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Abstract: The theory of functional connections, an analytical framework generalizing interpolation,
was extended and applied in the context of fractional-order operators (integrals and derivatives). The
extension was performed and presented for univariate functions, with the aim of determining the
whole set of functions satisfying some constraints expressed in terms of integrals and derivatives of
non-integer order. The objective of these expressions was to solve fractional differential equations
or other problems subject to fractional constraints. Although this work focused on the Riemann–
Liouville definitions, the method is, however, more general, and it can be applied with different
definitions of fractional operators just by changing the way they are computed. Three examples are
provided showing, step by step, how to apply this extension for: (1) one constraint in terms of a
fractional derivative, (2) three constraints (a function, a fractional derivative, and an integral), and
(3) two constraints expressed in terms of linear combinations of fractional derivatives and integrals.

Keywords: functional interpolation; fractional derivatives and integrals; Riemann–Liouville deriva-
tive; shifted Chebyshev polynomials
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1. Introduction

During the past few decades, fractional calculus has been applied in different fields of
science. Introductory surveys can be found in [1,2]. In engineering, it finds applications in
fields such as control theory [3], the mechanics’ theory of viscoelasticity [4,5], in sedimen-
tology with diffusion and transport in porous rocks (using fractional derivatives with the
theory of fractals) [6], in (bio)chemistry with the modeling of polymers and proteins [7],
in finance on stochastic computation with respect to fractional Brownian motion [8], and
in medicine on the modeling of human tissue under mechanical loads [9], as well as in
many other fields such as anomalous diffusion [10], anomalous convection [11], power
laws [12], probability [13], optimal control [14], allometric scaling laws [15], long-range
interactions [16], the description of galaxy rotation [17], market price dynamics [18], and
so on.

The use of fractional derivatives and integrals (the term “fractional” must be actually
intended as an extension to real values, rather than limited to integer values) in applied
science and engineering has been dormant for a long time. There is no reason why the laws
of the natural phenomena must be restricted to integer-order derivatives and integrals,
and the idea to extend these operators to real orders is actually quite old, dating back to
1695 [19]. The reason for this delay is perhaps due to the fact that the various different
approaches/definitions (with respect to the “boundary” constraints being coincident, in
some specific domains, with the classical integer-order definitions) provide different results.
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In addition, solving fractional-order problems turns out to be much more difficult
than in the integer-order case, and sophisticated (analytical and numerical) methods are
necessary; indeed, they are the subject of more and more ongoing investigations.

In this study, the theory of functional connections (TFC), a new mathematical frame-
work generalizing interpolation using functionals [20], is extended for the first time to
fractional derivatives and integrals. The capability to derive expressions representing
all functions subject to fractional constraints (the main objective of this article) has a di-
rect impact on solving fractional differential equations [21] and, in general, in any other
problem subject to fractional constraints. In fact, this capability allows transforming these
constrained optimization problems to unconstrained problems, which can then be solved
using simpler, more robust, more accurate, faster, and more reliable methods. Therefore,
the main aim of this article was to pave the way for devising advanced mathematical tools
to solve fractional differential equations (FDEs) using the TFC.

In previous TFC applications, functional interpolation problems were solved by ex-
panding the TFC free function in terms of orthogonal polynomials (Chebyshev, Legendre,
etc.). Since fractional derivatives and integrals involve the computation of negative powers
of the independent variable (a complex value for x < 0), shifted Chebyshev polynomials
(SCPs), defined in the x ∈ [0, 1] range, were adopted, and a brief description of SCPs and
how to evaluate the derivatives is provided.

To achieve these goals, we first provide, in Section 2, a brief survey of the background
materials on fractional calculus. Hence, Section 3 summarizes what the TFC is, where it
has already be applied, and how it derives functionals representing all functions always
satisfying a set of linear constraints. Shifted Chebyshev polynomials and their applications
to represent derivatives of fractional order are discussed in Section 4. Finally, some numeri-
cal experiments to show the applications of the TFC with different constraints involving
fractional integrals and fractional derivatives are presented. The Appendices at the end of
the paper collect more technical details.

2. Background on Fractional Calculus

To allow the use of the TFC with fractional-order operators, it is necessary to prelimi-
narily provide some basic material on fractional calculus.

2.1. The Gamma Function

The introduction of fractional-order operators requires recalling the Gamma function,
Γ(z), and some of its main properties. The Gamma function is defined as

Γ(z) =
∫ ∞

0
xz−1 e−xdx, z ∈ R, z > 0, (1)

and it is analytically continuable in C\{0,−1,−2,−3, . . . }.
The extension of the factorial definition using the Gamma function is supported by the

Bohr–Mollerup theorem [22]: the Gamma function is indeed the unique function defined
on (0, ∞) satisfying the following properties:

1. Γ(1) = 1;
2. Γ(z + 1) = z Γ(z), for z > 0;
3. Γ(z) is logarithmically convex (or superconvex).

Property 2 implicitly states that Γ(z + 1) = z! when z ∈ N, and the similarity to the
analogous property of the factorial, n! = n (n− 1)!, is evident.

Along with the definition given in (1), the Gamma function allows expressing factorials
in terms of the Gamma function, namely n! = Γ(n + 1) when n ∈ N, and extending the
factorial operator to non-integer values. For instance,(

1
2

)
! = Γ

(
1
2
+ 1
)
=
∫ ∞

0

√
x e−xdx =

√
π

2
.
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This is also true for functions derived from the factorial, as for instance the binomial co-
efficient (n

k) = n!/(k!(n− k)!) = Γ(n + 1)/(Γ(k + 1)Γ(n− k + 1)), which can be, therefore,
defined also for non-integer values as(

α

k

)
=

Γ(α + 1)
k!Γ(α− k + 1)

, α ∈ R\{−1,−2,−3, . . . }. (2)

2.2. Riemann–Liouville Fractional Integral

Cauchy’s formula allows representing the n-times repeated integration on [a, x] in
terms of just one integral:

J n
a [ f (x)] =

∫ x

a

∫ t1

a
· · ·

∫ tn−1

a
f (tn)dtndtn−1 . . . dt1 =

1
(n− 1)!

∫ x

0
(x− t)n−1 f (t)dt,

an expression valid for n ∈ N. By replacing (n− 1)! = Γ(n), this formula holds for any
n ∈ C, Re(n) > 0. What is obtained is the Riemann–Liouville (RL) fractional integral:

J α
a [ f (x)] =

1
Γ(α)

∫ x

a
(x− t)α−1 f (t)dt, α > 0,

which coincides with the usual definition of the integral operator when α is an integer. This
RL fractional operator satisfies the following semigroup properties:

J α+β
a [ f (x)] = J α

a
(
J β

a [ f (x)]
)

and
dm

dxmJ
α+m
a [ f (x)] = J α

a [ f (x)]

for real α, β > 0 and m ∈ N.
As in the integer-order case, RL fractional integration improves the smoothness prop-

erties of functions (see Appendix A for an explanation).

2.3. Riemann–Liouville Fractional Derivative

Different kinds of operators inverting the RL integral are possible. For a sufficiently
smooth function f , the RL fractional derivative of order α > 0 is defined as

RLDα
a [ f (x)] :=

dm

dxmJ
m−α
a [ f (x)] =

1
Γ(m− α)

dm

dxm

∫ x

a
(x− t)m−α−1 f (t)dt,

where m = dαe. In view of the mentioned semigroup properties of J α
a , one can immediately

check that RLDα
a [J α

a [ f (x)]] = f (x).
The reverse composition of the RL derivative and integral instead involves initial

conditions at x = a, namely [23] (Theorem 2.23)

J α
a

[
RLDα

a f (x)
]
= f (x)−

m−1

∑
k=0

(x− a)α−m+k

Γ(α−m + k + 1)
lim

z→a+

dk

dxkJ
m−α
a [ f (z)],

provided that J m−α
a [ f (x)] possesses a sufficient regularity.

There is a substantial difference with integer-order differential operators: the operator
thus-obtained has a non-local character. This is known as the “memory effect”, and this
property is more deeply explained in Appendix B.

The fractional derivative is a linear operator:

RLDα
a [k1 f (x) + k2 g(x)] = k1

RLDα
a [ f (x)] + k2

RLDα
a [g(x)],

and the RL derivative of power functions f (x) = (x− a)β is given by
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RLDα
a [(x− a)β] =

Γ(β + 1)
Γ(β− α + 1)

(x− a)β−α,

thus showing that the RL derivative of a constant c is not 0, but
RLDα

a [c] =
c

Γ(1− α)
(x − a)−α. By setting a = 0, we readily obtain the RL fractional

derivative of monomials as

RLDα
0 [x

n] =
Γ(n + 1)

Γ(n− α + 1)
xn−α, n ∈ N, (3)

which is known as the fractional power rule. This expression is useful when expanding a
function in Taylor series or in terms of orthogonal polynomials as, for instance, the shifted
Chebyshev polynomials.

In some cases (see [23] (Theorem 2.3)), the RL derivative may satisfy a subsequent
derivation property such as

RLDα
a

[
RLDβ[ f (x)]

]
= RLDβ

a

[
RLDα[ f (x)]

]
= RLDα+β

a [ f (x)], (4)

which allows re-conducting fractional derivatives in the restricted range α ∈ (0, 1); indeed,
when β ∈ (m, m + 1), m ∈ N, one can find α ∈ (0, 1) such that β = m + α and write

RLDβ
a [ f (x)] = RLDm+α

a [ f (x)] =
dm

dxm

[
Dα

a [ f (x)]
]
,

as for instance in

RLD5.7
a [ f (x)] = RLD5+0.7

a
[
[ f (x)]

]
=

d5

dx5

[
RLD0.7

a [ f (x)]
]

(the use of (4) must be done, however, with caution since it does not hold for any function
f and for any pair of orders α and β). On the basis of this observation, we restricted our
investigation to the range α ∈ (0, 1).

2.4. Caputo Fractional Derivative

The RL derivative is not the only operator performing the inversion of the RL integral
J α

a [ f (x)]. A further definition is known as the Caputo fractional derivative:

CDα
a [ f (x)] := J m−α

a

[
dm

dxm f (x)
]
=

1
Γ(m− α)

∫ x

a
(x− t)m−α−1 f (m)(t)dt,

and also in this case, it is easy to check that CDα
a [J α

a [ f (x)]] = f (x).
The Caputo derivative requires a stronger regularity of the function f , but its left

inversion by means of the RL integral involves initial conditions expressed in terms of
integer-order derivatives since [23] (Theorem 2.3)

J α
a

[
CDα

a f (x)
]
= f (x)−

m−1

∑
k=0

(x− a)k

k!
dk

dxk f (a).

This property is of importance in fractional differential equations since it implies that
initial-value problems with the Caputo fractional derivative are initialized by values of
the integer-order derivative of the solution (which are standard in physical problems) and
not by the limits of fractional-order integrals as with the RL derivative. However, the two
derivatives are strictly connected since

CDα
a
[

f (x)
]
= RLDα

a
[

f (x)
]
−

m−1

∑
k=0

(x− a)k−α

Γ(k− α + 1)
dk

dxk f (a),
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and therefore, focusing on just one of them does not appear too restrictive. In this prelimi-
nary work, our attention was mainly devoted to the RL definition.

2.5. Grünwald–Letnikov Definitions

It is worthwhile to mention the Grünwald–Letnikov (GL) definition of fractional
derivatives [24], which provides discrete access to the fractional calculus, and it is particu-
larly suitable for numerical treatment. Indeed, the GL derivative is defined as

GLDα
a
[

f (x)
]
= lim

h→0+

1
hα

[ x−a
h ]

∑
j=0

(−1)j
(

α

j

)
f (x− jh),

where the binomial coefficient (α
j) must be intended as in (2). It is immediate to see that

GLDα
a allows a numerical approximation once a constant (possibly small) step h > 0, rather

than the limit as h → 0+, is selected. Reference [24] analyzed the numerical stability,
convergence, and error of FDEs using the GL derivative, where the asymptotic and the
absolute stability of these methods were proven.

The GL definition is obtained from a generalization of the definition of the integer-
order derivative expressed as the limit of the difference quotient and after imposing, in
order to ensure the convergence of the series, that the function has a value of 0 before the
initial point a (see, for instance, [25]). Under the necessary assumptions on the smoothness
of f , it is possible to prove an equivalence between the GL and RL definitions.

A integral of the GL type can be defined as well after considering a negative-order −α
in GLDα

a , i.e.,

GLJ α
a f (x) = lim

h→0+
hα

[ x−a
h ]

∑
j=0

(−1)j
(
−α

j

)
f (x− jh),

which instead corresponds to the RL integral initialized at a.

3. Background on the Theory of Functional Connections

The theory of functional connections (TFC) performs linear functional interpolation,
and functional interpolation is a generalization of interpolation. Instead of selecting a
function (or a class of functions) satisfying a set of constraints, functional interpolation
derives functionals (called constrained expressions) representing the whole set of functions
satisfying the constraints; stated in a different way, TFC derives functionals that always
satisfy the whole set of constraints (the constraints are embedded in the functional). In this
way, functional interpolation identifies the subset of the function space that fully satisfies
the constraints.

These functionals contain a free function, g(x), and by spanning all possible ex-
pressions of the free function, the whole space of functions satisfying the constraints is
covered. In particular, the free function always appears linear in the TFC, thus simplify-
ing optimization processes. This approach was introduced in [26], and then, immediate
applications appeared for solving differential equations [27–30] and for other mathematical
problems [31–34].

To give a simple example of what functional interpolation is, consider the functional:

f (x, g(x)) = g(x) +
2g(−3)− 2g(π) + (9− π2)(1− ġ(1))

2π − π2 + 15
x+

+
g(π)− g(−3) + (π + 3)(1− ġ(1))

2π − π2 + 15
x2 (5)

where ġ denotes the derivative of g. This equation always satisfies the two constraints,
f (−3) = f (π) and ḟ (1) = 1, regardless of the function g(x). The function g(x) is a free
function subject to being defined, where the constraints are specified, only. Functionals
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such as (5) represent the whole set of functions satisfying the set of constraints they are
derived for. These functionals project the whole space of functions to just the subspace fully
satisfying the constraints. This way, constrained optimization problems, such as differential
equations, can be transformed to unconstrained problems and, consequently, be solved
using simpler, faster, more robust, and more accurate methods. Univariate functionals such
as (5) can be generated by either one of these two formal expressions, called constrained
expressions (CEs):

f (x, g(x)) = g(x) +
n

∑
j=1

ηj(x, g(x)) sj(x) (6)

f (x, g(x)) = g(x) +
n

∑
j=1

φj(x, s(x)) ρj(x, g(x)) (7)

where n is the number of linear constraints, g(x) is the free function, sj(x) is a set of n
user-defined linearly independent support functions, ηj(x, g(x)) are coefficient functionals,
φj(x) are switching functions (they are 1 when evaluated at the constraint they reference
and 0 when evaluated at all other constraints), and ρj(x, g(x)) are projection functionals
representing the constraints written in terms of the free function.

Numerically efficient applications of the TFC have already been implemented in opti-
mization problems, outperforming the current methods, especially in solving differential
equations. In this area, the TFC has unified initial, boundary, and multi-value problems by
usually providing fast solutions with high accuracy.

A Simple Explanatory Example

Let us consider the problem of determining functions f satisfying the initial condition:

Dα
0 [ f (x)]x0 = f0, (8)

where, to adopt a more concise notation, from now on, Dα
0 will denote the fractional RL

derivative of order α, previously identified as RLDα
0 , and Dα

0 [ f (x)]x0 its value at x = x0.
Using the “η” formulation (6), the constrained expression is

f (x, g(x)) = g(x) + η xp. (9)

After imposing (8) at x = x0, the η coefficient can be derived as

η =
(

f0 −Dα
0 [g(x)]x0

)Γ(p− α + 1)
Γ(p + 1)

xα−p
0

and the constrained expression becomes

f (x, g(x)) = g(x) +
(

f0 −Dα
0 [g(x)]x0

)Γ(p− α + 1)
Γ(p + 1)

xα−p
0 xp. (10)

This constrained expression represents the whole set of functions satisfying the given
constraint (8). It can be used, for instance, in a constrained optimization process, subject
to satisfying (8). By means of (10), an initial constrained optimization problem can be
transformed to the unconstrained problem of finding the expression of the free function,
namely g(x), generating the optimal f (x) [20].

The most-simple function satisfying the constraint (8) is obtained from (10) after setting
g(x) = 0:

f (x) = f0
Γ(p− α + 1)

Γ(p + 1)
xα−p

0 xp,

and indeed, it is easy to check that
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Dα
0 [ f (x)]x0 = f0

Γ(p− α + 1)
Γ(p + 1)

xα−p
0

Γ(p + 1)
Γ(p− α + 1)

xp−α
0 = f0.

In Figure 1, we show, for three different choices of the free function g, namely
g(x) = x2, g(x) = e−x/2, and g(x) = cos(2x), the plots of f (x, g(x)) (left plot) and of
its RL derivative Dα

0 f (x, g(x)) (right plot). We imposed the constraint (8) with α = 0.8,
x0 = 1, and f0 = 1, and we considered the constrained expression (9) with p = 2. Although
we obtained three different functionals f (x, g(x)), all their RL satisfy the constraint (8):
indeed, in the right plot, we observe that Dα

0 [ f (x)]x0 = f0. For the evaluation of the RL
derivatives, we used the formulas in Appendix A.

0 0.5 1 1.5 2

0

1

2

3

4

5

0 0.5 1 1.5 2

0

1

2

3

4

5

Figure 1. Functional f (x, g(x)) (left plot) and its RL derivative Dα
0 f (x, g(x)) (right plot) for some

choices of g(x). Here, α = 0.8, x0 = 1, f0 = 1 and p = 2.

4. Shifted Chebyshev Polynomials

Chebyshev polynomials of the first kind are orthogonal polynomials defined for
t ∈ [−1, 1] as Tk(t) = cos

(
k arccos t

)
, k = 0, 1, . . . . They can be built in different ways, such

as, for instance, by means of the three-term recurrence relation:

Tk+1(x) = 2t Tk(t)− Tk−1(t) starting with:

{
T0(t) = 1,
T1(t) = t.

To operate with fractional-order operators initialized at some points x0, it is convenient
to use shifted Chebyshev polynomials (SCPs) preserving orthogonality on the shifted
interval. Appendix C provides a summary of various approaches to perform the least
squares. They can be adopted in optimization to estimate the coefficients of the free function,
which is expanded in terms of shifted Chebyshev polynomials.

To simplify the notation, we considered the fractional integral and the fractional
RL derivative initialized at x = 0, and we assumed we are interested in approximating
functions on the interval [0, 1]. The generalization to different intervals is always possible
without particular difficulties.

SCPs on [0, 1] are connected to Chebyshev polynomials by the relationship:

Sk(t) = Tk(2 t− 1) where t ∈ [0, 1]

and the corresponding three-term recurrence relation is

Sk+1(t) = (4t− 2)Sk(t)− Sk−1(t) starting with:

{
S0(t) = 1,
S1(t) = 2t− 1.

(11)
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In order to expand free functions in the TFC, it is convenient to express SCPs in terms
of monomials:

Sk(t) =
k

∑
j=0

ak,j tj, (12)

where coefficients ak,j, j = 0, 1, . . . , k, mapping SCPs to monomials, are obtained from the
recursive form (11) of SCPs; a closed form can be obtained, for instance, from [35] as

a0,0 = 1, ak,j =
k
2

⌊
k−j

2

⌋
∑
`=0

(
k− 2`

k− j− 2`

)
(−1)k−j−`2k+j−2` (k− `− 1)!

`!(k− 2`)!
.

Therefore, it is possible to represent the SCPs up to degree m as
S0(t)
S1(t)

...
Sm(t)

 = A


t0

t1

...
tm

, A =


a00 0 · · · 0
a10 a11 · · · 0
...

...
. . .

...
am0 am1 · · · amm


and the first few coefficients (for m = 5) can be easily evaluated as

A =



1 0 0 0 0 0
−1 2 0 0 0 0

1 −8 8 0 0 0
−1 18 −48 32 0 0

1 −32 160 −256 128 0
−1 50 −400 1120 −1280 512

.

The matrix expression of the SCPs allows us to provide the RL fractional derivatives
of the SCPs after using (3) for the RL derivatives of monomials:

RLDα
0


S0(t)
S1(t)

...
Sm(t)

 = A



Γ(0+1)
Γ(0−α+1) t0−α

Γ(1+1)
Γ(1−α+1) t1−α

...
Γ(m+1)

Γ(m−α+1) tm−α


= A Dα


t0−α

t1−α

...
tm−α

 = t−α ADα


t0

t1

...
tm

 (13)

where Dα is a diagonal matrix made of Γ functions ratio terms

Dα =


Γ(1)

Γ(1−α)
0 . . . 0

0 Γ(2)
Γ(2−α)

. . . 0
...

...
. . .

...
0 0 . . . Γ(m+1)

Γ(m+1−α)

.

It is well known that integer-order derivatives of SCPs can expressed in terms of SCPs
themselves according to

Ṡ(t) =


Ṡ0(t)
Ṡ1(t)

...
Ṡm(t)

 =


b00 0 · · · 0
b10 b11 · · · 0

...
...

. . .
...

bm0 bm1 · · · bmm




S0(t)
S1(t)

...
Sm(t)

 = B S(t)

and
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S̈(t) =


S̈0(t)
S̈1(t)

...
S̈m(t)

 =


c00 0 · · · 0
c10 c11 · · · 0
...

...
. . .

...
cm0 cm1 · · · cmm




S0(t)
S1(t)

...
Sm(t)

 = C S(t),

where matrices B and C can be easily built in a recursive way. Indeed, by using the
expression of their first column:

bk,1 = (−1)k2(k− 1) and ck,1 = 4(k− 1)[1− k mod(2)], k = 1, 2, . . . ,

one can build the following columns according to

bk+i,k+i = 2bk,1 and ck+i,k+i = 2ck,1, i = 1, 2, . . . .

For instance, for m = 5, the B and C lower-triangular matrices are

B =



0 0 0 0 0 0
2 0 0 0 0 0
−4 4 0 0 0 0

6 −8 4 0 0 0
−8 12 −8 4 0 0
10 −16 12 −8 4 0

 and C =



0 0 0 0 0 0
0 0 0 0 0 0
8 0 0 0 0 0
0 16 0 0 0 0

16 0 16 0 0 0
0 32 0 16 0 0


To obtain a similar relationship with RL derivatives, we first observe that the inverse

mapping of (12) is also available, namely

tk =
k

∑
j=0

āk,jSj(t),

where coefficients āk,j, j = 0, 1, . . . , k are given (after simple manipulations) by [35]

āk,j =
Ck

2n+k

n−k

∑
j=0

j even

(
k + j
j/2

)(
n

k + j

)
2−j, Ck =

{
1 k = 0,
2 k > 0,

Thus, we write
t0

t1

...
tm

 = Ā


S0(t)
S1(t)

...
Sm(t)

, Ā =


ā00 0 · · · 0
ā10 ā11 · · · 0
...

...
. . .

...
ām0 ām1 · · · āmm

.

We note that Ā = A−1, and therefore, thanks to (13) one obtains

RLDα
0


S0(t)
S1(t)

...
Sm(t)

 = t−α ADα A−1


S0(t)
S1(t)

...
Sm(t)

. (14)

Example

Let us consider, on the interval [0, 1], the following function:

g(t) =
1

2− t2 −
1
2
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and its approximation gm(t) ≈ g(t) obtained by the first m + 1 terms in the shifted Cheby-
shev expansion, namely

gm(t) = ξ T
mSm(t) where Sm(t) =


S0(t)
S1(t)

...
Sm(t)

, ξm =


ξ0
ξ1
...

ξm

,

where coefficients ξk can be easily evaluated after computing (by some accurate quadrature
rule) the integrals:

ξk =
4

πck

∫ 1

0
g(t)

Sk(t)√
1− (2t− 1)2

dt

with c0 = 2 and ck = 1 for any k ≥ 1. By using (14), we are, hence, able to evaluate

RLDα
0 gm(t) = ξ T

m
RLDα

0 Sm(t) = ξ T
α,mt−αSm(t), ξ T

α,m = ξ T
m ADα A−1 ∈ Rm,

which provides an approximation to RLDα
0 g(t) in terms of shifted Chebyshev polynomials.

In the left plot of Figure 2, we show the function g(t) and the error |g(t)− gm(t)| for
some values of m. The RL derivative of gm(t), where m = 12, is instead presented in the
right plot of Figure 2 for α ∈ {0.5, 0.7, 0.9}.

0 0.2 0.4 0.6 0.8 1

0

0.5

0 0.2 0.4 0.6 0.8 1
10

-9

10
-7

10
-5

10
-3

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Figure 2. Function g(t) and errors of truncated approximations gm(t) (left plot). RL derivatives
Dα

0 gm(x) for m = 12 (right plot).

5. Numerical Examples

This section shows, by three distinct examples, how to apply the TFC to obtain
functionals, called constrained expressions, with embedded fractional constraints. The first
example involves, again, a single fractional derivative constraint that is solved using the
switching projection TFC formulation, while the second examples shows how to derive, via
the TFC η formulation [20], the constrained expression subject to three constraints specified
by the values of the function, of its fractional derivative, and of its fractional integral. The
third example is devoted to presenting the use of the switching-projection formulation [20]
to derive the constrained expression for two constraints defined as a linear combination of
fractional constraints specified in distinct locations.

5.1. Single Fractional Constraint

Let us derive, by the switching-projection TFC formulation (7), the functional repre-
senting all functions satisfying the single fractional derivative constraint:

D1/3
0 [ f (x)]

∣∣
2 = π (15)
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The number of constraints is n = 1. Therefore, just one support function and one
switching function are needed. Let s(x) = x2 be the support function. The switching
function is φ(x) = ξ s(x) = ξ x2, and it is subject to

D1/3
0 [φ(x)]

∣∣
2 = ξ D1/3

0 [x2]
∣∣
2 = ξ

Γ(3) 25/3

Γ(8/3)
= 1,

from which the unknown coefficient ξ =
Γ(8/3)

Γ(3) 25/3 is computed. Therefore, the expressions

of the switching function and of the projection functional are

φ(x) =
Γ(8/3)

Γ(3) 25/3 x2 and ρ(x, g(x)) = π −D1/3[g(x)]
∣∣
2

and the constrained expression, f (x, g(x)) = g(x) + φ(x) ρ(g(x)), representing the whole set
of functions satisfying (15), is

f (x, g(x)) = g(x) +
Γ(8/3)

Γ(3) 25/3 x2
[
π −D1/3

0 [g(x)]
∣∣
2

]
(16)

Note that, by setting g(x) = 0, the simplest interpolation result is obtained, i.e.,

D1/3
0 [ f (x)]

∣∣
2 =

Γ(8/3)
Γ(3) 25/3 πD1/3

0 [x2]
∣∣
2 =

Γ(8/3)
Γ(3) 25/3 π

Γ(3) 25/3

Γ(8/3)
= π.

Equation (16) can also be validated using any expression of the free function. For
example, by setting g(x) = cx + d cos x, thanks to (A2) and (A8), we obtain

D1/3
0 [g(x)]

∣∣
2 = D1/3

0 [cx + d cos x]
∣∣
2 = c

Γ(2)
Γ(5/3)

22/3 + d2−αE2,1−α(−22) = c′ + d′

and hence,

D1/3
0 [ f (x)]

∣∣
2 = D1/3

0

[
g(x) +

Γ(8/3)
Γ(3) 25/3 x2

(
π −D1/3

0 [g(x)]
∣∣
2

)]∣∣∣∣
2
=

= c′ + d′ +
Γ(8/3)

Γ(3) 25/3

(
π − c′ − d′

)
D1/3

0

[
x2
]∣∣∣∣

2
=

= c′ + d′ +
Γ(8/3)

Γ(3) 25/3

(
π − c′ − d′

)Γ(3) 25/3

Γ(8/3)
= π.

5.2. Three Mixed Constraints

This example includes n = 3 constraints, the function value, fractional derivative, and
fractional integral constraints:

f (x)
∣∣
1 = 3, D3/8

0 [ f (x)]
∣∣
2 = −1, and J 4/5

0 [ f (x)]
∣∣
2 = 1. (17)

For these constraints, the constrained expression is derived using the η formulation (6).
Let the support functions be s(x) = {1, x, x2}. Then, the constraints imply

3− g(x)
∣∣
1

−1−D3/8
0 [g(x)]

∣∣
2

1−J 4/5
0 [g(x)]

∣∣
2

 =

 s1(1) s2(1) s3(1)
D3/8

0 [s1(x)]
∣∣
2 D3/8

0 [s2(x)]
∣∣
2 D3/8

0 [s3(x)]
∣∣
2

J 4/5
0 [s1(x)]

∣∣
2 J 4/5

0 [s2(x)]
∣∣
2 J 4/5

0 [s3(x)]
∣∣
2




η1
η2
η3
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By inverting the matrix, the ηj coefficients can be computed in terms of the free
functions:


η1
η2
η3

 =


1 1 1

(2π)−1/2 25/8

Γ(13/8)
229/8

Γ(21/8)
24/5

Γ(9/5)
29/5

Γ(14/5)
2 · 214/5

Γ(19/5)



−1
3− g(x)

∣∣
1

−1−D3/8
0 [g(x)]

∣∣
2

1−J 4/5
0 [g(x)]

∣∣
2


whose approximated solution is

η1 ≈ 55.3507
(

3− g(x)
∣∣
1

)
− 3.9464

(
1 +D3/8

0 [g(x)]
∣∣
2

)
− 29.9166

(
1−J 4/5

0 [g(x)]
∣∣
2

)
η2 ≈ −64.9326

(
3− g(x)

∣∣
1

)
+ 4.8673

(
1 +D3/8

0 [g(x)]
∣∣
2

)
+ 35.7737

(
1−J 4/5

0 [g(x)]
∣∣
2

)
η3 ≈ 10.5818

(
3− g(x)

∣∣
1

)
− 0.9208

(
1 +D3/8

0 [g(x)]
∣∣
2

)
− 5.8572

(
1−J 4/5

0 [g(x)]
∣∣
2

)
Then, all functions simultaneously satisfying the constraints given in (17) can be repre-

sented by the constrained expression:

f (x, g(x)) = g(x) + η1 + η2 x + η3 x2

5.3. Two Linear Combinations of Fractional Constraints

This example is provided to show how to proceed with a multiple linear combination
of constraints. Let the constraints be

π f (1)− 3D3/4
0 [ f (x)]

∣∣
3 + 2J 3/8

0 [ f (x)]
∣∣
2 = 5,

2
d2 f (x)

dx2

∣∣∣∣
1
+D4/5

0 [ f (x)]
∣∣
3 + 2J 5/8

0 [ f (x)]
∣∣
2 = 0.

(18)

The constrained expression of these two constraints is derived using the TFC switching-
projection formulation given in (7). Using the support functions s(x) = {ex, x3}, the
switching functions are expressed in terms of the αij coefficients:

φ1(x) = α11 ex + α21 x3 and φ2(x) = α12 ex + α22 x3.

To better clarify, let us write the constraints (18) as
C1( f ) = 5, C1( f ) = π f (1)− 3D3/4

0 [ f (x)]
∣∣
3 + 2J 3/8

0 [ f (x)]
∣∣
2,

C2( f ) = 0, C2( f ) = 2
d2 f (x)

dx2

∣∣∣∣
1
+D4/5

0 [ f (x)]
∣∣
3 + 2J 5/8

0 [ f (x)]
∣∣
2,

and express the switching conditions as

Ci(φj) =

{
1 if i = j
0 if i 6= j.

Therefore, in view of the linearity of φ1 and φ2, the switching conditions are given by[
α11C1(ex) + α21C1(x3) α11C2(ex) + α21C2(x3)
α12C1(ex) + α22C1(x3) α12C2(ex) + α22C2(x3)

]
=

[
1 0
0 1

]
.

After evaluating constraints C1 and C2 at the support functions ex and x3:



Mathematics 2023, 11, 1721 13 of 18


C1(ex) = πe− 3D3/4

0 [ex]
∣∣
3 + 2J 3/8

0 [ex]
∣∣
2

C1(x3) = π − 3D3/4
0 [x3]

∣∣
3 + 2J 3/8

0 [x3]
∣∣
2

C2(ex) = 2e +D4/5
0 [ex]

∣∣
3 + 2J 5/8

0 [ex]
∣∣
2

C2(x3) = 12 +D4/5
0 [x3]

∣∣
3 + 2J 5/8

0 [x3]
∣∣
2

coefficients αij are computed by the simple matrix inversion [20]:[
α11 α21
α12 α22

]
=

[
C1(ex) C2(ex)
C1(x3) C2(x3)

]−1

≈
[

0.06460 −0.05044
0.08684 −0.04797

]
and the switching functions can be approximated as

φ1(x) = 0.06460 ex − 0.05044 x3 and φ2(x) = 0.08684 ex − 0.04797 x3. (19)

The projection functionals are [20]
ρ1(x, g(x)) = 5− πg(1) + 3D3/4[g(x)]

∣∣
3 − 2J 3/8[g(x)]

∣∣
2

ρ2(x, g(x)) = −2
d2g(x)

dx2

∣∣∣∣
1
−D4/5[g(x)]

∣∣
3 − 2J 5/8[g(x)]

∣∣
2

(20)

and by using the expressions provided by (19) and (20), the constrained expression repre-
senting all functions satisfying the constraints given in (18) is

f (x, g(x)) = g(x) + φ1(x) ρ1(x, g(x)) + φ2(x) ρ2(x, g(x)) (21)

The constrained expressions must be validated by showing that they satisfy all con-
straints, no matter what the free function is. In particular, by selecting g(x) = 0, the functional
interpolation problem is transformed into a simple interpolation problem that uses the
support functions selected.

Equation (21) satisfies the constraints given in (18) for any free function. Let us prove it
by selecting (for simplicity) g(x) = c x2, where c is an unknown constant. Using this free
function, the projection functionals become{

ρ1(x, g(x)) = 5− πc + 3cD3/4[x2]
∣∣
3 − 2cJ 3/8[x2]

∣∣
2 ≈ 5 + 10.6189 c

ρ2(x, g(x)) = −4c− cD4/5[x2]
∣∣
3 − 2cJ 5/8[x2]

∣∣
2 ≈ −17.2358 c,

and using the approximated expression of the switching functions and the projection
functionals, the constrained expression becomes

f (x, cx2) ≈ cx2 − (0.8107c− 0.3230)ex + x3(0.2912c− 0.2522). (22)

Thus, by replacing this expression in the constraints, we obtain the residuals:

R1( f ) = C1( f )− 5, R2( f ) = C2( f )

which have values at the machine error level, as we show in Figure 3, where R1( f ) and
R2( f ) are plotted as a function of c ∈ [0, 1] (note that all available digits provided by Matlab
were used for the coefficients and not just the few digits displayed in (19) and (22)).
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Figure 3. Residual of the constraints C1 (left plot) and C2 (right plot) when applied to the functional
f (x, g(x)) given by (22).

6. Discussion

This work extended the application of the theory of functional connections (TFC), an
analytical framework to derive functionals representing all functions interpolating a set of
constraints, to constraints made of fractional-order operators (derivatives and integrals).
The TFC has been developed for constraints defined by points, integer derivatives and
integrals, limits, components, and any linear combination of them for the univariate
and the multivariate case [20]. In this article, constraints made of fractional derivatives
and fractional integrals for the univariate case were included in the TFC framework.
Although the extension was presented for the Riemann–Liouville definition of the fractional
derivative and integral, this choice is actually not restrictive, since the method presented
can be used, as it is, for other definitions; the only difference is in the corresponding way to
compute the fractional operators.

The representation of all functions’ interpolating set by the TFC for some linear con-
straints was obtained by deriving analytical functionals, called constrained expressions,
containing a free function, g(x). No matter what g(x) is, the constrained expression analyt-
ically satisfies the constraints, and in addition, by spanning all possible expressions of g(x),
the whole set of functions interpolating the constraints was obtained.

The extension was validated by three illustrative examples.
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Appendix A. Some Fractional Integrals and Derivatives with Closed-Form Expressions

Here, we provide closed-form expressions for fractional integrals and derivatives of
some elementary functions. We refer to [25,36] for further results on this subject. Note that
all operators are initialized at x = 0. Moreover, β is any real number > −1 (possibly an
integer) and c, ω ∈ R.
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J α
0 [x

β] =
Γ(β + 1)

Γ(β + 1 + α)
xβ+α (A1)

RLDα
0 [x

β] =

 0 β ∈
{

α− dαe, α− dαe+ 1, . . . , α− 1
}

Γ(β + 1)
Γ(β + 1− α)

xβ−α otherwise
(A2)

J α
0 [e

cx] = xαE1,1+α(cx) =
ecx c−α

Γ(α)
γ(α, cx) (A3)

RLDα
0 [e

cx] = x−αE1,1−α(cx) (A4)

J α
0 [sin(ωx)] = ωx1+αE2,2+α(−ω2x2) (A5)

RLDα
0 [sin(ωx)] = ωx1−αE2,2−α(−ω2x2) (A6)

J α
0 [cos(ωx)] = xαE2,1+α(−ω2x2) (A7)

RLDα
0 [cos(ωx)] = x−αE2,1−α(−ω2x2) (A8)

with γ(s, x) and Eα,β(x) denoting, respectively, the lower incomplete gamma function:

γ(s, x) =
∫ x

0
us−1e−udu

and the Mittag–Leffler function:

Eα,β(x) =
∞

∑
k=0

xk

Γ(αk + β)
.

The fractional derivatives of trigonometric functions are useful when representing a
function by Fourier series.

Appendix B. Non-Locality of Fractional Operators (Memory Effect)

This Appendix explains the smoothness properties and the “memory effect” of the
fractional integral. Let us recall the definition of the Holder space, Hµ[a, b], with order µ:

Hµ[a, b] := { f : [a, b]→ R; ∃c > 0, ∀x, y ∈ [a, b] : | f (x)− f (y)| ≤ c|x− y|µ}

The condition, which can also be defined for functions between metric spaces, gener-
alizes the Lipschitzianity (if µ = 1) that characterizes a function that has limited growth,
in the sense that the ratio between the variation of the ordinate and the variation of the
abscissa can never exceed a fixed value, called the Lipschitz constant. It is a stronger
condition than continuity. If µ = 0, this condition reduces to the boundedness of the
function.

Theorem A1. Let φ ∈ Hµ[a, b] for some µ ∈ [0, 1] and 0 < α < 1. Therefore [23],

J α
a φ(x) =

φ(a)
Γ(α + 1)

(x− a)α + Φ(x)

for some Φ. This function Φ satisfies

Φ(x) = O((x− a)µ+α)
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for x → a, where O(·) indicates that Φ(x) is the same order of the infinitesimal of (x− a)µ+α for
x → a. Furthermore,

Φ ∈


Hµ+α[a, b] if µ + α < 1,
H∗[a, b] if µ + α = 1,
H1[a, b] if µ + α > 1.

Theorem A2. Let α > 0, p > max{1, 1/α}, φ ∈ Lp[a.b]. Then,

J α
a φ(x) = o

(
(x− a)α−1/p

)
for x → a+, where o(·) indicates thatJ α

a Φ(x) is an infinitesimal of higher order of
(
(x− a)α−1/p

)
for x → a+. If also α − 1/p /∈ N, so J α

a φ ∈ Cbα−1/pc[a, b] and
Dbα−1/pcJ α

a φ ∈ Hα−1/p−bα−1/pc[a, b].

Memory effect property: Be α ∈ (0, 1] and calculate the difference between two valuations
J α

0 f (x) in x1 and x2 such that x1 < x2:

H =J α
0 f (x2)−J α

0 f (x1) =
1

Γ(α)

∫ x2

0
(x2 − t)α−1 f (t)dt− 1

Γ(α)

∫ x1

0
(x1 − t)α−1 f (t)dt

=
1

Γ(α)

∫ x1

0

[
(x2 − t)α−1 − (x1 − t)α−1

]
f (t)dt +

1
Γ(α)

∫ x2

x1

(x2 − t)α−1 f (t)dt.

If α = 1, the second integral is canceled:

H =
1

Γ(α)

∫ x2

x1

(x2 − t)α−1 f (t)dt =
∫ x2

x1

f (t)dt.

Therefore, H depends only on what happens in [x1, x2], and no information about
f (x) is needed for x in [0, x1). This property expresses the locality of the integer-order
differential operator.

For the fractional case, the situation is different. In general, the first integral is not
zero, and therefore, to evaluate H, it is necessary to know the history of f (x) from the
initial point 0 to the point x2 of interest; this is to underline the non-locality of fractional
differential and integral operators, which characterizes the memory effect in the process.

Interesting applications of the memory effect of the fractional integrals are the descrip-
tion of the behavior of a crowd of pedestrians, especially to characterize the competitive and
cooperative interactions between pedestrians [37], and the generalization of the dynamical
model of love/hate [38].

Appendix C. Least-Squares Approaches

There are several different approaches to solve by least squares the over-determined
linear system A x = b, where A ∈ Rn×m:

• The common solution: x = (AT A)−1 AT b;
• The QR decomposition: A = QR, then x = R−1QTb, where Q ∈ SO(n) and R an

upper-triangular matrix;
• The SVD decompositions: A = UΣVT, then x = A+b = VΣ+UTb, where U ∈ SO(n)

and V ∈ SO(n) and where Σ+ is the pseudo-inverse of Σ, which is formed by replacing
every non-zero diagonal entry by its reciprocal and transposing the resulting matrix;

• The Cholesky decomposition: AT Ax = UTUx = ATb, then x = U−1(U−T ATb), where
U is an upper-triangular matrix.
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To reduce the condition number of the matrix to invert, scaling the columns of
matrix A:

A
(
SS−1)x =

(
AS
)(

S−1x
)
= E η = b → x = S η = S

(
ETE

)−1ETb (A9)

is highly suggested. In (A9), S is the m×m scaling diagonal matrix, whose elements are the
inverse of the norms of the corresponding A matrix columns, skk = |ak|−1, or the maximum
absolute value, skk = max

i
|ak(i)|.

The least-squares approach adopted in this article is the scaled QR:

b = A S = Q R → x = S R−1 QT b. (A10)
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