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Abstract: The COVID-19 pandemic has become a worldwide concern and has caused great frus-
tration in the human community. Governments all over the world are struggling to combat the
disease. In an effort to understand and address the situation, we conduct a thorough study of a
COVID-19 model that provides insights into the dynamics of the disease. For this, we propose a
new LS HSEAIHR COVID-19 model, where susceptible populations are divided into two sub-classes:
low-risk susceptible populations, LS, and high-risk susceptible populations, HS. The aim of the
subdivision of susceptible populations is to construct a model that is more reliable and realistic for
disease control. We first prove the existence of a unique solution to the purposed model with the help
of fundamental theorems of functional analysis and show that the solution lies in an invariant region.
We compute the basic reproduction number and describe constraints that ensure the local and global
asymptotic stability at equilibrium points. A sensitivity analysis is also carried out to identify the
model’s most influential parameters. Next, as a disease transmission control technique, a class of
isolation is added to the intended LS HSEAIHR model. We suggest simple fixed controls through
the adjustment of quarantine rates as a first control technique. To reduce the spread of COVID-19
as well as to minimize the cost functional, we constitute an optimal control problem and develop
necessary conditions using Pontryagin’s maximum principle. Finally, numerical simulations with
and without controls are presented to demonstrate the efficiency and efficacy of the optimal control
approach. The optimal control approach is also compared with an approach where the state model is
solved numerically with different time-independent controls. The numerical results, which exhibit
dynamical behavior of the COVID-19 system under the influence of various parameters, suggest
that the implemented strategies, particularly the quarantine of infectious individuals, are effective in
significantly reducing the number of infected individuals and achieving herd immunity.

Keywords: low-risk susceptible; high-risk susceptible; asymptomatic; existence and uniqueness;
invariant region; isolation; optimal control

MSC: 34H05; 49K15; 65K10

1. Introduction

COVID-19, a viral respiratory infection that was first reported in December 2019,
is still a life threatening infection and has affected almost every part of the world [1–3].
Despite the vaccination being distributed, it will be necessary to continue taking preventive
measures such as practicing social distancing and wearing masks until the prevalence of
COVID-19 in a given area decreases to a safe level. This study deals with the mathematical
analysis of the effectiveness of these preventive measures and strategies in minimizing the
spread of infection. The virus causes a variety of symptoms. The most prevalent that may
appear in affected individuals are a sore throat, loss of smell and taste, nausea, vomiting,
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diarrhea, and breathing difficulties [4,5]. COVID-19 was originally discovered in the city
of Wuhan, China, where its origin was identified to be the Huanan seafood market, a live
animal and seafood market. On 11 March 2020, the World Health Organization declared
it a global pandemic [6]. The time to the onset of signs and symptoms, known as the
incubation period, is about 2 to 14 days. Although during the incubation period, affected
individuals may not suffer any illness, they can still transmit infection to other individuals.
Persons with co-morbidities, including hypertension, diabetes, immune compromisation,
respiratory infections, and age greater than 60 years, are at a high risk of developing a
COVID-19 infection [7].

Mathematical modeling plays a crucial role in solving real-world problems across
various fields, such as engineering, economics, physics, and biology. It is an essential tool
in developing hybrid models for partially known intracellular signaling pathways and
chemical processes [8–10]. Hybrid modeling approaches that combine physical models with
machine learning techniques can be particularly effective in capturing complex, nonlinear
relationships between different variables in the process. Through a hybrid modeling
approach, researchers and engineers can gain a deeper understanding of the complex
systems and make more informed decisions about how to optimize and control them [11,12].
Mathematical models have also been proven to be an efficient and powerful tool in the
design, analysis and control of plans for infectious diseases [13–15], epidemics [16], and
pandemics, such as Ebola [17], SARS, and MERS [18,19]. Mathematical models with integer-
and fractional-order derivatives [20–23] have long been used to aid people in understanding
how disease patterns evolve in populations, such as in dengue, malaria, TB, and other
illnesses [24–27]. Such models attempt to account for a variety of important elements in
disease transmission, including the presence of a disease vector, the occurrence of relapses
and reinfections, clinical and sub-clinical cases, the examination of the impact of low-cost
interventions, and so on.

To reduce the infection rate in the human population, a strong mechanism that pro-
vides the most effective and preventive strategy among the available strategies is critical.
The best way to prevent infection is to use the best control strategies to treat the illness.
Educational campaigns, lock-downs, therapies, vaccines, quarantines, treatments, and
isolation are examples of such strategies [4,6,28]. Even though individuals worldwide have
received vaccinations, it is necessary to continue taking preventive measures, such as main-
taining a safe distance from others and wearing masks, until the number of people who
contract COVID-19 reduces to a safe level. The primary goal of creating a COVID-19 model
is to understand disease behaviour over time and to identify possible mandatory control
strategies. As a result, there is an urgent need to examine disease prevention measures
and devise a reasonable control strategy to limit disease spread. This research includes
an examination of the mathematical and computational analysis of the newly proposed
COVID-19 model, aiming to explore preventive measures and suggest an ideal control
approach to restrict the transmission of the infection.

One of the proposed methods to investigate control strategies in the simulation of
system dynamics, which may be used in various compartmental models [29–31], is to use
isolation as a variable in mathematical models of COVID-19 dynamics. Because social
exposure is a potential cause of COVID-19 outbreaks, isolating affected persons can lower
the likelihood of COVID-19 spreading in the future. In this study, we propose a new
LS HSEAIHR COVID-19 model where susceptible populations are divided in to two sub-
classes: low-risk susceptible populations, LS, and high-risk susceptible populations, HS.
Based on our current knowledge of COVID-19, certain groups of people are at a higher risk
of contracting the virus. These individuals are typically referred to as the high-risk suscepti-
ble population and include healthcare workers, providers (including all front-line workers),
relatives of infected individuals, and individuals involved in burial processes. Conversely,
the rest of the population is considered to be at a low risk of acquiring COVID-19 [32,33]. It
is worth noting that an increase in the high-risk population can lead to a higher likelihood
of COVID-19 transmission. Thus, the division of susceptible populations into low- and
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high-risk populations may help us study the disease transmission pattern more appropri-
ately, and accordingly, a suitable disease control strategy maybe adopted. Regardless of the
risk level, everyone should take appropriate precautions to prevent the spread of COVID-19.
These measures include washing hands frequently, practicing social distancing, wearing
masks in public, and becoming vaccinated when possible. Additionally, individuals who
experience symptoms of COVID-19 should seek medical attention immediately.

In this article, we analyze the newly constructed model for the existence of a unique
positive and bounded solution. To examine the validity of the model, we perform a stability
analysis at the equilibrium points and establish the relevant important results. For disease
control analysis, we reconstruct the proposed model to include an isolation compartment as
a control strategy. First, we perform different simulations to observe the effect of different
quarantine levels of infectious individuals on disease spread. Later, we formulate an
optimal control problem to determine the best time-dependent quarantine rates that may
be suggested to restrict the spread of disease. For this, we derive optimality conditions and
design an algorithm to solve these conditions. For numerical solutions, we implement the
RK4 method.

The rest of the paper is organized as follows. Section 2 discusses the formulation of a
new COVID-19 model. Section 3 deals with the basic properties of the solution, e.g., the
existence of a unique positive bounded solution. In Section 4, we determine the equilibrium
points as well as the reproduction number. The local and global asymptotic stabilities of
the model at equilibrium points are elaborated in Section 5. In Section 6, a comprehensive
sensitivity analysis of the reproduction number to parameters is carried out. We investigate
the effect of different time-independent isolation levels on disease spread in Section 7. An
optimal control analysis for disease control is also part of this section. Finally, Section 8
summarizes the conclusion of the manuscript.

2. Model Formulation

A mathematical model can aid in the knowledge of the pathways for the transmission
of a disease as well as illness prevention through the application of preventative mea-
sures [4,6]. We formulate a mathematical model of COVID-19 transmission to explore
its dynamics. To mathematically describe the model, the whole population is segregated
into seven classes: susceptible at low risk LS, susceptible at high risk HS, exposed E(t),
infected I(t), asymptomatic A(t), hospitalized H(t), and recovered R(t). Individuals with
a high risk of infection are known as high-risk susceptible individuals, HS(t). This category
includes clinicians, family members, and paramedical employees who deal with infected
patients. Outside of this group, the population is considered susceptible at a low risk
level, LS(t). Thus, at any time t, the entire population N(t) can be represented through a
mathematical equation as:

N(t) = HS(t) + LS(t) + E(t) + I(t) + A(t) + H(t) + R(t), (1)

where the compartmental variables HS(t), LS(t), E(t), I(t), A(t), H(t), and R(t) are
considered continuously differentiable functions of time t ∈ [0, ∞). Figure 1 shows the
pattern of disease flow through these compartments.



Mathematics 2023, 11, 1978 4 of 29

δ�

δ
 

α
1 ,α2 ,α

3

s
2

y

y

y

y

y

y

y

eE(1-w) (1-P)

e
E

P

w

E(t)

A(t)

L(t)

H(t)

I(t)

I

s1A
s3H

a
4
I

H(t)

R(t)

S

S

P

P

g
1
,g2,
g
 

Figure 1. Flow chart of COVID-19 transmission dynamics.

A mathematical model describing the disease flow pattern shown in Figure 1 is given
by the following system of non-linear ordinary differential equations:

dLS
dt

=Π(1−ω)− LS(α1 A + α2 I + α3H)

N
− ψLS, (2a)

dHS
dt

=Πω− HS(γ1 A + γ2 I + γ3H)

N
− ψHS, (2b)

dE
dt

=
LS(α1 A + α2 I + α3H)

N
+

HS(γ1 A + γ2 I + γ3H)

N
− (ψ + ε)E, (2c)

dA
dt

=εPE− (σ1 + ψ)A, (2d)

dI
dt

=ε(1− P)E− (α4 + σ2 + δI + ψ)I, (2e)

dH
dt

=α4 I − (σ3 + δH + ψ)H, (2f)

dR
dt

=σ2 I + σ3H + σ1 A− ψR, (2g)

subject to the non-negative initial conditions:

HS(0) =(HS)0, LS(0) = (LS)0, E(0) = E0, A(0) = A0, I(0) = I0,

H(0) =H0, R(0) = R0.
(2h)

A detailed description of the parameters of the proposed model (2) along with their
numerical values are shown in Table 1.
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Table 1. Parametric description and the corresponding values.

Parameter Description Value Source

Π Recruitment rate 0.5 [7]
α1 Contact rate of LS with A 0.16 [4,6]
γ1 Contact rate of HS with A 0.2 Assumed
α2 Contact rate of LS with I 0.25 [30]
γ2 Contact rate of of HS with I 0.3 Estimated
α3 Contact rate of LS with H 0.1 [30]
γ3 Contact rate of HS with H 0.2 Estimated
ε Infectious rate 0.1 [31]
α4 Transfer rate from I to H 0.13266 [30]
β5 Transfer rate from I to Q 0.17 [4,6]
β6 Transfer rate from A to Q 0.18 [4,6]
β7 Transfer rate from Q to H 0.125 [4,6]
σ1 Rate of recovery of A 0.01 Assumed
σ2 Rate of recovery of I 0.03521 [30]
σ3 Rate of recovery of H 0.04255 [30].
σ4 Rate of recovery of Q 0.02 Assumed
δI Disease-induced mortality of I 0.0079 [31]
δH Disease-induced mortality of H 0.0068 [30]
δQ Disease-induced mortality of Q 0.0068 [31]
ψ Natural death rate 0.05 Estimated

3. Physical Properties of the Model

In this section, we establish that the model (2) is epidemiologically meaningful in a
feasible and bounded region. This can be established by proving that the model has a
unique solution and that the solution set of the model is non-negative and bounded.

3.1. Existence and Uniqueness of the Solution:

We put the autonomous model (2) into the form:

dy
dt

= g(y(t)), (3a)

y(0) = y0, (3b)

where y(t) ∈ C1[0, T ] and y(t) : R+ → R7
+ is defined by

y(t) = (LS(t), HS(t), E(t), I(t), A(t), H(t), R(t))T ,

with
y0 = (LS(0), HS(0), E(0), I(0), A(0), H(0), R(0))T .

and

g(y(t)) = (g1(y(t)), g2(y(t)), g3(y(t)), g4(y(t)), g5(y(t)), g6(y(t)), g7(y(t)))T ,
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is a vector-valued function from R7
+ to R7

+ with components

g1(y(t)) = Π(1−ω)− LS(α1 A + α2 I + α3H)

N
− ψLS,

g2(y(t)) = Πω− HS(γ1 A + γ2 I + γ3H)

N
− ψHS,

g3(y(t)) =
LS(α1 A + α2 I + α3H)

N
+

HS(γ1 A + γ2 I + γ3H)

N
− (ψ + ε)E,

g4(y(t)) = εPE− (σ1 + ψ)A,

g5(y(t)) = ε(1− P)E− (α4 + σ2 + δI + ψ)I,

g6(y(t)) = α4 I − (σ3 + δH + ψ)H,

g7(y(t)) = σ2 I + σ3H + σ1 A− ψR.

Now, we state some fundamental theorems to prove the existence of a unique solution
of the given model.

Theorem 1 ([34]). Suppose D = {(t, z)|t ∈ R+, z ∈ Rn}, and let h(t, z) be continuous on D and
satisfy the Lipschitz condition there; then, the initial value problem

dz
dt

= h(t, z), z(t0) = z0.

has a solution.

Theorem 2. If the function g(y(t)) of (3) is continuously differentiable over [0, T ], then it is
Lipschitz-continuous.

Proof. Let D be a compact and convex subset of

V = {y(t)| t0 ≤ t ≤ T , y(t) ∈ R7
+}.

Let y1, y2 ∈ D; then, by mean value theorem, ∃ ζ ∈ (y1, y2) such that

g(y1)− g(y2)

y1 − y2
=g

′
(ζ),

or

g(y1)− g(y2) =g
′
(ζ).(y1 − y2).

| g(y1)− g(y2) | =| g
′
(ζ).(y1 − y2) |,

≤ ‖g′(ζ)‖‖y1 − y2‖.

Since g ∈ C1[0, T ], over a convex compact set D, there ∃ a constant τ > 0 such that

‖g′(ζ)‖ ≤ τ.

Hence,

| g(y1)− g(y2) | ≤ τ‖(y1 − y2)‖
| g(y1)− g(y2) | ≤ τ‖y1 − y2‖
‖g(y1)− g(y2)‖ ≤ τ‖y1 − y2‖.

Therefore, g(y) is Lipschitz.
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Since g(y) given in (3) satisfies the Lipschitz conditions, Theorem 1 ensures the exis-
tence of a solution to System (3).

Theorem 3. Suppose that the function g(y) represents the state variables and satisfies the Lipschitz
condition

‖g(y2)− g(y1)‖ ≤ κ‖y2 − y1‖;

then, Problem (3) has a solution, and this solution is unique for

k = τT < 1.

Proof. By the fundamental theorem of calculus, the solution of an IVP (3) will be in the
form:

y(t) = y(0) +
∫ T

0
g(y)dt. (4)

We will prove that the function y(t) is a solution of (3) if and only if it satisfies the
integral Equation (4). Let y(t) be the solution of (3). Then, it satisfies Equation (4), i.e.,:

y(t) = y(0) +
∫ T

0
g(y)dt. (5)

For a converse implication, we let yn(t) be a sequence of solutions that converge to
the solution of (3) with a successive iteration form, which can be defined as follows:

yn(t) = y0 +
∫ T

0
g(yn−1(t))dt, i = 1, 2, ., ., n, with y0(t) = y(0). (6)

First of all, we show that the sequence (6) is contractive if k = τT < 1.

|yn(t)− yn−1(t) |=|
∫ T

0
[g(yn−1(t))− g(yn−2(t))]dt |,

≤
∫ T

0
|g(yn−1(t))− g(yn−2(t))|dt.

Using the Lipchitz property of the function g(y),

|yn(t)− yn−1(t) | ≤
∫ T

0
τ|yn−1(t)− yn−2(t)|dx,

≤ τ‖yn−1 − yn−2‖
∫ T

0
dt,

≤ τT ‖yn−1(t)− yn−2(t)‖,
‖yn − yn−1‖ ≤ τT ‖yn−1 − yn−2‖,
‖yn − yn−1‖ ≤ k‖yn−1 − yn−2‖.

This implies
d(yn, yn−1) ≤ k d(yn−1, yn−2). (7)
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Thus, the sequence (6) is contractive, and hence, it is a Cauchy sequence. Now, for
m, n ∈ N and m > n,

‖ym − yn‖ =‖ym − ym−1 + ym−1 − ym−2 + ym−2...− yn+1 + yn+1 − yn + yn − yn‖,
≤ ‖ym − ym−1‖+ ‖ym − 1− ym−2‖+ ... + ‖yn+1 − yn‖,
≤ km−1‖y1 − y0‖+ km−2‖y1 − y0‖+ ... + kn‖y1 − y0‖,
≤ [km−1 + km−2 + ... + kn]‖y1 − y0‖,

where
k = τT < 1.

Hence, the right-hand side is a geometric series which is always convergent for |k| < 1.

‖ym − yn‖ ≤ kn 1− km−n

1− k
‖y1 − y0‖≤ kn 1

1− k
‖y1 − y0‖.

Since 0 < k < 1, limn→∞kn = 0. Therefore, we infer that the sequence (yn) is Cauchy,
and hence, it is convergent. Let limn→∞yn = y; then, Equation (6) gives

lim
n→∞

yn(t) = y(t) = y(0) +
∫ T

0
g(y(t))dt. (8)

Equation (8) is the required solution.

Uniqueness

To prove the uniqueness of the solution, we suppose, on the contrary, that the sequence
(yn) converges to two different limits, y

′
and y

′′
. Then, there exist n1 and n2 ∈ N such that

‖yn − y
′‖ < ε1 n1 ≥ n,

‖yn − y
′′‖ < ε2 n2 ≥ n.

Let n∗ = max{n1, n2}.

‖y′ − y
′′‖ = ‖y′ − yn + yn − y

′′‖ ≤ ‖y′ − yn‖+ ‖yn − y
′′‖ < ε1 + ε2 = ε n∗ ≥ n,

which implies

‖y′ − y
′′‖ = 0⇒ y

′
= y

′′
.

Hence, we have proved that Solution (8) of Equation (3) exists and is unique.

3.2. Boundedness and Positivity

In order to examine the basic characteristics of the COVID-19 model, we shall demon-
strate that the state variables y = (LS, HS, E, I, A, H, R) are bounded and non-negative ∀
t ≥ 0 in a feasible region Ω defined as

Ω = { LS, HS, E, I, A, H, R ∈ R7
+, 0 ≤ N(t) ≤ Π

ψ
}.

Theorem 4. The variable y(t) representing the states of the model (2) are bounded.
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Proof. From Equation (1), we can write

dN
dt

=
dLS
dt

+
dHS
dt

+
dE
dt

+
dA
dt

+
dI
dt

+
dH
dt

+
dR
dt

. (9)

Using the equations of the model (2) in (9) and then simplifying them, we reach the
following equation, which gives the rate of change for the entire population, i.e.,

dN
dt

= Π− δI I − δH H − ψN. (10)

Since δI I + δH H ≥ 0, then from (10), we can write the inequality:

dN
dt
≤ Π− ψN. (11)

Solving the inequality (11) by using grown wall’s inequality [6], we obtain

N(t) ≤ Π
ψ

+

(
N(0)− Π

ψ

)
exp ( −ψt ).

Consequently, for every initial condition

N(0) ≤ Π
ψ

,

we can write
lim
t→∞

N(t) ≤ Π
ψ

.

As a result, we deduced that the feasible region Ω is bounded for the state variables
(HS, LS, E, I, A, H, R).

Theorem 5. Considering the initial conditions (2h), the solution y(t) = (HS, LS, E, I, A, H, R)
of model (2) is non-negative ∀ t ≥ 0.

Proof. Let us consider the Equation (2a) of model (2).

dLS
dt

+ ( Υ(t) + ψ )LS = Π(1−ω). (12)

After being multiplied by the integrating factor exp
(

ψt +
∫ t

0 Υ(x)dx
)

, Equation (12)
can be written as

d
dt

[
exp

(
ψt +

∫ t

0
Υ(x)dx

)
LS

]
= (1−ω)Π exp

(
ψt +

∫ t

0
Υ(x)dx

)
,

which gives us

LS (t1) exp
(

ψt1 +
∫ t1

0
Υ(x) dx

)
= LS (0)+Π(1−ω)

∫ t1

0
exp

{
ψt +

∫ t

0
Υ(x) dx

}
dt.

Finding solutions for LS(t), it is clear that LS (t1) > 0 f or all t > 0. Using a similar
method, we can demonstrate that y(t) ≥ 0, ∀ t ≥ 0.

4. Equilibrium Points and Reproduction Number
4.1. Equilibrium Points

The equilibrium points of the model (2) are obtained by setting
dLs

dt
= 0,

dHs

dt
= 0,

dE
dt

= 0,
dI
dt

= 0,
dA
dt

= 0,
dH
dt

= 0, and
dR
dt

= 0 and then solving the re-
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sulting equations for the cases when the disease is present in the community and when the
disease is absent in the community. The disease-free equilibrium point for model (2) is:

P0 = (L∗S, E∗, H∗S , I∗, A∗, H∗, R∗ ) =

(
(1−ω)Π

ψ
,

ωΠ
ψ

, 0, 0, 0, 0, 0
)

. (13)

The endemic equilibrium is given as:

P1 = (L̄S, H̄S, Ē, Ā, Ī, H̄, R̄),

where

L̄S =
(1−ω)Π

s1 + ψ
, H̄S =

ωΠ
s2 + ψ

, Ā =
PεĒ
k2

, Ī =
(1− P)εĒ

k3
, H̄ =

α4(1− P)εĒ
k3k4

,

R̄ =
1
ψ
[σ1 Ā + σ2 Ī + σ3H̄],

and
s1s2Ē2 + [ ks1s2 − ψ(s1 + s2) ]Ē− kψ(s1 − s2)− ψ2 + ks1ψ = 0, (14)

where

k =
Π
k1

, s1 =
k3k4α1Pε + k2k4α2(1− P)ε + k2k3α3α4(1− P)ε

k2k3k4N
,

s2 =
k3k4γ1Pε + k2k4γ2(1− P)ε + k2γ3α4(1− P)ε

k2k3k4N
.

k1 = ψ + ε, k2 = ψ + σ1, k3 = α4 + ψ + σ2 + δI , k4 = ψ + σ3 + δH .

Equation (14) can be resolved for Ē, and hence, the endemic point P1 can be determined.

4.2. Reproduction Number

The reproduction number R0 is a criterion that estimates disease transmission in a
population. It is the average proportion of individuals infected by an infectious agent in a
susceptible population. The next-generation matrix approach established by Diekmann and
Heesterbeek in 1990 [35] is used to computeR0. IfR0 < 1, the disease will be eradicated.
The disease will spread across the population ifR0 > 1.

The recruitment of new infection F and transmission rates inside and outside in
infected compartments V are given as:

F =




LS(α1 A + α2 I + α3H)

N
+

HS(γ1 A + γ2 I + γ3H)

N
0
0
0




,

V =




(ψ + ε)E
−εPE + (σ1 + ψ)A

−ε(1− P)E + (α4 + σ2 + δI + ψ)I
−α4 I + (σ3 + δH + ψ)H


.

The Jacobians of F and V are computed at P0 as

F =

(
∂Fj

∂Xi

)

P0

, i, j = 1, 2, 3, 4.

V =

(
∂Vj

∂Xi

)

P0

, i, j = 1, 2, 3, 4,
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where (X1,X2,X3,X4) = (E, A, I, H). Thus, the resulting F and V are matrices that are
given as

F =




0 (1−ω)α1 + ωγ1 (1−ω)α2 + ωγ2 (1−ω)α3 + ωγ3
0 0 0 0
0 0 0 0
0 0 0 0


.

V =




k1 0 0 0
−Pε k2 0 0

−(1− P)ε 0 k3 0
0 0 −α4 k4


.

SinceR0 = the spectral radius of FV−1,
Thus,

R0 =
k3k4εP((1−ω)α1 + ωγ1) + k2k4ε(1− P)((1−ω)α2) + ωγ2

k1k3k4

+
k2(1− P)α4ε((1−ω)α3 + ωγ3)

k1k3k4
.

5. Stability Analysis

In this part, we exploit R0 to discuss the local stability and global stability of the
model (2) at DFE and EE. To investigate and discuss global stabilities, we implement
theories by Lyapunov and Castillo-Chavez [36–39].

5.1. Local Stability

This section investigates the local stability of the COVID-19 model (2) at the DFE point
P0.

Theorem 6. If R0 < 1, the model (2) is locally asymptotically stable at P0, and it is unstable if
R0 > 1.

Proof. The model (2) at the disease-free equilibrium P0 corresponds to the following
Jacobian matrix:

J(P0) =




−ψ 0 0 −(1−ω)α1 −(1−ω)α2 −(1−ω)α3 0
0 −ψ 0 −ωγ1 −ωγ2 −ωγ3 0
0 0 −k1 q1 q2 q3 0
0 0 εP −k2 0 0 0
0 0 ε(1− P) 0 −k3 0 0
0 0 0 0 α4 −k4 0
0 0 0 σ1 σ2 σ3 −ψ




.



Mathematics 2023, 11, 1978 12 of 29

We determine the following eigenvalues of the Jacobian matrix J(P0),

ξ1 = −ψ,

ξ2 = −ψ,

ξ3 = −ψ,

ξ4 = − (1−R0)k2k3k4

ξ7ξ6
,

ξ5 = −k1,

ξ6 = −k2 [(1−R0) +
k4ε(1− P)q2 + ε(1− P)q3

k1k3k4
],

ξ7 =
[(1−R0) +

(1− P)εq3

k1k3k4
]k2k3

ξ6
,

where q1 = α1(1−ω) + γ1ω, q2 = α2(1−ω) + γ2ω, and q3 = α3(1−ω) + γ3ω.
All of the eigenvalues ξi for i = 1, 2, . . . , 7, are less than zero forR0 < 1. Therefore, at

the disease-free equilibrium point P0, the system of equations (2) is locally asymptotically
stable. If R0 > 1, the eigenvalue ξ4 with a positive sign demonstrates the model’s local
instability at P0.

5.2. Global Stability at DFE

At a DFE point, the Castillo-Chavez approach [40] is employed to ensure global
stability. We replicate our model in the following equations by following the procedure
established by Castillo-Chavez et al.

dX
dt

= K(X, φ),

dφ

dt
= G(X, φ), G(X, 0) = 0,

(15)

where X = (HS, LS) ∈ R2
+ denotes the number of individuals who have not been infected,

and φ = (E, I, A, H) ∈ R4
+ denotes the fraction of people who have been exposed, have

been infected, are asymptomatic, or have been hospitalized. The last equation of model (2)
is not taken into account because the others are independent of it. Here, P0 = (X0, 0) is the
disease-free equilibrium (DFE) point.

To verify the GAS of the DFE point in the Castillo-Chavez technique, the following
two requirements must be met. That is

(M1) For
dX
dt

= K(X, 0), X0 is GAS, (16)

(M2) G(X, φ) = Bφ− Ḡ(X, φ), where Ḡ(X, φ) ≥ 0 for all (X, φ) ∈ Ω, (17)

where B = DφG(X0, 0) is an M-matrix, and Ω is the model’s feasible region. As a conclusion
to Castillo-Chavez et al., we may state the following theorem.

Theorem 7. IfR0 < 1 and conditions (M1) and (M2) are fulfilled, then the DFE point P0 of the
proposed model is GAS.
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Proof. Suppose X = ( HS, LS ) stands in for uninfected individuals, φ = (E, I, A, H)
represents those who have been exposed to the disease, are infected, are asymptomatic,
and are being hospitalized, and P0 = (X0, 0) is the disease-free equilibrium. Then,

K(X, φ) =




Π(1−ω)−
(

α1 A− α2 I − α3H
) LS

N
− ψLS

Πω−
(

γ1 A− γ2 I − γ3H
)HS

N
− ψHS


. (18)

At P0 = (X0, 0) and K(X, 0), we obtain

K(X, 0) =
[
(1−ω)Π− ψLS0

ωΠ− ψHS0

]
= 0. (19)

As t → ∞, and X → X0. Therefore, X = X0 = (LS0, HS0) is globally asymptotically
stable.

Now,

dφ

dt
=




−(ψ + ε)
α1LS0

N
+

γ1HS0
N

α2LS0
N

+
γ2HS0

N
α3LS0

N
+

γ3HS0
N

εP −(σ1 + ψ) 0 0
−(P− 1)ε 0 (−α4 − σ2 − ψ− δI) 0

0 0 α4 −(α4 + σ3 + ψ + δH)







E
A
I
H




−




(
α1 A + α2 I + α3H

N

)
(LS0 − LS) +

(
γ1 A + γ2 I + γ3H

N

)
(HS0 − HS)

0
0
0




, (20)

where

B =




−(ε + ψ)
α1LS0 + γ1HS0

N
α2LS0 + γ2HS0

N
α3LS0 + γ3HS0

N
Pε −(σ1 + ψ) 0 0

(1− P)ε 0 −(α4 + σ2 + ψ + δI) 0
0 0 α4 −(α4 + σ3 + ψ + δH)


, φ =




E
A
I
H


,

and

Ḡ(X, φ) =




(
(α1 A + α2 I + α3H)(LS0 − LS)

N

)
+

(
(γ1 A + γ2 I + γ3H)(HS0 − HS)

N

)

0
0
0




.

B is obviously an M-matrix. Since LS ≤ LS0 and HS ≤ HS0 , we have Ḡ(X, φ) ≥ 0. As
a result, the DFE point P0 is GAS.

5.3. Global Behavior at EE

Theorem 8. The endemic equilibrium (EE) point denoted by P1 is globally asymptotically stable if
R0 > 1, and it is unstable ifR0 < 1.
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Proof. Assume thatR0 > 1 so that the endemic equilibrium point exists. We now develop
a Volterra-type Lyapunov functional Φ, given as

Φ (y) =

(
LS − L̄S − L̄S log

(
LS

L̄S

))
−
(
−HS + H̄S + H̄S log

(
HS

H̄S

))

−
(
−E + Ē + Ē log

(
E
Ē

))
−
(
−A + Ā + Ā log

(
A
Ā

))

−
(
−I + Ī + Ī log

(
I
Ī

))
−
(
−H + H̄ + H̄ log

(
H
H̄

))

−
(
−R + R̄ + R̄ log

(
R
R̄

))
. (21)

Taking differentiation, inserting equations from model (2), and then rearranging them,
we obtain

dΦ
dt

=
[
(1−ω)Π + (c1 + ψ)

L̄S
2

LS
+ ωΠ + (c2 + ψ)

H̄S
2

HS
+ c1LS + c2HS + k1

Ē2

E
+ PεE

+ k2
Ā2

A
+ (1− P)εE + k3

Ī2

I
+ α4 I + k4

H̄2

H
+ σ1 A + η2I + σ3H + ψ

R̄2

R

]

−
[
(c1 + ψ)

(LS − L̄S)
2

LS
+ (c1 + ψ)L̄S + (1−ω)Π

L̄S
LS

+ (c2 + ψ)
(HS − H̄S)

2

HS

+ (c2 + ψ)H̄S + ωΠ
H̄S
HS

+ k1
(E− Ē)2

E
+ (c1LS + c2HS)

Ē
E
+ k1Ē +

(A− Ā)2

A
k2

+ PεE
Ā
A

+ k2 Ā +
(I − Ī)2

I
k3 + (1− P)εE

Ī
I
− k3 Ī +

(H − H̄)2

H
k4 + α4 I

H̄
H

+ k4H̄

+
(R− R̄)2

H
ψ + ψR̄ +

H̄
H
(σ1 A + η2I + σ3H)

]
,

where c1 =
α1 A− α2 I − α3H

N
LS, and c2 =

γ1 A + γ2 I + γ3H
N

HS.
Hence, this can be written as

dΦ
dt

= λ1 − λ2,

where

λ1 = (1−ω)Π + (c1 + ψ)
L̄S

2

LS
+ ωΠ + (c2 + ψ)

H̄S
2

HS
+ c1LS + c2HS + k1

Ē2

E
+ PεE

+k2
Ā2

A
+ (1− P)εE + k3

Ī2

I
+ α4 I + k4

H̄2

H
+ σ1 A + η2I + σ3H + ψ

R̄2

R
,

and

λ2 = (c1 + ψ)
(LS − L̄S)

2

LS
+ (c1 + ψ)L̄S + (1−ω)Π

L̄S
LS

+ (c2 + ψ)
(HS − H̄S)

2

HS

+ (c2 + ψ)H̄S + ωΠ
H̄S
HS

+ k1
(E− Ē)2

E
+ (c1LS + c2HS)

Ē
E
+ k1Ē +

(A− Ā)2

A
k2

+ PεE
Ā
A

+ k2 Ā +
(I − Ī)2

I
k3 + (1− P)εE

Ī
I
− k3 Ī +

(H − H̄)2

H
k4 + α4 I

H̄
H

+ k4H̄

+
(R− R̄)2

H
ψ + ψR̄ +

H̄
H
(σ1 A + η2I + σ3H).
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It is known that all the parameters used in the model are positives; therefore,
dΦ
dt

< 0

when λ1 < λ2 &
dΦ
dt

= 0 if λ1 = λ2, which implies that HS = H̄S, LS = L̄S, E = Ē,

I = Ī, A = Ā, H = H̄, and R = R̄. Thus, the EE point P1 is GAS according to LaSalle’s
invariance principle.

6. Sensitivity Analysis

We investigated the sensitivity of the COVID-19 model to determine which parameter
has a greater impact on R0. We calculated the sensitivity index with regards to each
parameter of the reproduction number R0. The index has a greater value when the
associated parameter is more sensitive to R0, meaning that R0 increases in the same
proportion. The importance of the sensitivity index’s positive (or negative) sign is thatR0
increases (or decreases) when the parameter increases. The sensitivity index is calculated
utilizing the normalized forward sensitivity technique [41], which is defined as

Sδ =
δ

R0

∂R0

∂δ
,

where δ is the parameter in R0 whose sensitivity must be determined. The calculated
sensitivity indices for each of the parameters used inR0 are shown in Table 2. The most
sensitive parameter with a positive index is α1. Other parameters that have a greater effect
onR0 than the rest of the parameters include β1, β2, γ1, σ1, and ε.

Table 2. Sensitivity indices for the reproduction numberR0.

Parameter Sensitivity Value/Index Parameter Sensitivity Value/Index

α1 0.5430 ε 0.1379
γ1 0.1579 σ1 −0.4124
α2 0.1415 σ2 −0.04124
γ2 0.0424 σ3 −0.0485
α3 0.0756 δI −0.0104
γ3 0.0378 δH −0.0078
α4 −0.0163 ψ −1.0418

7. Disease Control Strategies

In this section, we study different strategies that may be implemented to control the
disease. The COVID-19 outbreak may spread by direct exposure between infected and
uninfected persons. Therefore, separating infected symptomatic and infected asymptomatic
persons from susceptible populations is the simplest way to prevent COVID-19 from
spreading. For this purpose, we updated the model (2) to add an isolation class, Q(t), with
some control rates.

We assume that infected (symptomatic) people are isolated at a rate of β5. A rate of β6
is also assumed for the isolation of asymptomatic infected individuals. Isolated individuals
are hospitalised at a rate of β7. Assume that δQ, ψ and σ4 stand, respectively, for the death
rate due to disease, the natural death rate, and the recovery rate of isolated individuals.
The model (2) is modified based on the preceding assumptions to yield the following
updated system.
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dLS
dt

= Π(1−ω)− (α1 A + α2 I + α3H)LS
N

− ψLS, (22a)

dHS
dt

= Πω− (γ1 A + γ2 I + γ3H)HS
N

− ψHS, (22b)

dE
dt

=
(α1 A + α2 I + α3H)LS

N
+

(γ1 A + γ2 I + γ3H)HS
N

− ( ε + ψ )E, (22c)

dA
dt

= εPE− (ψ + σ1 + β6)A, (22d)

dI
dt

= ε(1− P)E− (α4 + β5 + σ2 + ψ + δI)I, (22e)

dQ
dt

= β6 A + β5 I − (ψ + β7 + σ4 + δQ)Q, (22f)

dH
dt

= β7Q + α4 I − (ψ + σ3 + δH)H, (22g)

dR
dt

= σ2 I + σ1 A + σ3H + σ4Q− ψR, (22h)

along corresponding initial conditions given as:

LS0 = LS(0) ≥ 0, HS0 = HS(0) ≥ 0, E0 = E(0) ≥ 0, A0 = A(0) ≥ 0,

I0 = I(0) ≥ 0, Q0 = Q(0) ≥ 0, H0 = H(0) ≥ 0, R0 = R(0) ≥ 0.
(22i)

The flow diagram of the modified model is shown in Figure 2. The model (22) will
serve as a set of restrictions for the optimal control problem.
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Figure 2. Flow diagram of updated COVID-19 model with quarantine class.

7.1. Effects of Different Isolation Levels

In this section, we adopt a qualitative approach to determine the effects of isolation
on the disease dynamics governed by the proposed model (2). The RK-4 method was
implemented to visualize these effects. We studied two different cases.

In the first case, we examined the effect of the isolation of asymptomatic infected indi-
viduals on disease control by considering different isolation levels, i.e., β6 = 0, 0.1, 0.3, 0.5,
and 0.7. We can observe from Figures 3 and 4 that the isolation of asymptomatic infected
individuals has a great impact on controlling the pandemic COVID-19 disease. As we
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increase the isolation rate β6 of asymptomatic individuals, solution curves for infected
compartments move towards a disease-free state.

In the second case, we employed different quarantine rates of isolating infected (symp-
tomatic) individuals to study the effect of this decision on disease control. We simulated the
model (2) by considering β5 = 0, 0.1, 0.3, 0.5, and 0.7 and keeping all other parameters
fixed. Figures 5 and 6 give us a clear picture about the effects of the isolation of infected
(symptomatic) individuals.

In both cases, we observe a decrease in the infected individuals with an increase in
the isolation rates. However, a significant decrease in infected individuals is observed if
asymptomatic infected individuals are isolated with higher quarantine levels. This study
also reveals that β6 may be considered a time-dependent control variable to control the
spread of disease optimally.
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Figure 6. Effects of isolation of symptomatic infected individuals with different quarantine rates.

7.2. Optimal Control Problem

Optimal control theory is the study concerned with identifying the best controls of
a system over time in order to achieve a set of requirements. In the proposed model,
we employ Pontryagin’s maximum principle [44] to derive the necessary conditions for
identifying the possible optimal control. Pontryagin and Boltyansikii’s idea of optimal
control has been employed in a variety of epidemic models [4,6,41] to forecast future
outcomes. The goal of a control problem is to optimize an objective functional that consists
of state and control variables.

To formulate an optimal control problem, cost functional that takes into account the
number of infected asymptomatic people A, infected (symptomatic) people I, and the cost
of executing control strategies is given as

J(A, I, u) =
∫ T

0

[
A + I +

1
2

w1u2
1 +

1
2

w2u2
2 +

1
2

w3u2
3

]
dt, (23)

where w1, w2, w3 are the weights associated with each of the time dependent controls:
u1(= β5), u2(= β6), u3(= β7) and T is the final time. The goal is to determine the optimal
controls u∗(t) = (u∗1(t), u∗2(t), u∗3(t)) that minimize the objective functional (23).
Consequently, the problem for optimal control is defined as:

Determine minimizer u∗ ∈ U of J(A, I, u) with constraints (22). (24)

Here, U is a control space defined as

U = {u : 0 ≤ u ≤ 1, 0 ≤ t ≤ T },
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7.2. Optimal Control Problem

Optimal control theory is an area of study concerned with identifying the best controls
of a system over time in order to achieve a set of requirements. In the proposed model,
we employ Pontryagin’s maximum principle [42] to derive the necessary conditions for
identifying the possible optimal control. Pontryagin and Boltyansikii’s idea of optimal
control has been employed in a variety of epidemic models [4,6,39] to forecast future
outcomes. The goal of a control problem is to optimize an objective functional that consists
of state and control variables.

To formulate an optimal control problem, the cost functional that takes into account
the number of infected asymptomatic people A, the infected (symptomatic) people I, and
the cost of executing control strategies is given as

J(A, I, u) =
∫ T

0

[
A + I +

1
2

w1u2
1 +

1
2

w2u2
2 +

1
2

w3u2
3

]
dt, (23)

where w1, w2, w3 are the weights associated with each of the time-dependent controls, such
that u1(= β5), u2(= β6), and u3(= β7), and T is the final time. The goal is to determine
the optimal controls u∗(t) = (u∗1(t), u∗2(t), u∗3(t)) that minimize the objective functional
(23). Consequently, the problem of optimal control is defined as follows:

Determine minimizer u∗ ∈ U of J(A, I, u) with constraints (22). (24)

Here, U is a control space defined as

U = {u : 0 ≤ u ≤ 1, 0 ≤ t ≤ T },
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and the quarantine rates β5, β6, and β7 are, respectively, replaced with time-dependent
controls u1(t), u2(t), and u3(t) in an updated model (22).

To find the optimal control u∗(t) for the optimal control problem (24), we first devel-
oped the necessary optimality conditions.

7.3. Necessary Conditions

In order to determine the conditions for the optimal control problem, Pontryagin’s
maximum principle (PMP) was used. The conditions are derived from the HamiltonianH,
which is defined as follows:

H(t, Z, u, Λ) = A + I +
1
2

w1u2
1 +

1
2

w2u2
2 +

1
2

w3u2
3 +

8

∑
n=1

Λngn(t, Z, u),

where Z denotes the state variables, Λn, n = 1, . . . , 8, are the corresponding adjoint
variables, and gn(t, Z, u), n = 1, . . . , 8, are the right-hand sides of System (22).

The associated HamiltonianH is given as follows:

H(t, Z, u, Λ) =A + I +
1
2

w1u2
1 +

1
2

w2u2
2 +

1
2

w3u2
3

+ Λ1((1−ω)Π− α1
A
N

LS − α2
I
N

LS − α3
H
N

LS − ψLS)

+ Λ2(ωΠ− γ1
A
N

HS − γ2
I
N

HS − γ3
H
N

HS − ψHS)

+ Λ3(α1LS + γ1HS)
A
N
− (α2LS + γ2HS)

I
N
− (α3LS + γ3HS)

H
N
− (ψ + ε)E)

+ Λ4(PεE− (ψ + u2 + σ1)A) + Λ5((1− P)εE− (α4 + u1 + ψ + δI + σ2)I)

+ Λ6
(
u1 I + u2 A− (u3 + ψ + δQ + σ4)Q

)
+ Λ7(α4 I + u3Q− (ψ + δH + σ3)H)

+ Λ8(σ1 A + σ2 I + σ3H + σ4Q− ψR). (25)

The first optimality condition

∂H
∂u

= 0,

of the PMP yields the following expressions for optimal control variables:

u1 =
(Λ5 −Λ6)I

w1
,

u2 =
(Λ4 −Λ6)A

w2
,

u3 =
(Λ6 −Λ7)Q

w3
.

Under bounds, the controls are updated as follows:

u1 = max
[

0, min
(

1,
(Λ5 −Λ6)I

w1

)]
, (26a)

u2 = max
[

0, min
(

1,
(Λ4 −Λ6)A

w2

)]
, (26b)

u3 = max
[

0, min
(

1,
(Λ6 −Λ7)Q

w3

)]
. (26c)
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The optimality condition

∂H
∂Zn

= −dΛn

dt
, n = 1, . . . , 8,

of PMP gives the following linear system of adjoint equations.

dΛ1

dt
=
( (α1 A + α2 I + α3H)

N
+ ψ

)
Λ1 −

( (α1 A + α2 I + α3H)

N

)
Λ3, (27a)

dΛ2

dt
=

(
(γ1 A + γ2 I + γ3H)

N
+ ψ

)
Λ2 −

(
(γ1 A + γ2 I + γ3H)

N

)
Λ3, (27b)

dΛ3

dt
= ( ψε )Λ3 − ε(1− P)Λ5 − εPΛ4, (27c)

dΛ4

dt
= (σ1 + u2 + ψ)Λ4 − σ1Λ8 − u2Λ6 +

(
α1LS

N

)
Λ1 +

(
γ1HS

N

)
Λ2

−
(

α1LS + γ1HS
N

)
Λ3 − 1, (27d)

dΛ5

dt
= (α4 + σ2 + u1 + ψ + δI )Λ5 − u1Λ6 − α4Λ7 − σ2Λ8 +

(
α2LS

N

)
Λ1

+

(
γ2HS

N

)
Λ2 −

(
α2LS + γ2HS

N

)
Λ3 − 1, (27e)

dΛ6

dt
=
(
u3 + ψ + δQ + σ4

)
Λ6 − u3Λ7 − σ4Λ8, (27f)

dΛ7

dt
=(σ3 + ψ + δH)Λ7 − σ3Λ8 +

(
α3LS

N

)
Λ1 +

(
γ3HS

N

)
Λ2

−
(

α3LS + γ3HS
N

)
Λ3, (27g)

dΛ8

dt
=ψΛ8, (27h)

with conditions

Λn(T ) = 0, n = 1, 2, 3, . . . , 8. (27i)

The derivatives of H with respect to adjoint variables Λi, i = 1, 2, . . . , 8 give us the
state system (22).

7.4. Solution Algorithm

To solve optimality conditions for optimal solution, we follow steps of the Algorithm 1 [4]
and use RK-4 method for numerical simulations.

Algorithm 1 Algorithm to find minimizer of the control problem (24)

1. Take us ∈ U for s = 0.
2. Approximate the system (22) as well as the system (27) using control us.
3. Determine u∗ using equations (26).
4. Reset control us by computing us = (us + u∗)/2.
5. Stop the iterations when ‖θs − θs−1‖ < ν‖θs‖ for s > 0,

otherwise s + 1←− s and move to step 2.

Here θ is a representation for state variables, adjoint variables, control variables, and
ν > 0 is the adjusted tolerance.
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7.5. Optimal Solutions and Discussion

This section deals with the presentation and discussion of the optimal solutions to
problem (24) with constant and time-dependent controls. MATLAB software was used to
implement the RK-4 method to attain the optimal solution curves for the control problem
(24). Simpson’s 1

3 formula was employed to approximate the integral defined for the cost
functional (23). We present four different cases with combinations of considered controls
for the sake of analysis and to study the impact of controls on the eradication of diseases
from society. A detailed discussion is presented in the following cases.

Case 1: In the first case, we considered two controls, u1 and u2, and studied their
impact on reducing infection in compartments having infection. We took u3 as a constant
and ignored the term involving u3 from the cost functional (23) by taking w3 = 0.

The curves of optimal control variables and the corresponding objective functional are
shown in Figure 7. We observe that, with each iteration, the curve for the cost functional
reduces to attain its minimum. The state variables before and after optimization are shown
in Figure 8. In this case, we find that the number of asymptomatic and infected individuals
have decreased significantly, whereas the number of hospitalized patients increase initially
and then decrease with time.
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Figure 7. Cost functional and the corresponding optimal control variables for case 1.

Case 2: Now, we take u1 and u3 as time-dependent controls and set u2 as constant. We
also take w2 = 0 in the cost functional (23) to ignore the term involving u2.

For this case, the optimal curves for control variables along with the corresponding
objective functional are shown in Figure 9. It is observed that the optimal curve for the
control u3 does not change with time and stays almost zero for all time. Thus, the optimal
hospitalization rate of quarantined individuals for the optimal solution is negligibly small.
However, the optimal curve for u1 changes with time and drops from its maximum value to
its minimum value. The cost functional again reaches its smallest value under the effect of
controls u1 and u3, as shown in Figure 9. Figure 10 represents solution curves for the state
variables before and after optimization. We notice that the asymptomatic infected people
decrease less as compared to the same individuals in case 1. Hospitalized individuals
decrease after optimization in this case.

Case 3: In this case, we take u2 and u3 to be time-dependent controls and take u1 as
a constant. For this strategy, we take w1 = 0 in the cost functional (23). Figure 11 shows
curves for optimal control, which are the minimizers of the optimal control problem (24). The
functional (23) reduces to its smallest value under the influence of these controls; see Figure 11.
Figure 12 shows the graphs for curves of model variables before and after optimization.
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Compared to case 1, we see a relatively small reduction in the number of exposed and infected
people, although this is better as compared to case 2.
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Case 2: Now we take u1 and u3 as time dependent controls and set u2 as constant. We
also take w2 = 0 in the cost functional (23) to ignore the term involving u2.

For this case, the optimal curves for control variables along with the corresponding
objective functional are shown in the Figure 9. It is observed that the optimal curve for
control u3 does not change with time and stays almost zero for all time. Thus optimal
hospitalization rate of quarantined individual for optimal solution is negligibly small.
However, the optimal curve for u1 changes with time and drops from maximum value to
minimum value. The cost functional has again reached to its least value under the effect of
controls u1 and u3 as shown in Figure 9. Figure 10 represents solution curves for the state
variables before and after optimization. We notice that the asymptomatic infected people
decrease less as compared to the same individuals of cases 1. Hospitalized individuals
decrease after optimization in this case.

Figure 8. State variables before and after optimization with controls u1 and u2.

Case 4: In the last case, we examine the impact of all three control variables u1, u2, and u3
together. Here, the combination of the isolation of asymptomatic and infected individuals and
the hospitalization of isolated individuals is taken into account. The change in the intensity
of control variables along with the cost functional over time are shown in Figure 13. The
optimized hospitalization rate u3 remains almost zero throughout the simulation, but the
other rates fluctuate between the upper bound of 1 and the lower bound of zero. As shown
in Figure 13, these control variables provide us the optimized isolation and hospitalization
rates, reducing the cost functional to a minimum. Figure 14 shows the variations in state
variables before and after optimization with respect to time. It is evident that the number of
exposed, asymptomatic, infected, and hospitalized persons have decreased significantly under
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the implementation of all three control variables. Initially, the number of isolated persons
increases, but then, it gradually decreases.
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constant. For this strategy, we take w1 = 0 in the cost functional (23). Figure 11 shows

Figure 9. Optimal control variables along with corresponding objective functional for case 2.

Mathematics 2023, 1, 0 24 of 30

0 2 4 6 8 10
12

13

14

15

16

17

18

19

20

itrs

ob
je

ct
iv

e 
fu

nc
tio

na
l

0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (days)

C
on

tr
ol

s

 

 

optimal β
5

optimal β
7

Figure 9. Optimal control variables along with corresponding objective functional for case 2.

0 20 40 60
6

6.5

7

7.5

Lo
w

 S
uc

ep
tib

le
s

Days

 

 

Before Opt. After Opt.

0 20 40 60
1

1.5

2

H
ig

h 
S

us
ce

pt
ib

le
s

Days

0 20 40 60
0

0.5

1

E
xp

os
ed

Days
0 20 40 60

0

0.5

1

In
fe

ct
ed

Days

0 20 40 60
0

0.5

1

A
sy

m
pt

om
at

ic

Days
0 20 40 60

0

0.5

1

is
ol

at
io

n

Days

0 20 40 60
0

0.5

1

H
os

pi
ta

liz
ed

Days

0 20 40 60
0

0.5

1

R
oc

ov
er

ed

Days

Figure 10. State variables before and after optimization with controls u1 and u3.

Case 3: In this case, we take u2 and u3 to be time dependent controls and take u1 as
constant. For this strategy, we take w1 = 0 in the cost functional (23). Figure 11 shows

Figure 10. State variables before and after optimization with controls u1 and u3.



Mathematics 2023, 11, 1978 25 of 29

Mathematics 2023, 1, 0 25 of 30

curves for optimal control which are the minimizers of the optimal control problem (24).
The functional (23) has reduced to its least value under the influence of these controls,
see Figure 11. Figure 12 shows the graphs for curves of model variables before and after
optimization. In compared to case 1, we see a relatively small reduction in the number of
exposed and infected people but better as compared to case 2.

0 5 10 15
5

10

15

20

25

30

35

itrs

ob
je

ct
iv

e 
fu

nc
tio

na
l

0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (days)

C
on

tr
ol

s

 

 

optimal β
6

optimal β
7
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Figure 12. State variables with controls u2 and u3.
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Figure 13. Optimal control variables along with corresponding objective functional.
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Figure 14. State variables with controls u1, u2 and u3.

Case 4: In the last case, we examine the impact of all three control variables u1, u2, and u3
together. Here, the combination of isolation of asymptomatic, infected and hospitalization
of isolated individuals is taken into account. The change in intensity of control variables
along with cost functional over time are shown in Figure 13. The optimized hospitalization
rate u3 remains almost zero throughout the simulation, but the other rates fluctuate between
upper bound 1 and lower bound zero. As shown in the Figure 13, these control variables
provide us the optimized isolation and hospitalization rates, reducing the cost functional to
a minimum. Figure 14 shows the variations in state variables before and after optimization
with respect to time. It is evident that the number of exposed, asymptomatic, infected, and
hospitalized persons have decreased significantly under the implementation of all three
control variables. Initially, the number of isolated persons increases, but then gradually
decreases.

We can see that when all three control variables are considered together, the number
of infectious persons decrease significantly as compared to the scenarios when one of the
control variables is considered as time independent. As a result, it is clear that case 4 is the
most efficient strategy for eliminating COVID-19 from the population.

8. Conclusions

In this study, a nonlinear COVID-19 model was examined for disease transmission
prevention utilizing different control approaches. We developed a COVID-19 LS HSEAIHR
model where the susceptible class was divided into two groups: low-risk susceptible LS
and high-risk susceptible HS. The existence and uniqueness of a solution is proved using

Figure 14. State variables with controls u1, u2, and u3.

We can see that when all three control variables are considered together, the number
of infectious persons decreases significantly compared to the scenarios when one of the
control variables is considered time-independent. As a result, it is clear that Case 4 is the
most efficient strategy for eliminating COVID-19 from the population.
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8. Conclusions

In this study, a nonlinear COVID-19 model was examined for disease transmission
prevention utilizing different control approaches. We developed a COVID-19 LS HSEAIHR
model in which the susceptible class was divided into two groups: a low-risk susceptible
population, LS, and a high-risk susceptible population, HS. The existence and uniqueness
of a solution is proved using the Picard iterative approach. We investigated the model’s fun-
damental characteristics and discovered that its solutions are bounded and non-negative.
The reproduction number R0 is evaluated, and the model’s local and global stability is
examined at both of the equilibrium points. The DFE point is locally and globally asymp-
totically stable when R0 < 1 and unstable when R0 > 1. A sensitivity analysis of the
fundamental reproduction number R0 was also performed, revealing that the contact rate
of hospitalized to susceptible individuals is the most sensitive parameter. We chose the
isolation of infected individuals as the control strategy for limiting disease transmission.
We not only examined the effect of different levels of time-independent controls on disease
control but also developed an objective functional with the goal of decreasing asymp-
tomatic and infected people optimally with specific time-dependent controls. Pontryagin’s
maximum principle was employed to identify a solution to an optimal control problem.
Moreover, the optimal control problem was numerically resolved with a comparison of
the system without controls. Cases 1–4 were assessed with different control combinations,
and we identified that activating all three controls at the same time reduced the number of
infectious people significantly. We also observed a significant decrease in the asymptomatic
infected and infected (symptomatic) curves while using a cost-effective approach with
time-dependent controls.

To expand the scope of the research, vaccination can be utilized as an optimal control.
In our forthcoming work, we aim to provide a precise depiction of COVID-19 disease by
employing a fractional model with an ABC derivative operator and several intervention
approaches. Additionally, we will utilize a fractional-order optimal control problem to
determine the optimal methods for vaccination and quarantine.
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