large-scale systems, there is a substantial demand for the design of a parallel prediction model to
assess knowledge proficiency. The research in this paper is grounded in Bloom’s Cognitive theory,
and a Bloom Cognitive Diagnosis Parallel Model (BloomCDM) for calculating knowledge proficiency
is designed based on this theory. The model is founded on the concept of matrix decomposition. In the
theoretical modeling phase, hierarchical and inter-hierarchical assumptions are initially established,
leading to the abstraction of the mathematical model. Subsequently, subject features are mapped
onto the three-tier cognitive space of “knowing”, “understanding”, and “applying” to derive the
posterior distribution of the target parameters. Upon determining the objective function of the model,
both student and topic characteristic parameters are computed to ascertain students’ knowledge
proficiency. During the modeling process, in order to formalize the mathematical expressions of
“understanding” and “application”, the notions of “knowledge group” and “higher-order knowledge
group” are introduced, along with a parallel method for identifying the structure of higher-order
knowledge groups. Finally, the experiments in this paper validate that the model can accurately
diagnose students’ knowledge proficiency, affirming the scientific and meaningful integration of
Bloom’s cognitive hierarchy in knowledge proficiency assessment.

Keywords: knowledge proficiency; cognitive diagnosis; Bloom’s cognitive taxonomy; matrix factorization;
parallel and distributed processing

MSC: 62H22

1. Introduction

With the continuous advancement of internet and artificial intelligence technologies,
AI algorithms have significantly impacted various aspects of our lives, such as smart
city development [1–3], energy management [4,5], and financial services [6,7]. Similarly,
the field of education has been continually evolving due to the influence of artificial
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intelligence [8–13] and internet technologies [14,15]. This is particularly evident in the
context of ‘Internet + Education’, a new educational model that has emerged in recent years.

“Internet + Education” is a new educational model that has emerged in recent years.
In this innovative educational paradigm, “tailored teaching” remains a crucial element
in cultivating high-quality and highly capable talents [16]. As students’ proficiency in
knowledge reflects their mastery of it and embodies their cognitive differences, the precise
calculation of students’ knowledge proficiency is particularly vital for personalized online
education [17,18]. It can guide the construction of personalized learning spaces and the
creation of intelligent teaching environments.

The prediction of knowledge proficiency has consistently been a focal point in the field
of education [19], forming the early research framework for computing knowledge profi-
ciency in educational statistics. One of the early cognitive diagnostic models was the DINA
model proposed by Torre et al. in 2009 [20]. The DINA model utilizes a discrete binary vec-
tor, denoted as αi = {αi1, αi2, · · · , αik}, to describe a student’s cognitive characteristics. This
binary vector indicates whether a student has mastered the knowledge concept associated
with a given question. Specifically, αi1 = 1 signifies that student i has mastered knowledge
concept 1, and, vice versa, αi1 = 0. The model sets the dimension of the vector to be equal
to the number of knowledge concepts, while also considering a given question–knowledge
concept matrix, denoted as Q, to interpret diagnostic results. With the application of data
mining methods in knowledge proficiency prediction tasks, several models for computing
knowledge proficiency based on matrix decomposition [21–23] and deep learning [24–35]
have been introduced. The Knowledge Proficiency Tracking (KPT) [36] model stands as
the exemplar among matrix factorization-based models, which refines traditional matrix
factorization by incorporating prior information from the question feature matrix V and
integrating a time window for log slicing to track interpretable student knowledge profi-
ciency, represented by the matrix U. The Deep Knowledge Tracing (DKT) model [37], based
on recurrent neural networks, employs the hidden vectors of recurrent neural networks to
represent a student’s knowledge state and subsequently uses this representation to predict
the student’s performance. Additionally, the surge in the number of students participat-
ing in real-world online education systems, such as Massive Open Online Courses, has
markedly increased the time required to calculate knowledge proficiency, rendering it
significantly high and unacceptable. This spike in time consumption deems the existing
methods impractical for efficient evaluation and hinders the seamless progression of the
educational process. The challenge now lies in overcoming this bottleneck to facilitate
timely assessments and feedback, which are crucial for enhancing the learning experience
and outcomes.

In summary, previous approaches to computing knowledge proficiency have often
focused on dynamic changes in students’ cognition, incorporating a temporal dimension
to form three-dimensional tracking models, thereby establishing a comprehensive hori-
zontal framework. However, given that cognition is a complex entity, Bloom’s Cognitive
Theory [38,39] in educational psychology has explicitly emphasized its hierarchical nature.
It suggests that authentic cognitive structures should progress step by step. Therefore,
it is imperative, within the framework of educational theory, to construct a longitudinal
model for computing knowledge proficiency, enabling a multi-dimensional quantification
of cognitive assessment. In the field of education, Bloom’s Cognitive Theory primarily
serves for setting educational objectives, which is reflected in the examination of different
cognitive levels in questions. For example, when a student correctly answers, “the Pacific
Ocean” to the question, “What is the largest ocean in the world?” it indicates a fundamen-
tal level of “knowing.” To some extent, questions also assess higher levels of cognitive
understanding, making them useful for item test and question reforms. In essence, current
research has largely focused on constructing dynamic models for tracking the learning
process to a certain extent, yet it has overlooked the hierarchical nature of cognition em-
phasized in educational psychology. This text proposes the construction of a longitudinal
model for computing knowledge proficiency, modeling how students’ proficiency changes
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under examinations of different cognitive levels in questions. As of now, in knowledge
proficiency prediction models, no evidence has been found of the incorporation of Bloom’s
Cognitive Theory to address the prediction of knowledge proficiency. In addition, to over-
come the bottleneck of time consumption, there is a pronounced demand for designing
a parallel prediction model that can expediently assess knowledge proficiency across a
large student population. By employing a parallel processing approach, it is envisaged that
the evaluation time will be drastically reduced, making the method viable for large-scale
systems and ensuring that educators and learners alike benefit from timely insights into
the learning progress.

To address the aforementioned issues, this section proposes a Knowledge Proficiency
Parallel Prediction Model based on Bloom’s Cognitive Theory (Bloom Cognitive Diagnosis
Model, BloomCDM). Drawing inspiration from probabilistic matrix factorization, Bloom-
CDM endeavors to incorporate the Bloom hierarchical priors into the features of questions,
thereby influencing the prediction of the student cognitive vector. The primary innovations
and contributions of this paper include:

(1) Considering educational psychological theories, BloomCDM considers the three
hierarchical levels of “knowing”, “understanding”, and “application”, as well as
students’ proficiency features. BloomCDM employs parallel processing to model the
changes in students’ knowledge proficiency under different cognitive levels examined
by questions. It projects the question feature matrix into the cognitive space of each
level, denoted as parameters VR, VC, and VA, and associates student proficiency
parameters with question feature parameters based on the assumed relationships.

(2) To address the challenge of extracting hierarchical structure information from sparse
data, a method for discovering higher-order knowledge groups is designed based on
the specific application scenario described in this paper. This method can uncover
the structure of higher-order knowledge groups from the original matrix of answered
questions and extract valuable structural information, providing strong support for
knowledge proficiency prediction based on Bloom’s Cognitive Theory.

(3) Experimental results on two real-world online education datasets demonstrate that
BloomCDM can effectively model students’ learning and forgetting behaviors, contin-
uously track their knowledge levels in real-time, and outperform existing models in
predictive performance.

2. Related Work Problem

In this section, we categorize the related research on knowledge proficiency prediction
into three main groups: Cognitive Diagnosis, Matrix Factorization, and Neural Networks.

Cognitive diagnosis, as one of the most challenging issues in educational science,
has received widespread attention in the field of educational statistics. It involves the
assessment of a subject’s cognitive abilities, holding significant weight in psychometrics.
Cognitive diagnostic models serve as crucial methods for conducting cognitive diagnos-
tic measurements. These models are primarily categorized into continuous and non-
continuous models. Continuous models use continuous variables to represent students’
latent abilities. The Item Response Theory (IRT) proposed by Harvey et al. in 1999 [40]
is a standard example of a continuous model. In this model, the prediction of students’
performance on items is achieved by considering the one-dimensional latent variable θ
representing student ability, along with latent variables representing item features, and
utilizing a Logistic model. The Multidimensional Item Response Theory (MIRT), proposed
by Reckase et al. in 2009 [41], is a multidimensional version of the IRT. It considers the
multidimensional nature of abilities θ = (θ1, . . . , θm)

T and builds a model for predicting stu-
dent performance based on assumptions of the monotonicity and independence of abilities.
Following the classical continuous models, scholars have proposed improved IRT models
in different application scenarios. Recognizing that latent traits (referred to as “abilities”) in
humanities possess a hierarchical structure, the Hierarchical Ordered Cognitive Diagnosis
Model (HO-CDM) [42] was designed to calculate high- and low-level latent variables based
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on linear hierarchical assumptions. Considering the hierarchical structure of ability levels,
subjects with similar ability levels are categorized to obtain the latent structure of the subject
group. The common approach is to use the Mixed Rasch Model (MixIRT) [43]. The MixIRT
model obtains latent classifications of latent traits that are not easily observed, allowing for
the assessment of multidimensionality in the measurement structure and the detection of
differences in subjects’ response styles. Among non-continuous models, the most classical
is the DINA model, which models students’ levels of cognition using multidimensional
discrete cognitive vectors. Improved versions of the DINA model include Seq-G-Dina [44]
and pG-DINA [45]. In cases where the scoring rules for items are discretely multi-valued,
Seq-G-Dina sets restricted mastery levels in conjunction with the generalized DINA model
to obtain students’ discrete cognitive vectors. pG-DINA, in comparison to the G-DINA
model, handles the multi-level knowledge concept. It uses multiple values to represent
different levels and calculates students’ discrete cognitive vectors based on the multi-level
mastery of knowledge concept.

Matrix factorization is a fundamental technique used in recommender systems to
uncover latent semantic relationships. It is also a commonly used algorithm in educational
data mining. There are two main application scenarios: student performance prediction
and knowledge proficiency prediction. In student performance prediction, the common
approach involves analyzing academic performance data to map each student into a latent
feature vector. This is followed by predicting student performance on specific items. In
2010, Thai-Nghe et al. and Xiong et al. [46] proposed a matrix factorization method that
considers time effects to predict student performance, aiming to capture the dynamic
changes in learners’ knowledge levels over time. This approach incorporates a dynamic
time dimension into the task, resulting in a three-dimensional (student, item, time) matrix
factorization model. In 2016, P. Nedungadi et al. [47] introduced a personalized weighted
multi-relational matrix factorization model to enhance prediction accuracy in student per-
formance tasks. The model proposed two methods for designing multiple relations. The
first method considers the global cognitive average level and item deviation term. The
second method only considers the item deviation term. Overall, matrix factorization has
been proven to be a highly effective model for predicting student performance. These
methods primarily obtain students’ latent knowledge vectors through factorization. How-
ever, a common limitation of previous work is that these models operate like black boxes,
and the resulting student representations are difficult to interpret. In other words, the
latent vectors obtained from factorization lack interpretability and can only be considered
as feature vectors. Defining them as students’ cognitive vectors with the dimension of
the knowledge concept is somewhat strained. Therefore, in the field of statistics, adding
interpretable knowledge concept features to factorization models presents a new challenge
in mining students’ knowledge proficiency. The first knowledge proficiency prediction
model based on matrix factorization was proposed by Chen et al. in 2017 [36], known as
the KPT model, which improved upon traditional matrix factorization. The specific method
involved adding prior information in the form of a Q matrix to the item feature matrix V
matrix. The Q matrix is a binary item–knowledge concept matrix and is a necessary condi-
tion for cognitive diagnostic models. The paper further refined and used Q-matrix-based
partial orders to reduce the subjective influence of expert annotations. It constructed a
partial order set Du to more accurately capture the pairwise relationships between two
knowledge concepts (p, q). The experimental results demonstrated that KPT exhibited an
excellent performance in a multi-model, multi-data comparison. Subsequently, in 2020,
Z. Huang et al. [48] developed an improved version called the Enhanced Knowledge Pro-
ficiency Tracking (EKPT) model based on KPT to enhance prediction performance. The
paper argued that KPT’s partial order based on the Q matrix only models the feature repre-
sentation for each individual item, ignoring the relationships between items. Therefore, in
the EKPT model, a neighbor set NVj is defined for each item j, containing items similar to it
with the same knowledge concept. Each item’s Vj feature consists of two parts: the grouped
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feature vector of neighboring items and the feature vector of each item, constructing a
dynamic cognitive diagnostic model influenced by multiple item features.

With the rapid advancement of neural networks, student data and types are becoming
more refined, making education data mining based on deep learning a recent research
focus. However, because knowledge proficiency calculation belongs to an interpretable
task, feature vectors need to possess cognitive interpretability. The current situation, where
deep learning has limited interpretative power, runs counter to this requirement. Therefore,
knowledge proficiency calculation based on deep learning is in its infancy and represents
a completely new research area. Recently, there have been two models for estimating
student knowledge proficiency based on deep learning: DIRT [24] and NeuralCDM [49].
The Deep Item Response Theory (DIRT) model, proposed by Song Cheng et al. in 2019,
challenges the conventional Item Response Theory (IRT) by contending that it merely
utilizes students’ response outcomes for cognitive diagnosis, without fully leveraging
the semantics of the questions. The paper proposes an enhanced semantic deep learning
framework for cognitive diagnosis. This involves reinforcing the influence of question
text on question features through a neural network model. The IRT model is employed as
the loss function, and the effectiveness and interpretability of the model are validated on
a large-scale practical dataset. In 2020, Fei Wang et al. introduced the Neural Cognitive
Diagnosis Model (NeuralCDM). The paper asserts that existing methods often employ the
logistic function to mine linear interactions during student practice, which is insufficient
for capturing the complex relationships between students and exercises. Therefore, the
paper presents a general framework for neural cognitive diagnosis. It projects students and
questions onto factor vectors, utilizes multiple neural layers for modeling, and applies the
monotonicity assumption to ensure the interpretability of these two factors. This approach
comprehensively considers both linear and nonlinear interactions.

3. Description and Mathematical Modeling about BloomCDM

In the field of educational knowledge proficiency prediction, the task typically occurs
in large-scale examination scenarios. Therefore, the problem definition in this paper is as
follows: Suppose there are N students, M questions, and K knowledge concepts. The set
of students is denoted as S, and the set of questions is denoted as P. Given the student
response logs R and the “question–knowledge concept” matrix Q labeled by educational
experts, the objective of this paper is to model the knowledge proficiency calculation under
Bloom’s cognitive theory in the process of predicting student performance. This can be
expressed using Equation (1):

F(Bloom, Ru, Q)→ Uu (1)

In this context, Bloom serves as the theoretical prior. Ru represents the record of
student u responses. Q denotes the “question–knowledge concept” matrix, which is
annotated by experienced educational experts. When Qjk = 1, it indicates that question
j assesses knowledge concept k. When Qjk = 0, it means question j does not assess
knowledge concept k. Uu = {Uu1, Uu2, · · · , UuK} represents the knowledge proficiency
vector of student u, where each value in the vector signifies the proficiency of student u in
knowledge concept k. From Equation (1), it can be observed that the focus of the study lies
in designing the model F to incorporate the original scoring matrix Ru and the Q matrix
data as the input, while embedding the interpretable Bloom prior. Not only in hierarchical
modeling, where mathematical models corresponding to different levels are abstracted,
but also in a vertical manner, inter-level modeling needs to be constructed to obtain the
knowledge proficiency vector Uu. Table 1 lists important mathematical symbols required
for the problem.
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Table 1. Some important notations of BloomCDM.

Symbol Meaning

N Number of students
M Number of questions
K Number of knowledge concepts
H Number of high-level knowledge concepts

Ruj Result of student u on question j
Uu Knowledge proficiency vector of student u
VR

j Vector indicating if question j assesses “knowing”
VC

j Vector indicating if question j assesses “understanding”
VA

j Vector indicating if question j assesses “application”
Du Partial order set for each student
RC Matrix of comprehension results
RA Matrix of application results
CV Subgroup
PV Parent group
P Set of questions

Probability Matrix Factorization

The Probabilistic Matrix Factorization model (PMF) [50] assumes that the difference
between the actual observed rating Ruj and the predicted rating follows a Gaussian dis-
tribution with a mean of 0 and a variance of σ2, that is, σ2. If g(x) = 1/(1 + exp(−x))
represents the logistic function, and it is assumed that all observed ratings are mutually
independent, then we can obtain:

P
(

R | U, V, σ2
)
= ∏ ∏

[
N
(

Ruj | g
(

UT
i Vj

)
, σ2

)]Iij
(2)

Assuming that the feature matrices U and V for users and items respectively follow
Gaussian distributions with means of 0 and variances of σ2

u and σ2
v , and further assuming

that the feature vectors of users in matrix U are independently and identically distributed,
as well as the feature vectors of items in matrix V, the posterior distributions of the feature
matrices U and V can be calculated using Bayes’ theorem as follows:

p
(
U, V | R, σ2, σ2

u , σ2
v
)

∝ p
(

Ruj | UT
i Vj, σ2)p

(
U | σ2

u
)

p
(
V | σ2

v
)

=
N
∏

u=1

M
∏
j=1

N
(

Ruj | UT
i Vj, σ2)]Rij

M
∏
j=1

N
(
Vj | 0, σ2

v I
) N

∏
u=1

N
(
Uu | 0, σ2

u I
) (3)

Maximizing the posterior probability of the feature matrices U and V is equivalent to
minimizing the negative logarithm of the expression above. Therefore, when the hyperpa-
rameters

(
σ2, σ2

u , σ2
v
)

are fixed, the objective function can be obtained as follows:

JPMF = ∑
Ru ̸=0

(
Ruj − g

(
UT

i Vj

))2
+

σ2

σ2
u
∥U∥2

F +
σ2

σ2
v
∥V∥2

F + C (4)

where C is a constant that does not depend on the parameters. Many well-established
methods can be applied to parameter learning, such as gradient-based optimization meth-
ods commonly used in traditional matrix factorization models. Alternatively, probabilistic
modeling approaches can be used, including the Expectation–Maximization algorithm
(EM) [51], Markov Chain Monte Carlo (MCMC) [52], and other methods for estimating the
maximum likelihood (MLE) [53] of parameters U and V.

4. Knowledge Proficiency Prediction Model Based on Bloom’s Cognitive Theory

In response to the collaborative filtering-based personalized question recommendation
method, this section proposes the Knowledge Proficiency Calculation Model based on
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Bloom’s Cognitive Theory (BloomCDM). This model draws inspiration from PMF and
incorporates hierarchical priors into question features to obtain knowledge proficiency
vectors with good cognitive interpretability.

4.1. Framework of BloomCDM

This section introduces the proposed model framework of BloomCDM. The overall
flowchart of BloomCDM is shown in Figure 1. From the figure, it can be observed that
this recommendation method is mainly divided into three stages: the data input stage, the
modeling stage, and the output stage. The core of the modeling stage is the embedding
of the hierarchical structure, which includes modeling for “knowing”, “understanding”,
and “application”.

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 23 
 

 

4. Knowledge Proficiency Prediction Model Based on Bloom’s Cognitive Theory 
In response to the collaborative filtering-based personalized question recommenda-

tion method, this section proposes the Knowledge Proficiency Calculation Model based 
on Bloom’s Cognitive Theory (BloomCDM). This model draws inspiration from PMF and 
incorporates hierarchical priors into question features to obtain knowledge proficiency 
vectors with good cognitive interpretability. 

4.1. Framework of BloomCDM 
This section introduces the proposed model framework of BloomCDM. The overall 

flowchart of BloomCDM is shown in Figure 1. From the figure, it can be observed that this 
recommendation method is mainly divided into three stages: the data input stage, the 
modeling stage, and the output stage. The core of the modeling stage is the embedding of 
the hierarchical structure, which includes modeling for “knowing”, “understanding”, and 
“application”. 

 
Figure 1. The Framework of the BloomCD model. 

Specifically, the data input stage provides student log records and the expert-anno-
tated matrix of “question–knowledge concept”, defined as the 𝑅 matrix and the 𝑄 ma-
trix, respectively. In the modeling stage, hierarchical theory assumptions are applied. By 
combining the 𝑄 matrix, the 𝑅 matrix at different levels is projected onto cognitive fea-
ture vectors in different cognitive spaces. Then, inter-level theory assumptions are ap-
plied, combining models to conduct inter-level feature modeling in a bottom-up manner. 
In the data output stage, after estimating the target parameters, the student’s proficiency 
vector 𝑈 and the vectors of “knowing”, “understanding”, and “application” features for 
the questions (denoted as Vୖ, Vେ, and V୅) are output, realizing the knowledge proficiency 
calculation model based on Bloom’s cognitive theory. 

4.2. “Knowing” Model 
“Knowing” implies understanding and memorization, representing the lowest level 

of knowledge. Students at this level do not grasp the meaning and internal relationships 
of the knowledge, relying on simple memorization to form a basic impression. 

Based on this characteristic of “knowing”, we focus on questions answered correctly. 
We assume that correctly answered questions have a higher probability of assessing the 
“knowing” level. In other words, if a question is answered correctly, it must have been 

Modeling

OutputInput

VR

VC

VA

Q matrix

U
       Students Test Log 

VR

VC

VA

U

Hierarchy Structure

K1 K2 K3

P1 0 1 0

P2 1 0 0

Clustering

Figure 1. The Framework of the BloomCD model.

Specifically, the data input stage provides student log records and the expert-annotated
matrix of “question–knowledge concept”, defined as the R matrix and the Q matrix, respec-
tively. In the modeling stage, hierarchical theory assumptions are applied. By combining
the Q matrix, the R matrix at different levels is projected onto cognitive feature vectors in
different cognitive spaces. Then, inter-level theory assumptions are applied, combining
models to conduct inter-level feature modeling in a bottom-up manner. In the data out-
put stage, after estimating the target parameters, the student’s proficiency vector U and
the vectors of “knowing”, “understanding”, and “application” features for the questions
(denoted as VR, VC, and VA) are output, realizing the knowledge proficiency calculation
model based on Bloom’s cognitive theory.

4.2. “Knowing” Model

“Knowing” implies understanding and memorization, representing the lowest level
of knowledge. Students at this level do not grasp the meaning and internal relationships of
the knowledge, relying on simple memorization to form a basic impression.

Based on this characteristic of “knowing”, we focus on questions answered correctly.
We assume that correctly answered questions have a higher probability of assessing the
“knowing” level. In other words, if a question is answered correctly, it must have been tested
and assessed for basic “knowing” compared to questions that were either not attempted or
answered incorrectly. Therefore, at the “knowing” level, correctly answered questions take
precedence over other questions, including those answered incorrectly or not attempted
at all.
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To align with this assumption, this paper employs a partial order [54] based on
the R matrix to highlight the contribution of correctly answered questions, emphasizing
the influence of “knowing”. For a student u, the partial order >+

u can be defined as in
Equation (5):

i >+
u j, if Rui = 1 and Ruj = 0 (5)

Equation (5) indicates that for a student u, if the response to a question i is 1, then i is
considered to assess “knowing” more than other questions. Under the conditions set by
the partial order >+

u , the R matrix can be transformed into a set of comparative questions
Du using Equation (6).

Du =
{
(i, j)

∣∣ i >+
u j

}
(6)

Du can more accurately capture pairwise relationships between two questions (i, j)
based on the student u, aiding in obtaining explanations for “knowing”. With the partial
order prior, this paper sets the knowledge matrix based on the R matrix as VR ∈ RM×K,
where M represents the number of questions and K represents the dimension of the knowl-
edge concept. Since the partial order is based on the R matrix, the model aims to obtain
the decomposed matrix of student proficiency U ∈ RN×K and the question knowledge
matrix VR. For all question pairs (i, j) belonging to Du, Θ represents the model’s parameter
set, which includes the parameters U and VR. So, the objective function is divided into
two parts. The first part is the model’s likelihood function, and the second part contains
the prior probability of Θ. For the first part p(>+

u | Θ), within the “knowing” level, it is
assumed that question pairs (i, j) are independent of other question pairs. Therefore, the
likelihood function p(>+

u | Θ) can be obtained, as shown in Equation (7):

p
(
>+

u | Θ
)
= ∏

(i,j)∈Du

p
(
i >+

u j | Θ
)

(7)

In order to obtain the correct ordinal relationship under the condition of Θ, the
probability that student u is more relevant to question i than to question j is defined as
shown in Equation (8):

p
(
i >+

u j
∣∣ Θ

)
= σ

(
xui(θ)− xuj(θ)

)
(8)

where σ is the logistic function, designed to simultaneously satisfy the completeness,
antisymmetry, transitivity, and optimization calculations for the ordinal i >+

u j. Because
the logistic function itself is a continuous and centrally symmetric function, it satisfies the
setting of the partial order. In addition, for the second part p(Θ), following the traditional
approach, assuming both U and VR follow Gaussian distributions, therefore, Θ follows
a Gaussian prior with a zero mean. Combining the first part of the objective function
in Equations (7) and (8) with the Gaussian assumption of the second part, the posterior
distribution of Θ under the condition of Du can be obtained, as shown in Equation (9):

p
(
Θ |>+

u
)

∝ p
(
>+

u | Θ
)

p(Θ) = ∏
(i,j)∈Du

p
(
>+

u | VP
)

p
(

VP
)

(9)

4.3. “Understanding” Model

“Understanding” means comprehending things without the need for deep insight.
In contrast to “knowing”, comprehension involves grasping shallow concepts and mean-
ings, rather than just memorizing the knowledge concept. Based on the characteristics of
comprehension, this study focuses on questions that assess the same knowledge concept.
It is assumed that when the same knowledge concept is assessed, it provides a further
measure of the level of understanding of that knowledge concept. In other words, when
only questions related to a particular knowledge concept are considered, there will be
a certain level of impression on the intrinsic logic and form of that knowledge concept,
deepening the level of understanding.
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Therefore, we propose the concept of “knowledge groups”: an organizational structure
formed by questions related to the same knowledge concept. Based on the question–
knowledge concept category labels provided by the Q matrix, questions assessing the same
knowledge concept are divided into non-overlapping, non-intersecting, and disjoint groups.
A hierarchical understanding model is then constructed from bottom to top. Different
from the Q matrix, knowledge groups, although originating from the Q matrix, define
the basic cognitive computing units, making the flat and sparse Q matrix hierarchical
for convenient scientific prediction. The introduction of knowledge groups is not only
to capture the common knowledge-related features among questions but also to build a
hierarchical structure more effectively.

Next, introduce some related concepts: knowledge groups, sub-groups CVC
l , parent

groups CVC
l , the comprehension matrix VC, and the rating matrix RC.

Knowledge Groups: It is defined that questions belonging to the same knowledge
concept form a knowledge group. For example, in Figure 1, 11 questions and 4 knowledge
groups {1(VC)2(V

C), 3(V
C), 4(V

C)}. In the hierarchical structure module, the first row of
solid circles represents questions, and the second row of solid circles represents knowledge
groups. Questions 1, 2, and 3 belong to the knowledge group 1(V

C), questions 4 and
5 belong to the knowledge group 2(V

C), questions 6, 7, and 8 belong to the knowledge
group 3(V

C), and questions 9, 10, and 11 belong to the knowledge group 4(V
C). According

to the task of this paper, the knowledge group has the following characteristics:

- Each element within a knowledge group belongs to one and only one knowledge
concept.

- There is at least one element within a group.
- There is no overlap between groups.

Subgroup CVC
l : Defined as the set of questions within the knowledge group l. For

example, questions 1, 2, and 3 belong to 1(V
C) and are a subgroup of knowledge concept 1.

CVC
1 = {1, 2, 3}, and so on for other subgroups.

Parent Group PVR
l : Question l can be mapped to the corresponding knowledge group

through PVR
l . For example, Questions 1, 2, and 3 belong to 1(V

C), so the parent group
PVR

1 = 1, and so on for other parent groups.
The comprehension matrix VC ∈ RK×K represents the matrix for comprehension,

indicating the degree of examination of comprehension for each question. K represents
the number of knowledge groups, and it is also the dimension of the feature vector. Since
the R matrix does not have features related to knowledge groups, it would be challenging
for the parameters to learn about comprehension. Therefore, this paper introduces the
comprehension hierarchical result matrix RC, which systematically associates knowledge
groups with the result matrix R, further supervising the training of VC.

In essence, RC is a matrix that represents students’ scores for knowledge groups. It has
the dimensions RC ∈ RN×K, where N represents the number of students, and K represents
the number of knowledge groups. RC

uj represents student u performance in knowledge

group j. There are various ways to construct RC. For example, when the data within
each group are uniformly distributed, they can use the median or select the maximum
and minimum values as representative values for the knowledge group. Since the data
for knowledge groups are typically binary and may contain some missing values, the
model uses the group’s average as the representative value for the knowledge group. The
calculation formula for the knowledge group result matrix is as follows (Equation (10)):

RC
uj =

1∣∣∣CVC
j

∣∣∣ ∑
l∈CVC

j

Rul = Ru,CVC
j

(10)

When establishing the relationship between students, questions, and knowledge
groups, the hierarchical nature of the question feature matrix is taken into account. These lay-
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ers form an accumulating hierarchical framework, where reaching the next level depends on
the previous level. Therefore, it is assumed that each layer’s question feature matrix is sam-
pled from its sub-feature matrix. For “knowing” and “understanding”, VC ∼ N

(
VR, σ2

V I
)
.

The generation process is as follows:

(1) Considering the hierarchical nature of “knowing” and “understanding”, the prior of
the comprehension matrix VC ∼ N

(
VR, σ2

V I
)
.

(2) The prior of knowledge proficiency U is N
(
0, σ2

U I
)
.

(3) For each non-missing entry (u, j) in the “understanding” level, scores matrix
RC

uj ∼ N (⟨Uu, VC
j ⟩, σ2

R I).

(4) δ is an indicator function. If RC
uj ̸= null, then δRC

uj = 1; otherwise, δRC

uj = 0.

Here, σ represents the standard deviation. The posterior distributions for the parame-
ters question knowledge matrix VR, comprehension matrix VC, and knowledge proficiency
matrix U are given by Equation (11):

P
(

VR, VC, U
∣∣∣>+

u , RC, σ2
RC , σ2

U , σ2
V ,

)
∝ P

(
>+

u | U, VR)P
(

RC
∣∣U, VC, σ2

R
)

P
(
VC

∣∣σ2
V
)

P
(
U
∣∣σ2

U
)

P
(
VR

∣∣σ2
V
)

= ∏(i,j)∈Du σ
(

xui − xuj
)

∏
u,j
N

(
RC

uj | ⟨Uu, VC
j ⟩, σ2

R

)δRC
uj

N
(

VC | VR, σ2
V I

)
N

(
VR | 0, σ2

V I
)
N

(
U | 0, σ2

U I
)

(11)

4.4. “Appilication” Model

Application refers to the ability to apply learned concepts, rules, and principles. In
comparison to understanding, application not only assesses the degree of comprehension
and grasp of a particular knowledge concept but also emphasizes the ability to apply that
understanding to learn other knowledge concepts. It is a cross-knowledge-point ability.

Based on the characteristics of application, the research focuses on questions that
examine similar knowledge concepts. Assuming that similar knowledge concepts are being
examined, it is easier to identify the intrinsic connections between knowledge concepts. In
other words, when questions address similar knowledge concepts, it is easier to measure
the level of conceptual or knowledge transfer and further deepen the understanding of
knowledge concepts.

This paper innovatively introduces the concept of higher-order knowledge groups, es-
tablishing an organizational structure for higher-order knowledge groups and constructing
a cross-knowledge-concept model. Like the understanding level, the knowledge groups
examining similar knowledge concepts are divided into non-overlapping, non-intersecting
clusters. From these similar knowledge concepts, higher-order knowledge groups are
abstracted. This not only succinctly describes the aggregation level of knowledge groups
but also captures features related to similar knowledge groups, facilitating the construction
of a hierarchical structure. Higher-order knowledge groups, based on knowledge groups,
represent a higher level of abstraction. Similar to knowledge groups, there are several
related concepts: higher-order knowledge groups, subgroups CVA

l , parent groups PVC
l ,

the application matrix VA, and the application rating matrix RA.
With the introduction of higher-order knowledge groups, there arises a correspondence

between knowledge groups and higher-order knowledge groups. As shown in the diagram,
knowledge groups {1(VC), 2(V

C)} belong to the higher-order knowledge group 1(V
A), and

knowledge groups {3(V
C), 4(V

C)} belong to the higher-order knowledge group 2(V
A).

Subgroup CVA
l : CVA

l is defined as the set of knowledge groups for higher-order knowl-
edge group l. For example, knowledge groups 1 and 2 belong to 1(V

A), so CVA
1 = {1, 2},

and so on for other subgroups.
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Parent group PVC
l : Knowledge group l can be mapped to the corresponding higher-

order knowledge group through PVC
l . For example, knowledge groups 1 and 2 belong to

1(V
A), so PVC

1 = 1, and so on for other parent groups.
VA ∈ RH×K represents the application matrix, where H is the number of higher-order

knowledge groups. Similar to understanding, VA is still obtained through supervised
training. Therefore, this paper also introduces the application level result matrix RA to
further supervise the training of VA. The size of RA is RN×H , where RA

uj represents the

student u performance on higher-order knowledge group j. RA can be constructed in
various ways, and the model still uses the average within the group as the representative
value. The calculation formula for the higher-order knowledge group result matrix is given
by Equation (12).

RA
uj =

1∣∣∣CVA
j

∣∣∣ ∑
l∈CVA

j

RC
ul = Ru,CVA

j
(12)

One important point to note is that in most application scenarios, information about
higher-order knowledge group structures is implicit and not readily accessible. The meth-
ods for discovering such structures will be discussed in Chapter Four of this paper. For
the purposes of this section, it can be assumed that information about the higher-order
knowledge group structure is obtained through the higher-order knowledge group struc-
ture discovery algorithm in the next section, and it is not acquired during the model
training process.

Similar to Equation (11), the posterior distribution of parameters VR, VC, VA, and
U under the conditions of the partial order and the result matrices for each level can be
expressed as Equation (13):

P
(
VR, VC, VA, U |>+

u , RC, RA, σ2
R, σ2

R, σ2
U , σ2

V
)

∝ P
(
U, VR

∣∣>+
u
)

P
(

RC
∣∣U, VC, σ2

R
)

P
(

RA
∣∣U, VA, σ2

R
)

P(U
∣∣σ2

U)P(VR
∣∣σ2

V)P(VC
∣∣σ2

V)P(VA
∣∣σ2

V)

= ∏(i,j)∈D σ
(

xui − xuj

)
∏
u,j
N

(
RC

uj | ⟨Uu, VC
j ⟩, σ2

R

)δRC
uj

∏
u,j
N

(
RA

uj | ⟨Uu, VA
j ⟩, σ2

R

)δRA
uj

N
(

VC | VR, σ2
V I

)
N

(
VA | VC, σ2

V I
)
N

(
VR | 0, σ2

V I
)
N

(
U | 0, σ2

U I
)

(13)

5. Model Learning and Prediction

In order to better understand the proposed BloomCDM, this section summarizes the
probabilistic graphical representation of the model in Figure 2, where shaded and unshaded
variables represent observed and latent variables.

Based on the detailed description in the previous section, given the student response
matrix R, the comprehension-level knowledge group matrix RC, the application-level
higher-order knowledge group matrix RA, and the partial order >+

u , the model’s goal is to
learn the parameters ϕ =

[
U, VP, VC, VA]. Through the BloomCDM model, the posterior

distribution of the target parameters ϕ is obtained under the condition of partial order and
the result matrix at each level.
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Therefore, the logarithmic posterior maximization in Formula (13) is equivalent to
minimizing the objective function in Formula (14):

L = lnp
(
VR, VC, VA, U |>+

u , RC, RA, σ2
R, σ2

U , σ2
V
)

∝ − ∑
(i,j)∈Du

(
lnσ

(
Uu ·VR

i −Uu ·VR
j

))
− 1

2σ2
R

N
∑

u=1

(
RC

uj −
〈

Uu, VC
j

〉)2

− 1
2σ2

R

N
∑

u=1

H
∑

j=1
δRA

uj

(
RA

uj −
〈

Uu, VA
j

〉)2

− 1
2σ2

V

M
∑

j=1

(
VR

j −VC
PVR

j

)2

− 1
2σ2

V

K
∑

j=1

(
VC

j −VA
PVC

j

)2

− 1
2σ2

V

M

∑
j=1

(
VR

j

)2
− 1

2σ2
U

N

∑
u=1

U2
u (14)

The three most commonly used methods for solving machine learning parameters
are: ordinary least squares, gradient descent, and the Fastest Newton method. Since
the objective function is convex, the model adopts the stochastic gradient descent (SGD)
method [55]. To achieve more accurate convergence, the model does not directly apply
SGD but instead follows the random block coordinate descent to sequentially update U
and all V at each level.

∂LR
Uu

=
1

1 + eUu·VR
i −Uu·VR

j

(
VR

i −VR
j

)
− 1

σ2
U

Uu (15)

∂LRC

Uu
=

1
σ2

R

K

∑
j=1

δRC

uj

(
RC

uj −
〈

Uu, VC
j

〉)
VC

j −
1

σ2
U

Uu (16)

∂LRA

Uu
=

1
σ2

R

H

∑
j=1

δRA

uj

(
RA

uj −
〈

Uu, VA
j

〉)
VA

j −
1

σ2
U

Uu (17)

∂LR

VR
j

=
Uu

1 + eUu·VR
i −Uu·VR

j
− 1

σ2
V

Vj (18)
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∂LR

VC
j

=
1

σ2
R

K

∑
j=1

δRC

ij

(
RC

ij −
〈

Ui , VC
j

〉)
Ui −

1
σ2

V

K

∑
j=1

[∣∣∣CVC
j

∣∣∣(VC
j −VR

CVC
j

)
+

(
VC

j −VA
PVC

j

)]
(19)

∂LR

VA
j

=
1

σ2
R

H

∑
j=1

δRA

ij

(
RA

ij −
〈

Ui , VA
j

〉)
Ui −

1
σ2

V

H

∑
j=1

[∣∣∣CVA
j

∣∣∣(VA
j −VC

CVA
j

)]
(20)

Algorithm 1 outlines the learning process for rating prediction in BloomCDM. It can be
observed that the time complexity is linearly related to the order. This study sets the order
to be 3, assuming there are non-empty entries in all result matrices. The average time per
student is tr = r/N. In each iteration, the time complexity for U is O(N × tr) = O(K× r),
and for V, it is O(3×M× tr) = O(K× r). Therefore, the total complexity of parameter
learning in each iteration is O(K× r), which is linearly related to the records.

Algorithm 1: The Learning Algorithm of BloomCDM

Input: Matrices R, Subgroup CVC, CVA, standard deviations σ2
U ,σ2

V ,σ2
R, learning rate η, number

of iterations T, number of hierarchical levels L = 3.
Output: Student feature matrix U, hierarchical feature matrices VP, VC, VA, predicted orthogonal
matrix R̃.
1. for t = 1, 2, · · · , T do
2. for l = 1, 2, · · · L do
3. if l = 1 do
4. U ← U + η[∂LR/Uu]

N
u=1 via Equation (15)

5. VR ← VR + η
[
∂LR/VR

j

]M

j=1
via Equation (18)

6. end if
7. if l = 2 do
8. U ← U + η

[
∂LRC /Uu

]N
u=1 via Equation (16)

9. VC ← VC + η
[
∂LRC /VC

j

]K

j=1
via Equation (19)

10. end if
11. if l = 3 do
12. U ← U + η

[
∂LRA /Uu

]N
u=1 via Equation (17)

13. VA ← VA + η
[
∂LRA /VA

j

]H

j=1
via Equation (20)

14. end if
15. end for
16. end for

17. return R̃ =
〈

Uu, VR
j

〉
, R̃c =

〈
Uu, VC

j

〉
, R̃A = ⟨Uu, VA

j ⟩//Output Feature Matrix and
Prediction Matrix

6. High-Order Knowledge Group Structure Detection

As mentioned earlier, the application level involves the ability to understand a single
piece of knowledge deeply and apply it to learn other related knowledge, demonstrating
a cross-topic proficiency. Hence, we introduce the concept of “higher-order knowledge
groups” to construct a model that spans different knowledge areas. However, in some
application scenarios, this hierarchical structure may be implicit, making it challenging
to intuitively obtain structural information. To address this, we propose a method for
discovering higher-order knowledge group structures, abstracting them from existing
knowledge groups, and thereby enhancing the construction of these higher-order struc-
tures. This approach provides strong support for calculating proficiency based on Bloom’s
cognitive theory.

Due to the sparsity of student feedback, it is often challenging to design an appropriate
clustering algorithm that effectively groups related knowledge areas together. We consider
two intuitive hypotheses. The first hypothesis involves directly applying clustering algo-
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rithms within knowledge groups. The second hypothesis, considering the high-dimensional
and sparse nature of the data, suggests a two-stage research approach: first reducing the
dimensionality of knowledge group features, followed by applying a clustering algorithm.

According to Hypothesis 1, we initially employ the DBSCAN algorithm to discover the
high-order knowledge group structures in a clustering scenario. DBSCAN is a clustering
algorithm that does not require specifying the number of clusters, making it particularly
suitable for discovering high-order knowledge groups. The DBSCAN algorithm’s under-
lying idea is to create a circle with a radius of ε around each data point, classifying all
data points into core points, boundary points, and noise points. A data point is considered
a core point if it has more than minPts neighbors within this radius. Data points in the
vicinity of a core point and with a minimum number of neighbors, minPts, are referred to
as directly density-reachable points. If a directly density-reachable point is identified as a
core point, then its neighboring points are defined as density-reachable. All points in the
same cluster are density-connected. Points with a number of neighbors less than minPts
are considered boundary points, as there are no other data points in their vicinity, and they
are treated as noise [56]. The clustering effect of directly applying DBSCAN is illustrated
in Figure 3a. From the figure, it can be observed that in the direct application case, the
DBSCAN algorithm fails to determine the number of clusters and does not uncover the
similar characteristics of knowledge groups.
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According to hypothesis two, we first perform dimensionality reduction on the features
of knowledge groups, followed by applying DBSCAN for clustering. In the dimensionality
reduction phase, the t-distributed stochastic neighbor embedding algorithm (t-SNE) [57] is
an important method proposed in 2008 for reducing dimensionality. The primary purpose
of this model is to visualize high-dimensional data, and it has found widespread appli-
cation in various fields. The t-SNE algorithm proceeds in three steps: first, it calculates
the pairwise probabilities of being neighbors in the high-dimensional space. Second, it
calculates the pairwise probabilities of being neighbors in the low-dimensional space. In
the third step, the algorithm attempts to minimize the differences between these condi-
tional probabilities (or similarities) in both high-dimensional and low-dimensional spaces
to achieve an optimal representation of data points in the low-dimensional space. The
Kullback–Leibler (KL) divergence measures the difference between the distributions of
high-dimensional and low-dimensional data. To minimize the KL divergence, t-SNE em-
ploys gradient descent to reduce the distance between the two distributions. In summary,
in the scenario of knowledge group feature reduction, t-SNE minimizes the differences
between two distributions: the high-dimensional feature distribution of knowledge groups
and their distribution in the low-dimensional space.

In the clustering phase, DBSCAN is again applied to the low-dimensional data points
for cluster discovery. The clustering effect under hypothesis two is illustrated in Figure 3b.
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Different colors represent different clusters, it can be clearly observed that different clusters
are discernible, resulting in a cluster count of three. The clustering module demonstrates
higher accuracy in capturing the relationships between knowledge groups. Algorithm 2
demonstrates the process of discovering high-order knowledge group structures.

Algorithm 2: Higher-Order Knowledge Group Structure Detection

Input: Understanding result matrix RC =
{

RC
1 , RC

2 , . . . RC
n
}

, perplexity Perp(i), learning rate η,
number of iterations T, radius ε, minPts, initialize label set as “undefined”.
Output: Number of high-order knowledge groups, label set.
1. DB = t_SNE

(
RC, Perp, T, η

)
//Using t-SNE for dimensionality reduction, obtain the

low-dimensional data points after reduction.
2. for every data point p in DB do
3. if label(p) ̸= unde f ined then continue//Select an untreated point.
4. Neighbour N ← RangeQuery(T, p, ε)//Find points that are density-reachable from
point p, and add them to the neighborhood N.
5. if |N| < minPts then//If the number of neighbors is less than minPts, then point p is
temporarily marked as noise.
6. label(p)← noise
7. c ← next cluster label
8. label(p) ← c
9. neighbour set S ← N{p}
10. for every data point q in S do
11. if label(q) = noise then label(q) ← c
12. if label(q) ̸= undefined then continue
13. N← RangeQuery(T, q, ε)
14. label(q) ← c
15. if |N| < minPts then continue
16. S← S ∪N
17. end for
18. end for
19. return label, unique(label)

7. Experiment

In this section, we first introduce our experimental dataset and settings. Then, we
report the experimental results in terms of three aspects: (1) student performance prediction
task; (2) knowledge proficiency diagnostic task; (3) visualized knowledge proficiency task.

7.1. Dataset

This experiment focuses on studying students’ cognitive performance in the context
of solving problems. Therefore, it requires data on students’ performance on questions,
with the most crucial being the scores they achieve in their attempts. Currently, many
studies in the field of cognitive diagnostics rely on private datasets provided by educational
institutions and organizations, and openly available datasets are relatively scarce. Hence,
in this paper’s experiment, two real-world datasets were utilized: the ASSIST dataset and
the Hangzhou Dianzi University Online Judge Platform dataset (HDU).

The ASSIST dataset is derived from the publicly available dataset “Assistments
2009–2010 Skill Builder”. This public dataset was curated by Professor Heffernan and
his team from the online education platform Assistments. It provides detailed records of
students’ log data for the years 2009–2010, including student IDs, question IDs, attempt
results, educational modes, and the number of attempts by students, and it also annotates
the corresponding skills for each question, such as “Percent Of”, “Absolute Value”, and
so on.

The HDU dataset originates from the Hangzhou Dianzi University Online Judge
Platform (OJ). The OJ platform is an online judging system where users can submit their
code for evaluation. It collects user-submitted code, compiles and runs it independently,
and verifies the correctness of the students’ solutions. The OJ platform is open to all users,
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allowing them to submit code for assessment once they are logged into the system. In
the “Realtime Judge Status” module of HDU’s OJ platform, there is a large amount of
historical user log data for problem solving. The target fields for data retrieval in this
experiment include “Author”, “ProID”, “Judge Status”, and “Submit Time.” The data were
collected from student logs for the years 2020–2021. The categories of knowledge concepts
corresponding to the questions mainly include topics such as Graph Theory, Tree Theory,
Depth-First Search, Sorting, and more.

To address the tasks proposed in this paper, several preprocessing steps were imple-
mented in this experiment:

(1) Deduplication: Both datasets have a temporal sequence, meaning that for the same
question, a student may have multiple response records. Therefore, the log data
represents a sequence. This experiment retained only the first response record, consid-
ering the first response as the true reflection of the student’s cognition to ensure the
uniqueness of the student’s response

(2) Dealing with Long-Tail Distribution: Both datasets exhibit a long-tail distribution,
with some students having very few log entries, indicating low activity in answering
questions. This could potentially affect the diagnostic results. In this experiment,
students with fewer than 15 log entries and questions with fewer than 15 log entries
were filtered out, ensuring that each student and question have sufficient data for
diagnosing the student’s cognition.

(3) Standardizing Response States: Since the HDU dataset has four types of response
states (“Compilation Error”, “Timeout”, “Wrong Answer”, “Accepted”), this ex-
periment excluded the first two states (“Compilation Error” and “Timeout”) and
considered only “Wrong Answer” and “Accepted.”

The preprocessed data form the basis for the subsequent analysis and experimentation.
The steps mentioned above were crucial in ensuring the quality and reliability of the results
obtained from the experiment.

7.2. Experiment Setting
7.2.1. BloomCDM Configuration

To evaluate the performance of the BloomCDM model, this experiment divided the
dataset into training and testing sets in an 80–20 ratio. It investigated the performance
prediction task under different levels of data sparsity. For the hyperparameters in the
BloomCDM model, the default settings are as follows:

Learning rate η: 0.001, Standard deviation σ2
U , σ2

V , σ2
R: 0.001.

The hyperparameter settings for the high-order knowledge group discovery method
are as follows:

Perp(i): 30, Learning rate η: 50, Radius ε: 2, Minpt: 21.

7.2.2. Baseline Methods

To assess the performance of the BloomCDM model and validate its robustness, we
compared it against six baseline methods.

(1) IRT: Item Response Theory (IRT) is a classical cognitive diagnostic model in educa-
tional statistics. It is represented by Equation (21). It constructs a model for calculating
the probability of a student’s response considering a one-dimensional latent ability
variable θ and item feature latent variable d.

pij = σ
(
θi − dj

)
(21)

(2) MIRT: Multidimensional Item Response Theory (MIRT) is the multidimensional ver-
sion of the IRT model, as shown in Equation (22). It considers the multidimensionality
of ability θ = (θ1, . . . , θm)

T and builds a model for calculating the probability of a
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student’s response based on a monotonicity assumption and ability independence
assumption.

pij = σ
(〈

θi, dj
〉
+ δj

)
(22)

(3) PMF: Probabilistic Matrix Factorization (PMF) is a widely used algorithm in recom-
mendation systems. It employs factorization methods to decompose the response logs
into latent feature matrices for students U and items V.

(4) QPMF: QPMF [36] is a variant of PMF that introduces the Q-matrix to enhance the
interpretability of PMF. The embedding method utilizes a V-matrix-based partial
order to emphasize the contribution of the knowledge concept assessed by items.

(5) BPR: Bayesian Personalized Ranking (BPR) is a classic algorithm in recommendation
systems. BPR combines a likelihood function P(i > uj | Θ) constructed based on
partial order relationships with a prior probability P(Θ) to perform Bayesian analysis
on student response logs.

(6) BloomCDM-RC: BloomCDM-RC is a simplified version of BloomCDM. It only consid-
ers the “Remember” and “Comprehension” levels and does not take into account the
Application level.

Specifically, the selected baselines are widely used in traditional cognitive diagnostics
(IRT, MIRT), recommendation system models (PMF, BPR, QPMF), and a variant of the
proposed model (BloomCDM-RC). In the following experiments, both BloomCDM and the
baselines are implemented in Python. All experiments were conducted on a Linux server
with 4 2.0 GHz Intel Xeon E5-2620 CPUs and 100 GB of memory. To ensure fairness, all
parameters of these baselines are tuned for optimal performance.

7.3. Results
7.3.1. Analysis of Student Performance Prediction Results

Evaluating the performance of cognitive diagnostic models can be challenging, as we
do not have access to the true knowledge levels of students. In most studies, diagnostic
results are typically obtained by predicting student performance, and the performance of
these prediction tasks indirectly serves as an evaluation metric for the model. In addition,
in a real educational environment, students’ practice feedback is often not simply wrong or
right but may also be the student’s specific score. A typical example is the scoring method
for objective and subjective questions. To this end, we utilized both classification and
regression evaluation metrics based on the set hyperparameters. Specifically, we employed
two common metrics for regression models, Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE), and two common metrics for classification models, Accuracy (ACC)
and Area Under the ROC Curve (AUC). Table 2 presents the experimental results for the
models in the task of predicting student scores.

Table 2. Comparative experimental results of all models in student performance prediction tasks.

ASSIST HDU

Model RMSE MAE ACC AUC RMSE MAE ACC AUC

IRT 0.463 0.398 0.648 0.648 0.533 0.398 0.676 0.625
MIRT 0.450 0.386 0.750 0.678 0.471 0.386 0.736 0.750
PMF 0.460 0.394 0.657 0.657 0.479 0.394 0.724 0.657

QPMF 0.451 0.388 0.674 0.683 0.460 0.397 0.744 0.687
BPR 0.449 0.386 0.678 0.750 0.449 0.366 0.722 0.678

BloomCDM-RC 0.422 0.370 0.785 0.785 0.412 0.370 0.754 0.785
BloomCDM 0.421 0.364 0.836 0.886 0.407 0.364 0.766 0.836

Taking into consideration the classification and regression experimental results across
all datasets, we can conclude the following:

Regardless of whether it is classification or regression, BloomCDM outperforms tradi-
tional cognitive diagnostic models like IRT and MIRT and recommendation models like
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BPR and PMF. This indicates that the design proposed in this paper is scientifically effective
and can enhance the model’s predictive performance on student scores.

BloomCDM performs better than BloomCDM_RC, especially in terms of the ACC
metric. Compared to BloomCDM_RC, BloomCDM shows an improvement of 0.049 and
0.012 points in ACC at the ASSIT and HDU datasets, suggesting that modeling the ap-
plication level is indispensable for capturing features of similar knowledge concepts and
improving predictive ability.

The traditional cognitive diagnostic model MIRT performs well on the AUC metric
and in some cases even outperforms recommendation models like BPR and PMF. This
is an intriguing phenomenon. The subsequent focus of research in this area could be
on augmenting the MIRT model with the knowledge concept to calculate more accurate
knowledge proficiency.

In terms of AUC and ACC metrics, the performance of the ASSIST dataset is superior
to that of the HDU dataset. This discrepancy may arise from the fact that the OJ platform
in the HDU dataset allows for free practice, potentially introducing more latent factors that
influence the student performance data.

7.3.2. Knowledge Proficiency Diagnosis Task

As mentioned earlier in the model framework in Figure 1, Uu represents the proficiency
of student u, where each value in the vector represents the level of mastery of different
knowledge concepts for the student u. To assess the accuracy of students’ diagnostic results,
a new metric called Degree of Agreement (DOA) is introduced, as shown in Formula (23).
Intuitively, if student a has a better mastery of knowledge concept k compared to student b,
then student a is more likely to answer questions related to k correctly. Therefore, in this
experiment, the Consistency (DOA) [58] metric is used to evaluate the ordering of students’
proficiency in knowledge.

OA(k) =
1
Z

N

∑
a=1

N

∑
b=1

δ(Fs
ak, Fs

bk)
M

∑
j=1

Ijk

J(j, a, b) ∧ δ
(

raj, rbj

)
J(j, a, b)

(23)

Z = ∑N
a=1 ∑N

b=1 δ
(

Fs
ak, Fs

bk
)
, and Fs

ak represents the proficiency of student a in knowl-
edge concept k. δ, I, and J are indicator functions. If x > y, δ(x, y) = 1; otherwise,
δ(x, y) = 0. If question j assesses knowledge concept k, Ijk = 1; otherwise, Ijk = 0. If both
student a and student b attempted question j, then J(j, a, b) = 1; otherwise J(j, a, b) = 0. In
other words, after considering the pairwise relationships between students’ questions and
knowledge concepts, DOA(k) evaluates the ordering of proficiency in knowledge k. for
all students. By summing and averaging DOA(k). for all knowledge concepts, we obtain
DOA, which assesses the quality of the diagnosis results (i.e., the proficiency diagnosis
degree of the model).

In comparison with classical models, we only consider MIRT, PMF, and QPMF, as
these models take into account multi-valued student feature vectors, with QPMF addi-
tionally incorporating relationships between knowledge concepts and questions. Due to
the characteristics of the knowledge proficiency diagnosis task, this experiment employs
the DOA metric to compare the diagnostic accuracy across multiple datasets. Figure 4
presents the experimental results, from which several conclusions can be drawn based
on the experimental results table: First, both BloomCDM and BloomCDM-RC exhibit
significantly higher DOA values compared to the baseline models. This demonstrates
that they yield reasonable knowledge proficiency diagnoses and, considering cognitive
levels, aids in calibrating the prediction of knowledge proficiency. Second, BloomCDM
outperforms BloomCDM-RC in terms of precision, indicating a certain improvement in
the diagnostic effect. Additionally, QPMF performs better than PMF in terms of diagnosis,
highlighting the importance of Q-matrix information in obtaining interpretable diagnostic
results (knowledge proficiency vectors).
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7.3.3. Visualizing Knowledge Proficiency

An example of a cognitive diagnosis of student knowledge proficiency is provided.
As shown in Figure 5, the radar chart displays the knowledge proficiency diagnosis results
of a student in four models: IRT, MIRT, PMF, and BloomCDM. Since IRT only diagnoses
students’ unidimensional ability, the ability has the same value for all questions, resulting
in a regular polygon in the diagnostic result of IRT in Figure 5. Therefore, compared to IRT,
PMF and MIRT can provide more accurate knowledge concept diagnosis results because
they diagnose students’ multidimensional knowledge proficiency. However, IRT obtained
incorrect results on the first question, and MIRT and PMF had similar diagnostic results but
made a prediction error on the third question. Only BloomCDM made correct predictions
for all three questions.
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three questions.

8. Conclusions and Future Work

In response to the shortcomings of previous models for assessing proficiency, which
often overlooked the hierarchical nature of cognition in educational psychology, this paper
proposes a proficiency assessment model named BloomCDM based on Bloom’s cognitive
taxonomy. The model takes as input students’ responses to test items and a matrix of
item–knowledge associations (Q-matrix) annotated by experts in the educational field.
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The first step of this model involves making theoretical assumptions regarding the hi-
erarchy and inter-level relationships, abstracting a mathematical model, and projecting
item feature vectors into the three cognitive spaces of “knowledge”, “comprehension”,
and “application.”

(1) “Knowing” Modeling: Based on the theoretical definition of knowledge, we make
assumptions and use the >+

u partial order to learn the knowledge features of items
from student response data.

(2) “Understanding” Modeling: Following the theoretical definition of comprehension,
this level focuses on items assessing the same knowledge concept. When similar
knowledge concepts are assessed, it is assumed that a deeper understanding of
the knowledge concept can be measured. The model constructs a comprehension
calculation model specific to the knowledge concept in the form of knowledge groups.
This captures features related to the same knowledge among items and learns the
comprehension features of items.

(3) “Application” Modeling: Based on the theoretical definition of application, this level
focuses on items assessing similar knowledge concepts. It is assumed that when
similar knowledge concepts are assessed, it is easier to discover the inherent connec-
tions between knowledge concepts. The model constructs a cross-knowledge-concept
model in the form of high-order knowledge groups, learning the application features
of items.

(4) To address the challenge of obtaining hierarchical structure information from sparse
data, a high-order knowledge group discovery method is designed in this specific
application scenario. It can discover high-order knowledge group structures and mine
structural information, providing robust support for proficiency assessment based on
Bloom’s cognitive levels.

The extensive experiments demonstrate that the model accurately diagnoses students’
proficiency, affirming the meaningfulness of considering Bloom’s cognitive levels in profi-
ciency assessment. The design presented in this paper is scientifically effective.

In future research, we will explore the following aspects:

(1) While the effectiveness of BloomCDM designed using probabilistic graphical models
is evident, neural networks have demonstrated a strong performance in handling
nonlinear problems and feature embeddings, achieving accuracies that probabilistic
models may not easily attain. It would be interesting to investigate whether inter-
pretable deep learning models can be constructed. Such models could potentially
provide better predictions of student performance, building upon the knowledge
proficiency obtained.

(2) It is intriguing that the traditional cognitive diagnostic model, MIRT, performs well in
terms of the AUC metric, even outperforming recommendation models like BPR and
PMF. This phenomenon warrants further investigation. We propose that a promis-
ing direction for future models could involve augmenting the MIRT model with
knowledge concepts to compute more precise estimates of knowledge proficiency.
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