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Abstract: Pattern recognition systems always misclassify anomalies, which can be dangerous for
uninformed users. Therefore, anomalies must be filtered out from each classification. The main
challenge for the anomaly filter design is the huge number of possible anomaly samples compared
with the number of samples in the training set. Tailoring the filter for the given classifier is just the first
step in this reduction. Paper tests the hypothesis that the filter trained in avoiding “near” anomalies
will also refuse the “far” anomalies, and the anomaly detector is then just a classifier distinguishing
between “far real” and “near anomaly” samples. As a “far real” samples generator was used, a
Generative Adversarial Network (GAN) fake generator that transforms normally distributed random
seeds into fakes similar to the training samples. The paper proves the assumption that seeds unused
in fake training will generate anomalies. These seeds are distinguished according to their Chebyshev
norms. While the fakes have seeds within the hypersphere with a given radius, the near anomalies
have seeds within the sphere near cover. Experiments with various anomaly test sets have shown
that GAN-based anomaly detectors create a reliable anti-anomaly shield using the abovementioned
assumptions. The proposed anomaly detector is tailored to the given classifier, but its limitation is
due to the need for the availability of the database on which the classifier was trained.

Keywords: anomaly detection; generative models; deep neural networks; machine learning
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1. Introduction

Today, an important task in analyzing information is the recognition of unusual data
patterns (points, events, observations). Such unusual data are referred to as outliers or
anomalies [1]. According to Hawkins [2], ‘An outlier is an observation which deviates so
much from other observations as to arouse suspicions that different mechanism generated
it’. Ref. [1] explains that one or more generating processes usually create the observed data.
When the generating process behaves unusually, outliers are observed. The recognition of
outliers can provide valuable information on observed applications or the systems inside.

We include the process of outlier recognition into anomaly detection. Anomaly detec-
tion should be viewed with an extra notion, as their presence indicates an unusual event
or significant situation that may cause harm when not dealt with properly. Moreover,
mishandling anomalies can result in incorrect decision-making, causing invalid predictions
or even wrong explanations.

Anomaly detection is crucial in many fields and applications, including in health-
care [3–6], cybersecurity and computer networks with Fast Reroute mechanisms [7,8],
financial industry [9–12], robotics [13–15], and video surveillance [16–18], among many
others [19–22].

Anomalies are usually detected in large amounts of data, so they must be processed
automatically. This is typically done using machine learning (ML) methods. Supervised,
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semi-supervised, or unsupervised anomaly-detection approaches are known. We use the
semi-supervised anomaly-detection approach in our work.

Machine learning methods for anomaly detection can be divided into two main
categories: classical ML methods (e.g., isolation forests [23,24], one-class support vector
machine [25,26]); and new deep learning-based methods like autoencoders (AE) [27–29],
generative adversarial networks (GAN), long short-term memory models (LSTM) [30,31],
temporal convolutional networks (TCN) [32,33], or transformers [34]. Deep learning
methods extract significant features from data; thus, they can use significant properties
unseen by users. On the other hand, these methods’ limitations include using only the
training set as a normal data reference and, optionally, specific databases as anomaly
references. This raises the question of whether other anomalies that are not covered can be
detected and to what extent.

Our article focuses on the GAN-based model. GAN model principles and implemen-
tation cases can be found in [35,36]. A review analysis of publications of GAN models
and their applications, based on libraries such as Embase (Scopus), WoS, and PubMed,
can be found in [37]. A systematic literature review on the relation between anomaly-
detection techniques and types of GAN is presented in [38]. Article [39] summarizes
the evolution of GAN-based anomaly-detection methods and discusses the theory and
their application in different areas. Ref. [40] investigates deep anomaly detection with
comprehensive taxonomy categories and methods. Authors in [41] survey the principal
GAN-based anomaly-detection methods and present empirical validations of the GAN
models for anomaly detection on different datasets (MNIST, CIFAR-10, etc.) using an
open-source toolbox. They also supply references to the literature that originally proposed
concepts of GAN-based models.

Authors in [42] deeply analyzed the GAN-based methods and propose categorizing
them into three main categories: AnoGAN [43], EGBAD [44], and GANomaly [45]. They
state that almost all other GAN-based approaches for anomaly detection are based on one
of these three methods. AnoGAN-based methods are built on a classic GAN structure
where the generator and discriminator are implemented by a convolutional neural network.
Since AnoGAN-based methods are relatively simple, they often perform poorly and are not
suited for anomaly-detection tasks. This is primarily due to the missing inverse mapping.
The anomaly score relies solely on comparing samples rather than comparing the latent
spaces. EGBAD-based methods extend the idea of AnoGAN by introducing a bidirectional
GAN network instead of DCGAN with an extra encoder that maps the real samples back
to the latent space. This also allows the discriminator to consider the latent space of the
tested sample. On the other hand, there is no guarantee that reconstructed samples are
accurately remapped to the same latent space as the tested samples. Therefore, even if two
samples appear close in the sample space, they may end up far apart from each other once
mapped onto the latent space. GANomaly-based methods extend the idea of EGBAD and
use the second encoder to encode the data after the first reconstruction. As a result, the
encoded latent variable can be compared with the re-encoded latent variable. Additionally,
the accuracy may be further enhanced by combining the measurements of the original
sample and its reconstruction. On the contrary, the GANomaly-based methods may be
much more computationally demanding due to the inner architecture. Similar to EGBAD,
the distances in the sample and latent spaces may differ.

We use a GAN-based model to detect anomalies. The GAN network comprises two
adversarial networks, a generator, and a discriminator, which are trained in tandem [46].
The role of the generator is to produce data (e.g., images) that resemble real samples. The
discriminator must classify these generated data as fakes. Thus, the trained discriminator
can be used to distinguish anomalies from real samples. Moreover, the generator can
create new data samples (fakes) like the original data. Therefore, additional “realistic” data
samples can be generated.

Ref. [46] proposes using generated samples to improve discriminator anomaly-detection
capabilities further. Our article extends this idea. An additional anomaly discriminator is
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trained using fakes and ‘near’ anomalies generated by the GAN’s generator. The contribu-
tions of this study are as follows:

• The proposed approach is based on GAN-generated near anomalies. They are not spe-
cific like database-created counterexamples, but they are general worst-case anomalies
(from the detection point of view) given by the classifier application;

• The obtained results confirm that specific databases applied as anomaly samples are
mostly detected with higher probability than GAN-generated near anomalies. An
exception is a database with samples similar to the training samples (e.g., MNIST
vs. SVHN). However, if the user wants to treat these as anomalies as well, they can
include them in the training of the anomaly detector;

• We optimized the additional anomaly detector for the best fake–near anomaly ratio.
This approach gives better results compared to published anomaly-detection methods.

The remainder of this paper is organized as follows: Section 2 serves as a back-
ground for understanding the proposed approach. Section 3 discusses the training and
testing databases, the neural network architectures, and the methods applied to train them.
Section 4 presents the experimental results, and Section 5 discusses them. Finally, Section 6
concludes the paper.

2. Background

Pattern recognizers implemented by deep neural networks represent a nonlinear
transform that, for any input (picture), gives some output (class). For an uninformed user,
this may cause incorrect use of the recognition result. Therefore, the prior anomalous
pattern detector must solve the problem of whether the input sample matches samples
from the set on which the recognizer has been trained.

The supervised neural networks were gained from the occurrence samples of all
recognized classes in the training set. However, a supplement to the given training set gives
so many anomalies that a curse of dimensionality occurs, and the selection of anomalies
raises questions even when testing anomaly detectors. The idea that anomalies are samples
formed by a different mechanism than the training samples [2] leads us to use generative
models. Generative adversarial networks (GAN) generate samples (fakes) similar to the
training samples and may be used for the training set augmentation. Fake generation is
based on the nonlinear transformation of noise into a picture. A standard Gaussian noise
script is usually used: d a standard Gaussian noise N (0, 1). We use the Chebyshev vector
norm for the generator seed n = (n1, n2 . . . , nN ,) characterization that gives

∥n∥ = max
i=1,...,N

{|ni|}, ni ∈ N (0, 1),

and the following probability density distribution:

f (x) =
d

dx

N

∏
i=1

P(ni < x) =
N√
2π

e−x2/2
(

1
2
+

1
2

er f
(

x√
2

))N−1
(1)

As we can see in Figure 1, seeds applied for the training of generating fakes have a
limited size because the probability of size above a certain value (≈5) is negligible. We
assume that these seeds will generate anomalies if not used for fake generation. Also, small
seeds (under 1) are rarely used for fake generation, but they are like centroids; therefore,
they do not have the character of anomalies. This is the fundamental hypothesis of the
paper. Of course, this hypothesis does not solve the dimensionality curse problem because
the space for anomaly generation is unlimited. Therefore, the second assumption used
in the paper states that if the anomaly detector recognizes the anomalies generated by
the seed with a given size (norm), it will be able to recognize anomalies generated by the
seed with a higher norm. We use seeds with a norm below a certain value (≈5) for fake
generating and seeds with a norm above this value for anomaly generation. While fakes can
be interpreted as augmented samples in the training set, we call them “far real” samples.
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Figures 2 and 3 support the hypotheses. Figure 2 indicates the anomaly convergence with
increasing the seed norm even independently of the generated class. In contrast, Figure 3
shows a divergence in anomaly shape in the same class for different starting seeds if their
norm increases. The anomalies are the most similar to fakes, generated by seed norms
slightly above the border value (interval from 6 to 7), which we call “near anomalies”, while
anomalies with larger seed norms are called “far anomalies”. Figures 2 and 3 demonstrate
that the seed norm above 15 generates so far anomalies that they are not needed for testing.
If the GAN is trained correctly, the probability that “far” anomalies will look like fakes
is negligible.
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The Chebyshev norm was chosen for the following reasons:

• Experiments with MNIST anomalies show that the Manhattan or Euclid norm (sum
of all coordinate differences, in absolute values, or squares) gives a small anomality
compared to the change in one coordinate (the same Chebyshev norm–maximum
absolute difference over all coordinates);

• It is a well-known fact that, in the high dimensional space, a hypersphere with a Eu-
clidean metric embedded in a hypercube (a hypersphere with a Chebyshev metric) fills
only a negligible fraction of it, indicating that the hypercube represents a significantly
larger subspace of the generated anomalies;

• the calculation of the Chebyshev metric in high dimensional space is faster than the
calculation of the Euclid metric.

Figure 2 presents the output from the fake generator for 10 classes when the same
random seed was applied to the generator input. The generator gives the class centroid
samples for ∥n∥ = 0. We can see that samples slightly converge to the same anomaly
sample with the increasing norm, regardless of the class. By contrast, Figure 3 shows this
convergence according to the seed norm if the different seeds are applied for the same
class. Figure 3 also demonstrates that the anomaly radius border depends on the seed.
This phenomenon was studied in [47] but needs much human work. This paper simplifies
this aspect, and we suppose that a seed generates anomalies with the norm ||n|| > rA, i.e.,
outside a hypersphere, not a hyperelipsoid.

3. Materials and Methods
3.1. Training Sets and Pattern Recognizers

Although the MNIST dataset [48] consists of grayscale images of handwritten digits
and represents a “Hello world” in pattern recognition, it simply illustrates the ideas used
in the article. CIFAR-10 [49] also showed results for slightly more complex datasets, as it
consists of RGB images belonging to 10 individual classes. To evaluate the performance of
anomaly detection, examples from the test sets of the following datasets were considered
anomalous. Each dataset was balanced to consist of 10,000 images, either by default or by
random sampling from the corresponding database.

For MNIST database:

(a) FashionMNIST [50] is a collection of grayscale images showcasing various fashion
items, such as clothing, shoes, and accessories. The images are divided into 10 cate-
gories;

(b) Omniglot [51]. The Omniglot dataset consists of handwritten characters from various
alphabets, including both modern and ancient scripts, such as Latin, Cyrillic, or Greek.
Each character in the dataset is handwritten multiple times by different individuals to
capture the natural variations in handwriting styles;
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(c) notMNIST [52]. The notMNIST dataset consists of images of characters and letters
from the English alphabet (from A to J) in various fonts and styles;

(d) CIFAR-10-bw. This dataset consists of grayscale CIFAR-10 images resized to 28 × 28 pixels;
(e) SVHN-bw. This dataset consists of grayscale SVHN [53] images resized to a resolution

of 28 × 28 pixels;
(f) Uniform. The synthetic Uniform dataset comprises images where each pixel is inde-

pendently and identically sampled from a uniform distribution [0, 1];
(g) Gaussian. The synthetic Gaussian dataset comprises images where each pixel is

independently and identically sampled from a normal distribution with a mean of 0.5
and a standard deviation of 0.5 and then clipped to the range of [0, 1].

For the CIFAR-10 database:

(h) CIFAR-100 [49]. CIFAR-100 is like the CIFAR-10 dataset, except the images come from
100 different classes. There is no overlapping class in these datasets. Each dataset
contains distinct sets of classes;

(i) MNIST-resized. We modified the original MNIST database to have a resolution of
32 × 32 pixels and duplicated the values to have three channels;

(j) LSUN [54]. The LSUN (Large-Scale Scene Understanding) dataset contains diverse
images representing various indoor and outdoor scenes such as living rooms, bridges,
streets, bedrooms, etc. We resized the original dataset to 32 × 32 pixels;

(k) SVHN. The SVHN (Street View House Numbers) dataset is a collection of real-world
images of digits, such as house numbers visible on buildings and residences in Google
Street View images. We created two versions of the SVHN dataset—for training and
testing purposes;

(l) Uniform and Gaussian (identically to (f) and (g)).

We adapted residual network architectures for MNIST and CIFAR-10 classifiers. For
both, we used pre-activation residual blocks (RBz) with two 3 × 3 convolutional layers,
each with z filters and LeakyReLU with the 0.2 slope coefficient. In the case of MNIST,
we used the following settings: RB32, AvgPool, RB32, AvgPool, RB32, RB32, AvgPool,
RB32, RB32, GlobalAvgPool, Dense, and Softmax. For CIFAR-10, the WideResNet16-4 [55]
architecture with GlobalAvgPool was used as the backbone for feature extraction, followed
by a simple classification head with an additional 256 features. We achieved accuracies of
98.27% and 94.77% on MNIST and CIFAR-10, respectively.

3.2. GAN Network and Anomaly Detection

To filter anomalies for the specific pattern recognizer, we use a recognized class to
support WGAN-GP [56] (see Figure 4), as it eliminates the problem of mode collapse and
supports the diversity of generated samples by utilizing the Wasserstein distance. Unlike
the standard GAN model, the output of the discriminator does not produce a probability
of how real or fake the input sample is; rather, the output of WGAN-GP is a real value
that correlates with how closely the input sample resembles the training images. This
is achieved by removing the sigmoid normalization layer on the discriminator output.
At the same time, gradient penalty (GP) is used, which provides a 1-Lipschitz function.
WGAN-GP is based on WGAN [57]. With WGAN, the discriminator weights are clipped
to a small value to prevent the outputs from reaching high values. WGAN-GP solves
this via the gradient penalty. When training WGAN and WGAN-GP, we typically train
the discriminator more times than the generator, typically at a ratio of 5:1 (in the original
article); we trained at ratios of 3:1 and 5:1 in the cases of MNIST and CIFAR-10 databases,
respectively. The generator G was trained according to the loss function:

GLOSS = αLADV + (1 − α)LC, (2)

LADV = −F, (3)

LC = CrossEntropy(y, C(GF)), (4)
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F =
1
N ∑ D

(
GF, Ĉ(GF)

)
, (5)

GF = G
(

nF,
∼
y
)

, (6)

where C is the fully trained pattern recognizer that we want to protect, C(·) is the softmax
output for the given sample and Ĉ(·) is the corresponding one-hot representation of the
winning class. The hyperparameter α influences the importance of adversarial loss and
classification loss. Lower values of α force the generator to generate images correctly classi-
fied by the given classifier C, even at the cost of artifact-like generated images. Conversely,
with higher values of α, we force the generator to generate images that resemble the images
in the training set. Thus, we set the value of α to 0.5 in all experiments. The discriminator
was trained according to the loss function:

DLOSS = F − R + λGP, (7)

R =
1
N ∑ D(x, y), (8)

F =
1
N ∑ D(GF, y), (9)

GF = G
(

nF,
∼
y
)

, (10)

where R is the average discriminator score for real samples x associated with the true label
y, and F is the average discriminator score for fake samples (generated by the generator
with the fake seed norm nF = ∥n∥ < rA = 5 and randomly generated class label

∼
y). Note

that we conditioned both the discriminator and generator. For the final WGAN-GP training,
we followed the general Algorithm 1 proposed in [56]. Details about the hyperparameter
settings are provided in Sections 4.2 and 4.3.
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The basic idea assumes that the discriminator in a standard-trained GAN will indicate
the anomalies because they are unlike the training samples. This is not true, just as it is not
true that classifier confidence indicates anomalies (see Figure 5).

We followed the proposed ResNet-like architectures for the generator and discrim-
inator in the paper [56]. The detailed description of MNIST and CIFAR-10 WGAN-GP
architectures is provided in Tables 1 and 2, respectively. We do not apply batch normaliza-
tion within the residual block in discriminator models. All weights are initialized from a
zero-centered normal distribution with a standard deviation 0.02. We chose LeakyReLU
as the activation function and set the slope of the leak to 0.2. UpSampling refers to the
interpolative resizing using the nearest interpolation approach.
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Table 1. Detailed description of MNIST WGAN-GP architecture.

Generator Discriminator

Settings Resample Output
Shape Settings Resample Output

Shape

Input (n,
∼
y) - - 74 a: Input (x) - - 28 × 28 × 1

Dense - - 1568 b: Dense (
∼
y) - - 784

Reshape - - 7 × 7 × 32 c: Reshape b - 28 × 28 × 1
Residual block [3 × 3] × 1 UpSampling 14 × 14 × 32 Concatenate [a, c] - 28 × 28 × 2
Residual block [3 × 3] × 1 UpSampling 28 × 28 × 32 Conv2D 3 × 3 - 28 × 28 × 32

Conv2D 3 × 3 - 28 × 28 × 1 Residual block [3 × 3] × 1 AvgPool 14 × 14 × 32
Sigmoid - - 28 × 28 × 1 Residual block [3 × 3] × 1 AvgPool 7 × 7 × 32

Residual block [3 × 3] × 2 AvgPool 3 × 3 × 32
Residual block [3 × 3] × 2 - 3 × 3 × 32
Global pooling Avg - 32

Dense - - 1

Table 2. Detailed description of CIFAR-10 WGAN-GP architectures.

Generator Discriminator

Settings Resample Output Shape Settings Resample Output Shape

Input (n,
∼
y) - - 138 a: Input (x) - - 32 × 32 × 3

Dense - - 2560 b: Dense (
∼
y) - - 1024

Reshape - - 4 × 4 × 160 c: Reshape b - 32 × 32 × 1
Residual block [3 × 3] × 1 UpSampling 8 × 8 × 160 Concatenate [a, c] - 32 × 32 × 4
Residual block [3 × 3] × 1 UpSampling 16 × 16 × 160 Conv2D 3 × 3 - 32 × 32 × 192
Residual block [3 × 3] × 1 UpSampling 32 × 32 × 160 Residual block [3 × 3] × 1 AvgPool 16 × 16 × 192

Conv2D 3 × 3 - 32 × 32 × 3 Residual block [3 × 3] × 1 AvgPool 8 × 8 × 192
Sigmoid - - 32 × 32 × 3 Residual block [3 × 3] × 1 AvgPool 4 × 4 × 192

Residual block [3 × 3] × 1 - 4 × 4 × 192
Global pooling Avg - 192

Dense - - 1
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4. Results
4.1. Metrics

Anomaly detection can be formulated as a binary classification problem—deciding
whether the test sample x is (negative class) or is not (positive class) an anomaly. In our
work, given the classifier C and the trained discriminator D, the anomaly score is given by:

score(x) = D(x, C(x)) (11)

and then

x =

{
not anomaly i f score(x) > τ

anomaly i f score(x) ≤ τ,

where τ is a score threshold that needs to be specified. The choice of this value directly
impacts the false positives and the false negatives cases. To measure the effectiveness of an
anomaly detector in separating normal samples and anomalous samples, we adapted the
AUROC and FPR95TPR metrics as those are mainly reported in the literature, e.g., [58–61].
Additionally, we measured the percentage of correctly classified real samples and anomalies
for a selected threshold.

4.1.1. AUROC

To evaluate the performance of the anomaly detector, we employed area under the re-
ceiver operating curve (AUROC) since it is a threshold-independent evaluation metric. The
ROC curve depicts the relationship between the true positive rate (TPR = TP/(TP + FN))
and false positive rate (FPR = FP/(FP + TN)). Setting a threshold for given FP explains
Figure 6. Moreover, the AUROC holds an important statistical property [62] in that it can be
interpreted as the probability that a randomly chosen positive sample is assigned a higher
score than a randomly chosen negative sample. Thus, the higher the value, the better.
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4.1.2. FPR95TPR Metrics

The metric FPR@TPR can be interpreted as a probability that a negative sample is
misclassified as positive when the score threshold is set so that the TPR is as high as @%.
Thus, the lower the value, the better.

4.1.3. Accuracy

Accuracy (percentage of correctly classified real samples and anomalies) is obtained for
a selected threshold. The threshold was calculated from a thousand randomly sampled real
images from the training set and a thousand anomaly samples generated by the generator
with random seeds with a norm ∥n∥ ∈ [6, 7]. The threshold value was chosen so that 95%
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and 99% (0.95 and 0.99 in the table heading) of these thousand randomly sampled real
images were classified correctly.

4.2. WGAN-GP MNIST Network with a Discriminator Untrained for Anomalies

The WGAN-GP network, according to Figure 4, was trained using Adam optimizer
with a learning rate of 2 × 10−4, decayed linearly to 1 × 10−9 over 1500 epochs with default
values for β1 = 0.9 and β2 = 0.999. The batch size was set to 100, the generator’s random
seed length was N = 64, and the hyperparameter was λ = 10. For evaluation, we used
the weights from the last epoch. The overall accuracy of the different metrics is shown in
Table 3.

Table 3. Anomaly-detection results [%] for the WGAN-GP MNIST with a discriminator untrained
for anomalies.

Dataset AUROC FPR95TPR Accuracy (0.95) Accuracy (0.99)

MNIST - - 91.71 97.79
FashionMNIST 63.99 80.14 23.82 15.41

Omniglot 28.89 98.97 1.42 0.58
notMNIST 61.62 70.92 31.68 25.68
Uniform 42.65 100.00 0.03 0.00
Gaussian 32.27 100.00 0.00 0.00

CIFAR-10-bw 47.17 91.71 9.89 6.18
SVHN-bw 32.94 97.67 2.93 1.63

Fakes ∥n∥ ∈ [0, 5] 63.35 78.47 27.75 13.56
Anomalies ∥n∥ ∈ [6, 7] 57.06 85.23 18.56 10.11

Table 3 shows that the WGAN-GP discriminator’s anomaly-detection performance
is insufficient if it is not trained for anomalies. Figure 5 gives the average class values
depending on a seed norm. Figure 7 details ROC curves and anomaly score distributions
for MNIST and anomaly databases.
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Figure 7. ROC (a); and anomaly score distribution (b) for the WGAN-GP with a discriminator
untrained for anomalies on MNIST.

We obtained a more detailed insight into the test set by combining both outputs
(1000 samples in each part of Figure 8). Figure 9 shows improvement when the training for
anomalies is applied.

We can see that the classifier better recognizes specific noise properties than the
discriminator. It was not only the discriminator score that contributed to correct anomaly
detection in this case.



Mathematics 2024, 12, 1439 11 of 21Mathematics 2024, 12, 1439 11 of 22 
 

 

 

Figure 8. Classifier confidence vs. discriminator score for MNIST and anomaly datasets using the 

WGAN-GP with a discriminator untrained for anomalies on MNIST. 

 

Figure 9. Classifier confidence vs. discriminator score for MNIST and anomaly datasets using the 

WGAN-GP with a discriminator trained for anomalies on MNIST. 

We can see that the classifier better recognizes specific noise properties than the 

discriminator. It was not only the discriminator score that contributed to correct anomaly 

detection in this case. 

4.3. WGAN-GP CIFAR-10 Network with a Discriminator Untrained for Anomalies 

Similar to Table 3, Table 4 also shows the poor performance in anomaly detection by 

the WGAN-GP discriminator trained for fakes on the CIFAR-10 database. 

We trained the WGAN-GP CIFAR-10 network under the same settings used for the 

WGAN-GP MNIST network (Section 4.2), with the only difference being the length of the 

generator’s random seed, which was set to N = 128. 

  

Figure 8. Classifier confidence vs. discriminator score for MNIST and anomaly datasets using the
WGAN-GP with a discriminator untrained for anomalies on MNIST.

Mathematics 2024, 12, 1439 11 of 22 
 

 

 

Figure 8. Classifier confidence vs. discriminator score for MNIST and anomaly datasets using the 

WGAN-GP with a discriminator untrained for anomalies on MNIST. 

 

Figure 9. Classifier confidence vs. discriminator score for MNIST and anomaly datasets using the 

WGAN-GP with a discriminator trained for anomalies on MNIST. 

We can see that the classifier better recognizes specific noise properties than the 

discriminator. It was not only the discriminator score that contributed to correct anomaly 

detection in this case. 

4.3. WGAN-GP CIFAR-10 Network with a Discriminator Untrained for Anomalies 

Similar to Table 3, Table 4 also shows the poor performance in anomaly detection by 

the WGAN-GP discriminator trained for fakes on the CIFAR-10 database. 

We trained the WGAN-GP CIFAR-10 network under the same settings used for the 

WGAN-GP MNIST network (Section 4.2), with the only difference being the length of the 

generator’s random seed, which was set to N = 128. 
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WGAN-GP with a discriminator trained for anomalies on MNIST.

4.3. WGAN-GP CIFAR-10 Network with a Discriminator Untrained for Anomalies

Similar to Table 3, Table 4 also shows the poor performance in anomaly detection by
the WGAN-GP discriminator trained for fakes on the CIFAR-10 database.

Table 4. Anomaly-detection results [%] for the WGAN-GP CIFAR-10 with an untrained discriminator
for anomalies.

Dataset AUROC FPR95TPR Accuracy (0.95) Accuracy (0.99)

CIFAR-10 - - 94.18 98.58
CIFAR-100 56.41 93.35 7.65 1.90

MNIST-resized 24.09 99.03 1.03 0.52
LSUN 51.15 99.93 0.08 0.01

Uniform 4.33 100.00 0.00 0.00
Gaussian 2.92 100.00 0.00 0.00

SVHN 42.31 94.00 6.78 1.39
Fakes ∥n∥ ∈ [0, 5] 56.70 93.09 7.77 2.31

Anomalies ∥n∥ ∈ [6, 7] 54.29 96.31 4.02 1.96
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We trained the WGAN-GP CIFAR-10 network under the same settings used for the
WGAN-GP MNIST network (Section 4.2), with the only difference being the length of the
generator’s random seed, which was set to N = 128.

4.4. WGAN-GP MNIST Network with a Discriminator Trained for Generated Anomalies

While the discriminator gives poor anomaly detection performance if the WGAN-
GP is trained only for a fake generation, we can add an anomaly detector parallel to the
discriminator (see Figure 10; both use the same architecture) and train it for anomaly
detection. This means that once the generator part of WGAN-GP is trained for fake
generation, it can be used for generating fakes (seeds with the norm ∥n∥ < rA = 5), and
anomalies (seeds with the norm ∥n∥ ∈ [5, 6]).
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Figure 10. Proposed WGAN-GP architecture for anomaly detection tailored to pattern classifier.

We leveraged this property and trained the anomaly detector for 1200 iterations with
the Adam optimizer using a constant learning rate of 1 × 10−3. In each iteration, we
utilized the generator to generate 100 fake and 100 anomalous images (seed norm ∥n∥ < 5
and ∥n∥ ∈ [5, 6], respectively). To overcome the class imbalance problem, we used the
uniform class label sampling approach and generated ten images from each class. Since we
wanted to distinguish between fakes and anomalous images, we formulated this as a binary
classification problem; thus, the anomaly detector was trained using binary cross-entropy
to classify fake images (class 1) and anomalous ones (class 0). This leads to a high or low
logit value, which was later used as an anomaly score.

We assumed that the faithfully generated fakes would augment the training set and
can be used instead of the training samples. As representatives of anomalies, we used
generated samples in the border seed norm, and we believed that the samples with higher
norms were also anomalies (see Figure 3).

Table 5 shows the overall accuracy of the different metrics. Compared with Table 3,
we see a substantial improvement in anomaly-detection performance. Figure 5b shows
a qualitative improvement in anomaly detection for all classes. Figure 7 shows the ROC
curves (a) and anomaly score distribution (b) for the MNIST and anomaly databases.

Fakes obtained the interesting property of a 3.85% (0.79%) misclassification. Compared
with 95.67% (99.10%) accuracy in MNIST, the fakes were lying inside the area of training
samples. We obtained a more detailed insight into the test set by combining both outputs
(1000 samples in each part of Figure 8). Improvement in MNIST sample detection by the
anomaly detector improved the decision-making between original and anomaly samples.

We trained eight independent anomaly detectors with random initial weights to obtain
better statistical results. We report the average results, with standard deviations in brackets,
in Tables 5–10. More details give curves on Figure 11.
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Table 5. Anomaly-detection results [%] for the WGAN-GP MNIST with a discriminator trained for
generated anomalies. The standard deviation of eight independent trainings is reported in brackets.

Dataset AUROC FPR95TPR Accuracy (0.95) Accuracy (0.99)

MNIST - - 95.67 (0.24) 99.10 (0.09)
FashionMNIST 98.55 (2.02) 4.71 (5.19) 94.86 (5.41) 87.84 (8.20)

Omniglot 98.84 (0.46) 5.42 (2.55) 93.48 (2.77) 77.48 (6.58)
notMNIST 99.93 (0.07) 0.24 (0.28) 99.68 (0.36) 98.57 (1.97)
Uniform 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 100.00 (0.00)
Gaussian 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 100.00 (0.00)

CIFAR-10-bw 98.03 (2.28) 8.58 (9.73) 90.50 (10.38) 80.95 (17.46)
SVHN-bw 92.33 (7.62) 23.23 (19.28) 75.67 (19.70) 65.26 (22.73)

Fakes ∥n∥ ∈ [0, 5] 48.48 (1.26) 95.41 (0.21) 3.85 (0.26) 0.79 (0.09)
Anomalies ∥n∥ ∈ [6, 7] 97.96 (0.40) 9.74 (2.01) 88.90 (1.95) 73.50 (4.44)

Table 6. Anomaly-detection results [%] for the WGAN-GP CIFAR-10 with a discriminator trained for
anomalies. The standard deviation of eight independent trainings is reported in brackets.

Dataset AUROC FPR95TPR Accuracy (0.95) Accuracy (0.99)

CIFAR-10 - - 95.86 (0.69) 98.61 (0.27)
CIFAR-100 55.42 (0.64) 87.04 (0.59) 11.36 (1.14) 5.57 (0.74)

MNIST-resized 99.54 (0.25) 0.00 (0.00) 99.98 (0.02) 94.72 (5.84)
LSUN 96.28 (2.52) 15.22 (10.47) 82.51 (10.57) 71.47 (15.70)

Uniform 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 100.00 (0.00)
Gaussian 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 100.00 (0.00)

SVHN 15.70 (2.59) 99.70 (0.26) 0.23 (0.25) 0.08 (0.08)
Fakes ∥n∥ ∈ [0, 5] 45.90 (0.35) 96.81 (0.26) 2.64 (0.66) 0.70 (0.20)

Anomalies ∥n∥ ∈ [6, 7] 99.78 (0.04) 0.80 (0.20) 98.97 (0.27) 97.06 (1.07)

Table 7. Overall anomaly-detection results [%] for the WGAN-GP MNIST with a discriminator
trained for generated anomalies mixed with specific anomalies (real SVHN samples). Standard
deviation of eight independent trainings is reported in brackets.

Dataset AUROC FPR95TPR Accuracy (0.95) Accuracy (0.99)

MNIST - - 95.39 (0.24) 99.07 (0.08)
FashionMNIST 99.97 (0.02) 0.06 (0.06) 99.93 (0.06) 99.46 (0.45)

Omniglot 98.12 (0.50) 9.64 (2.92) 89.58 (3.06) 69.17 (5.99)
notMNIST 99.99 (0.01) 0.02 (0.02) 99.97 (0.02) 99.87 (0.08)
Uniform 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 100.00 (0.00)
Gaussian 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 100.00 (0.00)

CIFAR-10-bw 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 100.00 (0.00)
SVHN-bw 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 100.00 (0.00)

Fakes ∥n∥ ∈ [0, 5] 51.21 (0.28) 94.64 (0.21) 4.96 (0.20) 1.04 (0.08)
Anomalies ∥n∥ ∈ [6, 7] 96.61 (0.36) 16.41 (1.70) 82.75 (1.80) 63.25 (2.69)

Table 8. Overall anomaly-detection results [%] for the WGAN-GP CIFAR-10 with a discriminator
trained for generated anomalies mixed with specific anomalies (real SVHN samples). Standard
deviation of eight independent trainings is reported in brackets.

Dataset AUROC FPR95TPR Accuracy (0.95) Accuracy (0.99)

CIFAR-10 - - 95.02 (0.72) 98.24 (0.40)
CIFAR-100 60.82 (1.42) 85.82 (1.17) 14.17 (1.84) 6.69 (0.82)

MNIST-resized 99.46 (0.29) 0.16 (0.37) 99.53 (1.23) 96.35 (4.98)
LSUN 95.16 (1.92) 20.00 (7.54) 80.02 (7.66) 67.44 (9.08)

Uniform 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 100.00 (0.00)
Gaussian 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 100.00 (0.00)

SVHN 99.52 (0.27) 1.89 (1.18) 98.02 (1.33) 96.42 (2.10)
Fakes ∥n∥ ∈ [0, 5] 46.95 (0.53) 96.72 (0.18) 3.30 (0.55) 1.03 (0.27)

Anomalies ∥n∥ ∈ [6, 7] 99.72 (0.06) 1.00 (0.26) 98.98 (0.27) 96.90 (0.95)
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Table 9. Anomaly-detection results [%] for the WGAN-GP MNIST with a discriminator trained by
real MNIST samples. The standard deviation of eight independent trainings is reported in brackets.

Dataset AUROC FPR95TPR Accuracy (0.95) Accuracy (0.99)

MNIST - - 95.16 (0.33) 98.97 (0.11)
FashionMNIST 99.99 (0.01) 0.01 (0.01) 99.99 (0.01) 99.87 (0.20)

Omniglot 98.14 (0.96) 9.42 (5.57) 90.49 (5.17) 74.10 (12.57)
notMNIST 99.93 (0.13) 0.30 (0.64) 99.71 (0.61) 99.00 (2.00)
Uniform 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 100.00 (0.00)
Gaussian 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 100.00 (0.00)

CIFAR-10-bw 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 99.99 (0.03)
SVHN-bw 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 99.97 (0.06)
Fakes [0, 5] 52.51 (0.62) 93.47 (0.35) 6.45 (0.42) 1.66 (0.12)

Anomalies [6, 7] 98.08 (0.80) 8.73 (3.70) 90.97 (3.88) 78.63 (6.21)

Table 10. Anomaly-detection results [%] for the WGAN-GP CIFAR-10 with a discriminator trained by
real CIFAR-10 samples. The standard deviation of eight independent trainings is reported in brackets.

Dataset AUROC FPR95TPR Accuracy (0.95) Accuracy (0.99)

CIFAR-10 - - 95.43 (0.97) 98.71 (0.38)
CIFAR-100 56.17 (0.87) 87.34 (0.78) 11.75 (1.78) 4.97 (1.20)

MNIST-resized 98.23 (1.33) 7.02 (10.54) 90.83 (11.54) 58.75 (30.85)
LSUN 98.89 (0.58) 4.21 (2.32) 95.54 (2.18) 91.38 (3.94)

Uniform 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 100.0 (0.00)
Gaussian 100.00 (0.00) 0.00 (0.00) 100.00 (0.00) 100.0 (0.00)

SVHN 18.49 (5.15) 99.76 (0.24) 0.18 (0.27) 0.06 (0.07)
Fakes ∥n∥ ∈ [0, 5] 48.57 (1.26) 94.82 (1.01) 4.58 (1.50) 1.33 (0.27)

Anomalies ∥n∥ ∈ [6, 7] 99.88 (0.03) 0.46 (0.10) 99.43 (0.15) 98.29 (0.36)
Mathematics 2024, 12, 1439 15 of 22 
 

 

 
(a) (b) 

Figure 11. ROC (a) and anomaly score distribution (b) for the WGAN-GP with a discriminator 

trained for anomalies on MNIST. 

Figure 12 shows the average class values depending on the seed norm. 

  
(a) (b) 

Figure 12. Classifier (a) and trained discriminator (b) average outputs if the input seed norm (radius) 

increases. The vertical line gives the border between fakes and anomalies. 

To visualize classifier behavior under anomaly inputs, we extracted 32 features from 

the classifier and compressed them by UMAP [63] into 2D. Figure 13 provides a reference 

of all features within the training set. 

 

Figure 13. UMAP 2D visualization of the MNIST training set features. 

Figure 11. ROC (a) and anomaly score distribution (b) for the WGAN-GP with a discriminator trained
for anomalies on MNIST.

Figure 12 shows the average class values depending on the seed norm.
To visualize classifier behavior under anomaly inputs, we extracted 32 features from

the classifier and compressed them by UMAP [63] into 2D. Figure 13 provides a reference
of all features within the training set.

We generated five random seeds in class 1 and changed their norm in the range of
∥n∥ ∈ [0, 15] with a step of 0.5. A visualization of the samples is shown in Figure 14.
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Figure 14. MNIST class 1-based anomalies obtained by the seed norm increase.

Figure 15 shows the corresponding pathways in 2D for each random seed from
Figure 14. For ∥n∥ = 0, they have the same root (class centroid), and for ∥n∥ = 15 they
finished in different classes (0, 2, 4). Thus, each pathway consists of images generated
from the seed of the corresponding norm in increasing order. This figure underlines the
importance of anomaly detection according to individual classes.
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Figure 16 shows the mapping of the notMNIST anomalies (a), “near” anomalies
generated by the WGAN-GP generator (with the seed norm ∥n∥ ∈ [6, 7]) (b), CIFAR-10
anomalies, and Gaussian noise anomalies into 2D compressed feature space.
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4.5. WGAN-GP CIFAR-10 Network with a Discriminator Trained for Generated Anomalies

Although training the discriminator to recognize the generated anomalies improves
the anomaly-detection performance, specific anomalies (CIFAR-100, SVHN) remain poorly
detected (see Table 6). The SVHN anomalies were even worse than those detected by the
WGAN-GP trained on the generated MNIST anomalies. We suspect this is a clever Hans
effect because the MNIST and SVHN images have different backgrounds. We used the
same approach and hyperparameter settings as in Section 4.4 for the training.
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5. Discussion

The hypothesis that a single number can estimate the anomalousness of a sample
seems speculative. However, it is no more audacious that a single number can evaluate
the similarity of two samples. It turns out that if this number results from a nonlinear
transformation, the use of this hypothesis may lead to usable results. To find such a number,
we focused on the pattern generation mechanism. We do not consider an anomaly to be a
dissimilar pattern but a pattern that is so dissimilar that it is suspected to be generated by a
different mechanism [2]. Generative neural networks can generate samples that are like the
training set using a generator random seed. Using a normal normalized distribution, we
found that random numbers with a relatively narrow probability density distribution of
the norm are used to generate fake samples. Therefore, it is natural to assume that for seeds
not used in training the generator, the generator will generate samples that do not resemble
the training samples. Using the seed norm as a measure of the sample anomaly allowed
us to train the anomaly detector to apply smaller seeds for fake generation, and the seeds
with the norm slightly exceeded the limit for anomaly sample generation (near anomalies).
Experiments have shown that the anomaly detector trained in this way also recognizes
anomalies generated by seeds with larger norms or by substantially different mechanisms
(anomaly databases). This allows us to solve the curse of dimensionality problem due
to orders-of-magnitude higher anomalies than the training samples. However, not all
anomalies can be generated in this way. Different training sets and different WGAN-GP
architectures can generate different anomalies. This problem is left for further investigation.
However, the first results support the hypothesis that the anomaly detector trained to
recognize near anomalies from the reference training set will also recognize the anomalies
generated on different datasets. Figure 17 shows an average output of the anomaly detector
trained for near anomalies of the MNIST training set and anomalies generated by the
CIFAR-10 dataset. Most CIFAR-10 real images (90.50%, see Table 5) and generated CIFAR-
10 fakes and CIFAR-10 near anomalies (89.75% and 98.52%, respectively) are recognized
also as MNIST anomalies.
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Sometimes, it is up to the user’s preference as what is considered an anomaly. If
MNIST contains handwritten digits, are the house numbers in the Street View House
Numbers (SVHN) database (some handwritten) anomalies? If we consider the answer to
be yes, we can add this database to the anomalies generated by the fake generator and
use them in anomaly-detector training. In this way, we can strengthen the training of the
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anomaly detector with arbitrary images that we want to be considered as anomalies (see
Tables 9 and 10). As expected, it will improve SVHN anomaly detection and other “near”
anomalies like CIFAR-100.

On the other hand, real samples from the training set can also support anomaly-
detector training. By replacing fakes with real samples, we support correct decisions for
real data (see Tables 9 and 10). There were no significant changes for real samples, but
the anomaly-detection accuracy was influenced in both directions. When using an MNIST
detector, anomaly detection of CIFAR-10-bw and SVHN-bw samples improved, while
Omniglot detection was degraded. Similarly, with a CIFAR-10-based detector, anomaly
detection of LSUN samples improved, while the detection of MNIST-resized samples was
degraded. Hence, supplementing the training with real data leads to only slightly better
anomaly resolution than when generated fakes alone are used to train the anomaly detector.

Tailoring for the given classifier means taking recognized classes into account. As
Figure 15 shows, the anomalies regarding class 1 can be accepted as the normal samples of
other classes. Therefore, the post hoc anomaly detection tailored for the classifier is more
precise. Table 11 compares the obtained results with those from the literature [64]. Compar-
ing results with those presented in [64], we can see that CAVGA gives the best accuracy in
normal MNIST samples, but anomaly detector AD outperforms other methods in terms
of anomaly detection (bold indicates the best results). The proposed anomaly detector
provides a conservative strategy that rejects some normal samples but is very sensitive to
anomalous ones. This strategy was set by a threshold of 95% TPR in Figure 11b. Setting a
more aggressive strategy with an MNIST threshold of 99% TPR, AD gives accuracy = 87.84%
for FashionMNIST and accuracy = 80.95% for CIFAR-10 anomalies.

Table 11. MNIST accuracy and anomaly-detection AUROC results [%].

Anomaly
Dataset

AD
(0.95) γ-VAEg LSA OCGAN ULSLM Caps

NetPP

Caps
NetRE

AnoGAN ADGAN CAVGA

MNIST accuracy 95.7 98.2 97.5 97.5 94.9 97.7 92.5 93.7 96.8 98.6
FashionMNIST 94.96 87.3 87.6 - - 76.5 67.9 - - 88.5
CIFAR-10-bw 90.5 71.7 64.1 65.6 73.6 61.2 53.1 61.2 63.4 73.7

Our proposed method was tested on visual data (images), as we believe this will
allow the user to gain more insights into the “anomaly generation” process and evaluate
it intuitively. The main advantage of the proposed approach is that it can be tailored
to practically any type of classifier. The classifier only provides the predicted class for
the anomaly detector. The anomaly-detection part is solely conducted by an additional
anomaly detector that acts as a discriminator between non-anomalous and anomalous
examples. There is also no restriction on the data type or specific database selection.
The only constraint our approach requires is that the tested example must be processed
independently by the given classifier, and the given AD, twice.

6. Conclusions

Experiments support the hypothesis that:

• WGAN-GP generator seeds with the norm inside the hypercube (hypersphere with
the Chebyshev norm) generate fakes, and seeds with the norm outside the hypercube
generate anomalies;

• An anomaly detector trained for anomalies with seeds at the border of the hypercube
can detect the anomalies generated by seeds anywhere outside the hypercube. This
partially solves the anomaly/real samples dimensionality curse problem because
we can obtain a huge number of anomalies from the fake generator trained on the
given real sample set. Of course, we cannot obtain anomalies generated from the fake
generator trained on different training sets or generators with different architectures.
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Still, the first results support the hypothesis of recognition anomalies obtained in
these ways.

Anomaly detectors trained by WGAN-GP-generated samples (fakes/anomalies) also
performed well for databases different to the training database and applied as anomaly
databases. Using specific databases in anomaly-detector training to support positive or
negative decisions can help with specific user needs.
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