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Abstract: Releasing Wolbachia-infected mosquitoes to suppress or replace wild vector mosquitoes
has been carried out in 24 countries worldwide, showing great promise in controlling mosquitoes
and mosquito-borne diseases. To face the instability of Wolbachia infection in different environments
during the area-wide application, we should consider the overlapping of two Wolbachia strains. In this
case, bidirectional cytoplasmic incompatibility occurs, which results in mating partners infected with
exclusive Wolbachia strains producing inviable offspring. To determine the better Wolbachia candidate
for release, we develop an ordinary differential equation model to study the global dynamics for
competition between two Wolbachia strains. Our theoretical results on the sharp estimate of stable
curves completely determine the fate of the two Wolbachia strains, which help choose appropriate
strains for release.
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1. Introduction

With an estimated 700,000 deaths annually, vector-borne infections cause an over-
whelming disease burden on humans [1]. Dengue fever is a mosquito-borne disease
transmitted through bites of female Aedes mosquitoes, including Aedes aegypti and Aedes al-
bopictus mosquitoes. More than half of the world’s population is at risk of dengue [2,3]. The
most direct method to combat dengue vectors is spraying insecticides to kill them, which has
only short-term effects due to the appearance of insecticide resistance [4]. Meanwhile, the
development of dengue vaccines is still at a difficult stage because of antibody-dependent
enhancement (ADE) among the four serotypes of dengue viruses [5,6]. Several biological
control methods have been implemented to deal with this situation, one of which involves
the endosymbiotic bacteria Wolbachia.

Wolbachia are common and widespread intracellular bacteria of arthropods, which
exist in more than 66% of all insect species [7], including some species of mosquitoes.
Wolbachia were first identified in 1924 by Hertig and Wolbach [8]. In 1952, scientists found
that Wolbachia in Culex autogenicus [9] caused unidirectional cytoplasmic incompatibility
(CI for short): when Wolbachia-infected males mate with uninfected females, their offspring
are not viable. Since then, Wolbachia-infected males that cause CI have been proposed as
an innovative way to decrease vector populations. However, Aedes aegypti does not carry
Wolbachia, and although Aedes albopictus naturally carries two kinds of Wolbachia, it does
not induce CI. This situation halted the progress of the use of Wolbachia to combat dengue
fever until 2005, by embryonic microinjection. The authors in [10] successfully established
the first Wolbachia strain (wRi) that causes CI in Aedes aegypti. Later in 2006 [11], they also
established wAlbB in Aedes albopictus by transferring Wolbachia from Drosophila simulans.
In addition to inducing CI, both wAlbB in Aedes aegypti and wRi in Aedes albopictus are

Mathematics 2023, 11, 1691. https://doi.org/10.3390/math11071691 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11071691
https://doi.org/10.3390/math11071691
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0846-7126
https://orcid.org/0000-0003-4056-9114
https://doi.org/10.3390/math11071691
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11071691?type=check_update&version=2


Mathematics 2023, 11, 1691 2 of 21

completely maternally transmitted, that is, the offspring of Wolbachia-infected females are
all infected [10,11]. Furthermore, both of them can block the replication of dengue viruses
in mosquitoes. Hence, Wolbachia-infected males that induce CI can be regarded as a flying
and resistance-free insecticide, and Wolbachia-infected females can block the transmission
of dengue viruses between humans and mosquitoes.

Two Wolbachia release strategies have been proposed based on these observations.
One is to only release Wolbachia-infected males to sterilize and suppress wild female
mosquitoes; this is named population suppression. The other is usually termed population
replacement, in which both Wolbachia-infected females and Wolbachia-infected males are
released to replace the wild mosquito populations with Wolbachia-infected ones, so they
have reduced or no capacity to transmit dengue viruses. The first field trial of population
suppression was carried out from 2015 to 2017 in Guangzhou, China, which suppressed
more than 90% of the wild-type Aedes albopictus field populations [12]. The first population
replacement was implemented in 2009 in Cairns, Australia [13–15]. Since then, the Wolbachia
infection frequency in mosquito populations has been kept high enough to make the
release sites dengue-free areas. The success of population suppression and population
replacement makes the Wolbachia release method a promising method to control mosquito
and mosquito-borne diseases [16]. Nowadays, Wolbachia release has been carried out
worldwide, including in Yogyakarta, Indonesia (2014) with nearly 100% Wolbachia coverage
rate, and 77% reduction in dengue incidence, in Kuala Lampur, Malaysia (2013) with 80%
Wolbachia coverage rate, and 40% reduction in dengue incidence, and in Niteroi, Brazil
(2014) with 40–80% Wolbachia coverage rate, and 69% reduction in dengue incidence.

As a biologically safe and environmentally friendly method, mathematical models
aiming to analyze the interactive dynamics of the released and wild mosquitoes have been
developed. We refer to [12,17–20] for models on population suppression, and [21–24] for
models on population replacement, to cite a few. However, all the above models only
include a single Wolbachia strain, which induces unidirectional CI. In this paper, we focus
on the case of bidirectional CI, which results in the mating partners infected with mutually
exclusive Wolbachia strains producing inviable offspring [25–27]. For example, in the host
Aedes albopictus, the authors in [28] found bidirectional CI for crosses between ARwP and
SR lines in Aedes albopictus. The egg hatch rate of the reciprocal crosses between ARwP and
SR mosquitoes are 0, while almost 90% eggs hatch successfully from crosses ARwP×ARwP
and SR × SR. Bidirectional CI has also been found in the species Culex quinquefasciatus
carrying wPip and wAlbA [29], in the species Porcellio dilatatus carrying wPet and wDil [30],
and in Aedes aegypti carrying three strains wAlbA, wAlbB, and wMel [31].

Another motivation driving us to study bidirectional CI is that for the area-wide
application of Wolbachia release, we should take the overlapping of two Wolbachia strains
into consideration, which could induce bidirectional CI. This consideration is based on
mounting evidence showing that temperature and possibly other environmental and eco-
logical conditions impact the maternal transmission rate and the CI intensity, and hence
impact the potential of Wolbachia mosquitoes to invade populations and persist [32–35].
For example, in [32], the authors checked three Wolbachia strains, wMel, wMelPop-CLA,
and wAlbB. They found that under cyclical temperatures of 26–37 ◦C, only wAlbB shows
complete CI, while both wMel and wMelPop-CLA show incomplete CI. Regarding the
maternal transmission efficiency, both wMel and wMelPop-CLA completely lose their ma-
ternal transmission ability when the maintenance temperature for offspring is 26–37 ◦C.
Therefore, if the released Wolbachia mosquitoes lose their reproductive advantage to re-
place wild mosquitoes, another new Wolbachia strain should be supplemented to achieve
the replacement.

2. Model Development

To model this, we denote the two mutually exclusive Wolbachia strains as w-A and
w-B. Then only both parents harboring the same Wolbachia strains can produce viable
offspring; otherwise, there will be no offspring due to complete CI. Let IF

A(t), IM
A (t), IF

B(t)
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and IM
B (t) be the numbers of w-A females, w-A males, w-B females, and w-B males at time

t, respectively.
Denote the natural birth rate of w-A mosquitoes by bA and that of w-B mosquitoes by

bB. Let sA
h ∈ (0, 1] be the proportion of unhatched eggs produced from the incompatible

cross if the father carries with w-B. Therefore, sA
h quantifies the intensity of CI of the

incompatible mating between the w-A female and the w-B male [36,37]. Similarly, let
sB

h ∈ (0, 1] be the CI intensity if the father is infected with w-A. Denote the density-
dependent death rates for w-A mosquitoes and w-B mosquitoes by dA and dB, respectively.
With the assumption of random mating behavior [38], the probability of IF

A mating with IM
A

is IM
A /(IM

A + IM
B ), and the probability mating with IM

B is IM
B /(IM

A + IM
B ). If we assume that

the birth ratio of female to male is 1:1 [39], then the growth of IF
A is

bA

2
· IF

A ·
[

IM
A

IM
A + IM

B
+
(

1− sA
h

)
·

IM
B

IM
A + IM

B

]
=

bA

2
· IF

A ·
(

1− sA
h ·

IM
B

IM
A + IM

B

)
.

To investigate the density-dependent effect of all mosquitoes on w-A, we denote the
total number of mosquitoes as

T(t) = IF
A(t) + IM

A (t) + IF
B(t) + IM

B (t).

Thus, we obtain the equation for IF
A

dIF
A(t)
dt

=
bA

2
· IF

A(t) ·
(

1− sA
h ·

IM
B (t)

IM
A (t) + IM

B (t)

)
− dAT(t)IF

A(t), (1)

where dAT(t)IF
A(t) denotes the density-dependent decay. Similarly, regarding IM

A , IF
B and

IM
B , we have the following equations:

dIM
A (t)
dt

=
bA

2
· IF

A(t) ·
(

1− sA
h ·

IM
B (t)

IM
A (t) + IM

B (t)

)
− dAT(t)IM

A (t), (2)

dIF
B(t)
dt

=
bB

2
· IF

B(t) ·
(

1− sB
h ·

IM
A (t)

IM
A (t) + IM

B (t)

)
− dBT(t)IF

B(t), (3)

dIM
B (t)
dt

=
bB

2
· IF

B(t) ·
(

1− sB
h ·

IM
A (t)

IM
A (t) + IM

B (t)

)
− dBT(t)IM

B (t). (4)

To help track the above equations, we refer the readers to Table 1 for the derivation of
the first terms in Equations (1)–(4). The green and pink blocks are for the female offspring
of w-A and w-B mosquitoes, respectively. The yellow blocks represent the loss due to CI.

Table 1. The wiring diagram for the derivation of the first terms in Equations (1)–(4).

Matings IM
A IM

B

IF
A

bA

2
IF
A
(
1− sA

h
)
·

IM
B

IM
A + IM

BbA

2
· IF

A ·
IM
A

IM
A + IM

B
bA

2
· IF

A · sA
h ·

IM
B

IM
A + IM

B

IF
B

bB

2
IF
B
(
1− sB

h
)
·

IM
A

IM
A + IM

B
bB

2
· IF

B · sB
h ·

IM
A

IM
A + IM

B

bB

2
· IF

B ·
IM
B

IM
A + IM

B
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The assumption of equal sex determination for offspring [39] allows us to assume
IF
A = IM

A , IF
B = IM

B . Let

x(t) = IF
A(t) + IM

A (t), y(t) = IF
B(t) + IM

B (t).

Then the four-dimensional System (1)–(4) is reduced to the planar system

dx
dt

=
bA

2
x

(
1− sA

h
y

x + y

)
− dAx(x + y),

dy
dt

=
bB

2
y

(
1− sB

h
x

x + y

)
− dBy(x + y).

(5)

If we apply the rescaling

u =
2dB
bB

x, v =
2dB
bB

y, s =
bB

2
t, (6)

then the first equation in System (5) is transformed to

du
ds

=
d
(

2dB
bB

x
)

d
(

bB
2 t
) =

4dB

b2
B
· dx

dt

=
4dB

b2
B

(
bA
2

x
(

1− sA
h

y
x + y

)
− dAx(x + y)

)
=

4dB

b2
B

(
bA
2
· bB

2dB
u
(

1− sA
h ·

v
u + v

)
− dA ·

bB
2dB

u · bB
2dB

(u + v)
)

=
bA
bB

u
(

1− sA
h ·

v
u + v

)
− dA

dB
u(u + v).

(7)

Applying the same process to the second equation in System (5), we can rescale
System (5) as

du
ds

=
4dB

b2
B
·

dx
dt

=
bA

bB
u

(
1− sA

h
v

u + v

)
−

dA

dB
u(u + v),

dv
ds

=
4dB

b2
B
·

dy
dt

= v

(
1− sB

h
u

u + v

)
− v(u + v).

(8)

Let β = bA/bB and δ = dA/dB, respectively, be the relative birth and death rates of w-A
females to w-B females. By replacing u, v and s by x, y and t, System (8) becomes

dx
dt

= βx

(
1− sA

h
y

x + y

)
− δx(x + y) := F(x, y),

dy
dt

= y

(
1− sB

h
x

x + y

)
− y(x + y) := G(x, y).

(9)

Remark 1. The rescaling (6) not only reduces the number of parameters from six to four but also
makes the w-B mosquitoes stabilize at 1 without the interference of w-A mosquitoes. In such a
situation, the value of x(t) is not the absolute number of w-A mosquitoes. Instead, it estimates
the proportion of w-A mosquitoes among all mosquitoes, which has been frequently used to record
the Wolbachia infection frequency when studying the Wolbachia spread dynamics in mosquito
populations [12,22–24,36–38,40–42].
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The rest of this paper is organized as follows. In Section 3.1, we analyze the dynamics
of System (9) with complete CI, that is, sA

h = sB
h = 1. In this case, System (9) admits four

equilibria, and we offer a relatively sharp estimation of the stable curve of the only saddle.
Section 3.2 is devoted to the case of incomplete CI, which has been frequently reported
in Wolbachia hosts. The entire classification of the global dynamics of System (9) with
incomplete CI is offered. Finally, in Section 4, we provide a survey on the theoretical results
and numerical simulations for the competition outcome between two Wolbachia strains.
Table 2 provides the glossary of notation for model development.

Table 2. The glossary of notation.

Symbol Definition Unit

IF
A(t)(IM

A (t)) Number of w-A females (males) at time
t −

IF
B(t)(IM

B (t)) Number of w-B females (males) at time
t −

T(t) Number of total mosquitoes at time t −

bA(bB) Natural birth rate of w-A (w-B)
mosquitoes Per female per unit of time

sA
h (sB

h )
Proportion of unhatched eggs produced
from the incompatible cross if the father
carries with w-B (w-A)

−

dA(dB) Density-dependent death rates for w-A
(w-B) mosquitoes Per (mosquito)2 per unit of time

x(t) Number of total w-A mosquitoes at time
t −

y(t) Number of total w-B mosquitoes at time
t −

β bA/bB −
δ dA/dB −

3. Results

3.1. Complete CI with sA
h = sB

h = 1

Complete CI has been repeatedly observed. For example, the experiment for wMelPop
in Aedes aegypti in [43] shows that no eggs hatched from more than 2500 embryos obtained
from the incompatible mating. The Wolbachia strain wAlbB in Culex quinquefasciatus [29],
and wPip, wAlbA and wAlbB in Aedes albopictus [44] also manifest complete CI. In this
section, we study the dynamics of System (9) when both w-A and w-B induce complete CI,
that is, sA

h = sB
h = 1. In this case, System (9) becomes

dx
dt

= βx

(
1−

y
x + y

)
− δx(x + y) := f (x, y),

dy
dt

= y

(
1−

x
x + y

)
− y(x + y) := g(x, y).

(10)

By defining
f (0, 0) = g(0, 0) = 0, (11)

we have E0 = (0, 0) as a trivial equilibrium. The remediation (11) will be maintained in the
following discussion without further mention. Relying on the technique of linearization in
the classical context of nonlinear dynamics [45], we count the equilibria of system (10) and
analyze their stability in the following theorem.

Theorem 1. System (10) has four equilibria in the first quadrant, E0 = (0, 0), E1 = (β/δ, 0),
E2 = (0, 1), and E∗ = (x∗, y∗) = (βδ/(β + δ)2, β2/(β + δ)2). The origin E0 is a source, E1 and
E2 are sinks, and E∗ is a saddle.
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Proof. The calculation to get the existence of the equilibria is trivial, and we omit it here.
With the help of the x-isocline x = δ/β(x + y)2 and the y-isocline y = (x + y)2, in Figure 1A
we plot the direction field of System (10). Furthermore, panel B locates the neighborhood
D0 of (0, 0) such that any solution of System (10) initiated from D0 will eventually exit from
D0. Hence, there exists an ε > 0 and

D0 =
{
(x(t), y(t)) : x(t) ≥ 0, y(t) ≥ 0, x2(t) + y2(t) < ε2

}
,

such that if E∗ /∈ D0, then any solutions of System (10) initiated from D0 will eventually
exit from D0, proving the instability of E0.

Figure 1. Panel (A) is for the direction field of System (10), and panel (B) spots an unstable neighbor-
hood D0 of (0, 0).

Regarding the local asymptotic stability of E1 and E2, we calculate the Jacobian matrix
of (10) at (x, y) as

J (x, y) =


β

(
1−

y2

(x + y)2

)
− δ(2x + y) −β

x2

(x + y)2 − δx

−
y2

(x + y)2 − y 1−
x2

(x + y)2 − (x + 2y)

. (12)

At E1, the matrix is

J (E1) =

(
−β −2β
0 −β/δ

)
,

with eigenvalues −β < 0 and −β/δ < 0, implying that E1 is a sink. At E2, the matrix takes
the form

J (E2) =

(
−δ 0
−2 −1

)
.

Hence, again, E2 is a sink.
By (12), the Jacobian matrix at E∗ is

J (E∗) =
β

(β + δ)2

(
δ(β− δ) −2δ2

−2β δ− β

)
:=

β

(β + δ)2J̃ (E∗). (13)

It is easy to calculate the characteristic polynomial of J̃ (E∗) in (13) as

φ(λ) = λ2 + (1− δ)(β− δ)λ− δ(β + δ)2,

which has positive discriminant, and hence the roots of φ(λ) = 0 are real. Since
detJ (E∗) = −β2δ/(β + δ)2 < 0, we have that E∗ is a saddle. This completes the proof.
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The stable curve of E∗, denoted by y = h(x), plays a key role in characterizing
the global dynamics of System (10): solutions initiated above y = h(x) tend to E2, and
otherwise to E1. The basins of attraction of E1 and E2, denoted by B(E1) and B(E2), are
then defined by

B(E1) = {(x, y) : x > 0, 0 ≤ y < h(x)}, B(E2) = {(x, y) : x ≥ 0, y > h(x)}. (14)

The x-isocline x = δ/β(x + y)2 and the y-isocline y = (x + y)2 intersect at E0 = (0, 0) and
E∗ = (x∗, y∗), which decompose the first quadrant into four basic regions:

D1 = {(x, y) : f (x, y) > 0, g(x, y) > 0},
D2 = {(x, y) : 0 6 y < y∗, g(x, y) 6 x 6 f (x, y)},
D3 = {(x, y) : f (x, y) < 0, g(x, y) < 0},
D4 = {(x, y) : 0 6 x < x∗, f (x, y) 6 y 6 g(x, y)} .

To locate h(x), we check the direction field of System (10), and find that D2 ⊂ B(E1) and
D4 ⊂ B(E2). Hence h(x) must lie in D1 and D3 separately. See Figure 2 below.

Figure 2. State domain decomposition by the x-isocline x = δ/β(x + y)2, the y-isocline y = (x + y)2,
and the straight line βx− δy = 0. The stable curve Ws coincides with L when δ = 1 lies entirely in
D12 and D31 when δ > 1, and lies entirely in D11 and D32 when δ < 1.

It is easy to see that solutions lying in D1 or D3 satisfy

dy
dx

=
g(x, y)
f (x, y)

> 0.

Hence, the stable curve can be expressed as a smooth and strictly increasing function
y = h(x). In D1, note that if (x(t), y(t)) tends toward E0 in backward time, then the α-limit
set of the stable curve must be E0. Thus, the curve is also the heteroclinic orbit connecting
E0 and E∗. In D3, both x′ and y′ are negative, so we are still concerned with α-limit set of
(x(t), y(t)). Denote

lim
t→−∞

(x(t), y(t)) = (x∞, y∞).

In addition, we claim that both x∞ and y∞ are infinity. Otherwise, since there is no
equilibrium in D3, either x∞ or y∞ must be infinity. If x∞ < y∞ = ∞, then by substituting
x∞ and y∞ into (10) we get dx/dt = ∞ as t→ −∞. On the other hand, because x∞ < ∞, we
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can infer dx/dt = 0 as t→ −∞, which yields a contradiction. Continuing in this fashion,
we can also derive y∞ = ∞.

In summary, in the first quadrant R2
+ = {(x, y) : x ≥ 0, y ≥ 0}, the stable curve of E∗

is given by
Ws(E∗) = {(x, y) : y = h(x), h(0) = 0, h(x∗) = y∗},

where the function h is smooth. Furthermore, it satisfies

h′(x) > 0 f or x > 0, and lim
x→∞

h(x) = ∞,

such that the portion of Ws(E∗) for 0 < x < x∗ defines the heteroclinic orbit connecting
the trivial equilibrium E0 and E∗, and the portion of Ws(E∗) for x > x∗ defines the other
branch of the stable curve. Since it is usually a formidable task to compute the exact
form of h(x), we get around this difficulty by finding sharp estimates of y = h(x) in the
following theorem.

Theorem 2. Define

h0(x) =
βx
δ

and h1(x) =
β2

(β + δ)2

(
(β + δ)2x

βδ

)1/δ

,

and then h = h0 = h1 at x = 0 and x = x∗, and h(x) is sandwiched between h0 and h1. When
δ = 1, the three functions are identical, and the curve Ws(E∗) coincides with the straight line

L : l(x, y) := βx− δy = 0. (15)

When δ > 1, we have

h0(x) < h(x) < h1(x) for 0 < x < x∗, and h1(x) < h(x) < h0(x) for x > x∗. (16)

When δ < 1, we have

h1(x) < h(x) < h0(x) for 0 < x < x∗, and h0(x) < h(x) < h1(x) for x > x∗. (17)

Proof. To locate y = h(x), we divide D1 into

D11 =

{
(x, y) : (x, y) ∈ D1, 0 < y <

β

δ
x
}

,

and

D12 =

{
(x, y) : (x, y) ∈ D1, y >

β

δ
x
}

.

Similarly, we denote the subregion of D3 below L as D31, and the subregion above L
as D32 (see Figure 2).

When δ = 1, we claim that the straight line L coincides with Ws(E∗). In fact, on
the straight line L, we have βx = δy and x + y = (1 + β/δ)x. For l(x, y) defined in (15),
we have

dl
dt

∣∣∣∣
L
= βx

(
β− βy

x + y
− δ(x + y)

)
− δy

(
1− x

x + y
− (x + y)

)
= βx

(
(β− 1) +

1
x + y

(x− βy) + (1− δ)(x + y)
)

= βx
(

β(δ− 1)
β + δ

+ (1− δ)
β + δ

β
y
)

= (1− δ)(β + δ)(y− y∗)x = 0,

(18)
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showing that L consists of solutions of (10). Hence the curve Ws(E∗) coincides with the
line L, and the three functions h0, h, and h1 are identical. Moreover, we expect that the
direction vector of L must be an eigenvector of J (E∗) defined in (13). Indeed, by direct
calculation we find

J (E∗)
(

δ
β

)
=

1
(β + δ)2

(
βδ(β + δ)2 − β3δ− βδ2(β + 2δ)− 2β2δ2

−2β2δ + β(β + δ)2 − βδ2 − β2(2β + δ)

)
=

1
(β + δ)2

(
−βδ3 − β2δ2

−β3 − δβ2

)
= − β

(β + δ)

(
δ · δ

β

)
.

(19)

It follows from (19) that the direction vector of L is an eigenvector of J (E∗) if and
only if δ = 1.

For the case with δ 6= 1, equality (18) implies that Ws(E∗) does not coincide with the
straight line L anymore. For an arbitrary solution (x(t), y(t)) of (10) with f 6= 0, we have
dy/dx = g/ f . To locate y = h(x), we compute the d2y/dx2 from

d f
dx

=
f
x
−

βx2g f−1 − βxy
(x + y)2 − δx

(
1 + g f−1

)
and

dg
dx

=
g2

y f
−

y2 − xyg f−1

(x + y)2 − y(1 + g f−1).

Therefore,

d2y
dx2 =

1
f

dg
dx
−

g
f 2

d f
dx

=
1
f

(
g2

y f
−

y2 − xyg f−1

(x + y)2 − y(1 + g f−1)

)
− g

f 2

(
f
x
−

βx2g f−1 − βxy
(x + y)2 − δx

(
1 + g f−1

))

=

(
g
f 2 +

xy
(
y + βxg f−1)
(x + y)2 f 2

)(
g
y
− f

x

)
− δxy

f 2

(
1 + g f−1

)( f
δx
− g

y

)
.

Recalling l(x, y) defined in (15), we find

f
δx
− g

y
=

l(x, y)
δ(x + y)

, (20)

and hence

d2y
dx2 =

(
g
f 2 +

xy
(
y + βxg f−1)
(x + y)2 f 2

)(
g
y
− f

x

)
− δxy

f 2

(
1 + g f−1

)( l(x, y)
δ(x + y)

)
. (21)

When δ > 1, since l(x, y) > 0 and f > 0 in D11, it follows from (20) that

g
y
− f

x
<

g
y
− 1

δ

f
x
= − l(x, y)

δ(x + y)
< 0. (22)

Combined with (22), (21) gives d2y/dx2 < 0, which implies that the solution is concave-
down in D11. Now we assume that if the stable curve has a segment lying in D11, then
there are x1, x2 ∈ (0, x∗) with x1 < x2, such that both (x1, h(x1)) and (x2, h(x2)) stay on
L, and y = h(x) stays below L for x ∈ (x1, x2). This contradicts the fact that y = h(x) is
concave-down in D11. Then, we can conclude that the heteroclinic orbit connecting E0 and
E∗ must lie entirely in D12.

To find an upper bound of h(x) in D12, we introduce

z(t) = ln
[

x(t)1/δy(t)−1
]
. (23)
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By visiting (10), we find

z′(t) =
x′

δx
− y′

y
=

βx− δy
δ(x + y)

=
l(x, y)

δ(x + y)
. (24)

Since l(x, y) < 0 for all (x, y) ∈ D12, we see that

z′(t) =
l(x, y)

δ(x + y)
< 0.

Thus z(t) decreases monotonically with t in D12, leading to z(t) > limt→∞ z(t),
and therefore

x1/δh(x)−1 > (x∗)1/δ(y∗)−1 or h(x) < y∗(x/x∗)1/δ, 0 < x < x∗.

By substituting x∗ and y∗ into the last inequality, we get

h(x) < h1 =
β2

(β + δ)2

(
(β + δ)2x

βδ

)1/δ

, 0 < x < x∗. (25)

Heretofore we have verified the first part of (16).
For the second part of (16), we use the properties of the eigenvectors of J (E∗) to

analyze the behavior of h(x) in D3. It follows from (19) that the direction vector of L is not
an eigenvector of J (E∗) for δ > 1, which implies that L is not tangential to the stable curve
h(x) at E∗. Hence the stable curve lies in D31 when x > x∗ with x being sufficiently close to
x∗. Actually, the stable curve will always stay in D31 for all x > x∗. To see this, we recall
(18) and find that all trajectories initiated at L with y > y∗ move into D32 when t increases
from t = 0. Hence, the stable curve cannot meet L from the domain D31 when x increases,
or equivalently, when t decreases. As l(x, y) > 0 in D31, z(t) increases strictly along the
stable curve in this domain, giving z(t) < limt→∞ z(t). By the same calculation of deriving
(25), we obtain the estimate

h(x) > h1(x), x > x∗,

and complete the proof of (16).
Next, we consider the case δ < 1. Since l(x, y) < 0 and f > 0 in D12, it follows from

(20) that
g
y
− f

x
>

g
y
− 1

δ

f
x
= − l(x, y)

δ(x + y)
> 0.

Now (21) gives d2y/dx2 > 0, resulting in the solution that is concave-up in D12. If the
stable curve has a segment lying in D12, then there are x1, x2 ∈ (0, x∗) with x1 < x2, such
that both (x1, h(x1)) and (x2, h(x2)) stay on L, and y = h(x) stays above L for x ∈ (x1, x2).
This yields a contradiction because the secant line L cannot be located below the concave-
up curve y = h(x) over (x1, x2). Therefore, we find that the heteroclinic orbit connecting
E0 and E∗ must lie entirely in D11 in this case.

Since l(x, y) > 0 for all (x, y) ∈ D11, it follows from (24) that z(t) increases along
the heteroclinic orbit. Hence z(t) < limt→∞ z(t), and with the same process yielding (25)
we derive

h(x) > h1(x), 0 < x < x∗. (26)

Again, the direction vector of L is not an eigenvector of J (E∗) for δ < 1; thus, the
stable curve lies in D32 when x > x∗ with x being sufficiently close to x∗. Therefore, (18)
gives that all trajectories initiated at L with y > y∗ must move into D31 when t increases
from t = 0, which implies that the stable curve cannot meet L from the domain D32 as t
decreases. This ensures that the stable curve stays in D32 for all x > x∗. As l(x, y) < 0 in
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D32, z(t) decreases strictly along the stable curve in this domain, giving z(t) > limt→∞ z(t),
and

h(x) < h1(x), x > x∗. (27)

Combining (26) and (27), we have (17), proving the theorem.

Mathematically, by finding two exclusive regions B(E1) and B(E2) in (14), Theorems 1 and 2
offer a complete characterization of the global dynamics between two Wolbachia strains
with complete CI. Biologically, these two theorems indicate that once the parameter values
and the initial population sizes lie in B(E1), then w-A strain outcompetes the w-B strain
eventually. Otherwise, the w-B strain washes out the w-A strain.

3.2. System (9) with Incomplete CI

Complete CI makes eggs produced from incompatible matings that do not hatch.
However, incomplete CI is much more common in Wolbachia hosts. For example, the
authors in [11] scored 2972 eggs from the incompatible matings for the wRi in Aedes
albopictus; 422 of them survived from CI and hatched. The Wolbachia strain cifB in Anopheles
gambiae [46], and wPip in Culex pipiens [47] also fail to induce complete CI. To explore the
effect of incomplete CI on the global dynamics of Wolbachia, in this subsection, we study
System (9) with sA

h , sB
h ∈ (0, 1). It is trivial that E0 = (0, 0) is an equilibrium of System (9).

Any other equilibria of System (9) satisfy

x
(

β− βsA
h

y
x + y

− δ(x + y)
)
= 0, (28)

and

y
(

1− sB
h

x
x + y

− (x + y)
)
= 0, (29)

which admits two boundary equilibria Ẽ1 = (β/δ, 0) and Ẽ2 = (0, 1). It follows from (28)
and (29) that any interior equilibrium point satisfies

(β− δ) + δsB
h

x
x + y

− βsA
h

y
x + y

= 0,

which leads to

y =
β + δsB

h − δ

δ + βsA
h − β

x. (30)

Substituting (30) into (29), we get

Ẽ∗ =

(
β
(
δ + βsA

h − β
)(

sA
h + sB

h − sA
h sB

h
)(

βsA
h + δsB

h
)2 ,

β
(

β + δsB
h − δ

)(
sA

h + sB
h − sA

h sB
h
)(

βsA
h + δsB

h
)2

)
.

To unload the notation burden, we let κ1 = δ + βsA
h − β, κ2 = β + δsB

h − δ, and
c = sA

h + sB
h − sA

h sB
h . Then, the interior equilibrium reads as

Ẽ∗ =

(
βκ1c

(κ1 + κ2)
2,

βκ2c

(κ1 + κ2)
2

)
. (31)

When β = δ, we have κ1 = βsA
h > 0 and κ2 = δsB

h > 0. If β > δ, we define

s∗A =
β− δ

β
,

and if δ > β, we define

s∗B =
δ− β

δ
.
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Then Ẽ∗ lies in the first quadrant when either

β > δ and sA
h > s∗A,

or
β < δ and sB

h > s∗B

holds.
To analyze the stability of the equilibria, we calculate the Jacobian matrix of (9) as

J̃ (x, y) =


β

(
1−

sA
h y2

(x + y)2

)
− δ(2x + y) −βsA

h
x2

(x + y)2 − δx

−sB
h

y2

(x + y)2 − y 1− sB
h

x2

(x + y)2 − (x + 2y)

. (32)

Next, we count the number of equilibria of System (9) and analyze the corresponding
stability in three different cases in terms of the comparison between the magnitude of β
and δ, namely, β = δ, β > δ and β < δ.
Case I. β = δ. In this case, System (9) has four equilibria on the first quadrant, Ẽ0 = (0, 0),
Ẽ1 = (β/δ, 0), Ẽ2 = (0, 1), and

Ẽ∗ = (x̃∗, ỹ∗) =

(
sA

h c
(sA

h + sB
h )

2
,

sB
h c

(sA
h + sB

h )
2

)
.

Similar to the proof of Theorem 1, we can prove that Ẽ0 is unstable. Substituting Ẽ1
into (32), we have

J̃ (Ẽ1) =

(
−β −

(
sA

h + 1
)

β
0 −κ2/δ

)
, (33)

with eigenvalues −β < 0 and −κ2/δ = −sB
h < 0, implying that Ẽ1 is a sink. At Ẽ2, the

Jacobian matrix takes the form

J̃ (Ẽ2) =

(
−κ1 0
−sB

h − 1 −1

)
. (34)

Since −κ1 = −βsA
h < 0, Ẽ2 is also a sink.

The Jacobian matrix at Ẽ∗ takes the form

J̃ (Ẽ∗)|β=δ =
β(

sA
h + sB

h
)2·((

sA
h + sB

h
)2 − sA

h (s
B
h )

2 −
(
2sA

h + sB
h
)
c −β(sA

h )
3 − sA

h c
−(sB

h )
3 − sB

h c
(
sA

h + sB
h
)2 − (sA

h )
2sB

h −
(
sA

h + 2sB
h
)
c

)
.

Direct calculation yields det J̃ (Ẽ∗)|β=δ = −cβ5sA
h sB

h
(
sA

h + sB
h
)2

< 0, and hence, Ẽ∗ is
a saddle.
Case II. β > δ. In such a situation, we have three subcases. The first one is when sA

h > s∗A,
and System (9) has Ẽ∗ defined in (31) lying in the first quadrant. The origin Ẽ0 is a source.
It follows from (33) and (34) that both Ẽ1 and Ẽ2 are sinks since κ1 > 0 and κ2 > 0. At Ẽ∗

with β > δ, we have

J̃ (Ẽ∗)|β>δ =(
β(κ1 + κ2)

2 − βsA
h κ2

2 − δβc(2κ1 + κ2) −βsA
h κ2

1 + δβκ1c
−sB

h κ2
2 − βk2c (κ1 + κ2)

2 − sB
h κ2

1 − βc(2κ2 + κ1)

)
.
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Tedious but simple calculation reaches δJ̃ (Ẽ∗)|β>δ = −βc(κ1 + κ2)
2κ1κ2 < 0, and

hence Ẽ∗ is a saddle if sA
h > s∗A.

If sA
h = s∗A, then κ1 = 0 and Ẽ∗ = Ẽ2 = (0, 1). By analyzing the direction field (see

Figure 3A) of System (9), we find that for any small ε > 0, any solution of System (9)
initiated from Uε = {(x, y)|x2 + (y− 1)2 < ε} will eventually exit from Uε, implying the
instability of Ẽ2.

Figure 3. The direction field of System (9) with β > δ. Panel (A) is for sA
h = s∗A, and panel (B) is for

sA
h < s∗A.

To investigate the stability of Ẽ1, we denote

U1 = {(x, y) : F(x, y) > 0, G(x, y) > 0},
U2 = {(x, y) : F(x, y) > 0, G(x, y) < 0},
U3 = {(x, y) : F(x, y) < 0, G(x, y) < 0}.

By graphing the direction field in these subregions, we find that U2 is the basin of
attraction of Ẽ1. Furthermore, solutions of System (9) initiated from U1 or U3 will enter U2
in the finite time, and then tends to Ẽ1 as t→ +∞. These observations prove that Ẽ1 is a
sink, which is globally asymptotically stable.

If sA
h < s∗A, then κ1 < 0, and Ẽ∗ stays in the second quadrant. In this case, following

the same procedure as Case II, with the help of the direction field plotted in Figure 3B, we
can prove that Ẽ1 is globally asymptotically stable, and Ẽ2 is a saddle. It is obvious that
when sA

h ≤ s∗A, Ẽ0 is a source.
Case III. Following the lines in Case II, we can count the number of equilibria and analyze
their corresponding stability, and we omit it here. To make the conclusions concise, we
summarize the above analysis in Table 3.

Table 3. Condition for the existence and stability of equilibria of System (9).

Condition on β, δ
Condition on sA

h ,
sB

h
Equilibria and Stability

β = δ 0 < sA
h , sB

h < 1 Ẽ0 source, Ẽ1 sink, Ẽ2 sink, Ẽ∗ saddle

β > δ
sA

h < s∗A
Ẽ0 source, Ẽ1 globally asymptotically stable sink,

Ẽ2 saddle

sA
h = s∗A

Ẽ0 source, Ẽ1 globally asymptotically stable sink,
Ẽ2 unstable

sA
h > s∗A Ẽ0 source, Ẽ1 sink, Ẽ2 sink, Ẽ∗ saddle

β < δ
sB

h < s∗B
Ẽ0 source, Ẽ1 saddle, Ẽ2 globally asymptotically

stable sink

sB
h = s∗B

Ẽ0 source, Ẽ1 unstable, Ẽ2 globally asymptotically
stable sink

sB
h > s∗B Ẽ0 source, Ẽ1 sink, Ẽ2 sink, Ẽ∗ saddle
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Biologically, what we are concerned about most is the outcome of the competition
between two Wolbachia strains, that is, which strain will outcompete the other one. Math-
ematically, the fate of each strain is completely determined by whether or not the initial
population size lies in the basin of attraction of Ẽ1 or Ẽ2, denoted by B(Ẽ1) or B(Ẽ2), re-
spectively. The introduction of the incomplete CI makes the characterization of B(Ẽ1) and
B(Ẽ2) much more complex than the case of complete CI. However, the summary in Table 3
leads to the following results.

Theorem 3. (1) If β > δ, sA
h ≤ s∗A, then B(Ẽ1) = {(x, y) : x > 0, y ≥ 0}, and

B(Ẽ2) = {(x, y) : x = 0, y > 0}.
(2) If β < δ, sB

h ≤ s∗B, then B(Ẽ1) = {(x, y) : x > 0, y = 0}, and B(Ẽ2) = {(x, y) :
x ≥ 0, y > 0}.

To make the characterization of B(Ẽ1) and B(Ẽ2) complete, we still have three cases
to consider:

(i) β = δ, (ii) β > δ and sA
h > s∗A, and(iii) β < δ and sB

h > s∗B. (35)

For these three cases, the outcome of the competition between two Wolbachia-strains
is uncertain, which depends on the position of the initial population size (x0, y0). If
(x0, y0) ∈ B(Ẽ1), then w-A wins. If (x0, y0) ∈ B(Ẽ2), then w-B wins, as shown in
Theorem 3. The separatrix of B(Ẽ1) and B(Ẽ2) is exactly the stable curve of the saddle Ẽ∗,
denoted by h̃. Next, we offer a relatively sharp estimation of h̃. Based on the location of h̃,
we have

B(Ẽ1) =
{
(x, y) : x > 0, 0 ≤ y < h̃(x)

}
, B(Ẽ2) =

{
(x, y) : x ≥ 0, y > h̃(x)

}
.

For cases in (35), the x-isocline βx + β(1 − sA
h )y = δ(x + y)2 and the y-isocline(

1− sB
h
)

x + y = (x + y)2 intersect at Ẽ0 = (0, 0) and Ẽ∗ = (x̃∗, ỹ∗), which decompose
the first quadrant into four basic regions:

D̃1 = {(x, y) : F(x, y) > 0, G(x, y) > 0},
D̃2 = {(x, y) : F(x, y) > 0, G(x, y) < 0},
D̃3 = {(x, y) : F(x, y) < 0, G(x, y) < 0},
D̃4 = {(x, y) : F(x, y) < 0, G(x, y) > 0}.

To locate h̃(x), we check the direction field of System (10), and find that D̃2 ⊂ B(Ẽ1)
and D̃4 ⊂ B(Ẽ2). Hence, h̃(x) must lie in D̃1 and D̃3 separately. See Figure 4 below.

Similar to the proof of Theorem 2, we have the following.

Theorem 4. Define

h̃0(x) =
κ2

κ1
x and h̃1(x) =

βκ2c

(κ1 + κ2)
2

(
(κ1 + κ2)

2x
βκ1c

)1/δ

,

and then h̃ = h̃0 = h̃1 at x = 0 and x = x̃∗, and h̃(x) is sandwiched between h̃0 and h̃1. When
δ = 1, the three functions are identical, and the curve h̃(x) coincides with the straight line

L̃ : l̃(x, y) := κ2x− κ1y = 0. (36)

When δ > 1, we have

h̃0(x) < h̃(x) < h̃1(x) for 0 < x < x̃∗, and h̃1(x) < h̃(x) < h̃0(x) for x > x̃∗. (37)
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When δ < 1, we have

h̃1(x) < h̃(x) < h̃0(x) for 0 < x < x̃∗, and h̃0(x) < h(x) < h̃1(x) for x > x̃∗. (38)

Figure 4. State domain decomposition by the x-isocline βx + β(1− sA
h )y = δ(x + y)2, the y-isocline

(1− sB
h )x + y = (x + y)2, and the straight line κ2x− κ1y = 0. The stable curve Ws coincides with L

when δ = 1, lies entirely in D̃12 and D̃31 when δ > 1, and lies entirely in D̃11 and D̃32 when δ < 1.

Proof. The region D̃1 can be further divided into

D̃11 =

{
(x, y) : (x, y) ∈ D̃1, 0 < y <

κ2

κ1
x
}

,

and

D̃12 =

{
(x, y) : (x, y) ∈ D̃1, y >

κ2

κ1
x
}

.

Similarly, the region D̃3 is divided into D̃31 and D̃32 by L̃ (see Figure 4).
When δ = 1, we have

dl
dt

∣∣∣∣
L
= κ2x

(
β−

βsA
h y

x + y
− δ(x + y)

)
− κ1y

(
1−

sB
h x

x + y
− (x + y)

)

= κ2x

(
(β− 1) +

sB
h x− βsA

h y
x + y

+ (1− δ)(x + y)

)

= (1− δ)(κ1 + κ2)x

(
y−

βκ1

(κ1 + κ2)
2

)
= (1− δ)(κ1 + κ2)x(y− y∗) = 0,

(39)

showing that L̃ is a special solution of (9). Hence, h̃(x) coincides with the line L̃. Meanwhile,
the direct calculation yields

J(E∗)
(

κ1
κ2

)
=

1

(κ1 + κ2)
2

 β
(

κ2

(
(κ1 + κ2)

2 − sA
h κ2

2 − δc(2κ1 + κ1)
)
− κ2

(
sA

h κ1 + δκ1c
))

κ1
(
−sB

h κ2
2 − βκ2s

)
+ κ2

(
(κ1 + κ2)

2 − sB
h κ2

1 − βc(κ1 + 2κ2)
) 

=
1

κ1 + κ2

(
βκ1(κ1 + κ2 − s1κ2 − 2δc)

κ2
(
−2βc + κ1 + κ2 − sB

h κ1
) ) =

− βc
κ1 + κ2

(
δκ1
κ2

)
,

proving that L̃ is an eigenvector of J (Ẽ∗) if and only if δ = 1.
If δ 6= 1, then with (36) we get
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d2y
dx2 =

1
F

dG
dx
−

G
F2

dF
dx

=
1
F

(
G2

yF
− sB

h y
y− GF−1x
(x + y)2 − y

(
1 + GF−1

))
−

G
F2

(
F
x
+ βsA

h x
y− xGF−1

(x + y)2 − δx
(

1 + GF−1
))

=

(
G
F2 +

xy
(
sB

h y + βsA
h GF−1x

)
(x + y)2F2

)(
G
y
−

F
x

)
+

δxy
F2

(
1 + GF−1

)(G
y
−

F
δx

)

=

(
g
f 2 +

xy
(
sB

h y + βsA
h gF−1x

)
(x + y)2F2

)(
G
y
− F

x

)
− δxy

F2

(
1 + GF−1

)( l̃(x, y)
δ(x + y)

)
.

(40)

When δ > 1, since l̃(x, y) > 0 and F > 0 in D̃11, we have

G
y
− F

x
<

F
y
− 1

δ

F
x
= − l̃(x, y)

δ(x + y)
< 0. (41)

With the help of (40) and (41), we have proven that d2y/dx2 < 0, and hence the
solution of (9) is concave-down in D̃11 which is impossible. Therefore, we have proven that
the heteroclinic orbit connecting Ẽ0 and Ẽ∗ must lie entirely in D̃12.

To get an estimation of the upper bound of h̃(x), we revisit (23) to get

z′(t) =
x′

δx
− y′

y
=

κ2x− κ1y
δ(x + y)

=
l̃(x, y)

δ(x + y)
< 0.

Therefore, z(t) decreases monotonically with t in D̃12, and then

x1/δ h̃(x)−1 > (x̃∗)1/δ(ỹ∗)−1 or h̃(x) < ỹ∗(x/x̃∗)1/δ, 0 < x < x̃∗.

By substituting x̃∗ and ỹ∗ into the last inequality, we get

h̃(x) <
βκ2c

(κ1 + κ2)
2

(
(κ1 + κ2)

2x
βκ1c

)1/δ

= h̃1(x), 0 < x < x̃∗, (42)

verifying the first part of (37).
Regarding the second part of (37), we notice that the direction vector of L̃ is not an

eigenvector of J (Ẽ∗) for δ > 1, and hence L̃ is not tangential to the stable curve h̃(x) at
Ẽ∗. This implies that the stable curve lies in D̃31 when x > x̃∗ with x being sufficiently
close to x̃∗. Actually, the stable curve will always stay in D̃31 for all x > x̃∗. To see this, we
recall (39) and find that all trajectories initiated at L̃ with y > ỹ∗ move into D̃32 when t
increases from t = 0. Hence, h̃(x) cannot meet L̃ from the domain D̃31 when x increases, or
equivalently, when t decreases. As l̃(x, y) > 0 in D̃31, z(t) increases strictly along h̃(x) in
this domain, giving z(t) < limt→∞ z(t). By the same calculation of deriving (42), we obtain
the estimate

h̃(x) > h̃1(x), x > x̃∗, (43)

completing the proof of (37). The proof of (38) for the case δ < 1 is similar, and we omit it
here. This completes the proof.

4. Conclusions and Discussion

As one of the most rapidly spreading mosquito-borne infectious diseases, dengue
threatens the health of more than half of the global population. In Guangdong Province,
China, there was an unprecedented outbreak of dengue in 2014, which reported more cases
than the total number in the last decade. Currently, there are no safe and effective specific
drugs and vaccines for dengue. Thus, the primary method of prevention and control is to
eliminate dengue vectors, including Aedes albopictus and Aedes aegypti. The direct method to
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kill them is spraying insecticides, which is unsustainable because of insecticide resistance,
high cost, and environmental pollution. In recent years, scientists have discovered a
novel microbial pesticide involving the maternally transmitted endosymbiotic bacteria
Wolbachia. By inducing cytoplasmic incompatibility (CI), Wolbachia-infected males that
cause CI have been proposed as an ovicide. Furthermore, Wolbachia can block dengue
replication in mosquitoes, implying that Wolbachia vaccinates female mosquitoes. With
these mechanisms, the Wolbachia release has been implemented in field experiments in
24 countries worldwide. Wolbachia release has been carried out in two different strategies,
including population suppression and population replacement. Population suppression
requires the inundative releases of Wolbachia males to guarantee the effective incompatible
matings between wild females and released males. In contrast, population replacement is
an inoculated release strategy, which releases both Wolbachia males and females to drive
the pathogen-blocking trait into the population.

Although various mathematical models for population suppression and population
replacement have been developed [17–19,21,40–42,48,49], the model involving bidirectional
CI is rarely studied in the previous study. As important as unidirectional CI, bidirectional
CI has been frequently reported [28–31]. In addition, the transmission rate and CI intensity
are affected by temperature and possibly other environmental conditions [32], which can
induce the overlapping of different Wolbachia strains in population replacement strategy.
Motivated by these considerations, we developed Model (9) to study the global dynam-
ics for competition between two Wolbachia strains with bidirectional CI. Our theoretical
results provide sharp separatrices determining the competition outcome of the two Wol-
bachia strains. The results help choose appropriate Wolbachia strains and design optimal
release strategies.

The theoretical results are offered in Sections 3.1 and 3.2. Section 3.1 is focused on the
case with complete CI. Theorem 1 shows that System (9) always generates four equilibria,
among which the trivial equilibrium E0 is a source, the two boundary equilibria E1 and E2
are sinks, and the unique interior equilibrium E∗ is a saddle. To characterize the competition
outcome of the two Wolbachia strains, Theorem 2 offers a relatively sharp estimation of the
stable curve of E∗, above which w-B wins, and below which w-A wins. The stable curves of
E∗ are located with two analytical functions h0(x) and h1(x) defined in Theorem 2. Thus,
the global dynamics of System (9) can be totally determined by the stable curve.

To explore the result numerically, we take two Wolbachia strains, the benign wMel [13]
and the virulent wMelPop [50] established in Aedes aegypti, as an example. Compared to
wild Aedes aegypti, the wMel strain did not show significant reductions in fecundity and the
egg hatch rate, together with a minor reduction in the mean longevity of adult mosquitoes.
In contrast, the virulent wMelPop strain induced strong fitness cost and greatly reduced the
fecundity and the egg hatch rate. Moreover, the wMelPop strain caused an approximately
40% reduction in mean longevity. In such a situation, we treat wMel and wMelPop as the
best and the worst Wolbachia strains to estimate the range of β and δ in System (9). Recalling
that in [21], we estimated the birth rate constants and the death rate constants for wMel
and wMelPop, and obtained

wMel : bwMel = 0.3976, dwMel = 9.4482× 10−6.

wMelPop : bwMelPop = 0.2154, dwMelPop = 1.4172× 10−5.

See Section 4.1 of [21] for a detailed conversion of these parameters based on the
experimental data in [13,50]. This leads to

β ∈
[

0.2154
0.3976

,
0.3976
0.2154

]
= [0.5418, 1.8459], (44)

δ ∈
[

9.4482× 10−6

1.4172× 10−5 ,
1.4172× 10−5

9.4482× 10−6

]
= [0.6667, 1.50]. (45)
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In the following numerical simulations, we take two parameter combinations with

(i) : β = 1.2, δ = 0.8. (ii) : β = 0.8, δ = 1.2,

such that β and δ lie in the intervals in (44) and (45), respectively. We first let sA
h = sB

h = 1,
and for case (i) and case (ii) we choose 11 points x(0) ∈ [0, 0.5], and find (x(0), y∗), such
that the solution initiated from (x(0), y∗) of (10) tends to E1, while the solution initiated
from (x(0), y∗ + 0.0001) tends to E2. If so, we claim that the point (x(0), y∗) ∈ (x, h(x)).
The stable curves of E∗ are approximately plotted by seeking 11 points (red stars). In both
cases, the stable curves of E∗ are sandwiched between h0(x) and h1(x) as shown in Figure 5,
verifying the estimations of the stable curve shown in Theorem 2.
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Figure 5. For complete CI with sA
h = sB

h = 1, panel (A) is for the case with β = 1.2 and δ = 0.8, and
panel (B) is for the case with β = 0.8 and δ = 1.2.

Regarding the situation with incomplete CI, the dynamics become much more complex.
When β = δ, the dynamics of System (9) show the same pattern as that of System (8) with
complete CI. However, when β 6= δ, the existence and stability of equilibria of System (9)
depend on the other two thresholds on the CI intensity, denoted by s∗A and s∗B. See Table 3
for a summary of counting the equilibria of System (9), together with their stability analysis.
The global dynamics of System (9) are proven in Theorems 3 and 4. To check these results
numerically, we use pplane10 in Matlab to plot dynamics of System (9) when β = 1.2 and
δ = 0.8. This yields s∗A = 1/3. Fix sB

h = 0.9. Panel A in Figure 6 shows that any solutions
initiated from the interior of the first quadrant tends to (1.5, 0); that is, w-A outcompetes
w-B and dominates the mosquito population. However, when taking sA

h = 0.5 > s∗A, the
saddle point E∗ = (0.13085, 0.73278) appears. The stable curves of E∗, shown in black
curves in Panel B in Figure 6, determine the outcome of competition results between w-A
and w-B strains. Similar figures can be plotted for the case β < δ, which we omit here.

It is well known that mosquitoes undergo four metamorphosis stages: egg, larva,
pupa, and adult. Our current study only models the dynamics of adult mosquitoes,
leaving the first three aquatic stages untouched. To characterize the developmental traits
in aquatic stages, we have tried two modeling ideas in our previous works. The first
one formulated stage-structured models by using difference equations that include the
four stages of mosquitoes to predict the mosquitoes’ abundance in [51], together with an
exploration of the optimal release strategies specific to Aedes albopictus in Guangzhou [52].
The second assumed that the average waiting time from mating to the emergence of
reproductive progenies is kept as a constant τ and studied the interactive dynamics of
Wolbachia-infected and wild mosquitoes [17–20,53]. To see the impact of aquatic stages
on the competition between two Wolbachia strains, in our future work, we shall embed
the aquatic stages into System (9), either by adding equations for aquatic stages or by
introducing the maturation delays.
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x ' = x (1.2 - 1.2 0.25 y/(x + y) - 0.8 (x + y))

y ' = y (1 - 0.9 x/(x + y) - (x + y))           
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Figure 6. Take β = 1.2 and δ = 0.8, we get s∗A = 1/3. Fix sB
h = 0.9. Panel (A) is for the case with

sA
h = 0.25 < s∗A, and panel (B) is for the case with sA

h = 0.5 > s∗A.
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