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Abstract: This study presents a novel approach for simulating the spread of the Omicron variant of
the SARS-CoV-2 virus using fractional-order COVID-19 models and the Haar wavelet collocation
method. The proposed model considers various factors that affect virus transmission, while the Haar
wavelet collocation method provides an efficient and accurate solution for the fractional derivatives
used in the model. This study analyzes the impact of the Omicron variant and provides valuable
insights into its transmission dynamics, which can inform public health policies and strategies that are
aimed at controlling its spread. Additionally, this study’s findings represent a significant step forward
in understanding the COVID-19 pandemic and its evolving variants. The results of the simulation
showcase the effectiveness of the proposed method and demonstrate its potential to advance the field
of COVID-19 research. The COVID epidemic model is reformulated by using fractional derivatives
in the Caputo sense. The existence and uniqueness of the proposed model are illustrated in the
model, taking into account some results of fixed point theory. The stability analysis for the system is
established by incorporating the Hyers–Ulam method. For numerical treatment and simulations, we
apply the Haar wavelet collocation method. The parameter estimation for the recorded COVID-19
cases in Pakistan from 23 June 2022 to 23 August 2022 is presented.

Keywords: parameter estimation; Haar wavelet; reproduction number; fractional modeling; COVID-
19; numerical analysis
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1. Introduction

The global pandemic caused by SARS-CoV-2, a spike protein virus, has resulted in
widespread infections of coronavirus. The severe acute respiratory syndrome (SARS)
epidemic in China in 2003 and the Middle East respiratory syndrome (MERS) epidemic
in Saudi Arabia in 2012 [1] were both coronavirus epidemics. Coronaviruses are a large
family of viruses. The World Health Organization (WHO) first noted a SARS coronavirus
2 (COVID-19) outbreak in Wuhan, China, in December 2019. In March 2020, the WHO
declared the outbreak to be a global pandemic. Over 6.6 million COVID-19 deaths [2]
have been reported as of 8 January 2023, with over 659 million confirmed cases worldwide.
Despite the fact that the disease is primarily transmitted through respiratory droplets
produced by breathing, coughing, sneezing, and talking [3–5], more research indicates that
it may also be transmitted through the air [6–9]. Additionally, COVID-19 can be acquired
by coming into contact with contaminated objects. The virus can cause symptoms such as
coughing, muscle pain, vertigo, high temperature, loss of smell, throat irritation, weakness,
and nasal congestion and has an incubation period of 2–14 days.
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The COVID-19 Omicron variant, which was first identified in South Africa in Novem-
ber 2021, has since raised serious concerns among public health authorities throughout the
world, including in Pakistan. The COVID-19 virus, SARS-CoV-2, is thought to be more
contagious and potentially more resistant to current vaccinations than earlier SARS-CoV-2
variants. The possibility of the virus spreading further in communities as a result has
raised concerns, especially in regions with high population densities and low vaccination
rates. The Omicron variant has been found in Pakistan’s major cities such as Karachi,
Lahore, and Islamabad as well as other regions of the nation. In response to the threat
posed by the variant, the government has increased testing and contact tracing efforts,
increased vaccination efforts, and implemented stricter public health measures such as
social seclusion and mask use. Despite these initiatives, the situation is still worrying
because COVID-19 cases are still on the rise across much of the nation. This emphasizes
the requirement for ongoing watchfulness and a thorough, multifaceted strategy to stop
the virus’s spread. Along with public health initiatives, this also entails work intended
to improve vaccination rates and access, as well as ongoing studies into the biology and
epidemiology of the Omicron variant to better understand its potential effects on society. In
the end, it will take a concerted effort from all facets of society, including the government,
healthcare professionals, and the general public, to stop the spread of COVID-19 and its
variants in Pakistan. By working together, it may be possible to reduce the impact of the
Omicron variant and protect the health and well-being of communities in Pakistan.

Modeling the spread of the COVID-19 pandemic has been essential in guiding public
health policies and interventions as it has been a significant global health crisis. Multiscale
modeling techniques have become an effective method for understanding the intricate
dynamics of virus pandemics and have been heavily utilized in the case of COVID-19 [10,11].
Epidemiological models have been extensively used to study the dynamics of COVID-
19 transmission at the macroscopic level. These models span a spectrum ranging from
straightforward compartmental models, such as the susceptible-infected-recovered (SIR)
model, to more intricate models that take into account spatial and temporal heterogeneity,
demographic factors, and interventions, such as vaccination and social isolation [12,13].
Additionally, the behavior of individual agents and their interactions during the COVID-19
outbreak have been simulated using agent-based models. Network models have been used
to study the dissemination of COVID-19 within social networks and communities at the
mesoscopic level. These models take into account the variation in contact patterns as well as
the effects of social isolation policies on the dynamics of transmission. Large-scale datasets
have also been analyzed to find patterns and trends in the spread of COVID-19 [14,15] using
data-driven approaches, such as machine learning and artificial intelligence techniques.
Models have been created to study the molecular interactions between the virus and host
cells at the microscopic level. These models include the structural modeling of virus
proteins and their interactions with host cell receptors (see, for example, [16,17]), as well as
molecular dynamics simulations. These methods have been applied to comprehend the
molecular mechanisms of virus replication and infection and to find potential therapeutic
targets. Along with these conventional modeling techniques, there is growing interest
in the use of multiscale models, which combine various modeling scales to capture the
intricate relationships between virus spread, individual behavior, and public health policies.
These models seek to offer a more thorough understanding of the COVID-19 dynamics
and assist in the creation of efficient interventions and policies. Multiscale modeling has
generally been shown to be an effective method for analyzing the COVID-19 epidemic and
informing public health policies and interventions. Multiscale modeling techniques offer
a promising way to deepen our understanding of this intricate global health crisis, even
though there is still much to learn about the dynamics of COVID-19.

Fractional order differential equations (FODs) have been used to gain a deeper un-
derstanding of diseases, and mathematical models have been formulated and studied
for various diseases [18–23]. The process of differentiation and integration in fractional
calculus is generalized to non-integer orders, making it a valuable tool for research in
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various fields [24]. Caputo–Fabrizio (CF) operators [25], which use non-singular kernels,
are one type of fractional derivative that has been developed to overcome the limitations
of the ordinary operator. However, the CF operator has a locality problem, leading to the
proposal of Mittag-Leffler kernels as a novel type of fractional derivative by Atangana and
Baleanu [26]. Overall, the use of fractional calculus and mathematical models can provide
insights into the dynamics of infectious diseases and inform public health policy. Omame
et al. [27] explore the potential impact of COVID-19 on the dynamics of dengue and HIV
transmission in their paper titled “Assessing the impact of SARS-CoV-2 infection on the
dynamics of dengue and HIV via fractional derivatives”. Using fractional calculus, the
study creates mathematical models and suggests that the pandemic could significantly
affect the transmission and control of these diseases. The authors emphasize the importance
of considering multiple infectious diseases during pandemics. In their paper “Backward
bifurcation and optimal control in a co-infection model for SARS-CoV-2 and ZIKV” [28],
the authors present a mathematical model for the co-infection of SARS-CoV-2 and ZIKV.
The study examines the role of backward bifurcation in the dynamics of the co-infection
and evaluates the potential benefits of optimal control strategies. The study highlights the
importance of considering multiple infectious diseases and optimal control strategies in
public health policy.

Furthermore, fractional operators with non-singular and singular kernels have been
proposed in several works [29–31], and research related to these topics and their appli-
cations can be found in a number of recent publications [32–36]. As of late, a number of
studies have appeared in mathematical modeling that investigate addressing social issues,
such as criminal issues, using FCs. A time lag exists between the individual’s offense
and the judgment, which is why Bansal et al. [37] introduced the time-delay coefficient
to extend the proposed fractional-order crime transmission model to the delayed model.
With regard to analyzing crime congestion, in their study, Pritam et al. [38] examined a
mathematical model of crime transmission using a fractional-order derivative that includes
memory effects, allowing for the previous input’s impact to be taken into account when
forecasting the growth rate of crime. Using the iterative fractional-order Adams–Bashforth
approach, ref. [39] found the approximate solution and numerically simulated it for various
control strategies in different fractional orders.

In recent years, there has been a growing interest in the use of Haar wavelet numerical
methods for solving problems related to the COVID-19 pandemic. These methods have
been used to model the spread of the virus over time, taking into account the various factors
that influence its transmission. The results of these studies have provided valuable insights
into the dynamics of the pandemic and its evolution and have informed public health
policies and strategies aimed at controlling its impact. Overall, Haar wavelet numerical
methods have proven to be a valuable tool for solving problems with fractional derivatives
and have been widely adopted in various fields due to their efficiency and accuracy. With
ongoing research and development, they are expected to play an increasingly important
role in solving complex problems in the future.

Similarly, wavelet analyses have been extensively applied in numerical analyses,
statistical applications, image digital processing, quantum field theory, and many other
fields. A wide range of applications has been made for Haar wavelets, including in
communication and physics research as well as more mathematically-based research on
differential equations and nonlinear problems [40]. There is an emphasis on Haar wavelets
among all wavelet families. In mathematics, they are the simplest wavelet family because
they consist of pairs of piecewise constant functions. In addition, Haar wavelets can also
be integrated analytically in random times. Recently, researchers applied this technique for
solving different fractional-order mathematical models [41,42]. In addition to being a fast
method, the method is also more stable.
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2. Preliminaries

The definition of the fractional derivative has developed greatly in recent years [43,44],
ranging from the non-singular kernel derivatives and Riemann–Liouville (RL) fractional
derivative without a singular kernel to the two-parameter derivative with non-singular
and non-local kernels [45]. The two most commonly used definitions are described below:

Definition 1. The fractional derivative of y of order δ is defined by Riemann–Liouville as fol-
lows [42]:

Dδ
∗F (t) =

 1
Γ(s−δ)

(
d
dt

)s ∫ t
0

F (ν)
(t−ν)δ−s+1 dν, 0 ≤ s− 1 < δ < s, s ∈ N,

(d/dt)sF (t), δ = s, s ∈ N.
(1)

Definition 2. The Caputo fractional derivative of the functionF of order δ is defined as follows [42]:

Dδ
∗F (t) =

{
1

Γ(s−δ)

∫ t
0

(d/dν)sF (ν)
(t−ν)δ−s+1 dν, 0 ≤ s− 1 < δ < s, s ∈ N,

(d/dt)sF (t), δ = s, s ∈ N.
(2)

Also used in this study is the RL form of the fractional integral operator D−δ
∗ of order

δ, which is defined as follows:

D−δ
∗ F (t) =

1
Γ(δ)

∫ t

0
F (ν)(t− ν)δ−1dν (3)

Haar Wavelets

If ψ(t) and ψ̃0(t) represent the mother Haar wavelet function (on the real line) and
Haar scaling function, respectively, then they are given by [46,47]:

ψ(t) =


1, if t ∈

[
0, 1

2

)
,

−1, if t ∈
[

1
2 , 1
)

,

0, elsewhere,

(4)

ψ̃0(t) = 1, if t ∈ [0, 1). (5)

As a result, if the various Haar wavelets that are produced on the interval [0, 1) using
multiresolution analysis are ψ̃m(t), then:

ψ̃m(t) = 2j/2ψ
(

2jt− p
)

, m = 1, 2, . . . ; (6)

where m = 2j + p : p = 0, 1, . . . , 2j − 1; j = 0, 1, . . . . Furthermore, we can translate the Haar
functions on u− 1 ≤ t < u as

ψ̃u,m(t) = ψ̃m(t + 1− u), m = 0, 1, 2, . . . , u = 1, 2, . . . , $, $ ∈ N. (7)

The resulting sequence {ψ̃m(t)}∞
m=0 forms a complete orthonormal system [47] in

L2[0, 1). Similarly, the sequence {ψ̃u,m(t)}∞
m=0, u = 1, 2, . . . , $, forms a complete orthonor-

mal system in L2[0, $). Therefore, any function F (t) ∈ L2[0, $) can be expanded in terms
of Haar orthonormal basis functions as

F (t) =
$

∑
u=1

∞

∑
m=0
Gu,mψ̃u,m(t). (8)
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Additionally, after truncating the series F (t), we obtain the equivalent approximation
yp(t) of F (t) as

F (t) ≈ yp(t) =
$

∑
u=1

p−1

∑
m=0
Gu,mψ̃u,m(t) = BT

$p×1ψ̃$p×1(t), (9)

where the coefficients Gu,m can be expressed by the inner product

〈F (t), ψ̃u,m(t)〉 =
∫ u

u−1
F (t)ψ̃u,m(t)dt, m = 1, 2, . . . , (p− 1), u = 1, 2, . . . , $,

B$p×1 =
[
G1,0, . . . ,G1,p−1,G2,0, . . . ,G2,p−1, . . . ,G$,0, . . . ,G$,p−1

]T ,

ψ̃$p×1 =
[
ψ̃1,0, . . . , ψ̃1,p−1, ψ̃2,0, . . . , ψ̃2,p−1, . . . , ψ̃$,0, . . . , ψ̃$,p−1

]T ,

(10)

and superscript T indicates the transpose of a matrix.

3. Mathematical Model

Understanding and forecasting the spread of infectious illnesses are greatly aided
by mathematical modeling. Researchers can model how illnesses behave and spread
within communities using mathematical equations and algorithms. As a result, they can
forecast how the disease will develop in the future and can try different intervention
techniques. In addition to helping to identify risk factors and guide public health policy,
mathematical models can offer important insights into the fundamental mechanisms of
disease transmission. It is crucial to keep in mind that the correctness of these models
depends on the caliber of the data input and model assumptions, and they should always
be utilized in conjunction with other information sources. Regarding the work of [6,7], the
model used consists of the following ODEs:

dS(t)
dt

= B− θS(t)I(t)(1 + τI(t))− (ε1 + ρ + η)S(t) +KV(t),

dV(t)
dt

= πS(t)− ψV(t)− (K+ ρ)V(t),

dE(t)
dt

= θS(t)I(t)(1 + τI(t)) + ψV(t)− (ε2 + ρ + ϕ)E(t),

dI(t)
dt

= ϕE(t)− (λ + ε + ρ + ε3)I(t),

dQ(t)
dt

= ε1S(t) + ε2E(t) + ε3I(t)− (ρ + σ)Q(t),

dR(t)
dt

= ηS(t) + σQ(t) + λI(t)− ρR(t),

S(t) ≥ 0, V(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, Q(t) ≥ 0, R(t) ≥ 0.

(11)

A representation of COVID-19 transmission is provided by the system of ordinary
differential equations in mathematical model refe1; the model is divided into six compart-
ments, each representing a different group of people in the population that is affected by
the disease. These compartments are as follows: susceptible people S(t), vaccinated people
V(t), exposed people E(t), infectious people I(t), quarantined people Q(t), and recovered
people R(t). Susceptible people have not been infected but can contract the virus, whereas
vaccinated people have received a vaccine and are immune to the virus. Exposed people
have been infected but have not yet developed symptoms, whereas infectious people are
infected and can spread the virus. Individuals quarantined have been identified as infected
and are being isolated to prevent further transmission. Finally, recovered individuals have
recovered from the disease and are now immune.

Numerous parameters that affect the dynamics of the disease are included in the
model for predicting the spread of COVID-19. The following parameters make up this list:
birth rate (B), transmission rate (θ), infectivity coefficient (τ), quarantine rates for exposed
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and susceptible individuals (ε2) and (ε1) and for natural deaths (ρ), vaccination efficacy
rate (η), vaccination rate (K), vaccination loss rate (ψ), rate of susceptibility to vaccination
(π), progression rate (ϕ), recovery rate (λ), disease-induced death rate (ε), quarantine
rate for infectious individuals (ε3), and quarantine loss rate (σ). The model’s differential
equations predict how these parameters and variables will change over time to affect how
many people are in each compartment. It is possible to forecast the spread of COVID-19
and assess the effects of different interventions, such as vaccination and quarantine, by
simulating the model.

3.1. Formulation of Fractional Model

The ability to model with fractional-order derivatives, which can more precisely
capture the dynamics of some diseases that exhibit non-integer order behavior, is one
benefit of using the Caputo derivative over the classical derivative in the context of disease
modeling. Because the fractional-order derivatives can capture both memory effects and
the power-law decay characteristic of many disease models, this can result in more accurate
predictions and better control strategies. The Caputo derivative is also a more economical
option for disease modeling because it frequently requires fewer computational resources
and data. Additionally, the majority of natural phenomena, including epidemiological
dynamics, exhibit the time memory effect. Model (11) is expressed in integral form as:

dS(t)
dt

=
∫ t

t0

ς(t−v)[B− θS(t)I(t)(1 + τI(t))− (ε1 + ρ + η)S(t) +KV(t)]dv,

dV(t)
dt

=
∫ t

t0

ς(t−v)[πS(t)− ψV(t)− (K+ ρ)V(t)]dv,

dE(t)
dt

=
∫ t

t0

ς(t−v)[θS(t)I(t)(1 + τI(t)) + ψV(t)− (ε2 + ρ + ϕ)E(t)]dv,

dI(t)
dt

=
∫ t

t0

ς(t−v)[ϕE(t)− (λ + ε + ρ + ε3)I(t)]dv,

dQ(t)
dt

=
∫ t

t0

ς(t−v)[ε1S(t) + ε2E(t) + ε3I(t)− (ρ + σ)Q(t)]dv,

dR(t)
dt

=
∫ t

t0

ς(t−$)[ηS(t) + σQ(t) + λI(t)− ρR(t)]dv.

(12)

Incorporating the Caputo derivative, we get

CDδ−1
t

[
dS(t)

dt

]
=C Dδ−1

t I−(δ−1)[B− θS(t)I(t)(1 + τI(t))− (ε1 + ρ + η)S(t) +KV(t)],

CDδ−1
t

[
dV(t)

dt

]
=C Dδ−1

t I−(δ−1)[πS(t)− ψV(t)− (K+ ρ)V(t)],

CDδ−1
t

[
dE(t)

dt

]
=C Dδ−1

t I−(δ−1)[θS(t)I(t)(1 + τI(t)) + ψV(t)− (ε2 + ρ + ϕ)E(t)],

CDδ−1
t

[
dI(t)

dt

]
=C Dδ−1

t I−(δ−1)[ϕE(t)− (λ + ε + ρ + ε3)I(t)],

CDδ−1
t

[
dQ(t)

dt

]
=C Dδ−1

t I−(δ−1)[ε1S(t) + ε2E(t) + ε3I(t)− (ρ + σ)Q(t)],

CDδ−1
t

[
dR(t)

dt

]
=C Dδ−1

t I−(δ−1)[ηS(t) + σQ(t) + λI(t)− ρR(t)].

(13)
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After calculations, we reach

CDδ
t S(t) = B− θS(t)I(t)(1 + τI(t))− (ε1 + ρ + η)S(t) +KV(t),

CDδ
t V(t) = πS(t)− ψV(t)− (K+ ρ)V(t),

CDδ
t E(t) = θS(t)I(t)(1 + τI(t)) + ψV(t)− (ε2 + ρ + ϕ)E(t),

CDδ
t I(t) = ϕE(t)− (λ + ε + ρ + ε3)I(t),

CDδ
t Q(t) = ε1S(t) + ε2E(t) + ε3I(t)− (ρ + σ)Q(t),

CDδ
t R(t) = ηS(t) + σQ(t) + λI(t)− ρR(t).

(14)

3.2. Basic Reproductive Number R0

The basic reproductive number R0, which expresses the typical number of secondary
infections caused by a single infected person in a population that is fully susceptible, is an
essential component of epidemiological modeling. The advantages of R0 in epidemiologi-
cal modeling are extensive: it offers a precise measurement of a disease’s transmissibility,
where a disease is more contagious if its R0 is high, whereas a low R0 suggests that it is less
contagious; predicting the potential spread of an outbreak, which helps epidemiologists
forecast the size and length of an outbreak and create the most efficient control strategies
by calculating R0; it can be employed to assess the efficacy of interventions, and epidemiol-
ogists can assess the success of an intervention in reducing transmission by comparing the
R0 before and after the implementation of a vaccine or quarantine measures; it is useful
for locating the crucial control points, and the amount of infected people in a population,
for example, is one of the crucial factors in the transmission of an infection that R0 can be
used to pinpoint; and the herd immunity threshold can be predicted using the number,
and the percentage of the population that must be immune to a disease for there to be herd
immunity is known as the herd immunity threshold. The herd immunity threshold and
subsequently the overall efficacy of vaccination programs are predicted with the aid of
R0. Overall, R0 is a useful tool for understanding the spread of infectious diseases and for
designing effective public health interventions.

The DFE of Model (14) is denoted by E0 = (S0, V0, 0, 0, Q0, R0), where

S0 =
B

η + ρ + ε1
, V0 =

πS0

K+ ρ
, Q0 =

ε1S0

ρ + τ
, R0 =

ηS0 + τQ0

ρ
.

Our proposed model is split into two matrices [48].

Ũ =

[
0 θS0
0 0

]
, Ṽ =

[
ϕ + ρ + ε2 0
−ϕ ρ + ε + λ + ε3

]
,

Ṽ−1 =
1

(ϕ + ρ + ε2)(ρ + ε + λ + ε3)

[
ρ + ε + λ + ε3 0

ϕ ϕ + ρ + ε2

]
,

ŨṼ−1 =

[
θS0 ϕ

(ϕ+ρ+ε2)(ρ+ε+λ+ε3)
θS0

ρ+ε+λ+ε3

0 0

]
.

Hence,

R0 =
ϕθB

(η + ρ + ε1)(ϕ + ρ + ε2)(ρ + ε + λ + ε3)
.

4. Existence and Uniqueness

The solution for the system (14) using the Caputo operator will be described below, along
with its existence and uniqueness. Assume that the continuous real-valued function A(Y),
which has the sup-norm property, is a Banach space on J = [0, b] and that Y = [0, κ] and
P = A(Y)×A(Y)×A(Y)×A(Y)×A(Y) with norm ‖(S, V, E, Q, I, R)‖ = ‖S‖+ ‖V‖+
‖E‖ + ‖Q‖ + ‖I‖ + ‖R‖, where ‖S‖ = supt∈Y |S(t)|, ‖V(t)‖ = supt∈Y |V(t)|, ‖E(t)‖ =
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supt∈Y |E(t)|, ‖Q‖ = supt∈Y |Q(t)|, ‖I‖ = supt∈Y |I(t)|, ‖R‖ = supt∈Y |R(t)|. The follow-
ing equation is obtain by using the Caputo fractional integral operator on both sides of (14):

S(t)− S(0) =C Dδ
0,tS(t){B− θSI(t)(1 + τI)− (ε1 + ρ + η)S(t) +KV(t)},

V(t)−V(0) =C Dδ
0,tV(t){πS(t)− ψV(t)− (K+ ρ)V(t)},

E(t)− E(0) =C Dδ
0,tE(t){θS(t)I(t)(1 + τI(t)) + ψV(t)− (ε2 + ρ + ϕ)E(t)},

I(t)− I(0) =C Dδ
0,tI(t){ϕE(t)− (λ + ε + ρ + ε3)I(t)},

Q(t)−Q(0) =C Dδ
0,tQ(t){ε1S(t) + ε2E(t) + ε3I(t)− (ρ + σ)Q(t)},

R(t)− R(0) =C Dδ
0,tR(t){ηS(t) + σQ(t) + λI(t)− ρR(t)}.

(15)

After calculation,

S(t)− S(0) = H(δ)
∫ t

0 (t−v)−δB1(δ, v, S(v))dv,

V(t)−V(0) = H(δ)
∫ t

0 (t−v)−δB2(δ, v, V(t)(v))dv,

E(t)− E(0) = H(δ)
∫ t

0 (t−v)−δB2(δ, v, E(t)(v))dv,

I(t)− I(0) = H(δ)
∫ t

0 (t−v)−δB4(δ, v, I(t)(v))dv,

Q(t)−Q(0) = H(δ)
∫ t

0 (t−v)−δB3(δ, v, Q(t)(v))dv,

R(t)− R(0) = H(δ)
∫ t

0 (t−v)−δB5(δ, v, R(t)(v))dv,

(16)

where

S(t)− S(0) =C Dδ
0,tS(t){B− θS(t)I(t)(1 + τI(t))− (ε1 + ρ + η)S(t) +KV(t)},

V(t)−V(0) =C Dδ
0,tV(t){πS(t)− ψV(t)− (K+ ρ)V(t)},

E(t)− E(0) =C Dδ
0,tE(t){θS(t)I(t)(1 + τI(t)) + ψV(t)− (ε2 + ρ + ϕ)E(t)},

I(t)− I(0) =C Dδ
0,tI(t){ϕE(t)− (λ + ε + ρ + ε3)I(t)},

Q(t)−Q(0) =C Dδ
0,tQ(t){ε1S(t) + ε2E(t) + ε3I(t)− (ρ + σ)Q(t)},

R(t)− R(0) =C Dδ
0,tR(t){ηS(t) + σQ(t) + λI(t)− ρR(t)}.

(17)

B1(δ, t, S(t)) = B− θSI(t)(1 + τI(t))− (ε1 + ρ + η)S(t) +KV(t),

B2(δ, t, V(t)) = πS(t)− ψV(t)− (K+ ρ)V(t),

B2(δ, t, E(t)) = θSI(t)(1 + τI(t)) + ψV(t)− (ε2 + ρ + ϕ)E(t),

B3(δ, t, I(t)) = ϕE(t)− (λ + ε + ρ + ε3)I(t),

B4(δ, t, Q(t)) = ε1S(t) + ε2E(t) + ε3I(t)− (ρ + σ)Q(t),

B5(δ, t, R(t)) = ηS(t) + σQ(t) + λI(t)− ρR(t).

(18)

If S(t), V(t), E(t), Q(t), I(t), and R(t) have an upper bound, then the symbolsB1,B2,B3,
B4,B5, and B6 are necessary for the Lipschitz condition. It should be noted that S(t) and
S∗(t) are paired functions, and we reach

‖B1(δ, t, S(t))−B1(δ, t, S∗(t))‖ = ‖−(θI(t)(1 +�I(t)) + η + ρ + ε1)(S(t)− S∗(t))‖. (19)
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Taking into account Λ1 = ‖−(θI(t)(1 + τI(t)) + η + ρ + ε1)‖, one reaches

‖B1(δ, t, S(t))−B1(δ, t, S∗(t))‖ ≤ Λ1‖S(t)− S∗(t)‖. (20)

Similarly,

‖B2(δ, t, V(t))−B2(δ, t, V∗(t))‖ ≤ Λ2‖V(t)−V∗(t)‖,

‖B3(δ, t, E(t))−B3(δ, t, E∗(t))‖ ≤ Λ3‖E(t)− E∗(t)‖,

‖B4(δ, t, Q(t))−B4(δ, t, Q∗(t))‖ ≤ Λ4‖Q(t)−Q∗(t)‖,

‖B5(δ, t, I(t))−B5(δ, t, I∗(t))‖ ≤ Λ5‖I(t)− I∗(t)‖,

‖B6(δ, t, R(t))−B6(δ, t, R∗(t))‖ ≤ Λ6‖R(t)− R∗(t)‖.

(21)

where
Λ3 =‖−(ϕ + ρ + ε2)‖

Λ4 =‖−(ρ + ε + λ + ε3)‖

Λ5 =‖−(ρ + τ)‖

Λ6 =‖−(ρ)‖.

This indicates that for each of the five functions, the Lipschitz condition is true.
Recursively applying the expressions in (16), we obtain

Sn(t) = H(δ)
∫ t

0 (t−v)−δB1(δ, v, Sn−1(v))dv,

V(t)n(t) = H(δ)
∫ t

0 (t−v)−δB2
(
δ, v, V(t)n−1(v)

)
dv,

E(t)n(t) = H(δ)
∫ t

0 (t−v)−δB3
(
δ, v, E(t)n−1(v)

)
dv,

Q(t)n(t) = H(δ)
∫ t

0 (t−v)−δB4
(
δ, v, Q(t)n−1(v)

)
dv,

I(t)n(t) = H(δ)
∫ t

0 (t−v)−δB5
(
δ, v, I(t)n−1(v)

)
dv,

R(t)n(t) = H(δ)
∫ t

0 (t−v)−δB6
(
δ, v, R(t)n−1(v)

)
dv,

(22)

We can obtain the successive terms difference by considering S0(t) = S0, V0(t) =
V0, E0(t) = E0, Q0(t) = Q0, I0(t) = I0 and R0(t) = R0 in conjunction with other relevant
information.
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ΞS,n(t) =Sn(t)− Sn−1(t)

=H(δ)
∫ t

0
(t−v)−δ(B1(δ, v, Sn−1(v)) −B1(δ, v, Sn−2(v)))dv,

ΞV,n(t) =Vn(t)−Vn−1(t)

=H(δ)
∫ t

0
(t−v)−δ(B2(δ, v, Vn−1(v)) −B2(δ, v, Vn−2(v)))dv,

ΞE(t),n(t) =E(t)n(t)− E(t)n−1(t)

=H(δ)
∫ l

0
(t−v)−δ

(
B3
(
δ, v, E(t)n−1(v)

)
−B3

(
δ, v, E(t)n−2(v)

))
dv,

ΞI(t),n(t) =I(t)2n(t)− I(t)n−1(t)

=H(δ)
∫ t

0
(t−v)−δ

(
B4
(
δ, v, I(t)n−1(v)

)
−B4

(
δ, v, I(t)n−2(v)

))
dv,

ΞQ(t),n(t) =Q(t)1n(t)−Q(t)n−1(t)

=H(δ)
∫ t

0
(t−v)−δ

(
B5
(
δ, v, Q(t)n−1(v)

)
−B5

(
δ, v, Q(t)n−2(v)

))
dv,

ΞR(t),n(t) =R(t)n(t)− R(t)n−1(t)

=H(δ)
∫ t

0
(t−v)−δ

(
B6
(
δ, v, R(t)n−1(v)

)
−B6

(
δ, v, R(t)n−2(v)

))
dv.

(23)

It is vital to observe that

Sn(t) =
n

∑
m=0

ΞS,m(t), Vn(t) =
n

∑
m=0

ΞV,m(t), Vn(t) =
n

∑
m=0

ΞE,m(t),

Qn(t) =
n

∑
m=0

ΞQ,m(t), In(t) =
n

∑
m=0

ΞI,m(t), Rn(t) =
n

∑
m=0

ΞR,m(t).

Additionally, by using Equations (20) and (21) and considering that

ΞS,n−1(t) = Sn−1(t)− Sn−2(t), ΞV,n−1(t) = Vn−1(t)−Vn−2(t), ΞE,n−1(t) = En−1(t)− En−2(t),

ΞQ,n−1(t) = Qn−1(t)−Qn−2(t), ΞI,n−1(t) = In−1(t)− In−2(t), ΞR,n−1(t) = R(t)n−1(t)− Rn−2(t),

we reach
‖ΞS,n(t)‖ ≤ H(δ)Λ1

∫ t
0 (t−v)−δ‖ΞS,n−1(v)‖dv,

‖ΞV,n(t)‖ ≤ H(δ)Λ2
∫ t

0 (t−v)−δ‖ΞV,n−1(v)‖dv,

‖ΞE,n(t)‖ ≤ H(δ)Λ3
∫ t

0 (t−v)−δ‖ΞE,n−1(v)‖dv,

‖ΞI,n(t)‖ ≤ H(δ)Λ4
∫ t

0 (t−v)−δ‖ΞI,n−1(v)‖dv,∥∥ΞQ,n(t)
∥∥ ≤ H(δ)Λ5

∫ t
0 (t−v)−δ

∥∥ΞQ,n−1(v)
∥∥dv,

‖ΞR,n(t)‖ ≤ H(δ)Λ6
∫ t

0 (t−v)−δ‖ΞR,n−1(v)‖dv.

(24)

Theorem 1. If the following condition holds,

H(δ)

δ
κδΛm < 1, m = 1, 2, . . . , 6. (25)

Then, (14) has a unique solution for t ∈ [0, κ].
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Proof. It has been demonstrated that the functions S(t), V(t), E(t), Q(t), I(t), and R(t)
are bounded. Furthermore, it can be observed from Equations (20) and (21) that the
symbols B1,B2,B3,B4,B5, and B6 are applicable to the Lipschitz condition. Thus, by using
Equation (24) along with a recursive hypothesis, we can derive:

‖ΞS,n(t)‖ ≤ ‖S0(t)‖
(
H(δ)

δ κδΛ1

)n
,

‖ΞV,n(t)‖ ≤ ‖V0(t)‖
(
H(δ)

δ κδΛ2

)n
,

‖ΞE,n(t)‖ ≤ ‖E0(t)‖
(
H(δ)

δ κδΛ3

)n
,

‖ΞI,n(t)‖ ≤ ‖I0(t)‖
(
H(δ)

δ κδΛ4

)n
,

∥∥ΞQ,n(t)
∥∥ ≤ ‖Q0(t)‖

(
H(δ)

δ κδΛ5

)n
,

‖ΞR,n(t)‖ ≤ ‖R0(t)‖
(
H(δ)

δ κδΛ6

)n
.

(26)

As a result, it is evident that the sequences fulfill and exist

‖ΞS,n(t)‖ → 0, ‖ΞV,n(t)‖ → 0, ‖ΞE,n(t)‖ → 0, ‖ΞI,n(t)‖ → 0,
∥∥ΞQ,n(t)

∥∥→ 0, ‖ΞR,n(t)‖ → 0 as n→ ∞.

Additionally, using Equation (26) and the triangle inequality, for any s, we have

‖Sn+s(t)− Sn(t)‖ ≤ ∑n+s
j=n+1 X j

1 =
Xn+1

1 −Xn+s+1
1

1−X1
,

‖Vn+s(t)−Vn(t)‖ ≤ ∑n+s
j=n+1 X j

2 =
Xn+1

2 −Xn+s+1
2

1−X2
,

‖En+s(t)− En(t)‖ ≤ ∑n+s
j=n+1 X j

2 =
Xn+1

3 −Xn+s+1
3

1−X3
,

‖In+s(t)− In(t)‖ ≤ ∑n+s
j=n+1 X j

4 =
Xn+1

4 −Xn+s+1
4

1−X4
,

‖Qn+s(t)−Qn(t)‖ ≤ ∑n+s
j=n+1 X j

5 =
Xn+1

5 −Xn+s+1
5

1−X5
,

‖Rn+s(t)− Rn(t)‖ ≤ ∑n+s
m=n+1 X j

6 =
Xn+1

6 −Xn+s+1
6

1−X6
,

(27)

with Xm = H(δ)
δ κδΛm < 1 by hypothesis. Therefore, with Sn, Vn, En, In, Qn, it is possible

to think of R(t)n as a Cauchy sequence in the A(Y) Banach space. This has demonstrated
that they are uniformly convergent [49].

5. Parameter Estimation

Parameter estimation in epidemic models involves identifying the model parameters
that best fit the observed data. One widely used approach for parameter estimation is
least-squared curve-fitting, which entails minimizing the difference between the observed
data and the model predictions by adjusting the model parameters. This method assumes
that the residuals of the model are normally distributed and have a constant variance. Least-
squared curve-fitting tools estimate the parameters of the epidemic model by minimizing
the sum of squared residuals. This method is computationally efficient and provides reliable
estimates when the assumptions of normality and constant variance are met. However, it
is critical to verify that the model assumptions are satisfied and that the goodness-of-fit
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is assessed using appropriate statistical tests. In this study, we employed least-squared
curve-fitting methods to analyze the COVID-19 cases reported in Pakistan between 23 June
2022 and 23 August 2022 [50]. The estimated parameters of the system were based on
Pakistan’s confirmed cases and fatalities. The ordinary least square solution (OLS) was
used to minimize the error terms in the daily reports, and the goodness-of-fit was evaluated
using the relative error.

min

(
∑n

ι=1
(
Iι − Îl

)2

∑n
ι=1 I2

ι

)
. (28)

The simulated cumulative number of infected individuals, denoted by Iι, is computed
by adding the total number of individuals transitioning from the infected compartment to
the recovered compartment each day. Meanwhile, the reported total number of infected
individuals is represented by Îι. Table 1 presents the estimated parameter values, while a
comparison between the model predictions and the reported cases is illustrated in Figure 1.
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Figure 1. Cont.
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Figure 1. The figure illustrates the profiles of the best-fitted curve and its corresponding residuals for
the daily cumulative cases of COVID-19 in Pakistan from 23 Jun 2022 to 23 August 2022. Furthermore,
the figures (a,b) represent the model fit with reported infected cases and (c) represents the residuals.

Table 1. The table contains descriptions and estimated values for the parameters.

Symbol of Parameters Values of Parameters References

B 50.4057 [51]
θ 0.0019 Estimated
τ 0.0205 Estimated
ε 0.1571 Estimated
ε1 0.01772 Estimated
ε2 0.0805 Estimated
ε3 0.0876 Estimated
ρ 0.0205 [51]
η 0.1460 Estimated
α 0.3506 Estimated
K 0.1530 Estimated
σ 0.0059 Estimated
π 0.0029 Estimated
ψ 0.0532 Estimated
λ 0.0105 Estimated

6. Sensitivity Analysis

A sensitivity analysis identifies the parameters that are most effective in curbing
COVID-19 spread. Even though forward sensitivity analysis becomes tedious for complex
biological models, it is an essential component of phenomena modeling. Ecologists and
epidemiologists have taken an active interest in R0 sensitivity analysis.

Definition 3. The normalized forward sensitivity index of the R0 that depends differentiability on
a parameter κ is defined as

Υκ =
κ
R0

∂R0

∂κ .

A vital tool for assessing how uncertain input parameters affect a system’s output
is sensitivity analysis. Sensitivity indices can be computed using a variety of techniques,
including direct differentiation, Latin hypercube sampling, and system linearization. In
this study, the analytical expressions for the indices were provided using the direct dif-
ferentiation method, allowing for a more thorough understanding of the behavior of the
system. This study investigated the effects of various factors and gained a critical under-
standing of the comparative variability of the fundamental reproduction number, R0, and
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other parameters by applying this method to a COVID-19 model. These sensitivity indices
provide policymakers and law enforcement agencies with useful data to create strategies
that effectively combat COVID-19, and they are therefore essential in battling the pandemic.
The graphical results are displayed in Figures 2 and 3.
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Figure 2. Global sensitivity.
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Figure 3. Cont.
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Figure 3. Sensitivity of various parameters vs. R0 are displayed in (a–e).

7. Numerical Scheme and Graphical Results

The Haar wavelet collocation method is a powerful numerical technique used for
solving various types of differential equations. One of the main advantages of this method
is its high accuracy, as it is capable of producing highly precise solutions for a wide range
of problems. Additionally, the Haar wavelet collocation method is highly efficient, having
a relatively low computational cost compared with other numerical methods. This is
due to the compact support of the Haar wavelet, which allows for the use of fewer basis
functions to represent the solution, resulting in faster calculations. Overall, the Haar wavelet
collocation method is a reliable and efficient tool for numerical analysis, making it a popular
choice among researchers and practitioners in various fields of science and engineering.
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Consider the square integrable function space L2[0, 1), where Ṡ(t), V̇(t), Ė(t), İ(t), Q̇(t),
and Ṙ(t) can be expressed as a Haar series, given by:

Ṡ(t) =
N

∑
m=1

αmψ̃m(t)

˙V(t) =
N

∑
m=1

γmψ̃m(t)

˙E(t) =
N

∑
m=1

θmψ̃m(t)

˙I(t) =
N

∑
m=1

λmψ̃m(t),

˙Q(t) =
N

∑
m=1

vmψ̃m(t)

˙R(t) =
N

∑
m=1

σmψ̃m(t).

Here, S(0) = S0 represents the initial susceptible compartment, V(0) = V0 represents
the initial vaccinated compartment, E(0) = E0 represents the initial exposed compartment,
I(0) = I0 represents the initial infected compartment, Q(0) = Q0 represents the initial
infected compartment, and R(0) = R0 represents the initial recovered compartment.
Integration of these equations leads to the following relation:

S(t) = S0 +
N

∑
m=1

αmϑm,1(t), V(t) = V0 +
N

∑
m=1

γmϑm,1(t), E(t) = E0 +
N

∑
m=1

θmϑm,1(t),

I(t) = I0 +
N

∑
m=1

λmϑm,1(t), Q(t) = Q0 +
N

∑
m=1

vmϑm,1(t), R(t) = R0 +
N

∑
m=1

σmϑm,1(t).

(29)

By using the Caputo derivative, we have

1
Γ(n− δ)

∫ t

0
S(n)(v)(t−v)n−δ−1dv = B− θS(t)I(t)(1 + τI(t))− (ε1 + ρ + η)S(t) +KV(t),

1
Γ(n− δ)

∫ t

0
V(n)(v)(t−v)n−δ−1dv = πS(t)− ψV(t)− (K+ ρ)V(t),

1
Γ(n− δ)

∫ t

0
E(n)(v)(t−v)n−δ−1dv = θS(t)I(t)(1 + τI(t)) + ψV(t)− (ε2 + ρ +')E(t),

1
Γ(n− δ)

∫ t

0
I(n)(v)(t−v)n−δ−1dv = ϕE(t)− (λ + ε + ρ + ε3)I(t),

1
Γ(n− δ)

∫ t

0
Q(n)(v)(t−v)n−δ−1dv = ε1S(t) + ε2E(t) + ε3I(t) +−(ρ + σ)Q(t),

1
Γ(n− δ)

∫ t

0
R(n)(v)(t−v)n−δ−1dv = ηS(t) + σQ(t) + λI(t)− ρR(t).

(30)

As we have assumed that 0 < δ < 1, therefore n = 1, and we have
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1
Γ(1− δ)

∫ t

0
Ṡ(t)(v)(t−v)−δdv = B− θS(t)I(t)(1 + τI(t))− (ε1 + ρ + η)S(t) +KV(t),

1
Γ(1− δ)

∫ t

0
˙V(t)(v)(t−v)−δdv = πS(t)− ψV(t)− (ρ +K)V(t),

1
Γ(1− δ)

∫ t

0
˙E(t)(v)(t−v)−δdv = θS(t)I(t)(1 + τI(t)) + ψV(t)− (ε2 + ρ +')E(t),

1
Γ(1− δ)

∫ t

0
˙I(t)(v)(t−v)−δdv = ϕE(t)− (λ + ε + ρ + ε3)I(t),

1
Γ(1− δ)

∫ t

0
˙Q(t)(v)(t−v)−δdv = ε1S(t) + ε2E(t) + ε3I(t)− (ρ + σ)Q(t),

1
Γ(1− δ)

∫ t

0
˙R(t)(v)(t−v)−δdv = ηS(t) + σQ(t) + λI(t)− ρR(t).

(31)

Haar approximations are used, and we have

1
Γ(1− δ)

∫ t

0

N

∑
m=1

αmψ̃m(v)(t−v)−δdv = B− θ

(
I0 +

N

∑
m=1

λmϑm,1(t)

)(
S0 +

N

∑
m=1

αmϑm,1(t)

)
(

1 + τ

(
I0 +

N

∑
m=1

λmϑm,1(t)

))
− (ε1 + ρ + η)

(
S0 +

N

∑
m=1

αmϑm,1(t)

)
+K

(
S0 +

N

∑
m=1

γmϑm,1(t)

)
1

Γ(1− δ)

∫ t

0

N

∑
m=1

γmψ̃m(v)(t−v)−δdv = π

(
S0 +

N

∑
m=1

αmϑm,1(t)

)

− ψ

(
V0 +

N

∑
m=1

γmϑm,1(t)

)
− (ρ +K)

(
V0 +

N

∑
m=1

γmϑm,1(t)

)
1

Γ(1− δ)

∫ t

0

N

∑
m=1

θmψ̃m(v)(t−v)−δdv = θ

(
I0 +

N

∑
m=1

λmϑm,1(t)

)(
S0 +

N

∑
m=1

αmϑm,1(t)

)
+ ψ

(
V0 +

N

∑
m=1

γmϑm,1(t)

)
(

1 + τ

(
I0 +

N

∑
m=1

λmϑm,1(t)

))
− (ε2 + ρ + ϕ)

(
E0 +

N

∑
m=1

θmϑm,1(t)

)
1

Γ(1− δ)

∫ t

0

N

∑
m=1

λmψ̃m(v)(t−v)−δdv =

ϕ

(
E0 +

N

∑
m=1

θmϑm,1(t)

)
− (λ + ε + ρ + d1)

(
I0 +

N

∑
m=1

λmϑm,1(t)

)
1

Γ(1− δ)

∫ t

0

N

∑
m=1

vmψ̃m(v)(t−$)−δdv = ε3

(
I(t)0 +

N

∑
m=1

λmϑm,1(t)

)
+ ε2

(
E0 +

N

∑
m=1

θmϑm,1(t)

)

+ ε1

(
S0 +

N

∑
m=1

αmϑm,1(t)

)
− (ρ + σ)

(
Q0 +

N

∑
m=1

vmϑm,1(t)

)
1

Γ(1− δ)

∫ t

0

N

∑
m=1

σmψ̃m(v)(t−v)−δdv = η

(
S0 +

N

∑
m=1

αmϑm,1(t)

)

+ σ

(
Q0 +

N

∑
m=1

σmϑm,1(t)

)
+ λ

(
I0 +

N

∑
m=1

λmϑm,1(t)

)
+ ρ

(
R0 +

N

∑
m=1

ζmϑm,1(t)

)
.

(32)

Upon simplification, we have
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1
Γ(1−δ) ∑N

m=1 αmψ̃m(v)(t−v)−δdv− B + θ(1 + τI0)×(
I0S0 + I0 ∑N

m=1 αmϑm,1(t) + S0 ∑N
m=1 θmϑm,1(t) + ∑N

m=1 αmϑm,1(t)∑N
m=1 θmϑm,1(t)

)
+θ

[
I0S0τ ∑N

m=1 θmϑm,1(t) + I0τ ∑N
m=1 αmϑm,1(t)∑N

m=1 θmϑm,1(t) + S0τ
(

∑N
m=1 θmϑm,1(t)

)2

+τ ∑N
m=1 αmϑm,1(t)

(
∑N

m=1 θmϑm,1(t)
)2
]
+ (ε1 + ρ + η)S0 + (ε1 + ρ + η)∑N

m=1 αmϑm,1(t)



= 0, (33)

1
Γ(1− δ)

∫ t

0

N

∑
m=1

γmψ̃m(v)(t−v)−δdv− π

(
S0 +

N

∑
m=1

αmϑm,1(t)

)

+ ψ

(
V0 +

N

∑
m=1

γmϑm,1(t)

)
+ (ρ +K)

(
V0 +

N

∑
m=1

γmϑm,1(t)

)
= 0,

(34)



1
Γ(1−δ) ∑N

m=1 θmψ̃m(v)(t−v)−δdv + θ(1 + τI0)×(
I0S0 + I0 ∑N

m=1 αmϑm,1(t) + S0 ∑N
m=1 θmϑm,1(t) + ∑N

m=1 αmϑm,1(t)∑N
m=1 θmϑm,1(t)

)
+θ

[
I0S0τ ∑N

m=1 θmϑm,1(t) + I0τ ∑N
m=1 αmϑm,1(t)∑N

m=1 θmϑm,1(t) + S0τ
(

∑N
m=1 θmϑm,1(t)

)2

+τ ∑N
m=1 αmϑm,1(t)

(
∑N

m=1 θmϑm,1(t)
)2
]
+ (ε2 + ρ + ϕ)E0 + (ε2 + ρ + ϕ)∑N

m=1 θmϑm,1(t)



= 0, (35)

1
Γ(1− δ)

∫ t

0

N

∑
m=1

λmψ̃m(v)(t−v)−δdv− ϕE0 − ϕ

(
N

∑
m=1

θmϑm,1(t)

)

+ (λ + ε + ρ + ε3)I0 + (λ + ε + ρ + ε3)

(
N

∑
m=1

λmϑm,1(t)

)
= 0,

(36)

1
Γ(1− δ)

∫ t

0

N

∑
m=1

vmψ̃m(v)(t−$)−δdv− ε3I(t)0 − ε3

(
N

∑
m=1

λmϑm,1(t)

)
+ ε2E0 + ε2

(
N

∑
m=1

θmϑm,1(t)

)

+ ε1S0 + ε1

(
N

∑
m=1

αmϑm,1(t)

)
+ (ρ + σ)Q0 + (ρ + σ)

(
N

∑
m=1

vmϑm,1(t)

)
= 0,

(37)

1
Γ(1− δ)

∫ t

0

N

∑
m=1

ζmψ̃m(v)(t−v)−δdv− ηS0 − S0

(
N

∑
m=1

αmϑm,1(t)

)
− σQ0

− σ

(
N

∑
m=1

σmϑm,1(t)

)
− λI0 − λ

(
N

∑
m=1

λmϑm,1(t)

)
+ ρR0 + ρ

(
N

∑
m=1

ζmϑm,1(t)

)
= 0.

(38)

Using the method of Haar integration [52], the integral in the aforementioned system
is approximately calculated as

∫ κ

κ
f (t)dt ≈ κ −κ

N

N

∑
p=1

f
(
tp
)
=

N

∑
p=1

f
(
κ +

(κ −κ)(p− 0.5)
N

)
(39)
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t
NΓ(1−δ) ∑N

s=1 ∑N
m=1 αmψ̃m(vs)(t−vs)

−δ − B + θ(1 + τI0)×(
I0S0 + I0 ∑N

m=1 αmϑm,1(t) + S0 ∑N
m=1 θmϑm,1(t) + ∑N

m=1 αmϑm,1(t)∑N
m=1 θmϑm,1(t)

)
+θ

[
I0S0τ ∑N

m=1 θmϑm,1(t) + I0τ ∑N
m=1 αmϑm,1(t)∑N

m=1 θmϑm,1(t) + S0τ
(

∑N
m=1 θmϑm,1(t)

)2

+τ ∑N
m=1 αmϑm,1(t)

(
∑N

m=1 θmϑm,1(t)
)2
]
+ (ε1 + ρ + η)S0 + (ε1 + ρ + η)∑N

m=1 αmϑm,1(t)



= 0 (40)

1
NΓ(1− δ)

N

∑
s=1

N

∑
m=1

γmψ̃m(v)(t−v)−δdv− π

(
S0 +

N

∑
m=1

αmϑm,1(t)

)

+ ψ

(
V0 +

N

∑
m=1

γmϑm,1(t)

)
+ (ρ +K)

(
V0 +

N

∑
m=1

γmϑm,1(t)

)
= 0,

(41)



t
NΓ(1−δ) ∑N

s=1 ∑N
m=1 θmψ̃m(vs)(t−vs)

−δ − θ(1 + τI0)×(
I0S0 + I0 ∑N

m=1 αmϑm,1(t) + S0 ∑N
m=1 θmϑm,1(t) + ∑N

m=1 αmϑm,1(t)∑N
m=1 θmϑm,1(t)

)
+θ

[
I0S0τ ∑N

m=1 θmϑm,1(t) + I0τ ∑N
m=1 αmϑm,1(t)∑N

m=1 θmϑm,1(t) + S0τ
(

∑N
m=1 θmϑm,1(t)

)2

+τ ∑N
m=1 αmϑm,1(t)

(
∑N

m=1 θmϑm,1(t)
)2
]
+ (ε2 + ρ + ϕ)E0 + (ε2 + ρ + ϕ)∑N

m=1 θmϑm,1(t)



= 0, (42)

t
NΓ(1− δ)

N

∑
s=1

N

∑
m=1

λmψ̃m(vs)(t−vs)
−δ − ϕE0 − ϕ

(
N

∑
m=1

θmϑm,1(t)

)

+ (λ + ε + ρ + ε3)I0 + (λ + ε + ρ + ε3)

(
N

∑
m=1

λmϑm,1(t)

)
= 0,

(43)

t
NΓ(1− δ)

N

∑
s=1

N

∑
m=1

vmψ̃m(vs)(t−vs)
−δ − ε3I0 − ε3

(
N

∑
m=1

λmϑm,1(t)

)
+ ε2E(t)0 + ε2

(
N

∑
m=1

θmϑm,1(t)

)

+ ε1S0 + ε1

(
N

∑
m=1

αmϑm,1(t)

)
+ (ρ + σ)Q0 + (ρ + σ)

(
N

∑
m=1

vmϑm,1(t)

)
= 0,

(44)

t
NΓ(1− δ)

N

∑
s=1

N

∑
m=1

ζmψ̃m(vs)(t−vs)
−δ − ηS0 − S0

(
N

∑
m=1

αmϑm,1(t)

)
− σQ0

− σ

(
N

∑
m=1

σmϑm,1(t)

)
− λI0 − λ

(
N

∑
m=1

λmϑm,1(t)

)
+ ρR0 + ρ

(
N

∑
m=1

ζmϑm,1(t)

)
= 0.

(45)

Let

Φ1,j =



t
NΓ(1−δ) ∑N

s=1 ∑N
m=1 αmψ̃m(vs)(t−vs)

−δ − B + θ(1 + τI0)×(
I0S0 + I0 ∑N

m=1 αmϑm,1(t) + S0 ∑N
m=1 θmϑm,1(t) + ∑N

m=1 αmϑm,1(t)∑N
m=1 θmϑm,1(t)

)
+θ

[
I0S0τ ∑N

m=1 θmϑm,1(t) + I0τ ∑N
m=1 αmϑm,1(t)∑N

m=1 θmϑm,1(t) + S0τ
(

∑N
m=1 θmϑm,1(t)

)2

+τ ∑N
m=1 αmϑm,1(t)

(
∑N

m=1 θmϑm,1(t)
)2
]
+ (ε1 + ρ + η)S0 + (ε1 + ρ + η)∑N

m=1 αmϑm,1(t).

(46)
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Let

Φ2,j =
1

NΓ(1− δ)

N

∑
s=1

N

∑
m=1

γmψ̃m(v)(t−v)−δdv− π

(
S0 +

N

∑
m=1

αmϑm,1(t)

)

+ ψ

(
V0 +

N

∑
m=1

γmϑm,1(t)

)
+ (ρ +K)

(
V0 +

N

∑
m=1

γmϑm,1(t)

)
.

(47)

Let

Φ3,j =



t
NΓ(1−δ) ∑N

s=1 ∑N
m=1 θmψ̃m(vs)(t−vs)

−δ − θ(1 + τI0)×(
I0S0 + I0 ∑N

m=1 αmϑm,1(t) + S0 ∑N
m=1 θmϑm,1(t) + ∑N

m=1 αmϑm,1(t)∑N
m=1 θmϑm,1(t)

)
+θ

[
I0S0τ ∑N

m=1 θmϑm,1(t) + I0τ ∑N
m=1 αmϑm,1(t)∑N

m=1 θmϑm,1(t) + S0τ
(

∑N
m=1 θmϑm,1(t)

)2

+τ ∑N
m=1 αmϑm,1(t)

(
∑N

m=1 θmϑm,1(t)
)2
]
+ (ε2 + ρ + ϕ)E0 + (ε2 + ρ + ϕ)∑N

m=1 θmϑm,1(t).

(48)

Let

Φ4,j =
t

NΓ(1− δ)

N

∑
s=1

N

∑
m=1

λmψ̃m(vs)(t−vs)
−δ − ϕE0 − ϕ

(
N

∑
m=1

θmϑm,1(t)

)

+ (λ + ε + ρ + ε3)I0 + (λ + ε + ρ + ε3)

(
N

∑
m=1

λmϑm,1(t)

)
.

(49)

Let

Φ5,j =
t

NΓ(1− δ)

N

∑
s=1

N

∑
m=1

vmψ̃m(vs)(t−vs)
−δ − ε3I0 − ε3

(
N

∑
m=1

λmϑm,1(t)

)
+ ε2E(t)0 + ε2

(
N

∑
m=1

θmϑm,1(t)

)

+ ε1S0 + ε1

(
N

∑
m=1

αmϑm,1(t)

)
+ (ρ + σ)Q0 + (ρ + σ)

(
N

∑
m=1

vmϑm,1(t)

)
.

(50)

Let

Φ6,j =
t

NΓ(1− δ)

N

∑
s=1

N

∑
m=1

ζmψ̃m(vs)(t−vs)
−δ − ηS0 − S0

(
N

∑
m=1

αmϑm,1(t)

)
− σQ0

− σ

(
N

∑
m=1

σmϑm,1(t)

)
− λI0 − λ

(
N

∑
m=1

λmϑm,1(t)

)
+ ρR0 + ρ

(
N

∑
m=1

ζmϑm,1(t)

)
.

(51)

The nodal points are placed to create the system of nonlinear algebraic equations
shown below:
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Φ1,j =



tm
NΓ(1−δ) ∑N

s=1 ∑N
m=1 αmψ̃m(vs)(tm −vs)

−δ − B + θ(1 + τI0)×(
I0S0 + I0 ∑N

m=1 αmϑm,1(tm) + S0 ∑N
m=1 λmϑm,1(tm) + ∑N

m=1 αmϑm,1(tm)∑N
m=1 λmϑm,1(tm)

)
+θ
[
I0S0τ ∑N

m=1 λmϑm,1(tm) + I0τ ∑N
m=1 αmϑm,1(tm)∑N

m=1 λmϑm,1(tm)

+S0τ
(

∑N
m=1 λmϑm,1(tm)

)2
+ τ ∑N

m=1 αmϑm,1(tm)
(

∑N
m=1 λmϑm,1(tm)

)2
]

+(ε1 + ρ + η)S0 + (ε1 + ρ + η)∑N
m=1 αmϑm,1(tm)

, (52)

Φ2,j =
1

NΓ(1− δ)

N

∑
s=1

N

∑
m=1

γmψ̃m(v)(tm −v)−δdv− π

(
S0 +

N

∑
m=1

αmϑm,1(tm)

)

+ ψ

(
V0 +

N

∑
m=1

γmϑm,1(tm)

)
+ (ρ +K)

(
V0 +

N

∑
m=1

γmϑm,1(tm)

)
.

(53)

Φ3,j =



tm
NΓ(1−δ) ∑N

s=1 ∑N
m=1 θmψ̃m(vs)(tm −vs)

−δ − B + θ(1 + τI0)×(
I0S0 + I0 ∑N

m=1 αmϑm,1(tm) + S0 ∑N
m=1 λmϑm,1(tm) + ∑N

m=1 αmϑm,1(tm)∑N
m=1 λmϑm,1(tm)

)
+θ
[
I0S0τ ∑N

m=1 λmϑm,1(tm) + I0τ ∑N
m=1 αmϑm,1(tm)∑N

m=1 λmϑm,1(tm)

+S0τ
(

∑N
m=1 λmϑm,1(tm)

)2
+ τ ∑N

m=1 αmϑm,1(tm)
(

∑N
m=1 λmϑm,1(tm)

)2
]

+ψ
(

V0 + ∑N
m=1 γmϑm,1(tm)

)
+ (ε2 + ρ + ϕ)∑N

m=1 θmϑm,1(tm)

, (54)

Φ4,j =
tm

NΓ(1− δ)

N

∑
s=1

N

∑
m=1

λmψ̃m(vs)(tm −vs)
−δ − ϕE0 − ϕ

(
N

∑
m=1

θmϑm,1(tm)

)

+ (λ + ε + ρ + ε3)I0 + (λ + ε + ρ + ε3)

(
N

∑
m=1

λmϑm,1(tm)

)
.

(55)

Φ5,j =
tm

NΓ(1− δ)

N

∑
s=1

N

∑
m=1

vmψ̃m(vs)(tm −vs)
−δ − ε3I0 − ε3

(
N

∑
m=1

λmϑm,1(tm)

)

+ ε2E0 + ε2

(
N

∑
m=1

θmϑm,1(tm)

)
+ ε1S0 + ε1

(
N

∑
m=1

αmϑm,1(tm)

)

+ (ρ + σ)Q0 + (ρ + σ)

(
N

∑
m=1

vmϑm,1(tm)

)
.

(56)

Let

Φ6,j =
tm

NΓ(1− δ)

N

∑
s=1

N

∑
m=1

ζmψ̃m(vs)(tm −vs)
−δ − ηS0 − S0

(
N

∑
m=1

αmϑm,1(tm)

)
− σQ0

− σ

(
N

∑
m=1

σmϑm,1(tm)

)
− λI0 − λ

(
N

∑
m=1

λmϑm,1(tm)

)
+ ρR0

+ ρ

(
N

∑
m=1

ζmϑm,1(tm)

)
.

(57)
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Using Broyden’s approach, this system is resolved. The Jacobian is given by

J =
[

Jjp
]

6N×6N (58)

where

∂Φ1,j

∂αm
=



tm
NΓ(1−δ) ∑N

s=1 ∑N
m=1 ψ̃m(vs)(tm −vs)

−δ + θ(1 + τI0)×(
+I0 ∑N

m=1 ϑm,1(tm) + ∑N
m=1 ϑm,1(tm)∑N

m=1 θmϑm,1(tm)
)

+θ

[
+I0τ ∑N

m=1 ϑm,1(tm)∑N
m=1 λmϑm,1(tm) + τ ∑N

m=1 ϑm,1(tm)
(

∑N
m=1 λmϑm,1(tm)

)2
]

+(ε1 + ρ + η)∑N
m=1 ϑm,1(tm)

∂Φ1,j

∂γm
=

N

∑
m=1

ϑm,1(tm),
∂Φ1,j

∂θm
= 0,

∂Φ1,j

∂vm
= 0,

∂Φ1,j

∂σm
= 0,

∂Φ1,j

∂λm
=


θ(1 + τI0)×

(
S0 ∑N

m=1 ϑm,1(tm) + ∑N
m=1 αmϑm,1(tm)∑N

m=1 ϑm,1(tm)
)

+θ
[
I0S0τ ∑N

m=1 ϑm,1(tm) + I0τ ∑N
m=1 αmϑm,1(tm)∑N

m=1 ϑm,1(tm)

+2λmS0τ
(

∑N
m=1 ϑm,1(tm)

)2
+ τ ∑N

m=1 αmϑm,1(tm)
(

∑N
m=1 ϑm,1(tm)

)2
]

, (59)

∂Φ2,j

∂αm
= −π

(
N

∑
m=1

αmϑm,1(tm)

)
,

∂Φ2,j

∂θm
= 0,

∂Φ2,j

∂λm
= 0,

∂Φ1,j

∂vm
= 0,

∂Φ1,j

∂σm
= 0,

∂Φ2,j

∂γm
=

1
NΓ(1− δ)

N

∑
s=1

N

∑
m=1

γmψ̃m(v)(tm −v)−δdv + ψ

(
V0 +

N

∑
m=1

ϑm,1(tm)

)
+ (ρ +K)

(
V0 +

N

∑
m=1

ϑm,1(tm)

)
.

(60)



∂Φ3,j

∂αm
=


θ(1 + τI0)×

(
+I0 ∑N

m=1 ϑm,1(tm) + ∑N
m=1 ϑm,1(tm)∑N

m=1 θmϑm,1(tm)
)

+θ
[
+I0τ ∑N

m=1 ϑm,1(tm)∑N
m=1 λmϑm,1(tm) +τ ∑N

m=1 ϑm,1(tm)
(

∑N
m=1 λmϑm,1(tm)

)2
]

∂Φ3,j

∂γm
=

N

∑
m=1

ϑm,1(tm),
∂Φ3,j

∂θm
=

tm

NΓ(1− δ)

N

∑
s=1

N

∑
m=1

ψ̃m(vs)(tm −vs)
−δ + (ε2 + ρ + ϕ)

N

∑
m=1

ϑm,1(tm),

∂Φ3,j

∂vm
= 0,

∂Φ3,j

∂σm
= 0,

∂Φ3,j

∂λm
=


θ(1 + τI0)×

(
S0 ∑N

m=1 ϑm,1(tm) + ∑N
m=1 αmϑm,1(tm)∑N

m=1 ϑm,1(tm)
)

+θ
[
I0S0τ ∑N

m=1 ϑm,1(tm) + I0τ ∑N
m=1 αmϑm,1(tm)∑N

m=1 ϑm,1(tm)

+2λmS0τ
(

∑N
m=1 ϑm,1(tm)

)2
+ τ ∑N

m=1 αmϑm,1(tm)
(

∑N
m=1 ϑm,1(tm)

)2
]

, (61)

∂Φ4,j

∂αm
= 0,

∂Φ4,j

∂γm
= 0,

∂Φ4,j

∂vm
= 0,

∂Φ4,j

∂σm
= 0,

∂Φ4,j

∂θm
= −ϕ

(
N

∑
m=1

θmϑm,1(tm)

)
,

∂Φ4,j

∂λm
=

tm

NΓ(1− δ)

N

∑
s=1

N

∑
m=1

ψ̃m(vs)(tm −vs)
−δ(λ + ε + ρ + ε3)

(
N

∑
m=1

ϑm,1(tm)

)
.

(62)

∂Φ5,j

∂αm
= ε1

(
N

∑
m=1

ϑm,1(tm)

)
,

∂Φ5,j

∂γm
= 0,

∂Φ5,j

∂vm
=

tm

NΓ(1− δ)

N

∑
s=1

N

∑
m=1

vmψ̃m(vs)(tm −vs)
−δ,

+ (ρ + σ)

(
N

∑
m=1

vmϑm,1(tm)

)
∂Φ5,j

∂σm
= 0,

∂Φ5,j

∂θm
= ε2

(
N

∑
m=1

θmϑm,1(tm)

)
,

∂Φ5,j

∂λm
= −ε3

(
N

∑
m=1

ϑm,1(tm)

)
.

(63)
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∂Φ6,j

∂αm
= S0

(
N

∑
m=1

ϑm,1(tm)

)
,

∂Φ6,j

∂γm
= 0,

∂Φ6,j

∂vm
=

tm

NΓ(1− δ)

N

∑
s=1

N

∑
m=1

ψ̃m(vs)(tm −vs)
−δ,

+ (ρ + σ)

(
N

∑
m=1

ϑm,1(tm)

)
∂Φ6,j

∂θm
= 0,

∂Φ6,j

∂λm
= −λ

(
N

∑
m=1

λmϑm,1(tm)

)
.

∂Φ6,j

∂σm
=

tm

NΓ(1− δ)

N

∑
s=1

N

∑
m=1

ψ̃m(vs)(tm −vs)
−δ − σ

(
N

∑
m=1

σmϑm,1(tm)

)
+ ρ

(
N

∑
m=1

ϑm,1(tm)

)
.

(64)

This system’s solution yields the values of αm’s, γm’s, λm’s, vm’s, and σm’s unknown
coefficients. By entering αm’s, γm’s, λm’s, vm’s, and σm’s unknown coefficients into
Equation (29), it is possible to calculate the necessary solutions S(t), V(t), E(t), I(t), Q(t),
and R(t) at nodal locations. The experimental rate of convergence, denoted by the formula
r$(N) [53], can be calculated as follows:

r$(N) =
1

log 2
log

[
Maximum absolute error at N

2
Maximum absolute error at N

]
. (65)

Graphical Results

This section presents graphical results for the fractional-order model (14). The fractional
model was numerically solved based on the method outlined in [47,54] and using the infor-
mation from Table 1. The resulting figures, namely Figures 4–7, illustrate the dynamics of
the susceptible S(t), vaccinated V(t), exposed E(t), infected I(t), quarantined Q(t), and re-
covered R(t) individuals. Figure 5a shows that susceptible individuals are characterized by
fractional-order derivatives ranging between 0.55 and 0.95, and as time progresses, the number
of susceptible individuals decreases due to exposure to the virus. This behavior is expected
and observed in other epidemiological models. The population of vaccinated individuals is
shown in Figure 5b, and it grows both steadily and quickly as the fractional-order derivative
approaches its classical counterpart. Similarly, the population of exposed individuals is shown in
Figure 5c, and it greatly decreases in the first 15 days while both steadily and quickly increasing
as the fractional-order derivative approaches its classical counterpart. This increase is brought
on by more susceptible people becoming infected during the first few weeks of the outbreak
and joining the exposed class. An increased risk of transmission during the early stages of the
epidemic may be indicated by the rise in exposed individuals. Figure 5c displays the number
of infected people, which rises as the fractional order gets closer to one. The fractional order,
which becomes more sensitive as it gets closer to one, is what is causing this increase. Within
a few weeks of exposure, the majority of people in the quarantined and infectious stages of
the infection leave the exposed class. Figure 5d illustrates the dynamics of the quarantined
individuals, who exhibit a similar behavior as the exposed population. The population of
exposed individuals increases as the fractional-order derivative approaches the integer order.
Figure 5e shows how the fractional order affects the number of recovered individuals, which
grows steadily as the fractional-order derivative approaches the classical value. This is due to the
infected individuals recovering, which aids in disease containment. Raising the fractional order
can cause the population of the recovered class to grow considerably more quickly. These results
suggest that the exposed population is similarly affected by the fractional order regardless of
the strain of infection.
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Figure 4. The caputo version of the fractional model’s behavior for each state variable is depicted in
the figure at δ = 0.95. Furthermore, the figures (a–f) represents susceptible people S(t), vaccinated
people V(t), exposed people E(t), infectious people I(t), quarantined people Q(t), and recovered
people R(t).
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Figure 5. The caputo version of the fractional model’s behavior for each state variable is depicted
using the parameter values in the figure. Furthermore, the figures (a–f) represents susceptible people
S(t), vaccinated people V(t), exposed people E(t), infectious people I(t), quarantined people Q(t),
and recovered people R(t).
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Figure 6. The behavior of each state variable for the Caputo fractional model utilizing a different set
of initial conditions is depicted in the figure. Furthermore, the figures (a–f) represents susceptible
people S(t), vaccinated people V(t), exposed people E(t), infectious people I(t), quarantined people
Q(t), and recovered people R(t).
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Figure 7. The behavior of each state variable is depicted in the figure for θ = 0.01815. Furthermore,
the figures (a–f) represents susceptible people S(t), vaccinated people V(t), exposed people E(t),
infectious people I(t), quarantined people Q(t), and recovered people R(t).
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8. Conclusions

The SVEIQR COVID-19 epidemic model under fractional derivatives in the Caputo
sense has been studied in this article. Some findings from fixed point theory are taken into
consideration when determining the existence and uniqueness of the proposed model. This
study simulates the spread of the COVID-19 Omicron variant in Pakistan using fractional-
order models and the Haar wavelet collocation method. The study makes use of actual data
from Pakistan, which improves the model’s precision and applicability. To determine the
factors that most influence the spread of the virus, a sensitivity analysis was also carried out.
This study sheds light on the dynamics of the pandemic and emphasizes the significance
of taking fractional order into account when modeling infectious diseases. In terms of
future directions, this study can be extended to incorporate additional elements such as
vaccination rates, travel restrictions, and socio-economic conditions. To evaluate the efficacy
of various intervention strategies and compare the effects of various COVID-19 variants,
the model can also be applied to other regions or nations. Additionally, this study can be
expanded to assess the effects of various compliance levels with public health measures,
such as mask use and social distancing. To determine the most effective and precise method,
this study can be expanded to compare the performance of various numerical solution
techniques for fractional-order models.
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