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1. Introduction

An approach to build the general theory of a discrete generating series of one variable
and its connection with the linear difference equations was introduced in [1] . We extend
those results to the multidimensional case. We define a discrete generating series for
f : Zn → C and derive functional relations for such series.

The general theory of linear recurrences with constant coefficients and the Stanley
hierarchy [2,3] of its generating functions (rational, algebraic, D-finite) depending on the
initial data function was considered in [4]. Difference equations with polynomial coeffi-
cients is an effective means to study lattice paths with restriction [5,6]. Some properties of
linear difference operators whose coefficients have the form of infinite two-sided sequences
over a field of characteristic zero are considered in [7]. An effective method of obtaining
explicit formulas for the coefficients of a generating function related to the Aztec diamond
and a generating function related to the permutations with cycles was derived in [8,9].
Using the notion of amoeba [10] of the characteristic polynomial of a difference equation, a
description for the solution space of a multidimensional difference equation with constant
coefficients was obtained in [11]. A generalization to several variables of the classical
Poincaré theorem on the asymptotic behavior of solutions of a linear difference equation is
presented in [12]. We can also note that the almost periodic and the almost automorphic
solutions to the difference equations depending on several variables are not well explored
in the existing literature [13].

Let Z⩾ denote the non-negative integers, Zn = Z× · · · × Z be the n-dimensional
integers, and Zn

⩾ = Z⩾ × · · · ×Z⩾ for n ∈ Z⩾ be its non-negative orthant. For any z ∈ C
and n ∈ Z⩾, we define the falling factorial zn = z(z − 1) · · · (z − n + 1) with z0 = 1 and
the Pochhammer symbol (or rising factorial) is defined by (z)n = z(z + 1) · · · (z + n − 1)
with (z)0 = 1. Throughout, we will use the multidimensional notation for convience
of expressions: x = (x1, . . . , xn) ∈ Zn

⩾, z = (z1, . . . , zn) ∈ Cn, ξ = (ξ1, . . . , ξn) ∈ Cn,

ξx = ξx1
1 · · · ξxn

n , zx = z
x1
1 · · · zxn

n , ℓ = (ℓ1, . . . , ℓn) ∈ Zn
⩾, x! = x1! . . . xn!. We also will use

x ≤ y for x, y ∈ Zn componentwise, i.e., that xi ≤ yi for all i = 1, . . . , n.
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Given a function f : Zn
⩾ → C, we define the associated multidimensional discrete

generating series of f as

F(ξ; ℓ; z) = ∑
x∈Zn

⩾

f (x)ξxzℓx =
∞

∑
x1=0

. . .
∞

∑
xn=0

f (x1, . . . , xn)ξ
x1
1 · · · ξxn

n z
ℓ1x1
1 · · · zℓnxn

n .

Let pα ∈ C[z] denote polynomials with complex coefficients. The difference equation
under consideration in this work is

∑
α∈A

pα(x) f (x − α) = 0, (1)

where set A ⊂ Zn
⩾ is finite and there is m ∈ A such that for all α ∈ A, the inequality

α ⩽ m, which means αj ⩽ mj, j = 1, . . . , n, holds. Occasionally we will use an equivalent
notation 0 ⩽ α ⩽ m, assuming that for some α coefficients, pα(x) vanishes and only
pm(x) ̸≡ 0. In Section 2, we will particularly consider a homogeneous difference equation
with constant coefficients.

The special case where each pα = cα is a constant

∑
α∈A

cα f (x − α) = 0 (2)

arises in a wide class of combinatorial analysis problems [3], for instance, in lattice path
problems [4], the theory of digital recursive filters [14], and the wavelet theory [15]. The
question about correctness and well-posedness of (2) was considered in [16–18].

We equip (1) with initial data on a set named Xm, which is used often enough. We
introduce the notation Z ̸⩾ as Xm = Zn

⩾ \
(

m +Zn
⩾

)
=

{
x ∈ Zn

⩾ : x ̸⩾ m
}

(see Figure 1)
and we define the initial data function φ : Xm → C so that

f (x) = φ(x), x ∈ Xm. (3)

•m

(a) x ⩾ m

•m

(b) x ⩽ m

•m•

(c) x ̸⩾ m
Figure 1. Illustration of the sets x ⩾ m, x ⩽ m, and x ̸⩾ m.

For convenience, we extend φ to the whole of Zn by taking it to be identically zero
outside of Xm. The Cauchy problem is to find a solution to difference Equation (1) that
coincides with φ on Xm, i.e., f (x) = φ(x), for all x ∈ Xm.

In Section 2, functional equations for the discrete generating series are derived for
the solution of the difference equations with constant coefficients. In Section 3, a case of
difference equations with polynomial coefficients is considered. Section 4 contains two
examples that illustrate our approach to discrete generating series.

2. Discrete Generating Series for Linear Difference Equations with Constant Coefficients

In this section, we consider a homogeneous difference equation with constant coeffi-
cients (2) and introduce the shift operator by

P(ξ; ℓ; z) = ∑
0⩽α⩽m

cαξαzℓαρℓα. (4)
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Also useful is its truncation for τ ∈ Zn, defined by the formula

Pτ(ξ; ℓ; z) = ∑
0⩽α⩽m

α⩾̸τ

cαξαzℓαρℓα,

and the discrete generating series of the initial data for τ ∈ Xm by

Φτ(ξ; ℓ; z) = ∑
x⩾̸τ

φ(x)ξxzℓx. (5)

Let δj : x → x + ej be the forward shift operator for j = 1, . . . , n with multidimensional
notation δα = δα1

1 . . . δαn
n and define the polynomial difference operator

P(δ) = ∑
0⩽α⩽m

cαδα.

With this notation, Equation (2) is represented compactly as

P(δ−1) f (x) = 0, x ⩾ m.

The case of generating series ∑x f (x)zx and exponential generating series ∑x
f (x)
x! zx

is well-studied for both one and several variables: one of the first convenient formulas to
derive the generating series exploiting the characteristic polynomial and the initial data
function was proven in [19]. We will prove analogues of these formulas for the discrete
generating series F(ξ; ℓ; z).

Theorem 1. The discrete generating series F(ξ; ℓ; z) for the solution to the Cauchy problem for
Equation (2) with initial data (3) satisfies the functional equations:

P(ξ; ℓ; z)F(ξ; ℓ; z) = ∑
0⩽α⩽m

cαξαzℓαρℓαΦm−α(ξ; ℓ; z) (6)

= ∑
x⩾̸m

P(δ−1)φ(x)ξxzℓx (7)

= ∑
x⩾̸m

Pm−x(ξ; ℓ; z)φ(x)zℓx. (8)

Proof. By multiplying (2) by ξxzℓx and summing over x ⩾ m, we obtain

0 = ∑
x⩾m

∑
0⩽α⩽m

cα f (x − α)ξxzℓx

= ∑
0⩽α⩽m

cα ∑
x⩾m

f (x − α)ξxzℓx.

Now, substituting x with x + α yields

0 = ∑
0⩽α⩽m

cα ∑
x⩾m−α

f (x)ξx+αzℓ(x+α)

= ∑
0⩽α⩽m

cαξαzℓαρℓα ∑
x⩾m−α

f (x)ξxzℓx

= ∑
0⩽α⩽m

cαξαzℓαρℓα

∑
x⩾0

f (x)ξxzℓx − ∑
x⩾̸m−α

φ(x)ξxzℓx


= ∑

0⩽α⩽m
cαξαzℓαρℓα

︸ ︷︷ ︸
=P(ξ;ℓ;z)

∑
x⩾0

f (x)ξxzℓx

︸ ︷︷ ︸
=F(ξ;ℓ;z)

− ∑
0⩽α⩽m

cαξαzℓαρℓα ∑
x⩾̸m−α

φ(x)ξxzℓx

︸ ︷︷ ︸
=Φm−α(ξ;ℓ;z)

.
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Thus, by (5), we have established (6). Since

∑
0⩽α⩽m

cαξαzℓαρℓα ∑
x⩾̸m−α

φ(x)ξxzℓx = ∑
0⩽α⩽m

cα ∑
x⩾̸m−α

φ(x)ξx+αzℓ(x+α)

= ∑
0⩽α⩽m

cα ∑
x⩾̸m

φ(x − α)ξxzℓx

= ∑
x⩾̸m

[
∑

0⩽α⩽m
cα φ(x − α)

]
︸ ︷︷ ︸

=P(δ−1)φ(x)

ξxzℓx,

which yields (7). Finally, collecting (6) by φ(x) yields

∑
0⩽α⩽m

cαξαzℓαρℓα ∑
x⩾̸m−α

φ(x)ξxzℓx = ∑
x⩾̸m

∑
0⩽α⩽m
α⩾̸m−x

cαξαzℓαρℓα

︸ ︷︷ ︸
=Pm−x(ξ;ℓ;z)

φ(x)zℓx,

completing the proof of (8).

For z = (z1, . . . , zn), we denote the projection operator πjz = (z1, . . . , zj−1, 0, zj+1, . . . , zn)
and we introduce the notation

πjF(ξ; ℓ; z) = F(ξ; ℓ; πjz) = ∑
x⩾0
xj=0

f (x)ξxzℓx,

and we define the combined projection Π = (1 − π1) ◦ · · · ◦ (1 − πn) as the composition of
1 − πj for all j = 1, . . . , n.

For the next result, we introduce the symbols I = (1, 1, . . . , 1) ∈ Zn and the unit vectors
ej = (0, . . . , 0, 1, 0, . . . , 0) for j = 1, 2, . . . , n, which is nonzero only for the jth component. In
these two lemmas, we will prove some useful properties of the combined projection Π.

Lemma 1. The following formula holds:

Π ∑
x⩾0

f (x)ξxzℓx = ∑
x⩾I

f (x)ξxzℓx.

Proof. First, compute for any j = 1, 2, . . . , n,

(1 − πj) ∑
x⩾0

f (x)ξxzℓx = ∑
x⩾0

f (x)ξxzℓx − πj ∑
x⩾0

f (x)ξxzℓx

= ∑
x⩾ej

f (x)ξxzℓx.

Thus, we see that applying Π to ∑
x≥0

f (x)ξxzℓx yields the desired result.

We now obtain a similar result as Lemma 1 but for a shifted discrete generating series.

Lemma 2. The following formula holds:

Πξ jz
ℓj

j ρℓj F(ξ; ℓ; z) = ∑
x⩾I

f (x − ej)ξxzℓx.
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Proof. First, compute

(1 − πj)ξ jz
ℓj

j ρℓj F(ξ; ℓ; z) = ξ jz
ℓj

j ρℓj F(ξ; ℓ; z)− πjξ jz
ℓj

j ρℓj F(ξ; ℓ; z)

= ξ jz
ℓj

j ρℓj ∑
x⩾0

f (x)ξxzℓx

= ∑
x⩾0

f (x)ξx+ej zℓ(x+ej)

= ∑
x⩾ej

f (x − ej)ξxzℓx.

Thus, we see that applying Π to ξ jz
ℓj

j ρℓj F(ξ; ℓ; z) completes the proof.

We introduce the inner product

⟨c, ξzℓρℓ⟩ = c1ξ1z
ℓ1
1 ρℓ1

1 + · · ·+ cnξnzℓn
n ρℓn

n

and
⟨c, δ−I⟩ = c1δ−1

1 + · · ·+ cnδ−1
n .

We are now prepared to prove an analogue of [20], [Theorem 1.1].

Theorem 2. The following formula holds:

Π
[
(1 − ⟨c, ξzℓρℓ⟩)F(ξ; ℓ; z)

]
= ∑

x⩾I
(1 − ⟨c, δ−I⟩) f (x)ξxzℓx. (9)

Proof. Applying Π to (1 − ⟨c, ξzℓρℓ⟩)F(ξ; ℓ; z) yields

Π[(1− ⟨c, ξzℓρℓ⟩)F(ξ; ℓ; z)
]
= ΠF(ξ; ℓ; z)− ⟨c, Πξzℓρℓ⟩F(ξ; ℓ; z)

= ΠF(ξ; ℓ; z)− c1Πξ1z
ℓ1
1 ρℓ1

1 F(ξ; ℓ; z)− · · · − cnΠξnzℓn
n ρℓn

n F(ξ; ℓ; z)

= ∑
x⩾I

f (x)ξxzℓx − c1 ∑
x⩾I

f (x − e1)ξxzℓx − · · · − cn ∑
x⩾I

f (x − en)ξxzℓx

= ∑
x⩾I

(
f (x)− c1 f (x − e1)− · · · − cn f (x − en)

)
ξxzℓx

= ∑
x⩾I

(1 − ⟨c, δ−I⟩) f (x)ξxzℓx,

thereby completing the proof.

The following corollary is straightforward.

Corollary 1. If f solves (1 − ⟨c, δ−I⟩) f (x) = 0, then

Π[(1 − ⟨c, ζ⟩)F(ξ; ℓ; z)] = 0. (10)

3. Discrete Generating Series for Linear Difference Equations with Polynomial Coefficients

We define the componentwise forward difference operators ∆j by

∆jF(z) = F(z + ej)− F(z), j = 1, . . . , n.
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If zx = z
x1
1 . . . zxn

n , then ∆jzx = xjzx−ej
. Thus, we can regard ∆j as a discrete analogue

of a partial derivative operator. Now, compute

∆jF(ξ; ℓ; z) = ∆j ∑
x⩾0

f (x)ξxzℓx

= ∑
x⩾0

f (x)ξx∆jzℓx

= ∑
x⩾0

ℓjxj f (x)ξxzℓx−ej
.

We denote the componentwise backward jump ρj by

ρjF(z) = F(z − ej)

and we define the componentwise operators θj = ℓ−1
j zjρj∆j, which generalizes the single-

variable one defined earlier in [21,22]. Now, we prove some useful properties of the operator
θk := θk

1 . . . θk
n.

Lemma 3. If k = (k1, . . . , kn) ∈ Zn
⩾, then the following formula holds:

θkF(ξ; ℓ; z) = ∑
x⩾0

xk f (x)ξxzℓx. (11)

Proof. We obtain:

θkF(ξ; ℓ; z) = θk1
1 . . . θkn

n F(ξ; ℓ; z)

= θ
f k1
1 . . . θ

kn−1
n−1 (ℓ

−1
n znρn∆n)

kn−1ℓ−1
n znρn∆nF(ξ; ℓ; z)

= θk1
1 . . . θ

kn−1
n−1 (ℓ

−1
n znρn∆n)

kn−1ℓ−1
n znρn ∑

x⩾0
ℓnxn f (x)ξxzℓx−en

= θk1
1 . . . θ

kn−1
n−1 (ℓ

−1
n znρn∆n)

kn−1 ∑
x⩾0

xn f (x)ξxzℓx.

Continuing this process kn − 1 times for θn and in k j times in turn for the powers of θj,
j = 1, . . . , n − 1 completes the proof.

The proof of the following lemma resembles the proof of Lemma 3 but for the operator
p(θ) = ∑

α∈A⊂Zn
⩾

cαθα, so we omit explicitly writing the proof.

Lemma 4. The following formula holds:

p(θ)F(ξ; ℓ; z) = ∑
x⩾0

p(x) f (x)ξxzℓx. (12)

We define an operator PA by

PA(ξ; ℓ; z; θ; ρ) = ∑
α∈A

pα(θ + α)ξαzℓαρℓα.

Theorem 3. The discrete generating series F(ξ; ℓ; ·) of the Cauchy problem for Equation (1) with
initial data (3) satisfies the functional equation

PA(ξ; ℓ; z; θ; ρ)F(ξ; ℓ; z) = ∑
α∈A

∑
x⩾̸m−α

pα(x − α)φ(x)ξxzℓ(x+α). (13)
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Proof. Similar to the proof of Theorem 1, we multiply (1) by ξxzℓx and sum over x ⩾ m
to obtain

0 = ∑
x⩾m

∑
α∈A

pα(x) f (x − α)ξxzℓx = ∑
α∈A

∑
x⩾m−α

pα(x − α) f (x)ξx+αzℓ(x+α).

Replacing x with x + α then leads to

0 = ∑
α∈A

ξα

∑
x⩾0

pα(x − α) f (x)ξxzℓ(x+α) − ∑
x⩾̸m−α

pα(x − α)φ(x)ξxzℓ(x+α)


and routine algebraic manipulation completes the proof.

4. Examples

Example 1. We will derive the functional equation for the discrete generating series

F(; ; z1, z2) = F(ξ1, ξ2; ℓ1, ℓ2; z1, z2)

for the basic combinatorial recurrence

f (x1, x2)− f (x1 − 1, x2)− f (x1, x2 − 1) = 0. (14)

Multiplying both sides of (14) by ξx1
1 ξx2

2 z
ℓ1x1
1 z

ℓ2x2
2 and summing over (x1, x2) ⩾ (1, 1) yields

∑
(x1,x2)⩾(1,1)

f (x1, x2)ξ
x1
1 ξx2

2 z
ℓ1x1
1 z

ℓ2x2
2 − ∑

(x1,x2)⩾(1,1)
f (x1 − 1, x2)ξ

x1
1 ξx2

2 z
ℓ1x1
1 z

ℓ2x2
2

− ∑
(x1,x2)⩾(1,1)

f (x1, x2 − 1)ξx1
1 ξx2

2 z
ℓ1x1
1 z

ℓ2x2
2 = 0.

We consider each sum separately:

∑
(x1,x2)⩾(1,1)

f (x1, x2)ξ
x1
1 ξx2

2 z
ℓ1x1
1 z

ℓ2x2
2

= F(; ; z1, z2)− F(; ; 0, z2)− F(; ; z1, 0) + F(; ; 0, 0);

∑
(x1,x2)⩾(1,1)

f (x1 − 1, x2)ξ
x1
1 ξx2

2 z
ℓ1x1
1 z

ℓ2x2
2

= ∑
(x1,x2)⩾(0,1)

f (x1, x2)ξ
x1+1
1 ξx2

2 z
ℓ1(x1+1)
1 z

ℓ2x2
2 =

= ξ1z
ℓ1
1 ρℓ1

1 ∑
(x1,x2)⩾(0,1)

f (x1, x2)ξ
x1
1 ξx2

2 z
ℓ1x1
1 z

ℓ2x2
2

= ξ1z
ℓ1
1 ρℓ1

1
(

F(; ; z1, z2)− F(; ; z1, 0)
)
;

∑
(x1,x2)⩾(1,1)

f (x1, x2 − 1)ξx1
1 ξx2

2 z
ℓ1x1
1 z

ℓ2x2
2

= ξ2z
ℓ2
2 ρℓ2

2
(

F(; ; z1, z2)− F(; ; 0, z2)
)
.

Finally, we obtain

F(; ; z1, z2)− F(; ; 0, z2)− F(; ; z1, 0) + F(; ; 0, 0)

− ξ1z
ℓ1
1 ρℓ1

1
(

F(; ; z1, z2)− F(; ; z1, 0)
)
− ξ2z

ℓ2
2 ρℓ2

2
(

F(; ; z1, z2)− F(; ; 0, z2)
)
= 0,
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which yields the functional equation on F(; ; z1, z2):

(1 − ξ1z
ℓ1
1 ρℓ1

1 − ξ2z
ℓ2
2 ρℓ2

2 )F(; ; z1, z2)

− (1 − ξ2z
ℓ2
2 ρℓ2

2 )F(; ; 0, z2)− (1 − ξ1z
ℓ1
1 ρℓ1

1 )F(; ; z1, 0) + F(; ; 0, 0) = 0.

Example 2. We consider a difference equation with polynomial coefficients whose solution is a
p-recursive series [23]:

f (x1, x2)− (1 + x1x2) f (x1 − 1, x2)− x2
2 f (x1, x2 − 1) = 0. (15)

Multiplying both sides of (15) by ξx1
1 ξx2

2 z
ℓ1x1
1 z

ℓ2x2
2 and summing over (x1, x2) ⩾ (1, 1) yields

∑
(x1,x2)⩾(1,1)

f (x1, x2)ξ
x1
1 ξx2

2 z
ℓ1x1
1 z

ℓ2x2
2 − ∑

(x1,x2)⩾(1,1)
(1 + x1x2) f (x1 − 1, x2)ξ

x1
1 ξx2

2 z
ℓ1x1
1 z

ℓ2x2
2

− ∑
(x1,x2)⩾(1,1)

x2
2 f (x1, x2 − 1)ξx1

1 ξx2
2 z

ℓ1x1
1 z

ℓ2x2
2 = 0.

The first sum is the same as in the previous example. We consider the second and third
sum separately:

∑
(x1,x2)⩾(1,1)

(1 + x1x2) f (x1 − 1, x2)ξ
x1
1 ξx2

2 z
ℓ1x1
1 z

ℓ2x2
2

= ∑
(x1,x2)⩾(0,1)

(1 + (x1 + 1)x2) f (x1, x2)ξ
x1+1
1 ξx2

2 z
ℓ1(x1+1)
1 z

ℓ2x2
2

= (1 + (θ1 + 1)θ2)ξ1z
ℓ1
1 ρℓ1

1 ∑
(x1,x2)⩾(0,1)

f (x1, x2)ξ
x1
1 ξx2

2 z
ℓ1x1
1 z

ℓ2x2
2

= (1 + (θ1 + 1)θ2)ξ1z
ℓ1
1 ρℓ1

1
(

F(; ; z1, z2)− F(; ; z1, 0)
)
;

∑
(x1,x2)⩾(1,1)

x2
2 f (x1, x2 − 1)ξx1

1 ξx2
2 z

ℓ1x1
1 z

ℓ2x2
2

= (θ2 + 1)2ξ2z
ℓ2
2 ρℓ2

2
(

F(; ; z1, z2)− F(; ; 0, z2)
)
,

which yields the functional equation

(
1 − (1 + θ1θ2 + θ2)ξ1z

ℓ1
1 ρℓ1

1 − (θ2 + 1)2ξ2z
ℓ2
2 ρℓ2

2
)

F(; ; z1, z2)

−
(
1 − (1 + θ1θ2 + θ2)ξ1z

ℓ1
1 ρℓ1

1
)

F(; ; 0, z2)

−
(
1 − (θ2 + 1)2ξ2z

ℓ2
2 ρℓ2

2
)

F(; ; z1, 0) + F(; ; 0, 0) = 0.

5. Conclusions

We have initiated the theory of discrete generating series for multidimensional poly-
nomial coefficient difference equations. We introduced a multidimensional polynomial
shift operator and established three functional equations that these new discrete generating
series obey, revealing some of their structural properties. A strong direction for future
research is to generalize to the time scales calculus [24]. The falling factorial functions here
are called generalized hk polynomials in time scales. This suggests some directions for the
time scales analogue of this research, which was arguably anticipated with the definition of
a moment-generating series for distributions in [25]. One particularly interesting question
is what the proper analogue of (1) is for an arbitrary time scale, and perhaps analysis from
a generating series perspective would reveal new insights to this problem.
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