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1. Introduction

Fractional calculus primarily involves the description of fractional-order derivatives
and integral operators [1]. It has grown in relevance in recent decades due to its vast
range of applications in several scientific disciplines. There are research papers and
books [2-20] on the topic of fractional differential equations, which are used to repre-
sent complicated physical and biological processes such as anomalous diffusion, signal
processing, wave propagation, visco-elasticity behavior, power-laws, and automatic remote
control systems. The evolution of a physical system in time is described by an initial and
boundary value problem. In many cases, it is better to have more information on the condi-
tions. Moreover, the non-local condition which is a generalization of the classical condition
was motivated by physical problems. The pioneering work on non-local conditions is due
to Byszewski [21]. Existence results for differential equations with non-local conditions
were investigated by many authors [21-23]. Thereafter, by means of the non-compactness
measure method Gu and Trujilo [24] defined the study of initial value problems with
non-local conditions. The concept of controllability is critical in the study and application
of control theory. Many authors [3,6,10,25,26] have investigated controllability with an
impulsive condition. Hilfer [27] introduced another fractional derivative which includes
the R-L derivative and Caputo fractional derivative. The Hilfer fractional operator is in-
deed intriguing and important, both in terms of its definition and its associated properties.
Subsequently, many authors [28-30] studied the Hilfer neutral fractional differential equa-
tions. Recently, Subashini [31,32] obtained mild solutions for Hilfer integro-differential
equations of fractional order by means of Monch’s fixed point technique and measure
of non-compactness [24,25]. The existing results for impulsive neutral Hilfer fractional
differential equations with non-local conditions have the following form:

Mathematics 2023, 11, 1071. https:/ /doi.org/10.3390/math11051071

https://www.mdpi.com/journal /mathematics


https://doi.org/10.3390/math11051071
https://doi.org/10.3390/math11051071
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8455-1402
https://doi.org/10.3390/math11051071
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11051071?type=check_update&version=1

Mathematics 2023, 11, 1071 2of 16

Dgi7 [0(t) — F1(t, v(t)] = Ao(t) + 52 (t, Uy, /Oth(t,s, Us)ds> +Bw(t), te Z=(0,p],t #t, 1)
Av|t:tk = Ik(v(tk_)), k=1,2,...,m, 2)
11790 5(0) = (0) + a(vu, 02,06, -, 0un) (0) € Py, t € (—00,0] 3)

where Dgf denotes the Hilfer differential equation of order ¢ and type 7. Moreover,
0<7<1,0<n<1and (v,| |)isaBanach space, A denotes the infinitesimal generator
of strongly continuous functions of bounded linear operators {T(t) }¢>o on X. A suitable
function §, : Z X Py x X — X is connected with the Phase space u4(t) with the mapping
ug @ (—00,0] = Pg,ui(d) = u(t+d),d < 0. Now A = {({,s) : 0 <s < ¢ < t}. For
the purpose of brevity, we make use of gv(t) = fog h(t,s,vs)ds. Here, w(-) is provided in
L2 (Z, %), a Banach space of admissible control functions. 0 < t; < tp <t3 < --- < t,, < p,
o Pg — Py is continuous functions.

The article is organized as follows: Section 2 introduces a few key notions and defi-
nitions related to our research that will be used throughout the discussion of this article.
Section 3 discusses the controllability results with non-local conditions of the impulsive
neutral Hilfer Fractional Differential Equations. Finally, Section 4 provides an example to
illustrate the theory.

2. Preliminaries

Now we recall some definitions, concepts, and lemmas chosen to achieve the desired
outcomes. Let PC(Z, X) be the Banach space of all continuous function spaces from Z — X
where 7 = [0, p] and Z" = [0, p] with p > 0. Now we define C;_z;,;—49(Z, %) = {v:
th=CHni—ndz (¢ € PC(Z,x))}.(%,|| - |I) is a Banach space with
Z = {v € C: lim_,o ! 515719 (1) exists and finite}. Let v(t) = t! 5119 (1), t € (0, p]
then, v € Zif fx € Cand||vz = [|x||. Let us define §» : Z x Py — X with [|F2l| a+)-

We will now discuss some significant fractional calculus results (see Hilfer [27]).

Definition 1. Let § : [p, +o0) — R and the integral

C = L[ )il
80 = 5 | Q-0 Yo, > pg>0

be called the left-sided R-L fractional integral of order { having lower limit p of a continuous
function, where T(-) denotes the gamma function and provided that the right-hand side exists.

Definition 2. Let § : [p, +o0) — R and the integral

(R-L) b _ 1 faNt ot S B
Dﬁg(t)r(n—g)(dt> /p(t—q)CH*mdQ’ t>pn—-1<{<n.

be called the left-sided (R-L) FD of order nj € [k —1,k), where k € R.

Definition 3. Let § : [p, +o0) — R and the integral

1-00-0g)) (9

o _ (y(1-=7)
DP*S(Q N (IP* D<1p

be called the left-sided Hilfer fractional derivative of order 0 < { < 1and 0 < 5 < 1 function

of ().
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Definition 4. Let § : [p, +o0) — R and the integral

Cn¢ _ 1 t gn(t) _ h—Can o
Dp+3(t)—r(n_€)/p (t_Q)g+1_ndt—Ip+§(t), t>pn—1<i<n

be called the left-sided Caputo fractional derivative type of order € (k —1,k), where k € R.

Remark 1. (i)  The Hilfer fractional derivative coincides with the standard (R-L) fractional
derivative, if = 0,0 < { < land p = 0, then

DEIS() = 1050 =5 D (1),

(ii)  The Hilfer fractional derivative coincides with the standard Caputo derivative, if { = 1,
0<ny<landp =0, then

d
D5 §(1) = Iy ¢ 78(0) = DI F(1).

Let us characterize abstract phase space Pj, and verify [23] for more details. Consider
gt (—00,0] — (0,+400) is continuous along j = LOOO h(t)dt < 4o0. For each k > 0,

P ={A:[—i,0] = X such that A(t) is bounded and measurable},

along
Al =0 = sup (3]l
ne[—i,0]
forall A € P.
Now, we define
Py = {/\ t (—00,0] — X such that for any i > 0, A[_;] € P and / W A, 0dm < —i—oo}

provided that Py is endowed along

0
9lle, = [ 1O ljsade

for all ¢ € Pg; therefore, (Py.|| - ||) is a Banach space.
Now, we discuss

Py’ ={v: (=00, p) = X such thatv|z € C(X,v9 = ¢ € Py},

where vy is limitation of v to X = (A, Agyq] fork=0,1,...,n
Set || - ||, be a semi-norm in Py’ defined by

o/l = lI¢llp, +sup o)l : x € [0,p]},0 € Py.
Lemma 1. Assuming v € Pg', then for A € 3,v € Py. Moreover,

jlo)] < lloallp, < llgllp, +j Sl[lp] [u(r)ll,
6€[0,A

where

0
j:/ h(A)dA < +oo.

Definition 5. Assume0 <8¢ <1,0< ¢ < 7, Let @;‘9 be the family of closed linear operators,
A :D(A) C X — X such that the sectors Sy = 6 € C 0 with ||arg6|| < i and
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(i) o(A)C Sy
(ii)  there exists N, as a constant,

(61 — A)~Y| < NpJt| =2, forevery p < A < 7

_9 T . . .
then A € ©" called an infinitesimal generator of strongly continuous functions of bounded linear

operators on X.

Lemma2. Let0 <9 <1,0<y <%, A€O,X) Then
(1) T(s1+s2) =T(s1)+ T(s2)), forany sy, sy € SO%?Q;

(2)  there exists A is the constant such that | T(t||c < Agt®~1, for any t > 0;
(3) Therange R(T(t)) of T(t),z € SOEiQ is belong D(A®). Especially, R(T(t)) C D(A?) for
2

all 6 € C with Re(6) > 0,

1 3
AT (t)x = —/ e “R(; A
(H)x 2 Jr. t’e (t; A)xdz, forallx € X,

and hence there exists a constant ' = A'(a,0) > 0 and satisfy \|A9T(t)\|3(3€) <

A/t—zx—RE(g)_l,for allt > 0;

(4) If0 >1—08, then D(A®) C Ty = {x € X : lim¢_,o, T(t)x = x};

5) R(Z,A) = [;>e ST (t)d, forall {' € C with Re({') > 0.
we define the two operators {R; (t) }es o {S¢ () bees . . as follows
27 27

R (1) = /O "W, (0)T(€6)de,

S(t) = /0 COW, (0)T(£6)do.
Let the Wright-type function

(!

WC(D() = Z‘VIENI-\(l — é—n)(n — 1)!/D‘ S (C
The following are the properties of Wright-type functions
(a)
Wg(@) <0,t>0;
(b)
o I'(1+)
O'W;(0)d0 = ———F~;
/0 (9) I'(1+¢)
(c)

S ST [
/o SN PWe(gp)db =e7.

Lemma 3. The integral equation is equivalent to the (1)—(3)

o(t) = ¢(0)r77g1(_0r€<§>(0))t(1—g)(17—1)+g ta

r(lo /Ot(f— 0) 1A% (4, 01)

+Av, + 52 (Q, Vo, /O

+

t

h(t,s, vs)ds> +Bw(o)]do.

(vtlr 0,03, "

+0n) (0)

(4)
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+ Y Spy(t—t) (o).

0<f <t
Definition 6.
0(0) = Rey (019(0) ~ 51(0.6(0)) + a0, 0,06, v) O +Filb o) 6
+ [ 40 - gt oo

t 0
+/0 Qz(t—0)%2 <Q,UQ,/O h(g,s,vs)ds>dg

+ /Ot Q¢ (t—0)Bw(g)do, t €37
+ ) Sgylt—t)L(v()).

o<t<t

The mild solutions of the Equations (1)-(3), is a function of v(t) € C(I',X), that
satisfies where Rz, (t) = 177 Qg( ), Qz(t) =715, (1), i.e

o(t) = R,y (1)[9(0) + a (04, 04y, 015, - -+, 0g,) — F1(0,¢(0))] + Fa(t, v¢) (6)
+ /ot(" — 0)¢TTAS, (t— 0)F1(t, ve)do

t qQ
+ [0 spti- 03 (000 [ o 00 do

+ [ (= 05— o)Bu(o)de
+ Y Seu(t—t) (o).

o<t<t

Lemma 4. Let {T(t)}q is equi-continuous, then {S;()}, > 0, {Qz(t)}, > 0 and
{Ré(t)}t > 0 are the strongly continuous that is, for any x € X and t; > t; > 0,

(t2)v — Rg(t1)v]| — 0,asty — 4.

||S€ t U—Sé t1) | (t2)v — QC t1) |

Lemma 5. For any fixed t > 0,S;(t), Qz(t) and R, (t) are linear operators, and for any x € X,
[S¢(02] < L= loll Qe (o] < L lloll [Re(vo]| < Lm0 o]
where
I'(9) I'(9)
¢y Tle(1-0)+78)

Lemma 6. Let (1) and (2) is said to be controllable in Z for every continuous initial value function
¢ € Pg,u1 € X, there exists w € L?(Z, V) and the mild solution v(t) satisfied with v(p) = vy.

M’ = Aopiz5), M = Ag

Definition 7. Suppose E* is the positive cone of a Banach space (E, <). Let ® be the function
defined on the set of all bounded subsets of the Banach space X with values in E™ is known as a
measure of non-compactness on X iff ®(conv(Q)) = ®(Q) for every bounded subset Q C X,
where conv(QY) denoted the closed hull of Q).

We now present the basic result on measures of non-compactness.

Definition 8. Let P be the bounded set in a Banach space X, the Hausdorff measures of non-
compactness y is defined as

¥(P) =inf{r > 0 : P can be covered by a finite number of balls with radii 6 }. (7)
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Lemma 7. Suppose X is a Banach space and Py, P, C X are bounded. Then, the properties satisfy

e (i) Py is precompact iff u(Py) = 0;

e (i) y(Py) = v(Py) = y(conv(Py)), where conv(Py) and Py are denote the convex hull and
closure of Py, respectively;

e (iii) If Py C P, then y(Py) < v(P);

. (iv) ’)’(Pl + Pz) < "}/(Pl) + ’)/(Pz), such that Py + P, = {: by+by:by € P,by € P2},‘

o (@ (Pr+ P) <max{y(P1),v(P)}

o (vi)y(uPy) = |uly(P\Vu € R, when X be a Banach space;

*  (vii) If the operator ® : D(¢) C X — X1 is Lipschitz continuous, A1 be the constant then
we know T(P(Py)) < y(Py)V bounded subset Py C D(®), where T represent the Hausdorff
measure of non-compactness in the Banach space X;.

Theorem 1. If {v,,}_; is a set of Bochner integrable functions from I to X with the estimate
property, ||v,(4)|| < v1(t) for almost all t € T and every n > 1, where y; € LY(I, R), then the
function @(t) = y({vu((t) : n > 1}) be in L' (Z, R) and satisfies

7({/()tvn(g)dq n > 1}) §2/Ota)(g)dg.

Lemma 8. If P C C([a,b], X) is bounded and equi-continuous, then y(P(t)) is continuous for
a<t<band

Y(P) =sup{pu(P(t)),a <t < b}, whereP(t) = {x(t:z € P} C X.

Lemma 9. Let P be a closed convex subset of a Banach space X and 0 € P. Assume that §; :
P — X continuous map which satisfies Monch’s condition, i.e., if P, C P is countable and
Py C conv(0UF1(Py)) = Py is compact. Then, §y has a fixed point in P.

3. Controllability Results
We require the succeeding hypothesis

Hypothesis 0 (Ho). Let A be the infinitesimal generator of strongly continuous functions of
bounded linear operators of an analytic semigroup {T(t,t > 0)} in X such that |T(t)| < Q1
where Q1 < 0 be the constant.

Hypothesis 1 (H1). The function §1 : T x Py — X satisfies:

(i) Catheodary condition:F,(-,s, u) is strongly measurable ¥/ (s, u) Py x X and§,(t, -, -) is con-
tinuous fora.et € Z, (%, -,-,v) : [0, p] — X is strongly measurable.
1
(ii) Jaconstants 0 < {1 < {and 6, € L (Z,R") and non-decreasing continuous function
¥ RT — RT such that ||F2(t,5,0)[| < 61()¢([sllp, + [|ol]), 0 € X,t € I, where 6;
satisfies lim infnﬁoo o, = 0.

(iii) Jaconstant 0 < {p < and 0, € L% (Z,R™") such that, for any bounded subset Dy C X,
b C Pg,
7(82(t, P1,D1)) < 602(t) sup [y(Pi(p)) +v(Dy)].
—00<T<0
(iv) Let I; : F — F are continuous functions and there exists a constant N > 0 such that for all
t € X, we have ||I;(v1) — I;(v2)]| < Nljvy — 02| foraet € Z.

Hypothesis 2 (Hz). The function h : T x T x Py — X satisfies the following:

(i) h(-,s,v) is measurable for all h(s,v) € Py x X,9(t, -, ) is continuous for a.e t € I.
(ii) 3 a constant Hy > 0 such that ||h(t,s,u)|| < Hy(1+ |[v||p,) for every te I,
uecXsc Py
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(iii) There exists 03 € L'(Z,R™) such that, for any D, C X

v(h(t,s,Dz)) < 63(t,5)

sup 'y(Dz(T))] .
—00<p<0

Hypothesis 3 (H3).

(i)  Forany t € Z, multivalued map §1 : T x X — X is a continuous function and there exists
B € (0,1) such that §1 € D(AP) and forallv € X,t € T, APF(t,-) satisfies the following:

IAPE(t,0(1)]| < Ng, (1 + t1—€+€+€€—€ﬂ|\v(t||), (o) € I x X.

(ii) 1 is completely continuous and for any bounded set D C C the set {t — F1(t,v¢),v € D}
is equi-continuous in X.

Hypothesis 4 (Hy).

(i)  The linear operator B : L2(Z,V) — L'(Z,%) is bounded, W : L*(Z,V) — X defined by
Wy = [J(p—p)* 'S¢ (p — p)By(p)dp has an inverse operator W~ which take the values
in L2(Z, V) /kerW and there exists two positive values Qo and Qs such that 1Bz, u,x) < Q2
WL, 2 v) ke < Qs

(i) 3 a constants (o € (0,0) and Qw € L% (Z,R") such that, ¥ bounded set
QX 9((W1Q))(1) < Qw(t)7(Q).

Hypothesis 5 (Hs). « : Py’ — P is continuous, there exists IL;(a) > 0,
la(z1,22,23 - zn) = (Y1, ¥2, 93 - - yn) || < Zieq Ln(@) 20 = Yl py.
for every zy, yn € Py
Take Ay = sup{||a(z1,22,23 - zn)|| : 2n € Pu}.

Let us define

oo (Bl
Qg = [(5)p' = i=1,2
Q1= Qg6 4 (ZRY)

X3

_ 2
Q5= Q7 oy ) @Ry

L1
|A=F|| < Ny, and||AF| < Nj.
Theorem 2. Suppose H1—Hs holds, then the impulsive neutral Hilfer fractional differential
Equations (1) and (2) has a solution on [0, p] provided ¢(0) € D(A%) with
Q = pletee88(Qu(1 4 63) + L?QQwQ5) < land 6 > 1+ 9.

Proof. Assume the operator @ : Py — Py, with t € Z defined as

@ (t), (—00,0],

=G0 R, [p(0) — F1(0,9(0) + a (v, 02,043, -+, 0em)(0))]

+31(4v0) + [y (t— ) TAS(L — 0)F1(0,vp)do

+ [y (t— )5 IS¢ (t— 0)F2 (0, vo, [ (0,5, vs)ds)da + [y (t— 0)¢ 'S¢ ({— o)Bw(g)do]
+ Yo<t<t St (t— ) L (u(t;)).

For ®; € Py, we define ® by

(1) = {(bl(t),(—oo,O],

RC,V](P(O) + DC(Uﬂ,Z)tz, U3, " rU’cm>/lL € H/
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A

then & ¢ Py Leto(t) = x(t) + @y, —o0 < t < p, v satisfies from 6 iff x satisfies xo = 0 and
x(t) = —Rg,,31(0,¢(0) + a(v, 02,03, -+, ven) (0)) + F1(t, v¢ + D)do
+ [ = @S (C - 0)81(0, %+ @)
+ /Ot(t —0)*7IS(t— 0)%2 (Q, Vo, /Ogg(g, s, Us,cﬁs)ds) do

t
+ /0 (t - Q)gilgf(t - Q)Bwil [UP - Ré,ry [(P(O) + D‘(vtlf’atzlv’ty co ,'Utm)
_31 (O’(P(O) + tx(vtl’th’ Ut3, U ’vtm))} - Sl (p/ xp + qA)P)

P s
— [ (= A (p = )0, 3o+ By)

p a Y N
—/O (p—0)*'AS;(p — 0)F1 (0, xo + Py —/0 h(o,s,xq + Py)ds)do|do
+ ) Seyt—t)Ii(o(t))

o<t <t

where

w(t) = W1 [vp — Rz, [9(0) —51(0,¢(0) + a(vy, vi2, 043, , 0um))] —F1(p, xp + qADQ)
- /Op(p — )T AS¢ (b — 0)F1(p, xo +Pg)do

a /op(p —0) 'S¢ (p—0)%a(0, % + /09 h(e,s, xg+ ﬁ)e)ds> dQ} '
+ Z Sg,n(t_ti)li(v(ti_))-

0<ti<t
L "o__ /. /
et Py = {x € P :xo € Pyg}. Forany x € Py,

[lxll, = llxollp, +sup{x(e) : 0 < ¢ < p}
= sup{[|x(0)[ : 0 < ¢ < p}.
Hence, (Py, || - ||4) is a Banach space. []
For G > 0, choose Pg = {x € Py : ||x[|, < G}, then Pg C Py is uniformly bounded
and for x € Pg from Lemma 1,
g + Dollp, < llxellpg + | Pollpg
< l(G + L”t_1+€_§’7+5€’) + [[®1p, |
=G

Let us introduce an operator ¥ : Py — Pg”, defined by

0,t € (—o0,0],
—31(0,¢(0) 4+ a(ve1, 02,043, -+, 06 (0)) + F1 (t, x¢ + D) + fot(t —0)¢1AS; (t — 0)F1(0,vp)do
+ (= 0)5 IS¢ (t— 0)F2(0, Vo, [ N(0,5,vs)ds)do + [ (t— 0)F 'S¢ (L — 0)Bw(o)de
+ Yot <t SC,q(t - J‘i)li(v({i_))-t €z
Next, to show that ¥ has a fixed point.

Step 1: we have to prove 3 a positive value G such that ¥(Pg) C Pg. Assume the
statement is false, i.e., for each G > 0, there exists x¢ € Pg, but ¥ xG) not in Pg,
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G < sup 11+ =E0 |y (xC (1))
< p=m+an=CO1| R, £31(0,$(0) + a(vu, v, v, -+, vim) (0)) + F1(t, 08 + &,))do
Ul

t P

+ [ (=@ A8 (T — )51, 0F + Do)

+ /Ot(t — Q)@—ng(t —0)%2 (g, o, /OS h(s,r, xS + ﬁ)s)ds) do
t

+ [ (=8¢ — 0)BuC (o)]|de]

+ X Sep(t= ()

0<t;<t

< pITEE | = 51(0,4(0)) + 200,006, o) (O)| + [F1(4 0F + o)
t o

+ [ (=0 1145~ )10, 0§ +;)do
t

+ [ 5= o) (0,00, [ (s 28 o+ i) ) de
t

+ [ (=05 ISc(c = Q) IBIIW oy — 156, (49 0)

— 3'(0/ 47(0) + “(Utl/UtZI 03, " - ,Utm)(O)] ||

A P A
151 (p 0 + &) = [T(p = F T IASC(p — @B (pr o + o)l

p Q a
- /O (p— )¢ IS¢ (t— )32 (Q, %/0 h(e,s,xq + q’cz)dS) [|do]

+ ) )l
o<t<t
o
P G ) L' QaQs B (0 = LTI 9(0) = (a2 i)+ (0(6)))]
where

= [pHOLY 4 (14 G')|NoN,,
p*° /
pa = L'P(G + Ho(1+G)Q 1] 4.
1
The above inequality is divided by G and applying the limit as G — o0, we obtain 1 < 0,
which is the contradiction. Therefore, ¥(Pg) C Pg.
Step 2: The operator ¥ is continuous on Pg. For ¥ : P — Pg, for any Xk, x e Pg,

k =0,1,2,... such that lim x* = x, the we have lim x*t = x(t) and lim ¢! =7T¢1=10xk(¢) =
k—o0 k—o0 k—o0

tlfﬂ%'?*’?ﬂx(t). From (H;) and (H3)

t . t . A t .
S(t,v’f,/o h(t,s,vé)ds) :S(t,xlf—O—@t,/O h(t,s,x]S‘—O—CDt)ds) —>S<t,x’f+¢>t,/0 h(t,s,¢t)ds>a5k—> 0.

Take .
F(o) =3 (Q, xp + Dy, /0 h(t,s, x5 + CTDQ)dQ)

N Q N
F(Q) = 1?{(Ql xQ + ¢Q//O h(p/ S, Xg + CDQ)dQ> .



Mathematics 2023, 11, 1071 10 of 16

Then, from Hypothesis 2 and 3 and Lebesgue’s dominated convergence theorem, we
can obtain .
| (=) 1Fele) — Fe)|dg — Oask — eo,t € T. ®)

Now, the Hypotheses (H3),
F106,05) = F1 (6 xF + D) — F1(t xe + D) = Fa(t,00)
so, we obtain
t A ~
/0 (t— 0)5 A8, (t— 0)|1F1 (0, Xk + by — F1(0, %0 + Dyl doask — co,t € T (9)
Next,
k(1) = W0, — Rg,y [9(0) — 510, $(0) + (001,012,001 (0)] — 1 (p, ¥ + )
4 _ .
- /O (p—@)* 'AS (p — 0)F1(0, x5 + 0,)do

- /Op(P —0)*'si(p — @)l s g+ B, /OQ h(o,s, x5+ &,)ds)]
+ 2 Sg,ry(t_ti)li(v(t;)),

o<t<t

[0%(6) = o)1 = W I8P, 5b + ) = Fa(py oy + )|
p A A
+ [ (=0 ASc(p = 0lIFa(0,xk + Bo) — Fale,xo + o)l

+ /OP(P — )" 1S (p — o) 1820, X + Do) — Fa(0, X + Do)l (10)
+ ) Sey(t—t)L(o(t)).
0<ti<t

From (8) and (9) the above term become converges to zero as k — co. Now,

R R t
[ (8) — Dx(t)][p < [IF1 (4 x{ + o) = Tt x + Do) +/0 (t—0)* 'St~ 0)
x (AlIF1(0, x5 +®o) — F1(0, %0 + Bo)illde + [|F(e) — F(o)lldo + Bllw*(t) — w(t)]|)do
Using (9) and (10), we obtain

| ¥k —¥x|[, — 0ask — co.

Therefore, ¥ is continuous on Pg.

Step 3: Now, we have to show ¥ is continuous. Forv € Pgand 0 < t; < t, < p, we
have

[@x(t2) — Px(t1)]|
= |l TP (R, (6)F1(0,9(0)) + a (v, v, 0@, -+, Vi) (0)

A t .
+31 (t2, xg + D) + /0 (th — 0) TASK (2 — 0)F1 (0, xz +¥,)do
t2 1 b e s c s
+/ (2 — )" 'Skt — 0)32(0, x, +‘I’g,/ h(s,r,x; + Pg)ds)do

+ [ -0 St - 9BaC @A) + T Splt- 6)(E)

0<tj<t
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- ||t11717+&17gl9(_Rr],g(tl)‘gl (0/ 4)(0) + a(vtll 02,03, Utm) (0)) + Sl (tll xg + qADQ)
4 N s .
+/0 (t1 — 0)° 1Skt — 0)F2 (0, xg +‘I’Q,/O h(s,r,xt + &s)ds)do
t
+ [F (=@ 5u(t — 0)PuS (o) 1de
= )Y Sgy(t=t)L(o(t))
0<t;<t
< [ TR, () — TR (4)]181(0,9(0)) + a(vi1, vi2, Ui, -+, 0un) (0))
[ TTTEE0% (b, xq, + Wiy) — T E0F (1, xq + Wy, ) |

+ || e ¢ /Otz (1 — @) 'ASk(t — 0)F1 (0, x5 + Fo)do
1o /Otz (t1 — ) T AS (4 — 0)F1(0, x5 + Fo)dol
Hlghrorce [ % (4 — Q) Ayt — 0)F1 (X + ¥o)d
— gy tnten =09 /Otl(t1 —0)¢ T TASL (1 — 0)F1 (o, xS +%,)do
aa CRAR /0t1 (1 — )° " ASk(t2 — @)F1 (11, x§ + Fo)dal|
t

2 N Q N
[t rHen =68 / (1 — )" 'ASk(t2 — 0)F1(t2, xo + ‘I’Q,/O h(o,s,xo +¥,)ds)do

f
gyl —ce /Otl (1 — 0)°TASK(t — 0)F1 (2, Xo + ‘?Q, /OQ h(o,s,xo + ‘?Q)ds)dQH
| e /Otl (t1 — 0)* TASk(t — 0)F1(t2, xp + ¥y, /OQ h(o,s,xg + ¥o)ds)do
gy lnen—ee /Otl (t1 — 0)* TASk(t — 0)F1(t2, xp + ¥y, /OQ h(o,s,xq + ¥,)ds)do||
gt 20 /t :2 (t2 — )5 1AS (t — 0)1 (12, xp + ¥, /O “ho,s, %o + ¥o)ds)dol|
et 2 — ) 1AS (1 — o) Bu(o)e — 4" T [ (4 — 9)F MAS(t: — 0)Bulo)de]
+|et e Eo /Otl (2 — @) " ASk(t — 0)Bw(g)do — ' 71 E1? /0tl (t1 — @) ' AS(t2 — 0)Bw(o)do||

—ntin—zo (Y - 1-n+{n—C9 - _
i [T - oFasy (k- Bu(@)] + 16 () o)

Now consider the following
I = |l TR () — 4 TTETEOR (1) 1F1(0, 9(0) + a(04, 02,0, <+ 0 (0),
from the strong continuity of R; , (t),[; = 0ast; — &

I = ([ 0% (b, xgp + W — 1 THTE0F (4, x g1 + W) |,

using the Hypotheses 3, I, becomes zero.

Gl - t
I = [l [Vt = 0)F Akt — )10, 6§ + Foddo — 1 I [Tty — ) TAS (4 — o)

t1 N
< ||’£21_’7+€'7_w/0 (t1 = 0)° 'AF1(0,x§ + ¥o) (Sk(t2 — @) — Sk(t — 0))de
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< pl N NG (14 G) /Otl (t1 = 0)* !I(Sk(t2 — @) — Sk(t1 — 0)) | de.
I — 0 as tp — t1, since the strong continuity of S (t)
S a0 8
RS E /0“ (t1 — )5 " AS (1 — 0)Sk(t1 — 0)F1 (0, xS + ¥, )dal
<p e [ - (1 - F A - F (0,15 + F)lde
integrating and t, — t;, then I; become zero.

19) R
I = '8 [P — 0) T ASi(l — 0)F(0,x§ + Eo)del
1

t
< PHEENNG L1+ 6) [ (0 - 0

Y

integrating and t; — t;, then Is become zero.

t1 n "0 N
Io = 16" [t — 0 1Selta — )20 %o + Yo [ o5, xg + Fo)ds)d
t n Q N
—tll—'ﬁév—éﬂ/o (& —Q)C—lsk(tz—Q)gz(g,xg+‘1fg,/0 h(o,s, %o + ¥o)ds)dol|
Y
< ||(/O T =E (4 — )67 — 18 (4 — 0)6T 1) (4 — 0)Sk(t2 — @)
n Q N
x F2(o, xo+ Yo, /0 h(o,s, Xg +‘I’Q)ds)dg||
Y
< L’II(/O ! IO (4 — )¢t — (g 18 (4 — )6 1) (tp — ) ¢ ¢%d0||61(p) (B’ + Ho(1+ B')),
implies Iy — O as tp — t;.
Y N Q N
I; = Ht11_’7+§’7_§19/0 (h — Q)g_lgk(tz —0)%2(0, %0 —i—‘I’Q,/O h(o,s, x4+ ¥,)ds)do
t1 N Q N
a7 R — )18 (6 — 0)Faloxo + o, [ (5o + Fo)ds)do]
t N 4 .
< Htll””g’?’a’/o (1 — 0)* [Sk(t2 — 0) — Sk(t1 — 0)]2(0, %, +‘I’g,/0 h(o,s,xo + ¥,)ds)dal|
< ¢y 1-n+en—29 T — o)l Si(to — 0) — Si(t; — 0 B+ Hy(1+ B
<t A (1 —0)*  [Sk(t2 — @) — Sk(t1 — 0)32/|01(p)¢p(B" + Ho (1 + B)).

Since S (t) is uniformly continuous operator norm topology, we obtain I; — 0 as t; — t;.
2 - e -
Is = [ [Pt — )i ISilta — )2 %o + Yo, [ o5 %o+ Yo)ds)de
1
t
< Ut 8 [ — ) ooy (p)p(B' + Ho(1+ B)),
4

integrating and t; — t;, then Ig become zero.

t 51
Iy = IIle”“g”’“/0 (t1 — 0)* 'Sk (tr — 0)Bw(o) — tﬂ"’*“’“/() (t1 — 0)* ' ASk(t, — 0)Bw(0)do|

51 f
(1 [B = )6t — e [By — 0)E s, — )Bu(o)del

tH f
L'Qa| (160 [Pty — )1 — 08 [Fy — ) (1 — ) ()],
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Implies Iy — O,as tp — ;.

Y Y
L = ||’£117'7+§’77w/0 (1 — 0)* 'Sk (tr — 0)Bw (o) — f11*”+€’7*w/0 (t1 — )*'Sk(tr — 0)Bw(o)do|

I [% - 9 (84— @)~ Silts - o) Bulo)dell

from the uniform continuity of Si(t), we obtain I1p — as t — t;.
I =l 702 [ — )5y - Q)B()del
< Qall (6" [ (6~ 9F (gl
1
integrating and applying limit = I;; = 0. Therefore, ® is equi-continuous on 7.
ha = [l " @(); o))
using the Hypotheses Hs, I, = 11, = 0.
Step 4: To show Monch’s condition. Suppose that Py C Pg is a countable and

Py C conv(0UP(Py)). We prove y(Pp) = 0. For that, assume that Py = {x* 4+ &};_;c0.
We need to prove that ®(Py(t)) is relatively compact in X for each t € Z.

T(E(Po)) = 1 + )
¢ N e N
< (B [ )8 (= 0)Fale %o + Yo, [ hlo,s o+ Ho)ds)dg
ot
+ [ (=0 ISu(t - QB (e},
1—n+ln—C8 t -1 o ¢ N
< 0y ([ (= ) St 0)Fale %o + Yo, [ hlo,s o+ Ho)ds)do

t
N t1717+C17*§19,Y(/0 (t— 0)* 1Sk (t — 0)Bw,(0)do}i )
=h+]

where
h= ’tllfﬁé"*w’)’(/ot(f —0)*'Sk(t— 0)Fa(0, %o + Yo, /OQ h(e,s,{xo + Yo}ty )ds)do
< plfmériféﬁ{/ot(t — Q)éflSk(t —0)82(0, %0 + ‘T’Q, /OQ h(o,s,{xo + ‘T’Q}le)ds)dg
< Up O [T(- 9 an(o)y (P [1 + Old

't -1 1t 1
SL’pl‘“@”‘”v(l’o)[l+9q]{/0 (t—0) 7 do)® 1(./0 162(0) [[*2dg)

< L/plf’“@"*w%llez% [1+465%] x 7(Py)

t
Jo = tLonHEn=it, </0 (t—0) 1Sk (t— Q)B{w k(o Yely d0)
p 5 oo Q P
L’zszl_”J’g”_gﬂ/O (p— )2 [y(W '%a(0, {xo + TQ}k:v/O h(e,s, xo +¥sp_y))de]
p o Q 2 00
L/2Q2p17n+€”7CO{A (tl B Q)ZCI972,Y(32(Q, {xg +TQ}120:1’/0 h(Q, 5, X "r‘Tsk:l))dQ

p g1 p 1
L2QaQup' 14 [7(p— @) T2 dg)* 22 ([ 02(0) [#de) = x 7(Ry)
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< L’QzQwPP”*é”*wQéz||92||Li (Z,RT) x v (Po).

Now

FiotJo < pl QR 62 1 (ZRY)[L+65] + L7 QaQuag 182]) 1 (xR (Ro)

< plIFIE Q4 (1 4 63) + L' QaQwQs) x v(Ry).

Therefore A
Y(@(Po)) < Qv(Po),

where O = p! 109 (Q,(1 + 03)+ < L'Q2QwQs). Thus, from Ménch’s condition,
we obtain

7(Po) < v(Conv(0U¥(Py))) = v(P(Po)) < Qv(Po)
— ’y(Po) =0.

So, by Lemma 9, ¥ has a fixed point v in Pg. Then v = x + & is a mild solution of system
(1)=(3) is controllable on X .

4. Example

Suppose the Hilfer fractional integro-differential system of the form,

2, 02 .
Dy [olt po(z wdz] = 5500 ) + Wt p)+

<I><t, /joo ®1(e—t)v(efu)def/()tlom <I>z(9,u,r—e)v(rfu)dﬂde>, (11)

Avli—y = Ik(v(t, ), k=1,2,...,m,

10-00-3)[0(0, )] = vo(p), 1 € [0, 7],
v(t,0) =o(t, 1) =0,te7,
o(t,u) = ¢(tpu),0<pu <t (—oo,0]

where Déf denoted the Hilfer fractional derivative of order { = %, type ¢ € [0,1] and
® : J x Py x X — Xis a continuous function. Moreover, ¢ is continuous and satisfies
certain smoothness conditions, ®p, ®; and ®; are the appropriate functions. To change this
system into an abstract structure, let X = V = L?[0, 7] be endowed with the norm | - ||;2
and A : D(A) C X C— X is defined as Ap = p’ with

2

DA)={peXx: p,aap are absolutely continuous, aapz € X,p(0) = p(m) =0}

and
oo

Ap =Y i*(p,pi)pi,p € D(A)

i=1

where pi(y) = \/gsin(ip),i € Nis the orthogonal set of eigen vectors of A.

We have A denotes the infinitesimal generator of strongly continuous functions of
bounded linear operators {T(t),t > 0} in X and is given by T(t)P < 7(P), where v
denoted the Hausdorff measure of non-compactness and Q; > 1 is a constant, satisfy
sup,.7 [|T(t)|| < Qi, Furthermore, t — p(t%Q + 0) v is equi-continuous for t > 0 an
0 < 6 < o0. Define

o(t(p)) = v(t,p)
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References

F1(v,0¢) = /On Do(t,0)v(z,p)dz.

LetB:V — X
B(V(p)) = Wy(t,p),0 <p <.

Given the entries A, B, §1 and §», Equation (11) can be written as
t 2
Dg”7 [0(t) — F1(t, v¢)] = Av(F1) + 32 (t, vt,/o h(t, s, ug)ds + Bw(t); { = 3 € (0,1),te I>

Avli—y = Ik(v(t,)), k=1,2,...,m,

10000y g e p,

In order to validate the Theorem 2 assumptions, we additionally present some accept-
able circumstances for the aforementioned functions, and we conclude that the impulsive
neutral Hilfer fractional differential system (1)—(3) is controllable.

5. Conclusions

In this paper, we focused on the analysis of controllability for impulsive neutral Hilfer
fractional differential equations with non-local conditions. Applying the findings and
concepts from the infinitesimal generator of a strongly continuous function of bounded
linear operators, fractional calculus, the measure of non-compactness, impulsive conditions,
non-local conditions, and fixed point method, the main conclusion is established. Last
but not least, we provided an example to illustrate the principle. Future research will
concentrate on the many types of controllability of impulsive neutral Hilfer fractional
differential systems with non-local conditions.
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