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2 Department of Industrial Engineering, OSTİM Technical University, Ankara 06374, Turkey
3 Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Pakistan
4 Department of Computer Programing, Baskale Vocational School, Van Yuzuncu Yil University Campus,

Van 65080, Turkey
5 Departamento de Ciencias Exatas e Engenharia, Academia Militar, 2720-113 Amadora, Portugal
6 Center for Research and Development in Mathematics and Applications (CIDMA),

Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal
* Correspondence: osmantunc89@gmail.com

Abstract: The study of variable order differential equations is important in science and engineering
for a better representation and analysis of dynamical problems. In the literature, there are several
fractional order operators involving variable orders. In this article, we construct a nonlinear variable
order fractional differential system with a p-Laplacian operator. The presumed problem is a general
class of the nonlinear equations of variable orders in the ABC sense of derivatives in combination with
Caputo’s fractional derivative. We investigate the existence of solutions and the Hyers–Ulam stability
of the considered equation. The presumed problem is a hybrid in nature and has a lot of applications.
We have given its particular example as a waterborne disease model of variable order which is
analysed for the numerical computations for different variable orders. The results obtained for the
variable orders have an advantage over the constant orders in that the variable order simulations
present the fluctuation of the real dynamics throughout our observations of the simulations.

Keywords: variable order operators; p-Laplacian operator; Hyers–Ulam stability; existence and
uniqueness of solutions; numerical scheme

MSC: 34D20; 47A35; 60H10

1. Introduction and Preliminaries

Many scientific and engineering studies have focused on the mathematical modeling
and numerical simulation of dynamical systems. Adding more complexity to the classical
models through using operators of fractional orders is a tried and true strategy. The
development of fractional order operators includes both local and non-local kernels, as well
as singular and non-singular kernels are of great interest in the community of researchers.
There have been some fascinating new studies examining these factors. Experts have
looked at broad categories of FDEs, including sequential FDEs, hybrid FDEs, and mixed
FDEs, and many others have been studied in well-known works [1–5].

Analytical modeling, which uses a wide variety of mathematical techniques to charac-
terize dynamic behaviors, benefits greatly from perturbation strategies. Despite the fact that,
on occasion, it can be difficult to solve or evaluate a mathematical problem representing a
particular dynamical system, by perturbing the system in certain way, it is feasible to utilize
strategies for a wide range of findings.Dhage [6] has given a detailed explanation of the
significance of the classification of hybrid differential equations in linear and quadratic per-
turbations using the first and second types. He also provided a historical context for several
perturbation methods used in the theory of integral and differential formulations. Many
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different aspects of the solutions of second-order ordinary DEs with periodic boundaries
and a special quadratic perturbation were investigated. Combining generalized Lipschitz
and Caratheodory conditions, we prove the existence of extremal positive solutions and
establish existence theorems for both the discontinuity and Caratheodory conditions. His
findings confirmed some previously established results for periodic boundary value prob-
lems involving second-order ordinary differential equations. Zhao et al. [7] pioneered
work on Riemann–Liouville differential operators in fractional hybrid differential equa-
tions. They proved an existence theorem for fractional hybrid differential equations under
mixed Lipschitz and Carathéodory conditions. The existence of extremal solutions was
also proved by establishing some fundamental fractional differential inequalities. The
appropriate resources were thought about, and the comparison principle was proven, both
of which are helpful in the quest of learning more about the subjective behavior of solutions.
Abbas et al. [8] investigated a new family of fractional–integral hybrid DEs in which
the derivatives of a function with respect to a particular continuously differentiable and
increasing function. They produced a solution by using a hybrid fixed point (FP) theorem.
They explored necessary conditions for the dependence to be continuous with respect to the
specified parameters. A numerical example was presented at the end to show the validity
of the results they achieved. Sutar and Kucche [9] formed the corresponding fractional
integral equation and proved its existence using the nonlinear hybrid differential equations
theory with fractional integrals including the Atangana–Baleanu–Caputo (ABC) fractional
derivative. The uniqueness, existence of a maximal and minimal solution, and comparison
results were also investigated, as was the development of the theory of inequalities for
ABC-hybrid fractional differential equations.

The p-Laplacian operator is a nonlinear operator which was used in the modeling and
qualitative aspects in a variety of problems. In mechanics, studying turbulence through
a porous medium is fundamental. Leibenson [10] presented the p-Laplacian model for
the research of such a problem given by (φp(u′))′ = f (t, u, u′) where φp(u) = |u|p−2u,
where p > 1, and this operator has an inverse, which can be presented with φq. The p
and q are interrelated with the following relationship: 1/p + 1/q = 1 and q > 1. Khan
et al. [11] considered an ABC-FDEs with a p-Laplacian operator incorporating a spatial
singularity; we have studied the existence and uniqueness of these solutions as well as
their Hyers–Ulam stability. A well-known Guo-Krasnoselskii theorem is used to derive the
existence and uniqueness of solutions. Pang et al. [12] considered the case of a higher-order
nonlinear differential equation with a p-Laplacian and a nonlocal boundary value problem
at resonance. A few existence outcomes for the boundary value problems were acquired by
employing a new extension theorem. In addition to the main findings, they also provided a
concrete example to demonstrate those findings.

Bazighifan and Ragusa [13] considered a neutral nonlinear DE of fourth order driven
by a p-Laplace operator, and discussed the oscillatory behavior of the solutions. The theory
of analogy has yielded a few oscillation criteria for the understudy equation. As a result,
the results obtained are an improvement on the previously published, but well-known,
oscillation results. The results are shown to be useful in practice through an example.
Devi et al. [14] considered hybrid p-Laplacian operator fractional differential equations
(FDEs). Their primary focus was on analyzing the HU-stability of a class of hybrid FDEs
including fractional derivatives of varying orders with the p-Laplacian operator and estab-
lishing the EU results for this class. Using the green function, they transformed the original
problem into a hybrid form of FDEs applicable to European Union (EU) outcomes. An FP
theorem was used to look into the possibility of an existence solution (ES), and the Banach
contraction mapping principle was applied to determine the solution’s uniqueness. More
relevant articles can be studied in the references [15–17].
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In 1993, Samko and Ross [18] first proposed the idea of VO integral and differential,
along with a few of its fundamental features. In [19], Lorenzo and Hartley compiled
the findings on VO fractional operators and explored the different ways in which these
operators can be described. After that, the VO-FDE models were further investigated for
their potential additions and useful applications [20]. Interest has increased during the
previous ten years in this topic of study. For more related works on VO FDEs and their
applications, methods, techniques some others [21–23], we suggest the works [24–26]. For
some research works in relation to the tuberculosis and some others, see [27–32].

In science and engineering, studying differential equations of varying orders is crucial
for accurately representing and analyzing dynamical situations. Many fractional order
operators of varying orders can be found in the literature. Using the p-Laplacian operator,
we build a nonlinear variable-order fractional differential system in this article. The
assumed issue is highly versatile because of its hybrid nature. As a specific example, we
have analyzed a variable-order model of water-borne disease using numerical calculations
of varying orders. The advantage of the results produced for the variable orders over
the constant orders is that the simulations of the variable orders will be analysed in the
computational section of the paper. Our presumed problem is given by:

cDϑi(t)
[
Φp

(ABC
D$i(t)

(
Yi(t)−

n

∑
i=1

Gi(t,Yi(t))
))]

= λ∗i (t,Yi(t)), t ∈ I = [0, 1],

Yi(0) = νi, Gi(t,Yi(t))|t=0 = 0,

(1)

where 0 < $i(t) ≤ 1, νi ∈ R, the functions Yi : I → R are differential functions with
Y ′i are continuous for i = 1, 2, . . . , n, λ∗i , Gi : I× R → R, are continuous and hold the
Caratheodory assumptions. The ABCDϑi(t), are the ABC-fractional differential operators
of variable order while cD$i(t) are variable order Caputo’s fractional differential operators
for i = 1, 2, . . . , n. The Φp(U) = |U|p−2U is the p-Laplacian operator with 1 < p < 2 and
1/p + 1/q = 1. There are no studies in the aforementioned body of research that, to the
best of the our knowledge, address general hybrid research problems of this kind. In this
paper, we investigate the EUS as well as the HU-stability, and present an application for
the dynamic systems problem. In recent years, scientists have been concentrating their
efforts on modeling system dynamics with fractional order operators. Both singular and
non-singular kernels have been the subject of extensive research in current history. It might
be challenging to determine which operator is the best fit for a certain situation; nonetheless,
researchers always continue to look out for novel applications of a variety of operators.
We point the researchers in the direction of the study [33–36] for additional details. This
paper extends the majority of the conclusions examined for the ABC operator yet such a
system (1) has not been investigated for the specified ABC-operator. Additionally, a lot of
dynamical problems will have this work as a foundation for existence, uniqueness, and
numerical simulations. The suggested mathematical model is far more complicated and
n-coupled than any previous effort in the relevant literature.

In this work, we describe the required and sufficient conditions for the ABC–FDE
hybrid system solutions to the proposed problem (1). A numerical formulation using
Lagrange’s interpolation polynomials will also be built and applied, and its use with a
dynamical system will be demonstrated. In terms of the presence of solutions, we investi-
gate the uniqueness and HU-stability of the suggested system. The findings are compared
to the expected outcomes in order to evaluate the scheme’s applicability
and validity.

Next, we will provide some fundamental ideas from the variable order ABC calculus
that will be utilized in the subsequent sections of the article to discuss the findings.
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Definition 1 ([37]). For 0 < ε(t) < 1, and f ∈ C1(0, T) = { f ∈ C(I,R) : f ′ ∈ C(I,R) where
I = (0, T), for T ∈ R}, the VO ABC- fractional derivative is defined by

ABCDε(t)
0 f (t) =

B(ε(t))
1− ε(t)

∫ t

0
(t− s)ε(t)−1Eε(t)(−µε(t)(t− s)ε(t)) f ′(s)ds,

for f ′(t) = d
dt f (t).

Definition 2 ([37,38]). For a variable function ε(t), with ε : R → (0, 1) and assuming that
f ∈ L1(0, T), then the VO-AB-fractional integral is of f is given by

AB Iε(t)
0 f (t) =

B(1− ε(t))
B(ε(t))

f (t) +RL Iε(t)
0 f (t). (2)

Lemma 1 ([37–39]). For f ′ ∈ L1(0, ∞), and 0 < ε(t) < 1, we derive

AB Iε(t)
0

ABC
Dε(t)

0 f (t) = f (t)− f (0).

Lemma 2. Suppose that Φp be p-Laplacian operator. Then,

(1) for 1 < p ≤ 2, U1,U2 > 0, and |U1|,U2 ≥ η > 0, we have

|Φp(U1)−Φp(U2)| ≤ (p− 1)ηp−2|U1 − U2|;

(2) for p > 2, and |U1|, |U2| ≤ η, we get

|Φp(U1)−Φp(U2)| ≤ (p− 1)ηp−2|U1 − U2|.

2. Existence Criteria

In this section, the proposed VO p-Laplacian system is converted into its equivalent
integral form and the existence of solutions is studied.

Lemma 3. The n-coupled system of hybrid ABC-FDEs (1) has the kind of solutions

Yi =νi +
n

∑
i=1

Gi(t,Yi(t)) +
1− $i(t)
B($i(t))

Φq

( 1
Γ(ϑi(t))

∫ t

0
(t− s)ϑi(t)λ∗i (s,Yi(s))ds

)
+

$i(t)
B($i(t))Γ($i(t))

∫ t

0
(t− s)$i(t)−1

×Φq

( 1
Γ(ϑi(t))

∫ s

0
(s− r)ϑi(t)λ∗i (r,Yi(r))dr

)
ds,

for i = 1, 2, . . . , n.

Proof. By utilizing (AB Iϑi
t ) to the variable order Φp system (1), for i = 1, 2, . . . , n, we get

Φp

(ABC
D$i(t)

(
Yi(t)−

m

∑
i=1

Gi(t,Yi(t))
))

= c1 + Iϑi(t)λ∗i (t,Yi(t)),

where i = 1, 2, . . . , n. By Yi(0) = νi, and Gi(t,Yi(t))|0 = 0, it follows that c1 = 0. Thus,
we derive

Φp

(ABC
D$i(t)

(
Yi(t)−

m

∑
i=1

Gi(t,Yi(t))
))

= Iϑi(t)λ∗i (t,Yi(t)).
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Using the p-Laplacian operator, we obtain

ABCD$i(t)
(
Yi(t)−

m

∑
i=1

Gi(t,Yi(t))
)
= Φq

(
Iϑi(t)λ∗i (t,Yi(t))

)
.

This can also be expressed as the following formulation:

Yi(t) = νi +
m

∑
i=1

Gi(t,Yi(t)) +AB I$i(t)Φq

(
Iϑi(t)λ∗i (t,Yi(t))

)
or

Yi =νi +
n

∑
i=1

Gi(t,Yi(t)) +
1− $i(t)
B($i(t))

Φq

( 1
Γ(ϑi(t))

∫ t

0
(t− s)ϑi(t)λ∗i (s,Yi(s))ds

)
+

$i(t)
B($i(t))Γ($i(t))

∫ t

0
(t− s)$i(t)−1

×Φq

( 1
Γ(ϑi(t))

∫ s

0
(s− r)ϑi(t)λ∗i (r,Yi(r))dr

)
ds.

The proof is completed.

Consider a Banach’s space B = {Yi(t) : Yi(t) ∈ C([0, 1],R) for t ∈ [0, 1]}, possessing
the norm ‖Yi‖ = maxt∈[0,1] |Yi(t)|, and i = 1, 2, . . . , n. Supposing Ti : C([0, 1],R) →
C([0, 1],R), operators for i = 1, 2, . . . , n, where

TiYi(t) = νi +
n

∑
i=1

Gi(t,Yi(t)) +
1− $i(t)
B($i(t))

Φq

( 1
Γ(ϑi(t))

∫ t

0
(t− s)ϑi(t)λ∗i (s,Yi(s))ds

)
+

$i(t)
B($i(t))Γ($i(t))

∫ t

0
(t− s)$i(t)−1

×Φq

( 1
Γ(ϑi(t))

∫ s

0
(s− r)ϑi(t)λ∗i (r,Yi(r))dr

)
ds. (3)

The system (3) implies that all the FPs of Ti are solutions of integral coupled
system (1). The proofs of our findings are based on the above conditions:

• (Q1) Let a, b > 0. For the functions λi i = 1, 2, 3, . . . , n, we obtain

|λi(t,Yi(t))| ≤ Φp(a + b‖Yi‖).

• (Q2) Let ν1
i , ν2

i ∈ Re, and Yi, Ȳi ∈ C, t ∈ [0, k]. We suppose that

|λ∗i (t,Yi)− λ∗i (t, Ȳi)| ≤ ν1
i ‖Yi − Ȳi‖,

|Gi(t,Yi)−Gi(t, Ȳi)| ≤ ν2
i ‖Yi − Ȳi‖.

Lemma 4. Let the conditions (Q1) and (Q2) are satisfied and for

χi = max
t∈[0,1]

{ n

∑
i=1

ν2
i +

(1− $i(t))(p− 1)ρq−2

B($i(t))
ν1

i
Tϑi(t)

Γ(ϑi(t) + 1)

+
($i(t))(p− 1)ρq−2

B($i(t))
ν1

i
Tϑi(t)+$i(t)

Γ(ϑi(t) + 1)

}
, (4)

we have χi < 1, i = 1, 2, . . . , n. Hence, the variable order Φp-system (1) has a unique solution.
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Proof. For i = 1, 2, . . . , n, suppose that supt∈[0,k] |Gi(t, 0)| = ℘2 < ∞, and
supt∈[0,k] |λ∗i (t, 0)| = ℘1 < ∞, Sηi = {Yi ∈ C([0, k],Re) : ‖Yi‖ < ηi}, and k ≥ 1. For
Yi ∈ Sηi , and t ∈ [0, k], then we proceed to:

|Φq

(
Iϑi(t)λ∗i (t,Yi(t))

)
| =|Φq

( 1
Γ(ϑi(t))

∫ t

0
(t− s)ϑi(t)−1λ∗i (s,Yi(s))ds

)
|

≤
∣∣∣Φq

( 1
Γ(ϑi(t))

∫ t

0
(t− s)ϑi(t)−1Φp(a + b‖Yi‖)

)∣∣∣
≤Φq

( 1
Γ(ϑi(t) + 1)

(t− s)ϑi(t)
)
(a + bηi)

=
(a + bηi)

(Γ(ϑi(t) + 1))q−1 Tϑi(t)(q−1). (5)

Also, for Yi ∈ Sηi , t ∈ [0, k], the following is obtained:

|Gi(t,Yi(t))| =|Gi(t,Yi(t))−Gi(t, 0) +Gi(t, 0)|
≤|Gi(t,Yi(t))−Gi(t, 0)|+ |Gi(t, 0)|
≤ν2

i |Yi(t)|+ |Gi(t, 0)|
≤ν2

i ηi + ℘2. (6)

By (3), (5) and (6), we obtain

|TiYi(t)| =
∣∣∣νi +

n

∑
i=1

Gi(t,Yi(t)) +
1− $i(t)
B($i(t))

Φq

( 1
Γ(ϑi(t))

∫ t

0
(t− s)ϑi(t)λ∗i (s,Yi(s))ds

)
+

$i(t)
B($i(t))Γ($i(t))

∫ t

0
(t− s)$i(t)−1Φq

( 1
Γ(ϑi(t))

∫ s

0
(s− r)ϑi(t)λ∗i (r,Yi(r))dr

)
ds
∣∣∣

≤ νi + n(ν2
i ηi + ℘2) +

1− $i(t)
B($i(t))

(a + bηi)

(Γ(ϑi(t) + 1))q−1 Tϑi(t)(q−1)

+
(a + bηi)

Γ(ϑi(t) + 1)
$i(t)(T$i(t)+ϑi(t))(q−1)

B($i(t))Γ($i(t) + 1)
.

Thus, TiSηi ⊂ Sηi . Next, let Yi, vi ∈ C([0, 1],Re), k ≥ 1 for t ≥ s ∈ [0, 1]. Then,
we obtain

|TiYi(t)−Tivi(t)| =
∣∣∣νi +

n

∑
i=1

Gi(t,Yi(t)) +
1− $i(t)
B($i(t))

×Φq

( 1
Γ(ϑi(t))

∫ t

0
(t− s)ϑi(t)λ∗i (s,Yi(s))ds

)
+

$i(t)
B($i(t))Γ($i(t))

∫ t

0
(t− s)$i(t)−1Φq

( 1
Γ(ϑi(t))

∫ s

0
(s− r)ϑi(t)λ∗i (r,Yi(r))dr

)
ds

−
[
νi +

n

∑
i=1

Gi(t, vi(t)) +
1− $i(t)
B($i(t))

Φq

( 1
Γ(ϑi(t))

∫ t

0
(t− s)ϑi(t)λ∗i (s, vi(s))ds

)
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+
$i(t)

B($i(t))Γ($i(t))

∫ t

0
(t− s)$i(t)−1Φq

( 1
Γ(ϑi(t))

∫ s

0
(s− r)ϑi(t)λ∗i (r, vi(r))dr

)
ds
]∣∣∣

≤
n

∑
i=1

ν2
i ‖Yi − vi‖+

(1− $i(t))(p− 1)ρq−2

B($i(t))
ν1

i
Tϑi(t)

Γ(ϑi(t) + 1)
‖Yi − vi‖

+
$i(t)(p− 1)ρq−2

B($i(t))
ν1

i
Tϑi(t)+$i(t)

Γ(ϑi(t) + 1)
‖Yi − vi‖

≤
( n

∑
i=1

ν2
i +

(1− $i(t))(p− 1)ρq−2

B($i(t))
ν1

i
Tϑi(t)

Γ(ϑi(t) + 1)

+
$i(t)(p− 1)ρq−2

B($i(t))
ν1

i
Tϑi(t)+$i(t)

Γ(ϑi(t) + 1)
)
‖Yi − vi‖

= χi‖Yi − vi‖.

For χi < 1, where χi’s are defined by (4). Thus, Ti are contractions and Banach’s FP
theorem implies that the variable order Φp system (1) has solutions uniqueness, where
i = 1, 2, 3, . . . , n.

Theorem 1. Subjected to the conditions of Lemma 4, the variable order Φp-system (1) has
a solution.

Proof. By Lemma 4, the operators Ti are bounded and let for t1, t2 ∈ [0, k] with t2 > t1,
and k ≤ 1, we have

|Tiw(t2)−Tiw(t1)| =
∣∣∣νi +

n

∑
i=1

Gi(t2,Yi(t2))

+
1− $i(t)
B($i(t))

Φq

( 1
Γ(ϑi(t))

∫ t2

0
(t2 − s)ϑi(t)λ∗i (s,Yi(s))ds

)
+

$i(t)
B($i(t))Γ($i(t))

∫ t2

0
(t2 − s)$i(t)−1Φq

( 1
Γ(ϑi(t))

∫ s

0
(s− r)ϑi(t)λ∗i (r,Yi(r))dr

)
ds

−
[
νi +

n

∑
i=1

Gi(t1,Yi(t1)) +
1− $i(t)
B($i(t))

Φq

( 1
Γ(ϑi(t))

∫ t1

0
(t1 − s)ϑi(t)λ∗i (s,Yi(s))ds

)
+

$i(t)
B($i(t))Γ($i(t))

∫ t1

0
(t1 − s)$i(t)−1Φq

( 1
Γ(ϑi(t))

∫ s

0
(s− r)ϑi(t)λ∗i (r,Yi(r))dr

)
ds
)]∣∣∣

≤
n

∑
i=1

∣∣Gi(t2,Yi(t2))−Gi(t1,Yi(t1))
∣∣

+
1− $i(t)
B($i(t))

(q− 1)ρq−2(ai + biηi)

Γ(ϑi(t) + 1)
|tϑi(t)

2 − tϑi(t)
1 |

+
$i(t)

B($i(t))Γ($i(t) + 1)
(q− 1) (a + bηi)

(Γ(ϑi(t) + 1))q−1 Tϑi(t)(q−1)|tϑi(t)
2 − tϑi(t)

1 |
∣∣.

(7)

Since Gi, (i = 1, 2, 3, . . . , n), are continuous functions, then it follows from (7) that,
as t2 → t1, we have Tiw(t2) → Tiw(t1). Equivalently, Ti are equicontinuous operators.
Additionally, for u ∈ {u ∈ C([0, k],Re) : u = h̄Ti(u), f orh̄ ∈ [0, 1]}, we obtain
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‖Yi‖ =max
t∈I
|TiYi(t)| =

∣∣∣νi +
n

∑
i=1

Gi(t,Yi(t))

+
1− $i(t)
B($i(t))

Φq

( 1
Γ(ϑi(t))

∫ t

0
(t− s)ϑi(t)λ∗i (s,Yi(s))ds

)
+

$i(t)
B($i(t))Γ($i(t))

∫ t

0
(t− s)$i(t)−1Φq

( 1
Γ(ϑi(t))

∫ s

0
(s− r)ϑi(t)λ∗i (r,Yi(r))dr

)
ds
∣∣∣

≤νi + n℘2 +
1− $i(t)
B($i(t))

a
(Γ(ϑi(t) + 1))q−1 Tϑi(t)

+
a

(Γ(ϑi(t) + 1))q−1
$i(t)T$i(t)+ϑi(t)

B($i(t))Γ($i(t) + 1)

+
[
nν2

i +
1− $i(t)
B($i(t))

b
(Γ(ϑi(t) + 1))q−1 Tϑi(t)

+
b

(Γ(ϑi(t) + 1))q−1
$i(t)T$i(t)+ϑi(t)

B($i(t))Γ($i(t) + 1)

]
‖Yi‖

= ∆∗i 1 + ∆∗i 2‖Yi‖. (8)

For i = 1, 2, 3, . . . , n,

∆∗i 1 =νi + n℘2 +
1− $i(t)
B($i(t))

a
(Γ(ϑi(t) + 1))q−1 Tϑi(t)

+
a

(Γ(ϑi(t) + 1))q−1
$i(t)T$i(t)+ϑi(t)

B($i(t))Γ($i(t) + 1)
, (9)

and

∆∗i 2 =nν2
i +

1− $i(t)
B($i(t))

b
(Γ(ϑi(t) + 1))q−1 Tϑi(t)

+
b

(Γ(ϑi(t) + 1))q−1
$i(t)

B($i(t))Γ($i(t) + 1)
T$i(t)+ϑi(t), (10)

for i = 1, 2, . . . , n. From (8), (9) and (10), we deduce that

‖Yi‖ ≤
∆∗i 1

1− ∆∗i 2
,

for i = 1, 2, . . . , n. As a result, the Leray–Schauder alternative theorem is met, and (1) has
a solution.

3. Hyers–Ulam Stability

The research on the HU-stability of the n-coupled system is undertaken in this section
with the aid of certain helpful articles [40–42].

Definition 3. The coupled system of integral Equation (3) is HU-stable if for some νi > 0, we have
∆i > 0, with Yi so that

‖Yi −TiYi‖1 < ∆i, (11)

with Ȳi(t) of the coupled-system (3) with

Ȳi(t) = TiȲi(t), (12)
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and
‖Yi − Ȳi‖ < ∆iνi,

where i = 1, 2, . . . , n.

Theorem 2. Suppose the conditions of Lemma 4 are satisfied. Then, (3) is HU-stable; equivalently,
the n-coupled hybrid system of ABC-FDEs (1) is HU-stable.

Proof. Suppose for Yi ∈ C with the feature (11) and let w∗i ∈ C for the coupled-system (1)
fulfilling (3). Then,

|TiYi(t)−Tiw∗i (t)| =
∣∣∣νi +

n

∑
i=1

Gi(t,Yi(t))

+
1− $i(t)
B($i(t))

Φq

( 1
Γ(ϑi(t))

∫ t

0
(t− s)ϑi(t)λ∗i (s,Yi(s))ds

)
+

$i(t)
B($i(t))Γ($i(t))

∫ t

0
(t− s)$i(t)−1Φq

( 1
Γ(ϑi(t))

∫ s

0
(s− r)ϑi(t)λ∗i (r,Yi(r))dr

)
ds

−
[
νi +

n

∑
i=1

Gi(t, w∗i (t)) +
1− $i(t)
B($i(t))

Φq

( 1
Γ(ϑi(t))

∫ t

0
(t− s)ϑi(t)λ∗i (s, w∗i (s))ds

)
+

$i(t)
B($i(t))Γ($i(t))

∫ t

0
(t− s)$i(t)−1Φq

( 1
Γ(ϑi(t))

∫ s

0
(s− r)ϑi(t)λ∗i (r, w∗i (r))dr

)
ds
]∣∣∣

≤
n

∑
i=1

ν2
i |Yi − w∗i |+

(1− $i(t))(p− 1)ρq−2

B($i(t))
ν1

i
Tϑi(t)

Γ(ϑi(t) + 1)
|Yi − w∗i |

+
$i(t)(p− 1)ρq−2

B($i(t))
ν1

i
Tϑi(t)+$i(t)

Γ(ϑi(t) + 1)
|Yi − w∗i |

≤
( n

∑
i=1

ν2
i +

(1− $i(t))(p− 1)ρq−2

B($i(t))
ν1

i
Tϑi(t)

Γ(ϑi(t) + 1)

+
$i(t)(p− 1)ρq−2

B($i(t))
ν1

i
Tϑi(t)+$i(t)

Γ(ϑi(t) + 1)
)
|Yi − w∗i |

= χi|Yi − w∗i |.

(13)

For χi < 1, where χis are provided by (4), for i = 1, 2, . . . , n. Using the (11), (12)
and (13), we take into

‖Yi − w̄∗i ‖ =‖Yi −TiYi +TiYi − w̄∗i ‖
≤‖Yi −TiYi‖+ ‖TiYi −Tiw̄∗i ‖
≤∆i + χi‖Yi − w̄∗i ‖,

where i = 1, 2, . . . , m. Additionally,

‖Yi − w̄∗i ‖ ≤
∆i

1− χi
,

with νi =
1

1−χi
. The linked system (3) is therefore stable. This further suggests that the

coupled Hybrid ABC-FDEs system, (1), is stable.
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4. Computational Scheme for the ABC-FDEs

In this section, we construct a numerical approach for a broad category of p-Laplacian-
operated ABC-FDEs as described in (1). We take consideration the nonlinear system
provided in (3), with Yi, for i = 1, 2, . . . , n, which leads to the following:

Yi(t) =νi +
n

∑
i=1

Gi(t,Yi(t)) +
1− $i(t)
B($i(t))

Φq

( 1
Γ(ϑi(t))

∫ t

0
(t− s)ϑi(t)λ∗i (s,Yi(s))ds

)
+

$i(t)
B($i(t))Γ($i(t))

∫ t

0
(t− s)$i(t)−1Φq

( 1
Γ(ϑi(t))

∫ s

0
(s− r)ϑi(t)λ∗i (r,Yi(r))dr

)
ds. (14)

Because the p-Laplacian is a nonlinear operator, nonlinear functions can be defined
for i = 1, 2, . . . , n:

Bi(t,Yi(t)) = Φq

( 1
Γ(ϑi(t))

∫ t

0
(t− s)ϑi(t)λ∗i (s,Yi(s))ds

)
,

where Bi(t,Yi(t))|0 = 0. Then, (14) appears as follows:

Yi(t) =νi +
n

∑
i=1

Gi(t,Yi(t)) +
1− $i(t)
B($i(t))

Bi(t,Yi(t))

+
$i(t)

B($i(t))Γ($i(t))

∫ t

0
(t− s)$i(t)−1Bi(s,Yi(s))ds.

Using Lagrange’s interpolation polynomials, for this system, we develop a numerical
scheme. Substituting t with tn+1, we obtain

Yi(tn+1) =νi +
n

∑
i=1

Gi(tn,Yi(tn)) +
1− $i(t)
B($i(t))

Bi(tn,Yi(tn))

+
$i(t)

B($i(t))Γ($i(t))

∫ tn+1

0
(tn+1 − s)$i(t)−1Bi(s,Yi(s))ds. (15)

Using Lagrange’s interpolation, we obtain

Bi(t,Yi(t)) =
Bi(tk,Yi(tk)(t− tk−1)

tk − tk−1
− Bi(tk−1,Yi(tk−1))(t− tk)

tk − tk−1

=
Bi(tk,Yi(tk))(t− tk−1)

h
− Bi(tk−1,Yi(tk−1)(t− tk)

h
. (16)

With the help of (15) and (16), we have

Yi(tk+1) =νi +
n

∑
i=1

Gi(tk,Yi(tk)) +
1− $i(t)
B($i(t))

Bi(tk,Yi(tk))

+
$i(t)

B($i(t))Γ($i(t))
Σn

i=1

[
Bi(ti, u(ti))

h

∫ tk+1

tk

(ν− ti−1)(tn+1 − ν)$1−1dν

− Bi(ti−1,Yi(ti−1))

h

∫ tn+1

tk

(ν− ti)(tn+1 − ν)$1−1dν

]
.
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Integration produces the following:

Yk+1 =νi +
k

∑
j=1

Gi(tk,Yi(tk)) +
1− $i(t)
B($i(t))

Bi(tk,Yi(tk))

+
$1h$1

Γ($1 + 2)
Σk

j=1

[
Bi(ti,Yi(ti))

(
(k− j + 1)$1(k + 2− j + $1)

− (k− i)$1(k + 2− j + 2$1)

)
−Bi(ti−1,Yi−1)

(
(k− i + 1)$1+1 − (k− j + 1 + $1)(k− i)$1

)]
.

The works [43–46] contains more beneficial numerical techniques.

Modeling a Waterborne Disease Using the Numerical Method

Diseases that are spread through contact with contaminated water are called water-
borne diseases. These diseases can have devastating effects on human health, including
death and disability. These infectious diseases can be spread through the use of contam-
inated water for drinking, washing, or cooking purposes. They are an acute issue in the
countryside of developing nations everywhere. In addition to gastrointestinal symptoms,
waterborne illnesses can cause problems with the skin, ears, respiratory system, and eyes.
When a community does not have access to safe water, proper sanitation, and hygiene
education, it is more likely to experience an outbreak of waterborne diseases. Therefore, the
primary strategy for avoiding water-related illnesses is ensuring that people have access
to safe drinking water and sanitation facilities. This section is based on [47]. We define a
waterborne mathematical model with variable order as:

ABC
0 D

α(t)
t Ṡ(t) = µN− (1− r1)bwṠẆ − (1− r3)bdṠḊ− bl Ṡ İ− µṠ ,

ABC
0 D

α(t)
t İ(t) = (1− r1)bwṠẆ + (1− r3)bdṠḊ+ bl Ṡ İ− γİ− µİ,

ABC
0 D

α(t)
t Ẇ(t) = (1− r2)α(t)İ+ (1− r3)λḊ− ξwẆ ,

ABC
0 D

α(t)
t Ḋ(t) = (1− r2)α(t)2İ− (1− r3)λḊ− ξdḊ,

ABC
0 D

α(t)
t Ṙ(t) = γİ− µṘ.

(17)

The entire populace N is split into: Ṡ(t), İ(t), Ẇ(t), Ḋ(t)(t), and Ṙ(t) so that the
density of sensitive individuals is Ṡ . The number of infected individuals that are actively
spreading the disease is İ, and the amount of pathogensv within the water tank is Ẇ . The
quantity of pathogens at the disposal site is Ḋ, and the recovered individual density is Ṙ.

The parameters are also as follows: bl is the contact rate of persons, bw represents
the rate of contact for the reservoir-person, bd is the contact rate of persons with the
dumps, γ is infection time, ξw is micro-organism span time, and ξd is pathogen lifetime
in dumpsite. Here α(t) is the shedding rate, α(t)2 is person–dumpsite contact rate. λ
is dumpsite–reservoir contact rate, and µ represents the rate of birth. Additionally, r1 is
help in the DWS, r2 is help in the DwS and r3 is help in the MSW. Moreover, the initial
conditions are Ṡ(0) = Ṡ0, İ(0) = İ0, Ẇ(0) = Ẇ0, Ḋ(0) = Ḋ0 and Ṙ(0) = Ṙ0 depend on
min (Ṡ0, İ0, Ẇ0, Ḋ0, Ṙ0) ≥ 0.

For the numerical study of (17), we presume the numerical data from [47], where
γ = 0.0445, µ = 0.05363, bl = 0.43, r2 = 0.225, r3 = 0.1, λ = 0.033, α(t) = 3.89,
ξw = 2.63, bw = 9.49, bd = 6.54, ξd = 2.58, r1 = 0.335, α(t)2 = 19.93, N = 2, 200, 000
Figure 1.
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Figure 1. The computational results for the order 1 are compared with the solution for fractional
order 0.99.

We can observe a rise in the classes İ, Ẇ , Ḋ, Ṙ, which can be seen in Figures 2–6, vary-
ing according to their parametric values’ deviance. For the fractional orders 1.0, 0.99, 0.98,
simulations are given in different graphs. These seven graphs present a comparative
analysis of the simulations for the fractional constant orders with the variable orders.
The variable orders have an advantage over the constant orders in that fluctuations in
the dynamics can be observed, which are important for real dynamical situations. We
have presumed three different fractional orders 1− 0.006(cos(t))2, 1− 0.006(cos(t)) and
1− 0.006(sin(t)). We have given the seventh graph i.e., Figure 7, for extending the time
from 3000 units to the 3500 as per a reviewer’s suggestion and can observe the fluctuations
in all the classes as in the reset other plots for the variable orders.
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Figure 2. The computational results for the order 1 are compared with the solution for fractional
order 0.99.
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Figure 3. Numerical solution of the mathematical model for fractional order 0.98.
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Figure 4. Numerical solution of the mathematical model for the the variable order 1− 0.006(cos(t))2.
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Figure 5. Numerical solution of the mathematical model (17) for the variable order 1− 0.006 ∗ (cos(t)).
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Figure 6. Numerical solution of the mathematical model (17) for the variable order 1− 0.006 ∗ (sin(t)).
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Figure 7. Numerical solution of the mathematical model (17) for the variable order 1− 0.006 ∗ (sin(t)).

5. Conclusions

In this article, we have combined three basic concepts in the literature including the
fractional calculus, p-Laplacian operator, and the variable order calculus and have con-
structed a p-Laplacian variable order hybrid system of fractional differential Equation (1).
The problem (1) is a general and applied problem. There is no such construction in the
literature. We have used the ABC-variable order operator and the variable order Caputo’s
fractional operators. The first question about this sort of problem is whether this will have
a solution or not. To respond to this kind of question, we have presented the necessary and
sufficient conditions for the existence and uniqueness of solutions. Hyers–Ulam stability is
also presented and a numerical scheme for the simulations was produced and was applied
to a waterborne disease model of the variable order. The results for the constant orders and
the variable orders were compared graphically.

The variable orders have the advantage over the constant orders that the fluctuation
in the dynamics can be observed which are important for real dynamical situation. We
have presumed three different fractional orders 1− 0.006(cos(t))2, 1− 0.006(cos(t)) and
1− 0.006(sin(t)).
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