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Abstract: Unsupervised learning-based approaches for training speech vector representations (SVR)
have recently been widely applied. While pretrained SVR models excel in relatively clean automatic
speech recognition (ASR) tasks, such as those recorded in laboratory environments, they are still
insufficient for practical applications with various types of noise, intonation, and dialects. To cope
with this problem, we present a novel unsupervised SVR learning method for practical end-to-
end ASR models. Our approach involves designing a speech feature masking method to stabilize
SVR model learning and improve the performance of the ASR model in a downstream task. By
introducing a noise masking strategy into diverse combinations of the time and frequency regions
of the spectrogram, the SVR model becomes a robust representation extractor for the ASR model
in practical scenarios. In pretraining experiments, we train the SVR model using approximately
18,000 h of Korean speech datasets that included diverse speakers and were recorded in environments
with various amounts of noise. The weights of the pretrained SVR extractor are then frozen, and
the extracted speech representations are used for ASR model training in a downstream task. The
experimental results show that the ASR model using our proposed SVR extractor significantly
outperforms conventional methods.

Keywords: speech vector representation; representation learning; unsupervised learning; feature
representation extractor; speech recognition; deep learning; neural network; speech processing

MSC: 68T10

1. Introduction

Automatic speech recognition (ASR), which attempts to automatically recognize the
speech of all types of individuals, has been an actively expanding topic with ASR services.
Generally, end-to-end speech recognition models based on supervised learning are limited
by their requirements for a large amount of speech and corresponding labeled text data.
In order to achieve high recognition performance, large amounts of paired speech and
labeled text data are required for training ASR models [1]. Although such datasets are
difficult and expensive to obtain, most ASR systems are still being developed using paired
speech datasets. Specifically, most ASR models are trained with refined benchmark speech
datasets, such as TIMIT [2], WSJ [3], LibriSpeech [4], and Libri-Light [5], and they are
mainly effective on in-domain data. Real speech “in the wild ” is very diverse and leads to
severe degradation of ASR performance [6–8].

To make matters worse, since most of the benchmark curated speech datasets [2–5]
are built with very limited diversity, mostly representing healthy adults, it is challenging
to accurately recognize the speech of children [9,10], the elderly [11–13], or those using
dialects. Consequently, speech recognition performance suffers in highly variable scenarios,
such as far-field or noisy environments [6–8,14,15], where the conditions or personal char-
acteristics [16–19] degrade the performance compared with normal speech. In addition,
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recognizing new or trending words is important for ASR systems, but updating already
built end-to-end ASR systems every time is time-consuming and resource-intensive. Ac-
cordingly, deep-learning-based ASR systems are trained based on labeled speech datasets,
so optimal learning is restricted due to the limited amount of curated speech datasets.

To handle the aforementioned problems, an unsupervised or self-supervised learning
method using unlabeled speech data has been proposed. In particular, unsupervised
learning is an effective approach that enables leveraging large-scale speech data for speech
vector representation (SVR) learning without the labeled text [20–31]. This unsupervised
pretrained SVR model can then be used as a frozen speech feature extractor, and the
extracted speech representations are applied for speech recognition model training in a
downstream task. The pretrained SVR-based ASR model demonstrated performance gains
over using conventional mel filterbank as input features. Leveraging the unsupervised
pretrained SVR showed significant improvement compared with the supervised learning-
based ASR model [26–28].

However, the success of the aforementioned studies seems to be limited to unsuper-
vised pretraining methods using well-curated speech datasets. Recent unsupervised SVR
learning studies have mostly focused on large-scale English speech datasets, which have
relatively clean, curated read speech [20–31]. Despite the importance of the practical tasks
of ASR systems, it is difficult to find studies that have focused on pretraining an SVR model
with noncurated speech datasets containing diverse conditions.

Speech data in the wild with unexpected noise, dialects, and personal characteristics
are very different from those in curated speech datasets. Similar to the supervised ASR
model, it is hard to achieve high recognition performance with the SVR extractor pretrained
with a curated speech dataset [32]. To obtain a robust ASR model that can be used in real
environments, the SVR extractor has to be able to handle the speech data recorded from
various speakers in different environments.

To solve these issues, we introduce a novel unsupervised SVR learning approach
for a robust ASR model. Our proposed method is designing an unsupervised method of
speech masking, inspired by both BERT [33] and SpecAugment [34], to stabilize the SVR
extractor learning and to make SVR generalized for ASR tasks. To achieve this, we propose
a noise masking strategy that introduces noise and masking into various combinations of
the time–frequency regions of speech features and makes the SVR extractor more robust.

For representation learning experiments, the SVR model is trained to reconstruct the
original speech from masked speech using unsupervised learning based on our proposed
masking policy that only concerns speech data. We use a total of around 18,000 h of various
Korean speech datasets recorded with diverse speakers in noisy and normal environments
for SVR model training. For the ASR experiments, the pretrained SVR extractor is frozen,
and the extracted speech representations are used for ASR model training. We present the
overall architecture of our model in Figure 1.

To summarize, the main contributions of this work are listed below:

• We propose a novel unsupervised SVR learning method for robust ASR performance
in practical applications.

• We demonstrate that incorporating a noise masking strategy into various combinations
of the time–frequency regions of spectrum features makes the SVR extractor more
robust, and that the speech recognition performance using our proposed method
significantly outperforms existing methods in real conditions.

• We provide ASR performance for the SVR extractor trained with real speech datasets of
varying sizes (1 k–18 k h) and present ASR performance for speech datasets that were
not used for pretraining of the SVR. To obtain an accurate comparison, we report the
speech recognition performance for four different conditions, which experimentally
shows that our unsupervised masking method is effective.

• To the best of our knowledge, this is the first attempt at pretraining an SVR model
with large-scale real Korean speech. We further explore and provide a wide range of
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ablation studies and analyses on the results of practical ASR using various masking
combinations of the time–frequency regions and two noise masking techniques.

Figure 1. Illustration of the proposed overall architecture for unsupervised SVR pretraining and
ASR training.

The rest of this paper is organized as follows: We give first the related works briefly in
Section 2. In Section 3, we demonstrate details of the proposed masking method and model
architecture. In Section 4, we present details on the experimental setting and datasets. In
Section 5, we provide experimental results to demonstrate the effectiveness of our proposed
method. Finally, discussion and conclusions are drawn in Sections 6 and 7.

2. Related Work

Recently, unsupervised speech feature representation learning has emerged as an
effective approach to utilize large-scale speech data with no supervision [20–25,27–31,35,36].
Two types of SVR approaches are as used: masking-based reconstruction [33] and contrastive
predictive coding [20]. In this paper, we focus on the former method.

The most widely known reconstruction method is the masked language model (MLM),
which was used by BERT [33] and proposed in the field of natural language processing
(NLP). BERT has been shown to acquire strong feature representation through the process
of reconstructing the original tokens from contaminated input tokens by MLM approach
using the bidirectional Transformer [37] encoders. Furthermore, fine-tuning the pretrained
BERT outperforms previous NLP studies, even with a small amount of labeled data in the
vast majority of downstream tasks.

Heavily inspired by BERT, recent SVR learning approaches have been studied based
on MLM [23–25,27–31,36]. In particular, several time frames are randomly selected, and
parts of them are filled with zero values [23–25,29,36], while the remainder of them are
replaced with different frames [24,29,36] or specific vectors [27,28,30,31]. The objective
function of the pretraining SVR model restores the masked speech frames to the original
using reconstruction loss functions. Note that the pretraining of the SVR is performed
at the utterance level. Unlike the contrastive predictive coding technique that relies on
past or current frames [20], the masking method can predict the current frames by jointly
conditioning the past and future information owing to the bidirectional recurrent neural
networks [23,25], Transformer encoders [24,27,29,30,36], or Conformers [28,31]. Further-
more, quantizing approaches that convert continuous speech signals into discrete tokens,
such as tokenizing techniques in the NLP domain, have also been successfully applied [35].

Fine-tuning the pretrained SVR model or using the model as the feature extractor
has shown promising results in speech recognition in the downstream tasks, even with a



Mathematics 2023, 11, 622 4 of 17

limited training dataset [27]. To this end, Connectionist Temporal Classification (CTC) [38]
or Cross-Entropy with label smoothing [39] losses are leveraged for the fine-tuning and
end-to-end ASR task, respectively.

However, the aforementioned approaches have been limited to pretraining using
benchmark speech datasets. Despite the poor performance of the ASR systems in practical
tasks, the majority of SVR methods are still focused on relatively clean, well-curated read
speech datasets. In particular, most of them are the result of pretraining with 960 h of
LibriSpeech [4] or 60 k hours of Libri-Light [5].

To overcome this limitation, we aim to apply the pretrained SVR model as the feature
extractor, leading to a robust ASR model using various conditions of large-scale datasets.
To this end, we introduce a novel and simple masking method, which we detail in the
next section.

3. Method

In this section, we provide both SVR pretraining and ASR downstream training
architecture, starting with the masking method for speech representation learning.

3.1. SVR Learning with Masking Method

As we explored in Section 2, the SVR model trained with the masking approach is
able to help with several downstream tasks due to its capacity to extract powerful speech
representations. Heavily inspired by previous approaches [23–25,29,33,36], we propose a
masking-based reconstruction strategy with three parts: time–frequency and noise masks.
Figure 2 shows the proposed masking scheme in this paper.

Figure 2. The overall flow of the proposed masking strategy has both the time–frequency mask and
noise masking techniques. The masked part is presented in red.

3.1.1. Masking Time–Frequency Feature

The speech masking strategy is performed on the spectral feature level, and the log
mel filterbank features are used. Given a speech utterance X = (x1, . . . , xL) of length L, we
first randomly select T frames with a probability PT from each speech X. We then mask 80%
of the selected T frames with zero values, as suggested in [24,29,36]. The selected frames
are consecutively masked with C frames and can be overlapped.

In the frequency region, we also randomly select F bins with a probability PF from
each X. Given, for example, PF as 0.25, since we use an 80-dimensional log mel filterbank,
up to 20 frequency bins are masked with zero values.

Reconstruction loss is used to learn contextualized speech representations, which
allows the SVR model to predict original spectral features from our proposed masking
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strategy. Owing to the bidirectional attention, the masked frames based on the time and
frequency regions can be restored as original speech frames by the SVR model, capturing
the contextual information from both directions.

3.1.2. Noise Masking Techniques

Here, we propose two noise masking techniques to perturb the data: noisy swapping
and noise addition. We perform swapping on T frames from X with probability PS. Note
that noisy swapping is only used in the case that zero masking for the time region has not
been applied. Unlike BERT, which performs word-level token replacement randomly, our
method swaps selected frames based on the contamination of the corresponding filterbank.

Furthermore, we use the technique of adding Gaussian noise to disturb SVR model
learning. In particular, after time–frequency regions masking and noisy swapping, we add
a Gaussian noise task with a probability PN . The Gaussian noise we set up is sampled from
a normal distribution with zero mean and 0.2 variance and is added to each element of
masked features.

By adding Gaussian noise, we can considerably increase the amount of pretraining data
for learning SVR, which can be considered as a data augmentation technique. Furthermore,
adding noise also provides another variation for speech frames replaced with zero values.
The selected frames of time–frequency regions will be able to take on various nonzero
values. Thus, our proposed noise masking techniques provide an advantage for practical
ASR systems due to the increased diversity of the input data.

3.2. SVR Architecture

During SVR learning, only unlabeled speech data are used. Our SVR model archi-
tecture for pretraining is composed of several bidirectional Transformer encoders [33,37]
that extract latent speech vector representations from a log mel filterbank. The left part of
Figure 1 illustrates the unsupervised SVR model pretraining. The proposed network is a
stack of bidirectional Transformer layers, where each layer has an identical configuration
to those from the reconstruction objective functions. Our SVR model can directly extract
high-level contextualized speech representations.

We obtain the corrupted speech features according to the proposed masking strategy
with the 80-dimensional log mel filterbank. Since we set the default hidden size of the
SVR model as 768, the 80-dimensional masked features are then fed into a 768-dimensional
linear layer and transformed. Afterward, a sinusoidal positional encoding [37] is added to
768-dimensional features. In this paper, we use 768 dimensions for the location positional
encoding size and 1500 for the maximum length.

The 768-dimensional vectors added with positional encoding values are then injected
into the bidirectional Transformer encoder. Our proposed SVR network is composed of
3 Transformer encoder layers with a hidden size of 768, 12 multihead attentions, and a
2-layer feed-forward neural network with a hidden size of 3072 dimensions, followed by a
dropout proportion of 0.1. Conventional Transformer encoders have leveraged look-up
masks to input sequence to perform masking. We do not apply the look-up mask so that
we can obtain the bidirectional properties. Through this, we conceived to jointly utilize
information from the past and the future of speech features.

The 768-dimensional output vectors of the SVR model are then passed through the
80-dimensional linear layer that reduces them to 80, which is the size of the original mel
filterbank. In other words, in order to reconstruct the original frames from the corrupted
input mel filterbank, the 768-dimensional output vectors have to match the size of the
target mel filterbank. This output linear layer in the left part of Figure 1 is only used during
unsupervised SVR learning for reconstruction.

To learn contextualized speech vector representations for predicting original speech
frames from masked samples, we use the reconstruction loss. To restore the final output of
the SVR model to the original speech frames, L1 or L2 can be used as the reconstruction
loss. Through this, the SVR model can recover the original speech frames from the masked
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inputs. With this process, we expect that based on the pretrained SVR model, we can extract
robust speech feature representations.

More formally, the L1 objective function of pretraining the SVR model is

L1 =
1
|X| ∑

xL∈X

L

∑
i=1
|xs

i − f (xm
i )|, (1)

where xs
i are the original frames that are selected by two masking strategies for the time–

frequency regions with both probabilities of PT and PF from each speech data xL with
length L. f is the output of the SVR model, and xm

i are the corrupted input speech features,
which are masked or noisy swapped frames of xL selected by masking policy. The SVR
model is trained by reducing the error between the corrupted xm

i and the original xs
i . For

L2 loss, the following objective function is used:

L2 =
1
|X| ∑

xL∈X

L

∑
i=1

(xs
i − f (xm

i ))
2. (2)

3.3. ASR Architecture

In order to show the effectiveness of the proposed method, we check whether per-
formance is improved compared with an end-to-end ASR model trained with basic mel
filterbank as model inputs. To this end, we introduce end-to-end ASR architecture that is
able to receive mel filterbank or extracted features from the SVR model as inputs.

During ASR training, we use both speech and labeled data. We apply our pretrained
SVR extractor, kept frozen to two tasks: KsponSpeech [40] and KForeignWordSpeech [41].
As the feature processor of the ASR network, we apply a 7-layer CNN with 3 max pooling
layers, followed by batch normalization and ReLU.

The baseline ASR model that receives the 80-dimensional log mel filterbank as input
is composed of strides [1, 1, 1, 1, 1, 1, 1] and kernel widths [3, 3, 3, 3, 3, 3, 3]. On the other
hand, the ASR model using the 768-dimensional feature representation extracted from the
SVR model consist of strides [3, 3, 1, 1, 1, 1, 1] and kernel widths [10, 5, 5, 4, 4, 3, 3]. Both
ASR models have [16, 16, 32, 32, 32, 64, 64] channels and max pooling with strides [2, 2, 2]
and kernel widths [2, 2, 2], respectively.

The feature maps generated by CNNs are fed into 2 linear layers of 512 and 256 dimen-
sions, after which they are further sent to a 3-layer of 256-dimensional LSTM. Following
that, they are then passed through an encoder. Our ASR network’s encoder utilizes 3
Transformer encoder layers with a hidden size of 256, 8 multihead attentions, and a 2-layer
feed-forward neural network having a 1024-dimensional hidden size.

The decoder is a component to map the text from a given speech feature. It consists of
a text embedding layer and 6 Transformer decoder layers with the same parameters as the
encoder. The weight of each part of the given text and speech feature can be determined
using multihead attention between the encoder–decoder.

4. Experimental Setup

In this section, we introduce the details of the speech datasets used to learn the SVR
and ASR, as well as implementations, respectively.

4.1. Data

We collected approximately 18,000 h of audio for pretraining the SVR extractor for
the practical Korean ASR system. The Korean government-sponsored AIHub website
(https://aihub.or.kr/, accessed on 6 January 2023) has several open speech datasets [40–47].
To facilitate effective learning, we omit the samples shorter than two seconds, as they
contain relatively long silent beginnings and endings without useful signals. Note that the
speech datasets presented in Table 1 only include samples longer than 2 s.

https://aihub.or.kr/
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The KsponSpeech [40] corpus is composed of 921 h of voice recordings from adult
males and females, which amounts to 517,144 training examples. The age and regional
breakdown of the participants were not considered. The Korean Foreign Word Speech
(KForeignWordSpeech) [41] corpus consists of a total of 3155 h of audio from 2,484,843 speech
files recorded by native Korean speakers in different noisy environments. In the Korean
Command Speech (KCommandSpeech) and Korean Free Conversation Speech (KFreeCon-
vSpeech) datasets, which consist of audio recordings from adults [42,43], children [44,45],
and elderly [46,47] from different areas, there are 8072 h and 6242 h of audio recordings
bearing 5,770,446 and 6,142,743 training samples, respectively. Both datasets contain the
speech of native Korean users in the presence of noise. We combined the three age groups
(adult, child, and elderly). We provide detailed specifications of speech datasets for SVR
learning in Table 2.

We use a total of four datasets on AIHub website for pretraining the SVR extractor. To
comprehend the impact of the amount of pretraining data on ASR performance, Table 3
details how we combined speech datasets for pretraining.

Table 1. Four Korean speech datasets for pretraining the SVR model.

Name Hours No. Utterances

KsponSpeech [40] 921 517,144

KForeignWordSpeech [41] 3155 2,484,843

KCommandSpeech (Adult) [42] 1718 1,742,211

KCommandSpeech (Child) [44] 2114 2,262,551

KCommandSpeech (Elderly) [46] 2410 2,137,981

KFreeConvSpeech (Adult) [43] 3186 2,235,385

KFreeConvSpeech (Child) [45] 2377 2,389,409

KFreeConvSpeech (Elderly) [47] 2511 1,145,652

Sum 18,392 14,915,176

Table 2. The detailed specification of Four Korean speech datasets.

Dataset File Format Sampling Frequency Mode Average Duration (s) Max Duration (s) No. Speakers (Male/Female)

[40]

pcm/wav

16 kHz

Mono

6.41 31.00 923/1077

[41] 44 and 16 kHz 4.57 24.96 1000/1000

[42] 48 kHz 3.55 21.42 1751/1751

[44] 48 kHz 3.36 24.18 1500/1500

[46] 48 kHz 4.06 24.90 1500/1500

[43] 44 and 16 kHz 5.13 24.20 1000/1000

[45] 44 and 16 kHz 3.58 17.32 500/500

[47] 44 and 16 kHz 7.88 24.99 500/500
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Table 3. Different amount of pretraining data for SVR learning.

Name Datasets Hours No. Utterances

SVR1K [40] 921 517,144

SVR3K [41] 3155 2,484,843

SVR4K [40,41] 4076 3,001,987

SVR7K [40,42,44,46] 7163 6,659,887

SVR9K [40,43,45,47] 8995 6,287,590

SVR10K [40–42,44,46] 10,318 9,144,730

SVR18K [40–47] 18,392 14,915,176

We use two downstream ASR datasets for evaluation: KsponSpeech and KForeign-
WordSpeech. In addition, to evaluate how the quantity of data used in the pretraining of
the SVR extractor affects its performance, we define four conditions, as shown in Figure 3:

• Baseline condition: The ASR model trained using the mel filterbank that is directly
converted from waveform (no pretraining).

• Matched condition: The same dataset is both utilized in the pretraining phase of the
SVR model and the training phase of the ASR model using extracted features from the
SVR model.

• Unmatched condition: The dataset that was employed for pretraining the SVR
model and for training the ASR model with features extracted from the SVR model
is disparate.

• Multi condition: The SVR model is pretrained with additional speech datasets, in
addition to those used for ASR training. In other words, we pretrain the SVR model
with more datasets than the ASR model.

Figure 3. The illustrations of the proposed SVR model learning with unsupervised masking approach.

4.2. Pretraining Details
4.2.1. Masking

For the proposed masking strategy with the given log mel filterbank, we set PT and
PF as 0.15 and 0.4, respectively. We use the consecutive masking parameter C as 7 for the
time region. For the respective noisy swapping and Gaussian noise, we set PS and PN as
0.1 and 0.1 in every training sample. For the ablation studies, we further experiment with
various combinations from PT = [0.1, 0.2, 0.3, 0.4], PF = [0.0, 0.1, 0.15, 0.2, 0.3, 0.4], and PN =
[0.0, 0.1, 0.2, 0.3, 0.4, 0.5], respectively.
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4.2.2. Optimization

For all the speech data in this work, we use 16 kHz quality. We further up- or
down-sampled all the given audio files with the mismatching sampling rate used in
our experiment to match the 16 kHz. For pretraining of the SVR model, we use an 80-
dimensional log mel filterbank extracted with a 25 ms window and 10 ms overlap as the
input. The SVR model is trained using a batch size of 16 on an NVIDIA RTX A6000 GPU
with 48 GB of memory. We utilize 4 GPUs and AdamW optimizer [48] with β = (0.9, 0.999)
and ε = 0.00000001, and the learning rate gradually increases from 0 until it reaches its
peak of 0.0002 after 7% of the training steps are completed and then decays back to 0.
Furthermore, we use gradient accumulation steps and gradient clipping as 4 and 5 to obtain
the optimal model parameters that minimize the L1 loss for reconstruction.

We set the total pretraining epochs of the SVR model as 100 for all SVR experiments
(SVR1K, SVR3K, . . . , and SVR18K). Table 4 presents the total training steps in relation to
100 epochs, based on the size of the pretraining dataset.

Table 4. Total pretraining steps of various dataset combinations until 100 epochs.

Name Datasets Hours No. Utterances Training Steps (100 epochs)

SVR1K [40] 921 517,144 808,050

SVR3K [41] 3155 2,484,843 3,882,575

SVR4K [40,41] 4076 3,001,987 4,690,625

SVR7K [40,42,44,46] 7163 6,659,887 10,406,075

SVR9K [40,43,45,47] 8995 6,287,590 9,824,375

SVR10K [40–42,44,46] 10,318 9,144,730 14,288,650

SVR18K [40–47] 18,392 14,915,176 23,304,975

4.3. ASR Training Details

For training the ASR model with the pretrained SVR model, the SVR model was
maintained in the frozen state, and the speech representations were extracted from its
deepest layer, which is the hidden state of the final Transformer Encoder layer. We train the
ASR model with supervision and a total batch size of 64 on 4 GPUs. We employ the same
setting of AdamW optimizer in the pretraining stage, with a Transformer learning rate
schedule as described in [37]. We use the label smoothing [39] parameter α = 0.1 and Cross-
Entropy loss to optimize the ASR model until 50 epochs. The sizes of the text embedding
layers including special tokens (e.g., <sos>, <eos>, <mask>, <pad>, and <unknown>) in the
ASR trained with KsponSpeech and KForeignWordSpeech are 2311 and 1784, respectively.

4.4. Software Details

In order to train both the SVR and ASR models, we utilized Python version 3.9.15
on a GPU server with Ubuntu 18.04.6 LTS. For deep learning frameworks and libraries,
we employed PyTorch [49] version 1.12.1 with CUDA version 11.3 and CuDNN version 8.21.
For speech preprocessing, we used TorchAudio [50] version 0.12.1, Numpy [51] version
1.23.5, and SoundFile version 0.11.0. To evaluate the speech recognition performance, we
employed python-Levenshtein version 0.20.9 to use edit distance.

5. Experimental Results and Analysis

In this section, we present the end-to-end ASR model performance when trained with
two speech datasets without an external language model or beam search, followed by
ablation studies. To measure the performance of the ASR model, we use a character error
rate (CER) as a metric.
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5.1. Main Results

Firstly, we evaluate the ASR performance trained with the KsponSpeech benchmark
based on various pretrained models. To this end, we perform pretraining of the respective
six previous methods [20,22,24,29,36,52] and our proposed model with the KsponSpeech
dataset (SVR1K), following the same settings described in the S3PRL Toolkit. (https://
github.com/s3prl/s3prl, accessed on 5 January 2023). We only provide results in the frozen
setting due to the computation costs of finding optimal hyperparameters and fine-tuning
these pretrained models in the ASR tasks. For a fair comparison, we train until 100 epochs
using a single GPU and set all extracted hidden sizes of the pretrained models to 768.
Furthermore, all ASR models using extracted features from the frozen SVR model have the
same settings as described in Section 4.3.

As shown in Table 5, the proposed pretrained SVR-based ASR model outperforms
all its counterparts. Specifically, our proposed method achieved significantly better per-
formance than the methods using only time region masking [24,36]. Furthermore, we
observed that using the proposed noise masking in the pretraining stage outperforms the
other pretrained models for practical ASR.

Table 5. Comparison of ASR performance based on different pretrained methods. All the counter-
parts are pretrained with KsponSpeech-SVR1K with S3PRL Toolkit settings. Recurrent and Parallel
represent using RNN or Transformer-based neural networks for pretraining, respectively. Bold
indicates the best performance.

Pretraining Methods Network No. Model Params CER ↓ (%)

CPC [20] Recurrent 12,931,584 13.94

APC [22] Recurrent 9,107,024 14.78

NPC [52] Recurrent 19,380,560 13.36

Mockingjay [24] Parallel 22,226,928 16.95

AALBERT [36] Parallel 7,805,264 17.25

TERA [29] Parallel 21,981,008 13.86

Ours Parallel 21,981,008 12.32

In Table 6, we present our results under each of the four conditions on KsponSpeech
dev sets, using the whole dataset as the supervised data. Error reduction rate (ERR) in
Table 6 provides an indication of the relative improvement of the CER from Matched,
Unmatched, and Multi conditions compared with the Baseline condition.

Table 6. The ASR results of KsponSpeech (965 h) for the four conditions were trained with the
whole dataset as the supervised data. The relative error with respect to the Baseline condition is also
indicated. Bold denotes the best performance.

Conditions Name No. Unlabeled Data (h) CER ↓ (%) ERR ↑ (%)

Baseline - - 15.17 -

Matched SVR1K 921 12.32 18.79

Unmatched SVR3K 3155 13.18 13.10

Multi

SVR4K 4076 12.23 19.37

SVR7K 7163 12.54 17.32

SVR9K 8995 12.09 20.31

SVR10K 10,318 12.38 18.38

SVR18K 18,392 11.72 22.77

The ASR performance in the Baseline condition achieved a CER of 15.17%, which is
the baseline for the ERR. Utilizing the pretrained SVR extractor for training the ASR model

https://
github.com/s3prl/s3prl
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in the matched condition (Matched-SVR1K), we obtain a CER of 12.32%. This indicates
a significant improvement of 18.79% when compared with the Baseline condition. While
we acquired a CER of 13.18% in the Unmatched condition (Unmatched-SVR3K), which
is a higher value than that of the Matched condition (Unmatched-SVR1K) by 0.86%, it
improved by 13.10% compared with the Baseline condition. We conjecture that this result,
derived from the speech dataset used for the pretraining of the SVR model, differs in
terms of its distribution compared with KsponSpeech. In addition, we observed that the
ASR performance improved when we increased the amount of pretraining data (Multi-
SVR4K, SVR9K, SVR18K). Especially, when using approximately 18,000 h of speech data
for pretraining (Multi-SVR18K), the ASR outcomes demonstrated the best result in our
experiments, with a CER of 11.72% and an ERR of 22.77%.

Table 7 illustrated the results of ASR experiments trained with 3155 h of the KForeign-
WordSpeech dataset, and we use the same settings of masking hyperparameters described
in Section 4.2.1. The ASR performance without pretrained SVR extractor achieved a CER of
4.77%. We hypothesize that the better ASR performance in the Baseline condition in Table 7
is likely due to the larger size of KForeignWordSpeech, which is approximately three times
that of KsponSpeech. In the Matched condition (Matched-SVR3K) ASR experiment, a CER
of 1.09% was observed, which corresponds to an ERR of 18.79%, which is relatively reduced
compared with the Baseline condition. In addition, we obtained a CER of 4.24% and an ERR
of 11.11% in the Unmatched condition (Unmatched-SVR1K) ASR experiment. Surprisingly,
this shows that despite using a significantly lower amount of data for pretraining the SVR
model than the ASR experiment, we found that it yields improved results compared with
the Baseline condition. Comparison between the three Multi condition ASR experiments
(Multi-SVR4K, Multi-SVR10K, Multi-SVR18K) showed that each ASR performance is nearly
the same.

Table 7. The ASR results of KForeignWordSpeech (3155 h) for the four conditions trained with the
whole dataset as the supervised data. Bold indicates the best performance.

Conditions Name No. Unlabeled Data (h) CER ↓ (%) ERR ↑ (%)

Baseline - - 4.77 -

Matched SVR3K 3155 1.09 77.15

Unmatched SVR1K 921 4.24 11.11

Multi

SVR4K 4076 0.98 79.45

SVR10K 10,318 0.95 80.08

SVR18K 18,392 0.9 81.13

As a result of the experiment, the ASR performance using our unsupervised pretrained
SVR extractor showed a significant improvement between the Baseline condition and
the three other conditions. Moreover, two experiments validate the effectiveness of the
proposed SVR model, that is, the ASR performance of Multi condition with SVR18K
outperforms the baseline in various noisy environments.

5.2. Ablation: Impact of Time Masking Hyperparameter

In this section, we conduct an ablation study to understand the effectiveness of time
region masking in the pretraining of the SVR model. Therefore, we investigate the effects
of different time region masking hyperparameters PT on ASR performance. To this end,
other hyperparameters for the pretraining of the SVR model, such as PF, PS, PN , and C, are
fixed as 0.2, 0.1, 0.1, and 7. Table 8 shows the results of KsponSpeech ASR performance
(Matched-SVR1K) trained with the extracted features from SVR models pretrained with
various PT .
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Table 8. ASR Performance comparison according to the variations of PT in the pretraining of the SVR
extractor. All the results are from training the ASR model using the pretrained SVR extractor kept
frozen. We report on the KsponSpeech ASR performance (Matched-SVR1K). The respective bolds
represent the best hyperparameter and performance.

PT PF PS PN CER ↓ (%) ERR ↑ (%)

0.1

0.2 0.1 0.1

13.87 8.57

0.15 13.86 8.64

0.2 13.17 13.18

0.3 12.94 14.70

0.4 13.45 11.33

As demonstrated in Table 8, we keep the pretrained SVR model frozen and use its
representations to train the ASR model with the KsponSpeech dataset. In Table 8, the best
performance is obtained when PT is 0.3. This indicates that while all the results outperform
the Baseline condition in Table 6, using a small PT is not effective when PF is set as 0.2. In
particular, we found that the practical ASR results are degraded when PT = 0.15 is used to
pretrain the SVR model, as in previous studies [24,29,33,36].

5.3. Ablation: Impact of Frequency Masking Hyperparameter

To analyze the effect of frequency region masking in the pretrained SVR extractor, we
conducted a second ablation study with different values of PF = [0.0, 0.1, 0.15, 0.2, 0.3, 0.4].
During this ablation study, the remaining masking hyperparameters stayed fixed at
PT = 0.15, PS = 0.1, PN = 0.1, and C = 7. We also keep the pretrained SVR model
frozen and use it for training on the KsponSpeech dataset.

As shown in Table 9, we acquired the best ASR performance when PF was 0.4. When
the PF = 0.0 was used in the SVR model pretraining, we obtained a CER of 15.31%, which
is worse than the Baseline condition in Table 6. As a result, we found that as PF is bigger;
the practical ASR seems to be more robust. In addition, we demonstrate that frequency
region masking can significantly help to obtain better ASR performance.

Table 9. ASR Performance comparison according to the variations of PF in the pretraining of the
SVR model. All the results are from training the ASR model using the pretrained SVR extractor kept
frozen. We report on the KsponSpeech ASR performance (Matched-SVR1K). The respective bolds
denote the best hyperparameter and performance.

PT PF PS PN CER ↓ (%) ERR ↑ (%)

0.15

0

0.1 0.1

15.31 −0.92

0.1 13.85 8.70

0.15 13.80 9.03

0.2 13.86 8.64

0.3 13.24 12.72

0.4 12.32 18.79

5.4. Ablation: Impact of Two Noise Masking Hyperparameters to Perturb the Speech

To investigate the impact of the two proposed noise masking tactics used in the
masking procedure for SVR model training, we further consider two setups: variations
of PN and PS. We froze the masking hyperparameters as PT = 0.15, PF = 0.2, and
C = 7. In the first setup, we use PN = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5] and fix the other masking
hyperparameters for training the SVR model. The other one is to freeze the first setup and
change the PS = 0.0 to learn the SVR model. This process creates 12 experiments, which
are presented in Table 10.
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Table 10. ASR Performance comparison according to the variations of PS and PN in the pretraining
of the SVR model. All the results are from training the ASR model using the pretrained SVR extractor
kept frozen. We report on the KsponSpeech ASR performance (Matched-SVR1K). The respective
bolds represent the best hyperparameter and performance.

PT PF PS PN CER ↓ (%) ERR ↑ (%) Avg CER ↓ (%)

0.15 0.2

0.0

0.0 13.74 9.43

13.65

0.1 13.08 13.78

0.2 13.23 12.79

0.3 13.81 8.97

0.4 14.16 6.66

0.5 13.90 8.37

0.1

0.0 13.86 8.64

13.34

0.1 12.98 14.44

0.2 13.13 13.45

0.3 13.58 10.48

0.4 13.14 13.38

0.5 13.36 11.93

When the PN = 0.0 setting was used in the PS = 0.0 experiments, we acquired a CER
of 13.08%, which is the best performance in the same group. Even in the experiment where
PS = 0.1, the best CER of 12.98% was obtained in the second group when PN = 0.1, and
this result is similar to PS = 0.0. We observe that including too much (PN = 0.5) or no
(PN = 0.0) noise masking degrades the SVR model training. As a result, we can obtain that
training the SVR model with PS = 0.1 outperforms PS = 0.0 in average CER performance
by 0.31%. As a result, the experimental results in Table 10 show that using the two proposed
noise masking methods for SVR model pretraining is effective.

6. Discussion

The goal of this article is to create a pretrained SVR model that can provide strong
ASR performance in real-world applications. To achieve this, we investigated a wide
range of approximately 18,000 h of Korean speech and proposed a novel unsupervised
SVR learning method with a task-agnostic feature masking method. To the best of our
knowledge, this is the first attempt at pretraining an SVR model with large-scale real Korean
speech. The results show that the proposed SVR model outperformed previous similar
methods, including those using only time region masking. Additionally, we observed that
incorporating noise masking during the pretraining stage further improves the model’s
performance for practical ASR.

Furthermore, we explored how the quantity of data used in the pretraining of the SVR
model impacts its ASR performance. As shown in Table 6, we found that increasing the
amount of pretraining data improved the ASR performance (Multi-SVR4K, Multi-SVR9K,
Multi-SVR18K). Interestingly, these findings indicated that the proposed SVR model is
effective even when the amount of data used for training is limited. In particular, using
approximately 18,000 h of speech data for pretraining (Multi-SVR18K) resulted in the
best performance, with a CER of 11.72% and an ERR of 22.77% in the KsponSpeech ASR
experiments. Surprisingly, we observed that the proposed method outperformed the
baseline, even when the domains are different (Unmatched-SVR3K).

On the other hand, comparing the ASR performance of the three Multi conditions
of Table 7 (Multi-SVR4K, Multi-SVR10K, Multi-SVR18K) showed that the performance
was similar across all three Multi conditions. When the amount of data used for ASR
training is sufficient, the results show that the Multi condition-based pretrained SVR model
can perform similarly or outperform the Matched condition. Furthermore, we discovered
that even when the amount of data used for ASR training is limited, the proposed SVR
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method outperforms the Baseline condition. In light of these results, it can be inferred that
the proposed SVR model is able to extract generalizable speech feature key points, which
contribute to its strong task-agnostic ASR system.

Our findings in this paper demonstrate that the proposed SVR model can effectively
be used as a speech feature extractor for robust Korean speech recognition tasks.

7. Conclusions

In this paper, we present a novel unsupervised approach for learning the SVR extractor
for robust end-to-end speech recognition. The SVR model can learn high-level speech
representations and deal with various environments using our proposed noise masking
strategy for unlabeled large-scale data. We showed that the ASR model performance using
our pretrained SVR as a frozen feature extractor significantly outperforms conventional
methods in real-world conditions. Furthermore, we demonstrated how the quantity of data
used in the pretraining of the SVR extractor affects the generalization of task-agnostic ASR.

In conclusion, this paper focused on offline ASR services in real-world scenarios. For
online or streaming ASR services in practical applications, however, RNN-Transducer [53–55]
and streaming [56–59] technology are needed. Therefore, further studies will be required to
address this in the future. In addition, we will apply temporal algorithms using our pretrained
SVR model to predict future frames in order to obtain the best task-specific performance. We
will leave it as future work.
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