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Abstract: This paper aims to explain the transition to multicellularity as a consequence of the
evolutionary response to stress. The proposed model is composed of three parts. The first part details
stochastic biochemical kinetics within a reactor (potentially compartmentalized), where kinetic rates
are influenced by random stress parameters, such as temperature, toxins, oxidants, etc. The second
part of the model is a feedback mechanism governed by a genetic regulation network (GRN). The
third component involves stochastic dynamics that describe the evolution of this network. We assume
that the organism remains viable as long as the concentrations of certain key reagents are maintained
within a defined range (the homeostasis domain). For this model, we calculate the probability
estimate that the system will stay within the homeostasis domain under stress impacts. Under
certain assumptions, we show that a GRN expansion increases the viability probability in a very
sharp manner. It is shown that multicellular organisms increase their viability due to compartment
organization and stem cell activity. By the viability probability estimates, an explanation of the Peto
paradox is proposed: why large organisms are stable with respect to cancer attacks.
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1. Introduction

In this paper, we focus on three enigmatic problems of biology: (I) why multicellular
organisms emerge; (II) why complex multicellular organisms can be constructed with
a relatively small number of genes, and (III) the Peto paradox on cancer and lifespan,
i.e., why they are stable with respect to cancer attacks.

The origin of multicellular organisms presents a significant challenge for biological
evolution theory. For instance, E. Koonin notes “The emergence and evolution of complexity
at the levels of the genotype and the phenotype, and the relationship between the two, is
a central (if not the central) problem in biology. Even leaving aside for now the problem
of the actual origin of the very substantial complexity associated with the cellular level
of organization, one cannot help wondering why the evolution of life did not stop at the
stage of the simplest autotrophic prokaryotes, with 1000 to 1500 genes. Why instead did
evolution continue, to produce complex prokaryotes possessing more than 10,000 genes
and, far more strikingly, eukaryotes, with their huge, elaborately regulated genomes;
multiple tissue types; and even ability to develop mathematical theories of evolution?”
(see [1], Ch. 8, p. 250). Some approaches to the evolution of multicellularity were proposed
in ([2,3]), describing this evolution as a result of an interaction between hosts and parasites.
The emergence of multicellular organisms can be considered as a major evolutionary
transition [4].

The second enigma is connected to several protein-coding genes. In fact, the human
genome comprises approximately 22,000 protein-coding genes, a number that is comparable
to the genomes of fruit flies and nematodes. Surprisingly, more complex multicellular
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organisms do not necessitate a higher number of genes, despite having a greater number
of phenotypic traits and the need to adapt to numerous environmental constraints. These
facts challenge the classical ideas of modern evolutionary synthesis. According to the
celebrated Fisher geometric model, it can be demonstrated that the likelihood of improving
fitness through random mutations diminishes as the organism’s complexity increases ([5]).
Building upon Fisher’s approach, Orr estimated the adaptation rate Re =

d log F
dt as a

function of the number of environmental constraints M, with F representing the average
population fitness ([6], 2000, [7], 2005). Orr’s findings reveal that the adaptation rate
becomes exponentially small when M ≫ 1, a phenomenon known as the complexity cost
or complexity barrier. Therefore, for large values of M, the complexity barrier becomes
exponentially large.

Richard Peto was the first to notice that the cancer incidence does not correlate with
the number of organism cells [8]. The cancer incidence in humans is much higher than
the incidence of cancer in whales, despite whales having more cells than humans. For
simplicity, suppose that the probabilities of cancer driver mutations are constant for all
cells. Then whales should die from cancer more often than people and at an early age.
In reality, they live for hundreds of years. No statistically significant relationship has
been found between body size and cancer incidence, supporting Peto’s observation. This
problem III is connected to I and II. In fact, the existence of multicellular organisms
requires the suppression of cancer [9]. There exists a connection between the origins of
multicellularity and cancer [10,11]. In order to build larger bodies, organisms must suppress
cancer. According to ([12]), large organisms have more anticancer genes.

Let us outline the proposed model, which aims to address problems I–III. The first part
describes stochastic biochemical kinetics within a reactor (potentially compartmentalized),
where kinetic rates are influenced by random stress parameters such as temperature, toxins,
oxidants, etc. The second part of the model is a feedback mechanism governed by a genetic
regulation network (GRN). The third component is stochastic dynamics, which describe
the evolution of this network. We assume that an organism remains viable as long as
the concentrations of certain key reagents are maintained within a defined range (the
homeostasis domain).

To describe GRNs that control responses to stress, radial basis function networks
(RBFNs) are used. The inputs to these networks are the stress parameter values and
the states of the system. By external stress, we mean any deviation in environmental
parameters that could potentially harm the organism (whether multicellular or a single
cell). The GRN produces an output dependent on its architecture and, ultimately, on the
genetic code, s, which determines the architecture and interconnections within the GRN.
Following [13], we assume that the GRN output and stress impact neutralize each other.
Connections between units in these networks depend on coding sequences s = (s1, . . . , sN),
si ∈ {0, 1} of Boolean genes. Such a stress response model is not new; however, herein, it
uses a new key element connected to stem cell activity in the stress response. Multicellular
organisms consist of many types of differentiated (somatic) cells, which form tissues,
and stem cells. Stem cells can produce differentiated cells. In this paper, we provide
mathematical justification for the well-known idea that cell differentiation emergence in
evolution is a response to stress, particularly oxidative stress [14]. In different eukaryotic
microorganisms, the induction of antioxidant mechanisms is associated with development.
Note that stem cells are particularly susceptible to stresses ([15]) and they are regulated by
stress. Experimental data show ([15]) that stem cell division provides tissue turnover and
response to damage. Different stress factors induce stem cell division and differentiation.
Many pathways that regulate stem cell functioning are also stress–response pathways [15].
So, stress is involved in the long-term maintenance of cell populations [15,16]. In this paper,
to describe models for gene regulation in stem cells, we take into account experimental
observations and ideas [14–17]. We propose that the biochemical response of multicellular
organisms to stress is facilitated by different gene networks activated in various tissues. We
imagine the entire organism as divided into compartments, with stem cell activity aiding
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in regulating each compartment’s response. Contemporary morphogenesis models explain
the emergence of such compartments [18,19]. The model proposed can be considered to be
a far-reaching extension of L. Valiant’s model of the ideal answer [20]. In Valiant’s model,
organisms are viewed as Boolean circuits modeling responses to environmental stress
through a GRN. Our proposed model builds upon this approach while also incorporating
real biochemistry, the existence of compartments, and stem cell dynamics. We assume
that an organism remains viable as long as the concentrations of certain key reagents are
maintained within a specific domain (the homeostasis domain).

The results can be sketched as follows. For such a model, we determine the estimate of
the probability that the system does not leave the homeostasis domain under the impact of
stress. These estimates are given by Theorem 1 for models without compartments and stem
cells and Theorem 2 for models with compartments and stem cells. Furthermore, it is shown
that the RBF network growth makes biosystems stable for long time periods. We show that
a state with a GRN of the maximal possible size is the most probable, with overwhelming
probability. This indicates that evolution favors transitions to increasingly larger GRNs.
Multicellular organisms exhibit higher viability compared to a simple colony of cells due
to compartment organization and stem cell activity. By these results, we propose an
explanation for Peto’s paradox. Moreover, we estimate the number of genes needed to
encode GRNs supporting anti-stress responses.

1.1. Innovations

This article continues the series of works (see, for example, [21], 2006, [13], 2021),
where the replicative stability concept is investigated. This concept is proposed by M.
Gromov and A. Carbone [22]. It was shown that some properties of evolution could be
explained by the need for biosystems to maintain homeostasis under the influence of stress
and fluctuations (both internal and external), and this homeostasis support must be ensured
through subsequent replications. Indeed, many aspects of evolution can be interpreted this
way, for example, the tendency to increase the number of genes (see a review in ([23], 2014)).
The key question, however, is to explain the complexity of genetic networks. An attempt to
resolve this problem was made in ([13], 2021), where a model of the biochemical system’s
response to stress was introduced. In this study, the entropy of a stressful environment
is defined, and it is demonstrated that an effective response to stress is achievable if the
binary logarithm of the size of the regulatory genetic network is at least as large as this
entropy. Therefore, according to ([13], 2021), the main reason for the growth of regulatory
networks involves the complexity and diversity of the stress environment.

In this paper, the main innovation, compared to previous works, is the use of a
compartment model to describe a response to stresses. This model accounts for the modular
structure of an organism and stem cell activity. The organism’s response to stress is
mediated through cell populations in these compartments, with their dynamics governed
by the standard Lotka–Volterra model. Such an approach allows us to address one of the
key biological problems, the Peto paradox, because it will be shown that the organism
size directly affects stress response mechanisms. The second innovation, with respect
to ([13], 2021), is that we no longer need the complexity of the environment to explain the
complexity of an organism’s genetic network. If the organism’s environment fluctuates, it is
enough to initiate an increase in the complexity of the genetic network. The third intriguing
innovative element is that when an organism is divided into compartments, there is no
longer a need to fine-tune genetic regulatory networks (as in connectionist models [19]).
Instead, it is enough to adjust an appropriate interaction between the compartments.

1.2. Organization of the Paper

The paper is organized as follows. Section 2 describes the different models. Fur-
thermore, we outline the methods. In Section 4, we state the concept of viability under
stochastic perturbations. The main results on viability (Theorems 1 and 2) can be found in
Section 5. Furthermore, the proof of these results follows based on the standard estimates of
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the Ventsel–Freidlin theory ([24], 1984). By these viability estimates, in Section 7, we show
that evolution has sufficient time to construct complex structures. In Section 8, we outline
some contemporary morphogenesis models and explain why multicellular organisms can
be encoded by a few genes. An explanation of Peto’s paradox is stated in Section 9. Discus-
sions and conclusions can be found in the last section. Technical estimates are relegated
in Appendix A.

2. Model

In this section, we describe the model. It unfolds in a few steps.

2.1. Chemical Kinetics with Random Stress Parameters

In this subsection, following ([13]), we consider systems of differential equations
where the right-hand sides depend on a random process, ξ(t). These systems read

dv
dt

= f (v, ξ(t)) t ≥ 0, (1)

where v(t) = (v1(t), . . . , vn(t))⊤ ∈ D, where D is a compact domain in Rn with a smooth
boundary ∂D, and vi(t) represent reagent concentrations. We assume that f (v, ξ) =
( f1(v, ξ), . . . , fn(v, ξ))⊤ are sufficiently smooth functions of v; for example, multivariate
polynomials in v and smooth functions of ξ ∈ Rp. Functions ξ(t) are trajectories of random
processes, which are piecewise constant in t and take values in a compact subset DE of
Rp, where the quantity p ∈ N is a dimension of the stress parameter ξ). These Markov
processes ξ(t) describe a random stress produced by an environment. For system (1), we
set the following initial conditions:

v(0) = v(0). (2)

Reaction terms, f , can be defined by the well-known models of chemical kinetics and
population dynamics. The simplest choice from the law of mass action is

fi(v, ξ) = ∑
a∈Ri

Ci,a(ξ)v
a1
1 va2

2 . . . van
n , (3)

where a = (a1, . . . , an) is a multi-index with integers ai ≥ 0, Ri are finite subsets of
In = {1, . . . , n}, and Ci,a denote coefficients that determine kinetic rates. One also uses
rational nonlinearities, for example,

fi(v, ξ) = ∑
a∈Ri

Ci,a(ξ)
Pi,a(v)
Qi,a(v)

, (4)

where Pi,a(v) and Qi,a(v) are polynomials. We suppose that Qi,a(v) are separated from zero:

|Qi,a(v)| > δ0 > 0, (5)

for all i, a and v ∈ D. Systems (1) with fi defined by (3) or (4) often occur in biochemistry
and population dynamics.

To ensure the existence and uniqueness of solutions to the Cauchy problem (1), (2) for
all t ∈ [0,+∞), we make the following assumption. Let

f (v, ξ) · n(v) ≤ 0 ∀v ∈ ∂D ∀ξ ∈ DE (6)

where n(v) is a unit normal vector directed outside D at the point v ∈ ∂D. Then solutions
to the Cauchy problem (1), (2) exist and are unique for all t > 0.

Polynomial and rational functions fi may not fulfill conditions (6). Since our aim is
to investigate the local stability of local equilibria, we consider narrow neighborhoods of
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those equilibria. Let v̄ be the equilibrium under consideration. For δ > 0, we introduce a
δ-neighborhood of that equilibrium by

Wδ = {v : |v − v̄| < δ}, (7)

where we assume that Wδ ⊂ DH , where DH is a viability (homeostasis) domain. We
truncate nonlinearities in the fi(v) setting f̃i(v) = fi(v)χ(v), where χ(v) = 0 is defined
as follows: χ(v) is a Heaviside-like function, which is equal to 0 outside of an open
neighborhood Wδ of the equilibrium, and χ(v) is equal to 1 inside this neighborhood. Here,
we assume that the neighborhood radius δ > 0 is so small that this neighborhood Wδ lies
inside the homeostasis domain.

Moreover, let us note that an explicit form of fi is not essential in the subsequent
statement; however, certain assumptions on the existence of the equilibria of system (1)
and their stability should be fulfilled.

2.2. Extended Model with Anti-Stress Response Encoded by Genes

Different complicated models of gene regulation were proposed, for example, refs. [19,25]
for Drosophila morphogenesis. Suppose reaction terms fi involve feedback, u:

fi = fi(v, ξ, u), u = Unet,s(v, η). (8)

Here, u = (u1, u2, . . . , unreg) ∈ UR, where

UR = {u ∈ Rnreg , sup |u| < R},

and nreg is a positive integer, R > 0 is a constant. Here, the input η is the averaged value of
ξ on an interval:

η(t) = γ−1
∫ t

0
exp

(
− γ(t − τ)

)
ξ(τ)dτ, (9)

where γ > 0 is a parameter. We are seeking regulators defined by a radial basis function
network (RBFN):

Unet,s ∈ ΦNreg ,σ (10)

where the function class ΦNreg ,σ is defined in Appendix A.2.
We suppose that all parameters in Unet,s are encoded by a Boolean genetic code s,

where s(t) = (s1, . . . ., sN) is a gene expression vector (see Section A.3). We have N Boolean
genes si ∈ {0, 1}; therefore, s are elements of the Boolean hypercube SN = {0, 1}N . The i-th
gene may be switched on (si = 1) or switched off (si = 0). The strings, s, can depend on
time: at certain time moments, they change as a result of mutations, gene drift, and other
evolution forces.

2.3. Assumptions

Let us formulate natural assumptions to stress ξ, chemical kinetics, and the feedback.

Assumption 1. Assumption to ξ.
We suppose that ξ is the sum of a trend η(t) and a small multiplicative noise:

ξi(t) = ηi(t) + κ

n f

∑
l=1

hil(v, η(t))
dwl(t)

dt
, (11)

where κ is a small positive parameter, hil are functions, and wl(t), where l = 1, . . . , n f are
independent standard Wiener processes (therefore, dwl(t)/dt are white noises).

To describe the trend η(t), we use the model of subsequent environmental shocks.
We assume that η(t) are piecewise constant functions. Let us denote τ1, τ2, . . . , τk, . . . as
an infinitely increasing sequence of time moments τj. Let ∆τ = minj(τj+1 − τj). We



Mathematics 2023, 11, 5003 6 of 23

suppose ∆τ >> ∆tr and ∆τ >> ∆td, where ∆tr and ∆τd are the average times of GRN
reaction to stress and biochemical dynamics, respectively. At the τj moments, we have
environment shocks, where an interaction between the environment and the biosystem
changes. The assumptions on ∆τ, ∆tr, and ∆td are natural. It means that changes in the
organism’s environment are not very frequent and, therefore, organisms have time to react
to them. Otherwise, it is difficult to expect that evolution could be successful.

Let us assume that, for t ∈ [τj, τj+1), the parameter η(t) = η(j), where at each step j
η(j) is chosen randomly. More precisely, at each interval [τk, τk+1], the value η is a constant
random vector, which is distributed according to a continuous density probability function
(pdf) dµ(η) with a support, which has a support in a compact, non-empty domain DE ⊂ Rp.

Let us denote by Rδ = {λ ∈ C : λ < −δ} the open half-planes of the complex plane C.

Assumption 2. Equilibrium existence and stability.
We assume that for each η ∈ DE and each u ∈ U, the system

dv
dt

= f (v, η, u) t ≥ 0 (12)

has a hyperbolic rest point v̄, smoothly depending on η and u. This means the following: One has

f (v̄(η, u), η, u) = 0. (13)

Consider the corresponding linearized operator A(η, u):

A(η, u) = f ′v(v̄(η, u), η, u). (14)

The operator A is uniformly hyperbolic and stable: there is a δ∗ > 0, such that

SpecA(η,u) ⊂ Rδ∗ ∀u ∈ U, η ∈ DE. (15)

This means that the biochemical equilibrium is uniformly stable in (η, u).
To formulate the next assumption, let us introduce important auxiliary functions. Let

us define gil(v, η, u) by

gil =
p

∑
j=1

∂ fi
∂ξ j

(v, η, u)
n f

∑
l=1

hjl(v, η). (16)

where i = 1, 2, . . . , n and l = 1, 2, . . . , n f , where n f is a positive integer, and hjl are smooth
functions.

Assumption 3. Existence of an ideal feedback
We suppose for each η ∈ DE and v ∈ DH , there exists a solution u = U∗(v, η) of the system

gil(v, η, u) = 0, i = 1, . . . , n, l = 1, . . . , n f , (17)

which is a smooth function defined on the domain DH ×DE.

This assumption means that there is an ideal response to the stress impact η. The GRNs
should approximate this response to support the organism’s viability, as described in the
last assumption.

Assumption 4. We suppose that for sufficiently large sizes, N, the ideal feedback u = U∗(v, η)
(which exists according to Assumption 3) can be approximated with a polynomial accuracy:

sup
v∈DH , η∈DE

|U∗(v, η)− Unet(v, η)| < C̄0N−γ (18)

by a network Unet ∈ ΦN,σ, where constants C̄0, γ > 0 are uniform in N.
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This assumption can be justified by estimates stated in Appendix A.2. Moreover,
Assumptions 3 and 4 show that our model can be considered an extension of L. Valiant’s
circuit model of the ideal answer ([20], 2006, [26], 2009), where we take into account
the biochemical kinetics, compartment existence, and the cell dynamics (which will be
described below).

2.4. Stochastic Equations for Perturbations Induced by Stress Fluctuations

Taking into account our assumptions on ξ and the existence of the equilibrium, we
represent v as

v = v̄(η, u) + ṽ(t)

where ṽ is a new unknown function, representing a small correction to the equilibrium. By
Assumption 2, one has

fi(v, ξ, u) = fi(v, ξ, u)− fi(v̄, η, u) = Pi(v, ξ, u) + Ri(v, ξ, u), (19)

where
Pi = fi(v, η, u)− fi(v̄, η, u), Ri = fi(v, ξ, u)− fi(v, η, u).

Using the Taylor expansion of f and the definition (14) of the linear operator A, we obtain

Pi =
(
Aṽ

)
i + hi(ṽ, ξ, u),

where
|hi(ṽ)| < C|ṽ|2. (20)

One has the following formal asymptotics for Ri:

Ri = κ fi
′
η(η, u)ξ + O(κ2). (21)

Using (11), one finds that

Ri = κ
p

∑
j=1

∂ fi
∂ηj

n f

∑
l=1

hjl(v, η)
dwl(t)

dt
+ O(κ2). (22)

We remove the terms O(κ2) in Ri and substitute the obtained shorted Ri into (19), then
one has

fi(v, ξ, u) = (Aṽ)i + hi(ṽ, ξ, u) + κgil(v, η, u)
dwl(t)

dt
,

where gil is defined by (16).
Thus, for each time interval, where η(t) does not change, we have the system of the

following stochastic Ito equations

dṽi =
(
(Aṽ)i + hi(ṽ, u)

)
dt + κ

p

∑
l=1

gil(v, η, u)dwl , (23)

where wl are independent standard Wiener processes. We suppose that in these equa-
tions, u is defined by (8). Note that our derivation of these equations is only formal;
for example, in (21), we remove the terms proportional to κ2, which involve unbounded
quantities (dwl/dt)2 (the Wiener processes are not smooth). This difficulty can be circum-
vented ([23], 2014). Nonetheless, we will use Equation (23) because it has a classical form
of the Ito equations, which are well-studied and fundamental in applications; see [27].

2.5. Model with Compartments

In biology and medicine, compartment models are popular for biochemical applica-
tions, for example, to describe pharmacokinetics (see, for example, [28]). We consider a
model consisting of Nc compartments. Each compartment consists of differentiated cells of
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the k-th type, where k = 1, . . . , Nc, and Nc is the number of cell types. Reaction terms in
k-th compartments are denoted by f (k)i . Furthermore, each cell produces its own response
to a stress disturbance η, which depends on the cell type. We denote by U(k)(v, η) the
corresponding feedback (where we omit a dependence on the gene code s to simplify
the notation). Let Xk(t) be a relative abundance of cells of k-type, which produces an
answer to stress. One can assume that the dynamics of these quantities are governed
by the multispecies Lotka–Volterra dynamics with parameters depending on the stress
parameter η:

dXk
dt

= Xk(rk(η)−
Nc

∑
l=1

Kkl(η)Xl), (24)

where rk are growth-mortality coefficients, which take into account the apoptosis and
production of differentiated cells by stem cells, and Kkl denotes interaction coefficients. We
have a dependence on η because the behavior of stem cells depends on the stress factors
(see Introduction and [14–17]). However, real organisms consist of cells; therefore, these
variables, Xk, which are relative concentrations, take discrete values. For each positive
integer, M, let us define the sets:

K+,M = {0, 1/M, 2/M, . . . , m/M, . . . }.

In a discrete model, we suppose that Xk ∈ K+,Ncell , where [1, n] denotes the set {1, 2, . . . , n}
and Ncell is the total number of cells in the organism. To describe the dynamics, where cell
abundances take discrete values, we can replace (24) with the stochastic Markov dynamics,
which simulate system (24) by the Gillespie algorithm [29]. We suppose that the total
anti-stress response of the whole organism is proportional to Xk and U(k):

u(X, v, η) =
Nc

∑
k=1

XkU(k)(v, η). (25)

The stochastic Equation (23) takes the form

dṽi =
(
(Aṽ)i + hi(ṽ, u(X, η))

)
dt + κ

p

∑
l=1

gil(η, u(X, η))dwl , (26)

where u is defined by (25).
Within the framework of this weakly nonlinear approximation, all information about

the interaction (coupling–decoupling) of reactants is contained in matrix A. We can define
the coupling graph (V, E), where the set V of vertices is the set of reactants, and an edge
e = i, j lies on the edge set E if the i-th reactant interacts with the j-th one. One can consider
various cases of the interactions of reactants that are relevant from a biological point of
view. For example, we can consider the case of a Michaelis–Menten reaction chain. In this
case, the analysis of the spectrum of the operator specified by the matrix A is relatively
simple. A more complex option involves several parallel reactions or parallel chains of
Michaelis–Menten reactions. For systems with a large number of reactants, the case of
random pairing (of a random E) is also interesting. A more detailed analysis of the coupling
problem has been postponed for future work.

In the coming subsection, we describe how the population dynamics for Xk(t) can
produce an effective stress response.

2.6. Associated Optimization Problems

Let u(η) be a smooth function defined on DE. When we try to approximate an ideal
answer by GRNs acting independently in each compartment, we obtain the risk function
Frisk(X, η), defined by
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Frisk(X, v, η) =
Nc

∑
k=1

|u(v, η)− XkU(k)(v, η)|2, (27)

where X = (X1, . . . , XNc)
⊤ is a vector with real-valued components and |u| denotes the

standard Euclidean norm in Rnreg . The approximation problem reduces to

Relaxed optimization problem RP To find X giving the minimum of Frisk under conditions

Xk ≥ 0, k = 1, . . . , Nc (28)

and
Integer optimization problem IP To find X giving the minimum of Frisk under conditions

Xk ∈ K+,Ncell . (29)

This last problem involves finding the anti-stress response via the correct activation of
discrete cell sets.

First, consider the problem RP. If this problem has a solution, then that solution can
be found by the population dynamics defined by system (24) under an appropriate choice
of coefficients Kkl and rl . To show it, let us define a square matrix M of size Nc × Nc and
the vector b:

Mkl = (U(k)(v, η), U(l)(v, η)), k, l = 1, . . . , Nc, (30)

bk = (u(v, η), U(k)(v, η)) k = 1, . . . , Nc. (31)

where (, ) is the Euclidean scalar product in Rnreg . Let us consider the Cauchy problem
defined by the system of equations

dXi
dt

= −Xi
∂Frisk
∂Xi

(32)

with i ∈ [1, Nc] and positive initial conditions Xk(0) = xk > 0, where xk can be chosen at
random. It is clear that this system can be rewritten in the form (24). System (32) enjoys
the remarkable properties. First, the quantities Xk(t) remain positive for all t; therefore,
condition (28) holds. Furthermore, for fixed v, η, the function L(X) = Frisk(X, v, η) is
a Lyapunov function for system (32), decreasing along trajectories X(t), t ≥ 0. In fact,
Equation (32) implies

Nc

∑
l=1

X−1
l

dXl
dt

2
= −

Nc

∑
l=1

∂L
∂Xl

dXl
dt

= −dL
dt

≤ 0.

We observe that Frisk(X) is a convex function of X defined on the convex domain, DX.
Therefore, the optimization problem RP has a unique solution. This solution can be found
by system (32). Indeed, the Lyapunov function L(X) is convex. Therefore, it has a single
local minimum X∗. According to classical results on gradient-like dynamical systems, all
the trajectories X(t) converge to X∗ [30]. We note that the vector X∗ gives the solution to the
optimization problem RP. Finally, we conclude that population dynamics give the solution
to that optimization problem RP. We suppose that the domain, DX , is convex, as we would
like to deal with a convex optimization problem, where the global minimum is unique. To
achieve this uniqueness property, not only must the objective function be convex, but the
feasible set must be convex as well. In our biological context, the most natural choice for
the domain is the simplex Xk ≥ 0, ∑k Xk < Cx, where Cx > 0 is a constant.

A good approximation for solutions X∗
I of the problem IP can be found for large Ncell ,

as follows: First we solve QP and obtain the solution X∗ (as described above). Then we
make the standard relaxation procedure, replacing each X∗

i with the corresponding closest
element of the set K+,Ncell . We denote an X obtained by X∗

I . We note that



Mathematics 2023, 11, 5003 10 of 23

|Frisk(X∗)− Frisk(X∗
I )| < CNcell

−1, (33)

where C is a constant. If Frisk(X∗) = 0 for certain feedback, U(k)(v, η), we have

Frisk(X∗
I ) < CNcell

−1. (34)

Let us find sufficient conditions under which this estimate is satisfied. Note that the set

CH(u(1), . . . u(m)) = {u ∈ Rn :
Nc

∑
k=1

Xku(k), Xk ≥ 0, ∑
k

Xk = 1}

is the simplex with vertices u(k). For each v ∈ Wδ let us consider the set U∗
v of all possible

ideal answers
U∗

v = {u ∈ Rnreg : ∃η ∈ DE, u = U∗(v, η)}.

Proposition 1. Let m ≥ nreg + 1. Assume that for each v ∈ Wδ, one has the inclusion

U∗
v ⊂ CH(u(1), . . . , u(m))

where u(k) ∈ ΦN,σ. Then for each v ∈ Wδ, there is a X∗ ∈ RNc , such that Frisk(X∗) = 0 and,
thus, (34) holds.

Proof. It follows at once from the definitions.

This claim indicates that adapting to stresses does not necessitate fine-tuning genetic
networks within the differentiated cells of multicellular organisms. To create an effective
response to stress, it is enough to correctly encode interactions between cells in different
compartments. Moreover, the Carathéodory Theorem leads to the following conclusion: to
satisfy (34), it is sufficient to have more cell types than the regulator dimension: Nc > nreg.

2.7. Stochastic Equation for Feedback Evolution

In this subsection, we describe a model for the evolution of the GRN evolution. Let
Unet,s(η) be feedback maps, where all parameters are encoded by binary genes
s = (s1, s2, . . . , sN) (see Appendix A.3). At the initial moment, we have a random bi-
nary string s(0). Consider the time interval [0, T], where T >> 1 is big. We choose a
sequence of random moments T1, T2, . . . , Tm ∈ [0, T] such that T1 < T2 < · · · < Tm < T
Ȧt these moments, mutations occur in s. To describe this process, we can use an analog of
the master equation basic in physics. Let p(s, t) represent the probability that the system
is in state s at time t. The probability of transitioning from s to s′ is denoted by w(s → s′).
We also introduce a special state corresponding to the destruction of the system, 0, and the
probability of transitioning from s for 0 will be denoted by q(s). We suppose that the likeli-
hood of survival is completely determined by s (the theory of gene-trait maps, pioneered
by R. Fisher ([5], 1930); see also [7,31,32]). Then we have

dp(s, t)
dt

= ∑
s′

w(s′ → s)p(s′, t)− ∑
s′

w(s → s′)p(s, t)− q(s)p(s, t), (35)

dp(0, t)
dt

= ∑
s

q(s)p(s, t). (36)

To make this general model mathematically tractable, we simplify these equations as
follows. Instead of the evolution of the genetic code, we consider an evolution in a space of
GRN sizes, neglecting details of gene coding. The evolutionary step is conceptualized as an
increase in the GRN size as a result of mutations (possibly, a few mutations are necessary).

We simplify the master equation as follows. Instead of the states s, we consider
states defined by positive integers that define the network sizes, m = N, where m ∈
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{N0, . . . .Nmax} = [N0, Nmax] and N0 >> 1. We consider the transitions m → m + 1 ahead
only (the networks can extend and cannot shrink). For brevity, the corresponding transition
probabilities are denoted by wm. We obtain the following equations:

dpm

dt
= −(wm + qm)pm + wm−1 pm−1, (37)

where we suppose that m ∈ [N0, Nmax], wN0−1 = 0, wNmax = 0, and pm is the probability of
having a network of size m. These conditions mean that, in particular, the maximal network
size is Nmax. This equation can be written down in a short matrix form, as dp/dt = Wp,
where p = (p1, . . . , pm)⊤, and W is the transition matrix for (37).

3. Materials and Methods

The classical methods of mathematical analysis and theory of differential equations
are applied together with the results on approximations of smooth functions by RBF
networks [33]. Our approach is based on the following:

(i) The idea of M. Gromov–A. Carbone on replicative stability in systems supporting
homeostasis [22];

(ii) The theory of large deviations and stochastic transitions in random dynamical
systems (A. Ventsel, M. Freidlin, Yu. Kifer et al.) ([24], 1984);

(iii) Models of morphogenesis proposed by A. Turing ([34]) and others ([19,35–37]);
(iv) Universal approximations by networks [33,38,39].

4. Stochastic Stability

Let us formulate the stochastic stability problem.
Following [13], we introduce probability, where for a given feedback u = u(η), the

solution v(t, v(0)) of the Cauchy problem defined by (1) with initial data (2) lies in Wδ

within the time interval [0, τ]:

Pδ,τ,u = Prob{v(t, v(0)) ∈ Wδ ∀t ∈ [0, τ]}. (38)

We suppose that the initial value is the equilibrium: v(0) = v̄. The probability Pδ,τ,u can
be considered a measure of stochastic stability. A more relevant measure of stochastic
robustness is given by the minimum over all network regulators, u:

Pδ,τ = inf
u∈ΦN,σ

Pδ,τ,u, (39)

where the infimum is taken over all feedback functions defined by RBFN of size N.
In the multi-compartment case, we take infimum over all Xk and U(k):

Pδ,τ = inf
Xk∈KNcell

, U(k)(v,η)∈ΦN,σ , k=1,...,Nc

Pδ,τ,U∗(X,v,η), (40)

where

U∗(X, v, η) =
Nc

∑
k=1

XkU(k)(v, η).

5. Main Results

Let us formulate the main results. First, we choose δ > 0 in a special way. If it is
necessary, we diminish δ to satisfy the following condition:

|(Aṽ, ṽ)| >> ||h(ṽ)||, ∀ ||ṽ|| < δ. (41)

Theorem 1. Let (41) hold. Consider the stochastic Equation (23) under Assumptions 1–4. Let the
feedback u = Unet(v, η) satisfy estimate (18).
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Then one has the following estimate of the stochastic stability via the network size N, as κ → 0:

Pδ,τ = 1 − Pout,κ,N , (42)

where

κ2 log Pout,κ,N < −Csurδ2N2γ, (43)

where Csur is a positive constant, depending on f , and uniform in (κ, N).

The second theorem concerns the multi-compartment case.

Theorem 2. Consider the multi-compartment system (26) under Assumptions 1–4. Let conditions
of Proposition 1 hold. Then one has the following estimate of the stochastic stability via the numbers
N, Ncell as κ → 0:

Pδ,A,τ = 1 − Pout,κ (44)

where
κ2 log Pout,κ < −C1N−1

cellδ
2, (45)

where C1 is a positive constant that is uniform in κ > 0 and Ncell .

6. Proof of Theorems 1 and 2

Proof. Let us estimate the probability Pout,κ,N that the trajectory v(t) exits Wδ within the
time interval [0, T] under the condition that v(0) = v̄. We use the following estimate (see
Appendix A.4) for the probability Pout:

κ2 log Pout,κ,N < −C( f )δ2||g||−2, (46)

where

||g(v, η, u)||2 = max
i

p

∑
l=1

|gil(v, η, u)|2.

Let us estimate ||g(v̄, η)||, considering the size of the network N. According to Assump-
tion 3, there exists a U∗(v, η), such that

gil(v, η, U∗) = 0 ∀i, l.

Due to (18)
sup

i,l,η∈DE

|gil(U∗(v, η))− gilUNet(v, η)| < C1N−γ,

thus
sup

i,l,η∈DE

|gilUNet(η)| < C2N−γ,

where C1, C2 > 0 are constants. This last estimate and (46) imply the assertion of Theo-
rem.

To prove Theorem 2, we repeat the same arguments in the proof of Theorem 1 and use
definition of Frisk.

7. Transitions to Complex GRN

Using estimates of viability from Theorems 1 and 2 and the simplified Master Equation (37),
we can estimate the probability of reaching the maximally complex regulation network
state, m = Nmax.

Let us denote by N the size of the gene network of the regulation. In real genetic
networks, the degrees of the most nodes are bounded. Therefore, we need a bounded
number Nmut = O(1) of mutations, when the network increases its size from N to N + 1
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as a result of the gene code modification s → s′. It is natural, therefore, to assume that the
transition probabilities wm admit the estimate:

wm = w(m → m + 1) > CpNmut
mut , Nmut < C∗ (47)

where pmut > 0 is a probability of a single mutation and a constant C∗ is uniform in the
network size m. It is shown by Theorem 1 that

log qm < −Cκ−2m2γ, γ > 0, (48)

where C > 0 is uniform in m. Under these assumptions, the following claim holds:

Proposition 2. Let wm, qm satisfy (47) and (48), respectively, and pN0(0) = 1. Then for N0 >> 1,
sufficiently small κ > 0 and t, such that t >> maxm∈[N0,Nmax ] wm

−1 one has that the solution
p(t) lies in the state Nmax with an overwhelming probability, as N0 → ∞:

max
m ̸=Nmax

pm < pNmax exp(−cNγ0
0 ), (49)

where c, γ0 > 0 are constants, uniform in N0.

Proof. By estimates (47) and (48), system (37) can be investigated by the standard algebraic
method. Let ψ(k) denote the eigenvectors of the linear operator p → Wp and ϕ(l) denote
the same ones for the conjugate operator p → W⊤p. These functions form a biorthogonal
system:

(ϕ(k), ψ(l)) = δkl ,

where δkl stands for the Kronecker symbol. The corresponding eigenvalues are
λk = −wk − qk < 0. Suppose that all wk are different. Under conditions (47) and (48), the
minimum of absolute values is |λNmax |, where

|λNmax | << min
k ̸=Nmax

|λk|.

The solution of (37) with the initial data p(0) has the form

p(t) =
Nmax

∑
k=N0

(p(0), ϕ(k))ψ(k) exp(−λkt). (50)

Furthermore, we use Formula (50) and expressions for eigenvectors ψ(k) and ϕ(k). One
has, in particular,

ψ(Nmax) = c0(0, 0, . . . , 0, 1)⊤,

where all components are equal to zero except for the last one, and ϕ(N) = c1(aN0 , aN0+1, . . . ,
aN)

⊤, where N = Nmax, and aN0 > 0 is not exponentially small. Constants c0, c1 > 0 are
not exponentially small in N0. Now the result follows from (50).

8. Morphogenesis Models and the Number of Coding Genes

In this section, we first present a short review of different mathematical models of mor-
phogenesis. Different approaches were developed: reaction–diffusion models [34,36,37],
mechanochemical models, and connectionist models [18,25,40].

8.1. Brief Overview of Models

Reaction–diffusion models have received great attention and become popular due to
seminal work [34]. These models successfully describe pattern formation in biology, physics,
chemistry [36,41–45], wave propagation, chaos ([46]), and other important phenomena.
Turing’s instability mechanism proposed in [34] can explain the emergence of layered



Mathematics 2023, 11, 5003 14 of 23

periodical patterns, such as zebra strips, etc. [41]. However, the famous biologist S. Brenner
noted in [47] that biological support for Turing’s idea has been marginal. Patterns of
Drosophila development do not fit the Turing theory. Moreover, this Turing approach
involves no information on gene expression. Nonetheless, the reaction–diffusion models
describe many observed patterns and effects, for example, somitogenesis [35,43,48–51]. The
model from ([43]) describes waves, which generate periodical layered patterns. Moreover, it
is shown that reaction–diffusion models are capable of generating any cell pattern, i.e., they
potentially have a formidable pattern capacity. In fact, if we combine Turing’s ideas with the
celebrated Wolpert concept of positional information (see [52]), then the reaction–diffusion
models (even with two components ) are capable of generating all possible cell patterns
(see [53]), not only periodical. The mechanism working in the model ([53]) is based on the
presence of long-range interactions.

However, it is well-known that real morphogenesis is not only based on biochem-
ical interactions but also on mechanical effects. It is an extremely complicated process;
see [54] for a recent review. Biological media can be characterized as viscous–elastic, and
can be fluid or solid states; there are possible transitions between solid and fluid states.
Tissues form media that can change their mechanical properties during the morphogenesis
process [54]. Such complicated models can be studied mainly via numerical simulations.
However, in [55], a simple mathematically tractable model of an excitable mechanochemical
medium is described, where waves resembling moving Turing machines arise and facilitate
cell differentiation.

Many reaction–diffusion and mechanochemical models do not use explicitly genetic
information, only general ideas about morphogens and cell differentiation. One can
suppose that their parameters are encoded by a genetic code. Connectionist models,
similar to neural networks, are capable of describing real patterns of gene expression in
the Drosophila segmentation process ([18,19,25,40,56]) and their robustness [57]. In neural
networks, connections define neuron interactions; similarly, in connectionist morphogenesis
models, pair interactions between transcription factors (TFs) are determined by a matrix.
Similar to classical neural nets, these models do not take into account triple interactions.
In fact, one can show that a practically arbitrary reaction–diffusion model can be simulated
by a connectionist system with a sufficiently large interaction matrix and pair interactions.

8.2. Number of Genes

Although we are still far from a comprehensive description of morphogenesis that
incorporates genes, biochemistry, and mechanical effects, we can nevertheless draw inter-
esting conclusions, which will be used in the next section to enhance our understanding
of problem II. First, how many genes are needed for morphogenesis and stress responses,
as described in Section 2? For example, models proposed in [37,55] can be encoded by
a few genes Nmor, the number Nmor weakly depends on the organism size and its com-
plexity. The models from [37,55] look like toy ones; nonetheless, one can suppose that
this conclusion about the number of coding genes is applicable to more realistic systems.
In fact, it is well-known that mammals and insects have many similar genes involved
in morphogenesis.

To encode compartment structures and their cell dynamics, as considered in Section 2.5,
only a small number of genes is needed. In fact, to define dynamics (24), it is necessary to
encode coefficients rk and Kkl . If an organism consists of Nc cell types, the corresponding
number of genes has the order O(N2

c ).

9. Multicellularity and Peto’s Paradox
9.1. How Multicellularity Supports Homeostasis

To understand why multicellularity is advantageous for adaptation and how it could
have arisen in evolution, we use the results of the previous sections. Let us consider an
organism consisting of M = Ncell cells, and let cells of that organism replicate Tli f e times.
The number Tli f e is an integer, which corresponds to the number of divisions of cells during
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the organism’s life. Since somatic cells can die and have the Hayflick limit, one can take
Tli f e as a theoretical Hayflick limit. Let qout(M, Nreg) be the probability of homeostasis
violations for an average somatic cell, which depends on two main parameters, M and
Nreg (the size of the gene regulation networks). Then the probability that all cells survive
together within Tli f e replications is

Pviable(M, Nreg) ≈
(
1 − qout(M, Nreg)

Tli f e
)M. (51)

The asymptotics of qout are given by Theorem 2. Since qout is small, we obtain

log Pviable(M, Nreg) ≈ −qout(M, Nreg)NcellTli f e ≈ MTli f e exp(−Cs M2), (52)

where Cs is a constant. This computation is elementary but it leads to the following interest-
ing conclusions. An increase in the gene regulation network produces an exponential gain
in homeostasis stability, and the same effect gives an increase in the organism’s mass. One
can suppose that mass growth is limited by ecological resources only. We also conclude
that it is useful to diminish Tli f e. Multicellular organisms could have emerged because
the time required to build a network of size M depends polynomially on that size, and
although this time is large, it is much less compared to the exponential gain in adaptability.

9.2. Peto’s Paradox: When a Large Mass Can Help

Let us consider now the Peto paradox. To this end, we again consider an organism
consisting of M = Ncell cells making Tli f e replications. Let pc(M) be the probability of a
mutation per generation, which can produce cancer (driver mutation). It is assumed that
in order to modify a healthy cell into a cancerous one, ndr driver mutations are necessary
(see [58], where different methods of finding ndr are considered). One thinks that, typically,
cancer appears as a result of 1 to 6 driver mutations [58]. Note that most mutations are not
driver ones and are not so dangerous.

The probability Pc,mod that within Td divisions a cell will acquire ndr mutations and
that cell will be modified in a cancer cell, is

Pc,mod =

(
Td
ndr

)
pndr∗ (1 − p∗)Td−ndr ≈ (p∗Td)

ndr

ndr!
exp(−p∗Td), (53)

where the Bernoulli law is replaced with the Poisson distribution because the probability
p∗ of a driver mutation is very small. We suppose that each driver mutation can appear as
a result of a replication error. This probability, as well as the number ndr, depends on the
cancer type, the organism, and the stress level. A cancer emerges in a tissue. If an organism
consists of Ncell cells, one can suppose that the number of cells Mc where the cancer can
appear is proportional to Ncell : Mc ≈ ctNcell , where a coefficient ct ∈ (0, 1) depends on
the tissue. The logarithm of the probability Psur that this cancer does not emerge can be
roughly approximated by

log Psur ≈ −ctNcell log(1 − Pc,mod) ≈ −ctNcell Pc,mod (54)

(the logarithm is replaced by its asymptotic because Pc,mod is small). It is a very simplified
estimate, which does not take into account apoptosis, immune system reactions, etc. The
next step is an approximation of p∗. It is natural to suppose that, in an ideal environment,
p∗ has a minimal value p0. Fluctuations of external fields, chemical reagents, toxins, and
other stress factors can increase p∗. Some experimental data on the dependence of mutation
rates on toxin concentrations were obtained in [59], where it was found that the response
of the mutation rate in bacteria depends linearly on the toxin concentration. According
to Theorem 2, the magnitudes of random fluctuations of reagent concentrations have the
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order N−1
cell , and the number Ncell of cells, in turn, is proportional to the body mass M. Thus,

one can expect that p∗ decreases with the body mass. We consider a general dependence

p∗ = p0 + a0N−µ
cell , (55)

where µ > 0 and a0 > 0 are coefficients. So, we expect that cells of organisms of larger sizes
have lower mutation rates. This conclusion, qualitatively, is consistent with experimental
data, see [60]. According to [60], for somatic cells in humans, we have about 3.3 · 10−11 mu-
tations per base per mitosis, and for a mouse, one has 1.2 · 10−10; that is, for humans, the
mutation frequency is 20 times less. If a typical human weight is ≈70,000 g and a typical
mouse is 20 g, then we can assume that µ lies within intervals [1/3, 1/2].

Relations (53)–(55) show that the probability of acquiring a cancer of a fixed type
can increase or decrease in mass; it depends on the parameters a0, p0, ndr, where ndr is the
number of driver mutations, and a0, p0 are coefficients in (55). The numerical computations
conducted by these relations are shown in Figure 1. This analysis and the simulations do
not take into account the ecological factors connected to the resources and prey–predator
interaction. On the one hand, a large mass increases the amount of food consumed, on the
other hand, can improve the defense against predators.

Figure 1. This image shows the probability Psur that cancer does not emerge in an organism as a
function of Ncell for the different numbers ndr of driver mutations. The probability is computed
by relations (53)–(55). The number of cells Ncell runs the interval [1, 4M0], where M0 = 109 (in
a typical mouse, the number of cells is 3 · M0). For each ndr = 2, 3, 4, parameter a0 takes values
6.7 · 10−4, 0.016, 0.076, respectively. The number Td of cell divisions is Td = 100. The parameters are
p0 = 0.1a0, µ = 1/3, and ct = 1. We see that the effect dramatically depends on the parameter ndr.
The mass increase is profitable if ndr is not too small.

The dependence of the survival probability Psur on the stress parameter η is complex.
The parameter determines the type of stress (such as cooling or heat shock, exposure
to toxins, radiation, etc.) and the stress level (for example, concentrations of toxins).
The probability of survival depends on η through the parameters a0, p0 (see relation (55)).
It is difficult to determine this dependence within the framework of the simple model
considered in this section. In the calculations, the parameters were chosen so that the
survival probability Psur took on more or less realistic values between 0 and 1. To investigate
the dependence Psur(η), we need more advanced spatially extended models, taking into
account immune reactions and other phenomena.

10. Concluding Remarks

The three interconnected biological problems are considered: the origins of multicellu-
lar organisms, the Peto paradox on cancer and lifespan, and why complex multicellular
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organisms use a relatively small number of coding genes. The model, proposed in the paper,
describes the response of a complex biochemical system to stress and can be viewed as a
generalization of the Valiant model of the ideal answer [20]. The Valiant model considers
organisms as circuits generating responses to environmental challenges. In the suggested
model, some contemporary ideas on cell differentiation, stress response, and morphogen-
esis are applied, taking into account, to some extent, the real structures of multicellular
organisms: biochemical kinetics, decomposition into compartments (tissues), stem cell
activity, and gene regulation. It is found that the number of Boolean genes needed to encode
an organism does not correlate with the organism’s size. The most intriguing results are
obtained in Sections 2.5 and 2.6. They show that evolutionary success in adaptation does
not require fine-tuning genetic networks in differentiated cells of multicellular organisms.
To create an effective response to stress, it is enough to correctly encode the interactions
between cells. Evolution does not need to have too many genes for this coding. An analysis
of the stress response mechanism leads to the conclusion that species with larger organism
masses have larger viability: when the mass increases as a linear function, the viability
grows as an exponential function. It is important to note that within the same species, we
have an inverse dependence: small dogs live longer than large dogs, an effect that is not
yet explained.

Complex traits can evolve adaptively or non-adaptively; the discussion regarding
the nature of evolution has been ongoing for many years, starting with Kimura’s seminal
work [61]; see ([1], 2011) for an overview. Large multicellular organisms form populations
of relatively small effective sizes. This suggests that genetic drift in such populations
is stronger than in populations formed by prokaryotes. This fact supports the idea that
the evolution of these organisms might have been non-adaptive (constructive neutral
evolution). The estimates from this paper do not allow us to draw a definite conclusion
about the nature of evolution; however, they show that the emergence of multicellular
organisms was not completely improbable.

In fact, they show that even a slight increase in network size can exponentially enhance
the probability of maintaining homeostasis, provided the initial GRN was sufficiently large.
The likelihood of a series of mutations leading to a more efficient network is small, but it is
not exponentially small. Even if almost all mutations were non-adaptive, the process of
successive replications leading to an organism with complex genetic regulation is possible.

In conclusion, I would like to express my gratitude to the referees for their useful
comments and remarks.
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Appendix A

Appendix A.1. Estimates for Approximations by RBF

Let us review some results for approximations by radial basis function networks
(RBFNs) [33]. Let us introduce a useful notation.

Let Bd be a unit ball in Rd centered at 0, and let |x| denote the Euclidean norm of the
vector x ∈ Rd. Let p ∈ (1,+∞]. Let us denote by Lp(D) the Banach space of all measurable
functions on the compact domain D ⊂ Rd with the norm

|| f || =
( ∫

D
f (x)pdx

)1/p
.
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For p = +∞, we use the supremum norm. The Sobolev class Wr
p(D) is defined by

Wr
p(D) = { f : max

k,0≤|k|≤r
||Dk f ||p < ∞}

where k = (k1, k2, . . . , kd) is a multi-index with non-negative integer components, ki,
|k| = ∑d

j=1 k j and

Dk f (x) =
∂|k|

∂k1 x1 . . . ∂kd xd
.

We denote by Cr(D) the class of Hölder functions with exponent r ≥ 1. For two
function classes, U and W, the distance between those classes is defined by

dist(U, W)p = sup
f∈U

inf
g∈W

|| f − g||p.

The RBFN class ΦN,σ consists of functions of the form

Fnet(x) =
N

∑
j=1

cjσ(wj|x − x̄j|), (A1)

where cj, wj ∈ R are coefficients, x̄j are localization centers for radial basis function σ(z),
which is a well-localized smooth function (for example, a Gaussian peak), and N is the
network size.

Appendix A.2. Estimates for RBFN

The following estimate can be obtained (see, for example, [33]):

dist(Wr
p(Bd), ΦN,σ) < Crb f N−r/d, (A2)

where a positive constant Crb f depends on p and d only.

Appendix A.3. Encoding GRN

Consider RBF networks Fnet (see (A1)). We are going to encode the parameters θj, ci, wj
of this network by a binary string s. According to ([13]), for smooth σ, this binary coding
problem can be resolved as follows. Each cl we approximate by M bits within a precision
εb << ϵk: ∣∣cl − cb

l
∣∣ < εb,

where

cb
l = (1/2 − s̄j)

M2

∑
l=−M1

sj,l2
−l , s̄j, sj,l ∈ {0, 1}.

Similarly, we proceed for wj and θj. We obtain Fnet,B, where all parameters cj, wj, θj are
replaced by their binary approximations. Therefore,

sup
v∈D

∣∣Fnet(v)− Fnet,B(v)
∣∣ < C1εb

for bounded inputs v and some constants.
Remark. According to [13], for a network Fnet with size N, we should use Ng =

O(N) log2 εb binary genes to construct the network Fnet,B.
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Appendix A.4. Estimate of Ventsel–Freidlin Distance

In this subsection, we derive the estimate (46) from the proof of Theorem 1

κ2 log Pout,κ,N,T < −C( f )δ2||g||−2. (A3)

This estimate can be obtained in different ways, and really, it is almost obvious. In fact,
if we remove the terms hi in (23), this equation becomes a linear stochastic equation, which
defines a vector-valued Ornstein–Uhlenbeck process. This process is Gaussian with zero
mean; hence, it is fully characterized by its covariance matrix. This matrix can be derived in
a standard manner, linked to a fundamental physical principle, the fluctuation–dissipation
theorem (see, for example, [62]). The second variant involves investigating the Fokker–
Planck equation corresponding to (23). For small κ > 0, we can obtain an asymptotic
expansion of the solutions of that Fokker–Planck equation at equilibrium. This solution
characterizes a probability density function, resembling a slightly perturbed multivariate
Gaussian distribution, predominantly localized at the equilibrium.

We use the theory of small random perturbations of dynamical systems developed in
([24], 1984). Let us define the matrix D with entries Dij by

Dij =
p

∑
l=1

gil gjl .

This matrix is symmetric and positively definite, and D−1 exists. We note that

(D−1w, w) ≥ ||g||−2||w||2, (A4)

where w is a vector and (, ), || · || denotes the standard scalar product and the norm in
Euclidean space Rn. Indeed, let w̃ = D−1/2w. Then

(D−1w, w) = (D−1/2w, D−1/2w) = ||w̃||2.

By this notation, (A4) can be rewritten as

||w̃||2 ≥ ||g||−2||w||2. (A5)

We note that
||w||2 = ||D1/2w̃||2 = (Dw̃, w̃) = (g, w̃)2. (A6)

By the Cauchy–Schwartz inequality,

||w||2 ≤ ||g||2||w̃||2

which is equivalent to (A5).
Let us introduce the Ventsel–Freidlin distance I(w, v) between two points, w and v, by

2I(w, v) = inf
ϕ(·)

∫ T

0

(
D−1(A(v̄)ϕ(t) + h(ϕ) +

dϕ

dt
)
, A(v̄)ϕ(t) + h(ϕ) +

dϕ

dt

)
dt, (A7)

where the infimum is taken over all differentiable trajectories ϕ(t), which connect v̄ and v:

ϕ(0) = w, ϕ(T) = v.

According to classical results ([24], 1984), this distance allows one to find an asymptotic
estimate of large deviations from the equilibrium for the system (23). We set w = 0 and let
v /∈ Wδ. Then

κ2 log Pout ≥ −I(0, v) κ → 0. (A8)
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To estimate I(0, v), we define a trajectory ψ defined by

ϕ(t) = exp(−At)ψ(t).

Estimate (A4) gives

I(0, v) ≥ ||g||−2 inf
ϕ(·)

∫ T

0
||A(v̄)ϕ(t) + h(ϕ(t)) +

dϕ

dt
||2dt, (A9)

which is equal to

I(0, v) ≥ ||g||−2R, R = inf
ψ(·)

∫ T

0
|| exp(−At)

dψ

dt
+ h(ϕ(t))||2dt.

Using (20) and taking into account ||ϕ(t)|| ≤ δ for all t ∈ [0, T], one has

||h(ϕ(t))|| ≤ c||ϕ(t)||2 ≤ cδ||ϕ(t)||

which gives
I(0, v) ≥ R = R1 − R2, (A10)

where

R1 = inf
ψ(·)

∫ T

0
|| exp(−At)

dψ

dt
||2dt

and
R2 = δ2|| exp(−At)ψ(t)||2dt.

The relation for R1 can be transformed into

R1 = inf
ψ(·)

∫ T

0
(exp(−At)

dψ

dt
, exp(−A∗t)

dψ

dt
)dt,

where A∗ is an operator conjugate to A. One has

R = inf
ψ(·)

∫ T

0

(
exp(−(A + A∗)t)

dψ

dt
,

dψ

dt
)
dt.

The operator L = A+A∗
2 is self-adjoint and has negative real-valued eigenvalues; thus,

we can use the spectral decomposition. Let Ψn be orthogonal eigenfunctions of L, and
let λn ∈ R,δ∗ be the corresponding eigenvalues. Let us denote the Fourier coefficients by
ak(t) = (ψ, Ψk). Then

R1(a) =
n

∑
k=1

∫ T

0
exp(−2λkt)(

dak
dt

)2dt. (A11)

Similarly,

R2(a) =
n

∑
k=1

∫ T

0
exp(−2λkt)ak(t)2dt, (A12)

where a = (a1, a2, . . . , an)⊤.
We are going to find the minimum of R(a(·)) = R1 − R2 under the condition

||v(T)|| ≥ δ. This condition can be rewritten as

n

∑
k=1

ak(T)2 exp(−2akT) ≥ δ2. (A13)
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This minimization problem can be resolved. The Euler–Lagrange equations have the
following form:

d2ak
dt2 − 2λk

dak
dt

− δ2ak = 0. (A14)

They are independent for each k. Solutions of these equations have the following form:

ak(t) = bk
(

exp(γkt)− exp(γ̃kt)
)
,

where bk are unknown real numbers and

γk = 2λk +
δ2

λk
+ O(δ4),

γ̃k = − δ2

λk
+ O(δ4)

for small δ > 0. We substitute these relations into (A13) and R(a(·)). As a result, we obtain
the following minimization problem with respect to unknown coefficients, bk, to find the
minimum of

R(b) = ∑
k

b2
k

∫ T

0
exp(−2λkt)

((
γk exp(γkt)− γ̃k exp(γ̃kt)

)2 − δ2( exp(γkt)− exp(γ̃kt)
)2
)

dt.

under condition

∑
k

b2
k
(

exp(γkT)− exp(γ̃kT)
)2 exp(−2λkT) ≥ δ2.

The minimization problem can be resolved, and we obtain

R ≥ δ2(4 min λk)
−1 ≥ δ2/4δ∗. (A15)

This implies (A3).
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