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Abstract: Hyperspectral image (HSI) reconstruction from RGB input has drawn much attention
recently and plays a crucial role in further vision tasks. However, current sparse coding algorithms
often take each single pixel as the basic processing unit during the reconstruction process, which
ignores the strong similarity and relation between adjacent pixels within an image or scene, leading
to an inadequate learning of spectral and spatial features in the target hyperspectral domain. In
this paper, a novel tensor-based sparse coding method is proposed to integrate both spectral and
spatial information represented in tensor forms, which is capable of taking all the neighboring
pixels into account during the spectral super-resolution (SSR) process without breaking the semantic
structures, thus improving the accuracy of the final results. Specifically, the proposed method
recovers the unknown HSI signals using sparse coding on the learned dictionary pairs. Firstly, the
spatial information of pixels is used to constrain the sparse reconstruction process, which effectively
improves the spectral reconstruction accuracy of pixels. In addition, the traditional two-dimensional
dictionary learning is further extended to the tensor domain, by which the structure of inputs
can be processed in a more flexible way, thus enhancing the spatial contextual relations. To this
end, a rudimentary HSI estimation acquired in the sparse reconstruction stage is further enhanced
by introducing the regression method, aiming to eliminate the spectral distortion to some extent.
Abundant experiments are conducted on two public datasets, indicating the considerable availability
of the proposed framework.

Keywords: spectral super-resolution; sparse representation; dictionary learning

MSC: 68T99

1. Introduction

With the continuous development of remote sensing technology, a variety of new
optical sensors have been applied to promote the development of hyperspectral imaging
technology [1]. Compared with the traditional visible image, hyperspectral images (HSIs)
are characterized by a higher spectral resolution, which can reach the nanometer level.
HSIs can not only reflect the external features of an observed target, such as its shape
and texture, but also contain spectral information that can further distinguish different
substances. Therefore, HSIs have been successfully applied to various fields due to their
high development potential and application value, including agriculture [2], pathological
detection [3], the military [4], environmental governance [5] and so on. In addition, hyper-
spectral imaging technology further promotes the development of computer vision to a
great extent, such as target detection [6], target tracking [7,8], target classification [9,10] and
other high-level tasks [11–15].

At present, HSIs are mainly obtained using imaging spectrometers [16]. Imaging
spectrometers use traditional imaging techniques to capture relevant information of targets
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in the spatial space and capture the intrinsic spectral features of targets through specific
spectral sensors synchronously. Notably, the spectral resolution is highly dependent on the
performance of the imaging spectrometer, which can range from tens to hundreds of bands.
However, the great cost and technology seriously limit the acquisition of HSIs with both
high spectral and spatial resolutions synchronously, which further hinders the application
of hyperspectral imaging to a great extent. Therefore, obtaining HSIs with a high quality at
a low cost is crucial to the development of remote sensing.

Recently, with the great progress in computational imaging, various software algo-
rithms have been proposed to tackle the issues in the acquisition of HSIs with a high quality,
thus reducing the requirements for imaging spectrometers. According to the requirement
of inputs, the hyperspectral computational imaging method can be roughly summarized
as multi-source-based spectral super-resolution imaging [17–20] and single-source-based
spectral super-resolution imaging [21–36]. The multi-source-based method mainly focuses
on developing the fusion strategies of two paired images, of which one is at a high spatial
resolution, while the other one is at a high spectral resolution. The multi-source-based
method comprehensively combines the two complementary advantages and outputs the
fused HSI, achieving a considerable performance. Nevertheless, these kinds of methods are
limited in practical situations due to the uneasy acquisition of paired images. Therefore, the
single-source-based method, which mainly reconstructs the target HSI from its correspond-
ing RGB image, has drawn more and more attention. On one hand, the RGB images can be
easily captured through consumer cameras. On the other hand, there is a certain pixel-wise
relation between an RGB image and its corresponding HSI [37]. Previously, regression-
based methods, such as the Radial basis function [22], made the first attempt to solve the
three-to-many ill-posed problem through establishing a linear mapping function, by which
the reconstructed results cannot meet the requirements of further applications. Nowadays,
the single-source-based method can be roughly divided into the sparse coding-based algo-
rithm and the deep learning-based framework. Although the deep learning-based method
is capable of reconstructing the target HSI with a higher accuracy, its final performance is
highly dependent on the training data. The sparse coding-based algorithm uses hyperspec-
tral prior data to construct a feature sparse dictionary, which is then mapped to obtain the
RGB projected sparse dictionary and its corresponding coefficients; thus, the target HSI
can be reconstructed using the calculated coefficients. Compared with the learning-based
method, the sparse coding method is able to generate considerable results using less data.
In addition, the sparse coding method has a more reasonable interpretability.

Current sparse coding-based methods often conduct the reconstruction process in a
pixel-wise manner, which could break the original structure of input RGB images, leading
to an insufficient retainment of spatial and spectral information in the target hyperspec-
tral space. In this paper, a tensor-based sparse representation for hyperspectral image
reconstruction is proposed that integrates the complemental spectral and spatial features
enclosed in the RGB inputs as depicted in Figure 1. Specifically, the proposed method
achieves the whole process in a tensor-wise way, which treats each group of neighboring
pixels as a whole instead of splitting the original RGB inputs into several pixels, aiming
to avoid breaking the local data structure to some extent. In this way, the traditional spec-
tral vector is represented as a three-dimensional tensor, through which more information
can be comprehensively considered during the whole process. To this end, the proposed
method mainly contains three stages: tensor dictionary learning, sparse reconstruction and
spectral enhancement. In the tensor dictionary learning stage, prior tensor training pixels
are used to train a high-dimensional HSI tensor dictionary, and the well-trained dictionary
is then projected to the RGB domain. In the sparse reconstruction stage, a rudimentary HSI
estimation can be acquired by solving the sparse problem. Finally, a regression method is
introduced to enhance the HSI spectral features, thus avoiding the spectral distortion to
some extent. In summary, the primary contributions are as follows:

(1) A novel tensor-based sparse representation framework is proposed for reconstructing
HSIs from the corresponding RGB images through making full use of the tensor-wise
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representations to describe the spectral data, by which the structure of original inputs
can be retained in a more flexible way, thus enhancing the spatial contextual relations.

(2) A preprocessing method based on the clustering strategy is devised to reduce the
redundancy of spectral training datasets, enhancing the representativeness of the
target spectral dictionary.

(3) A spectral enhancement strategy is deployed to further mitigate the spectral distor-
tion in the junction of two different image regions through introducing the regres-
sion method.

(4) Extensive quantitative and qualitative experiments are conducted over two benchmark
datasets under multiple evaluation metrics, demonstrating the availability of our
proposed method.

The rest of this paper is organized as follows. Section 2 gives a brief illustration of
related works. Section 3 presents the preliminaries of the image reconstruction field and
tensor algebra. In Section 4, a description of the proposed approach is given in detail.
Quantitative and qualitative experimental results are both demonstrated in Section 5. The
conclusion is drawn in Section 6.

Figure 1. Hyperspectral image pixel tensorization.

2. Related Work
2.1. CNN-Based Reconstruction Methods

Since the convolutional neural network (CNN) was proposed, it has been exploited in
many tasks, including image classification [38,39], object detection and so on [40]. Similarly,
the CNN also plays a crucial role in the SSR process, which has drawn much attention
recently. The CNN-Based Hyperspectral Image Recovery from Spectrally Undersampled
Projections named HSCNN can be treated as the most representative CNN-based SSR
method, which mainly consists of five convolutional layers and is capable of reconstructing
the target HSI from its corresponding RGB inputs [29]. SR2D/3DNet was proposed in
the NTIRE2018 challenge, which comprehensively takes into consideration spectral and
spatial feature learning through combining the 2D and 3D structure [30]. In addition,
the U-Net architecture has also been proved to be effective for the SSR and is capable of
refining the spatial and spectral features in a coarse-to-fine manner [26–28]. In [28], Zhao
et al. introduced the multi-scale strategy into the SSR, which adopted the PixelShuffle
operation to form a novel four-level hierarchical regression network (HRNet) to extract
features at different resolutions, thus obtaining the local and global learning capacities. Li
et al. combined the attention mechanism into the SSR process, processing a deep hybrid
2D-3D CNN with dual second-order attention, which is able to focus on prominent spatial
and spectral features [31]. Peng et al. proposed a pixel attention mechanism to explore
the pixel-wise features through the global average pooling operation [32]. However, these
CNN-based methods all require a large number of paired HSIs and RGB images as a
training set to ensure the SSR performance, which lacks interpretability to some extent. In
addition, the physical consistency of the network suffers from the various external factors



Mathematics 2024, 12, 708 4 of 18

enclosed in the RGB inputs, including the noises and lighting condition, which may lead to
a lack of robustness in all CNN-based SSR methods.

2.2. Sparse Coding-Based Methods

The sparse coding-based methods exploit the prior distribution of hyperspectral
signatures in natural images, where the spectral reflectance is mainly decided by the
material and illumination [41]. Building an over-complete dictionary is the conventional
way, which makes it possible to reconstruct the target HSIs. In 2016, Arad and Ben-Shahar
firstly performed the SSR process through using a single RGB image as input, which trained
an over-complete dictionary with prior spectral data [21]. On this basis, the well-trained
dictionary is then projected onto the RGB space through the specific color response function,
which is further solved to obtain the sparse coefficients, thus reconstructing the final HSIs.
The final reconstruction performance by Arad’s method is highly dependent on the prior
spectral dictionary, whose quality seriously affects the accuracy of the reconstructed HSIs.
Chen Yi et al. restored the corresponding data by establishing sub-dictionaries of each band
on the basis of Arad, obtaining HSIs with a higher accuracy [33]. However, this method
takes a huge amount of computation, leading to a poor performance on instantaneity.
Motivated by the A+ method [34], Aeschbacher et al. established strong shallow baselines
for HSI reconstruction from RGB inputs, obtaining a considerable reconstruction result
with a better accuracy and runtime [23].

In comparison with these methods, our proposed framework makes the first attempt
to conduct the SSR process in a tensor-wise manner instead of splitting the scenes or targets
with abundant semantic information into several meaningless pixels, and it is able to retain
the data structure as much as possible, thus representing the spatial–spectral features
in a more consistent way. It is worth noting that a conference version of this paper has
been published in [42], and significant modifications are as follows: (1) a data preprocess
strategy is proposed to enhance the representativeness of the spectral dictionary; (2) more
descriptions of our proposed method are given in detail; (3) a spectral enhancement strategy
is devised to further remit the spectral distortion; (4) more comprehensive experiments are
conducted to verify the validity of the proposed framework.

3. Preliminaries
3.1. Problem Formulation

Two essential factors that determine the formation of an image are the scene light
source and image capturing device (e.g., camera). The spectral energy emitted by the source
of light is cast onto the object, where a portion of the energy is then reflected. Subsequently,
the sensor in the camera receives the reflected energy to render the final image. In this
process, the brightness of the image is measured by the intensity of the light source, while
the sharpness and color reproduction are directly influenced by the responsiveness of the
camera sensor. To model the imaging formation in a mathematical way, we can process
the information of the light source, spectral reflectance and camera spectral sensitivity
simultaneously by integrating the multiplication of them to calculate the camera response.

Xi =
∫

λ
E(λ)R(λ)C(λ)dλ, i = r, g, b, (1)

where E(λ) represents the spectral energy distribution of the scene light source, R(λ) is the
surface reflection coefficient and C(λ) is the i-th channel of the color match function. For
example, X ∈ RI1×I2×...×In means an nth-order tensor, whose (i1, i2, . . . , in) element is Xi1i2...in .
In addition, the E(λ)R(λ) stands for the object’s spectrum reflection, which can be easily
acquired using an imaging spectrometer. Therefore, Equation (1) can be rewritten as follows:

Xi =
∫

λ
S(λ)C(λ)dλ, i = r, g, b,

S(λ) = E(λ)R(λ),
(2)



Mathematics 2024, 12, 708 5 of 18

More specifically, the RGB image can be denoted as X ∈ Rr×c×3 composed of r × c
pixels, and the corresponding HSI is represented as Y ∈ Rr×c×b, where b is the number of
spectral bands. In practice, the camera’s color match function C ∈ R3×b is typically prior
information, which means we can use C to treat each pixel xij(i = 1, 2, . . . , r; j = 1, 2, . . . , c)
as a degraded form of the hyperspectral pixel yij in the same position:

xij = Cyij, ∀xij ∈ X, yij ∈ Y. (3)

 xij,1
xij,2
xij,3

T

=


yij,1
yij,2

...
yij,b


T

c1,1 c1,2 c1,3
c2,1 c2,2 c2,3

...
...

...
cb,1 cb,2 cb,3

. (4)

Conversely, yij can be reconstructed from its corresponding degraded RGB pixel:

yij = f (xij), ∀xij ∈ X, yij ∈ Y, (5)

where f (·) represents the function that maps images from the RGB space to the hyperspec-
tral space.

Recovering the HSI from the RGB image poses a significant challenge, where dozens
of bands need to be reconstructed using only three bands. Directly solving with an inverse
version of Equation (3) will cause a severe spectral distortion. Many sparse coding-based
methods have solved the above problem by building an over-complete dictionary. How-
ever, these methods solely take into account the spectral details, neglecting the rich spatial
information inherent in RGB images. In general, the pixels within an image exhibit inter-
dependence. As shown in Figure 2, the spectra of neighboring pixels are similar in the
hyperspectral space. On this basis, neighboring spatial contextual relations could be further
utilized to constrain the SSR process, promoting the accuracy of spectral mapping f (·).

Figure 2. Spectral similarity of the neighboring pixels.
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3.2. Tensor Algebra

Tensors can be treated as multi-dimensional arrays, representing a higher-order ex-
tension of both vectors and matrices [43]. For example, X ∈ RI1×I2×...×In represents an
nth-order tensor, and the tensor can be treated as a vector and matrix, respectively, when
n = 1 and n = 2. However, most of the real-world data like images and videos are more
than two dimensions. Hence, data representation in the tensor form is able to maintain
the original structure of data, proving advantageous for maintaining high-dimensional
structures and capturing the inherent relational information among adjacent data points.

In this paper, the tensor format is introduced to represent each pixel and its corre-
sponding atoms, by which the similarity of the neighboring pixels can be maintained.
Multiplying tensors is a feasible operation, albeit with notably more intricate notation
and symbols compared to matrix multiplication, which is illustrated in detail by [44]. In
this paper, only the n-mode product and the Canonical Polyadic (CP) decomposition are
presented, which are related to our work.

Let X ∈ RI1×I2×...×IN and M ∈ RJ×In denote the tensor and matrix, respectively. The
n-mode product of X and M is written as X ×n M, and the output size is of I1 × . . . × In−1 ×
J × In+1 × . . . × IN .

(X ×n M)i1 ...in−1 jin+1 ...iN =
In

∑
in=1

xi1i2 ...iN mjin . (6)

In addition, the n-mode product of a tensor X ∈ RI1×I2×...×IN with a vector v ∈ In is
represented as X×v, where the result is of order N − 1 with size I1 × . . . × In−1 × In+1 ×
. . . × IN .

(X×nv)i1 ...in−1in+1 ...iN =
In

∑
in=1

xi1i2 ...iN vin . (7)

The CP decomposition compresses a tensor into a sum of component rank-one tensors.
Using a third-order tensor X ∈ RI×J×K as a simple example, it can be decomposed
according to the following formula:

X ≈
R

∑
r=1

ar ◦ br ◦ cr, (8)

where the symbol ◦ denotes the vector outer product and each element of the tensor results
from the multiplication of the corresponding elements in the vectors involved. R is a
positive integer, ar ∈ RI , br ∈ RJ , and cr ∈ RK. If R = 1 then X is a rank-one tensor. The
smallest number of rank-one tensors is defined as the rank of tensor X , represented as
rank(X ). An exact CP decomposition with R = rank(X ) components is further defined as
the rank decomposition.

4. Proposed Method

Sparse dictionary learning is a representative learning method, which tries to use a
linear combination of the given basic elements to denote the input signal. Each column
of the dictionary is composed of atoms, and the rows of the dictionary correspond to the
dimensions of the input signal. Notably, an over-complete dictionary is defined under the
circumstance that the number of atoms is higher than the dimension of the input signal. As
displayed in Figure 3, the whole proposed framework includes four phases totally, which
will be introduced in the following subsections.
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Figure 3. Overall structure of proposed method.

4.1. Data Preprocessing

In the dictionary learning stage, the first step is to select typical spectral data according
to the prior spectral images, so that the training dataset is able to represent all samples
as much as possible. However, due to the strong similarity in the spatial structure of
image pixels, adopting a randomly selecting strategy cannot make full use of the prior
spectral data. Specifically, a random selection of pixels makes it easy to obtain a large
number of pixels corresponding to the same substance when a certain scene occupies the
majority of the image space, leading to an unrepresentative training dataset. To avoid
the above situation, a novel strategy is proposed in this paper, which introduces the K-
MEANS method [45] to preprocess every image before training. The original spectral
images are preprocessed using the K-MEANS method, where the pixels in the image are
simply classified. On this basis, the center point and its neighbor pixels of every class are
sampled to form a new dataset, by which the redundancy of the original dataset is able to
be reduced, thus ehancing the representativeness of the target spectral dictionary.

4.2. Tensor-Based Dictionary Learning

Similar to the traditional process of dictionary learning, tensor-based dictionary train-
ing aims to train a tensor-like dictionary Th. Given a series of HSI training tensor pixels
denoted by X1,X2,X3, . . .,Xn ∈ Rn1×n2×b, the learning process is further described as follows:

min
Th ,α

n

∑
i=1

∥Xi − Th×4αi∥2
F,

s.t. ∀i ∥ai∥0 ≤ T0,

(9)

where Th is a 4th-order tensor representing the target hyperspectral dictionary and α stands
for the sparse vector of the corresponding HSI tensor. ∥·∥0 denotes the ℓ0 norm, and T0 is a
predefined threshold for sparsity.

Equation (9) can be optimized in an alternating way, and the whole optimization
process mainly includes two phases. The first phase is to fix the tensor dictionary Th and
update the sparse coefficients α by solving Equation (10).

min
α

∥Xi − Th×4αi∥2
F, ∀i = 1, 2, . . ., n

s.t.∥α∥0 ≤ T0,
(10)
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The next step is to fix the sparse matrix and update the tensor dictionary Th. Similar
to the K-SVD algorithm [46], we firstly train only one atom of the Th and fix all the other
ones. The problem becomes

min
tk

∥Ek − tk×4ak∥2,

s.t.∥α∥0 ≤ T0,
(11)

where Ek = X − ∑i ̸=k ti×4ai is the error without the atom tk. To satisfy the sparsity
constraint, only the columns of non-zero elements in ai are used. Equation (11) can be
transformed as follows:

min
tk

∥Er
k − tk×4ar

k∥
2,

s.t.∥α∥0 ≤ T0.
(12)

The problem in Equation (12) can be solved using the general CP decomposition:

Er
k[:, :, :, k] = λkt(1)k ◦ t(2)k ◦ t(3)k ◦ t(4)k , (13)

tk = t(1)k ◦ t(2)k ◦ t(3)k , (14)

xk
R = λk

(
t(4)k

)T
. (15)

In the above manner, the atoms of the target dictionary can be updated until the error
condition is met.

4.3. Tensor-Based Spectral Reconstruction

After obtaining the well-trained spectral dictionary, the next stage is the spectral recon-
struction, which contains two processes, the spectral dictionary projection and the sparse
coefficients’ resolution. Specifically, the tensor dictionary Th is obtained through the tensor-
based dictionary learning; thus, the pixels in the HSI are further sparsely reconstructed
through the following equation:

Y = Th×4α, (16)

where Y ∈ Rn×n×b is a tensor in the hyperspectral domain. Moreover, according to
Equation (3), the relationship between Y and its corresponding X in the RGB domain can
be defined as follows:

X = Y ×4 C

= Th×4α ×4 C

= Th×3C×4α

= Tr×4α,

(17)

It can be observed from Equation (17) that the estimation of sparse reconstruction
coefficients α in the RGB space can be achieved by representing an RGB pixel with a
dictionary Tr = Th×3C, which is the spectrally degraded dictionary of Th.

To better approximate the sparse reconstruction coefficients α, the spatial context is
used to constrain the sparse representation in the RGB space. Specifically, the neighboring
pixels are co-represented using dictionary Tr. In this paper, a neighboring region X is
chosen to constrain the sparse representation of pixel X . More specifically,

X = X(mod(i + w1 − 1, r), mod(j + w2 − 1, c)),

∀i, j w1, w2 = 1, 2, . . ., n.
(18)
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After calculating the dictionary of the RGB space, the sparse coefficient α can be further
obtained through the following:

min
α

∥X − Tr×4α∥2
F,

s.t. ∥α∥0 ≤ T0.
(19)

To tackle the above optimization problem, a strategy similar to Equation (9) is adopted,
by which the sparse coefficient α can be obtained; thus, the intermediate reconstructed HSI
is represented as follows:

Y = Th×4α. (20)

4.4. Spectral Enhancement

As illustrated in Figure 2, according to the fact that neighboring pixels often belong
to the same substance, the spectra of neighboring pixels tend to be similar, by which the
reconstruction for most of the pixels can be further enhanced. However, for the pixels
located in the junction of different regions, this strategy may cause a spectral distortion.
To solve the above problem, a spectral enhancement algorithm employing multilayer
perception (MLP) is proposed, as depicted in Figure 4, which treats each value of a spectral
vector as the target and the intermediate reconstructed HSI as the input. In the proposed
spectral enhancement method, a four-layered MLP network is established, containing
four hidden layers with 128, 64, 32 and 16 neurons, respectively. The learning rate of
the network is set to 0.01, and the activation function used for all layers is the Rectified
Linear Unit (ReLU), except for the output layer. In addition, the “Adam” is adopted as
the optimizer with β1 = 0.9 and β2 = 0.999, and the spectral angle mapper (SAM) prior
is used as the loss function to eliminate the errors between two paired spectral vectors.
Through introducing the MLP function, the proposed framework can further alleviate the
spectral distorion of the intermediate reconstruction result, especially for the edge pixels.
The spectral enhancement process is defined as follows:

h(1)(Y) = G(b(1) + W(1)Y),

h(i)(Y) = G(b(i) + W(i)h(i−1)(Y)),

Y f inal = G(b(i+1) + W(i+1)h(i)(Y)),

(21)

where b(i) is the vector of bias term, W(i) is the weight matrix, G represents the activation
function and Y f inal stands for the final target HSI.

Figure 4. Spectral enhancement strategy.

5. Experiment
5.1. Experimental Settings
5.1.1. Datasets

The ICVL [21] and CAVE [47] datasets are the most-used benchmark datasets, whose
detailed information is listed in Table 1. Figure 5 depicts different scenes of the ICVL dataset,
which were acquired using a Specim PS Kappa DX4 hyperspectral camera. Specifically,
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the ICVL dataset is composed of 201 images at a size of 1392 × 1300 with 519 bands from
400 nm to 1000 nm, containing a variety of rural, suburban, urban, indoor and plantlife scenes.
According to [21], the spectral range is downsampled to 31 with a range from 400 nm to
700 nm (visual spectrum) at 10 nm intervals through the proper binning of original narrow
bands. The CAVE dataset is shown in Figure 6, containing 31 images at size 512× 512 with
31 bands from 400 nm to 700 nm, which were captured using a cooled CCD camera. The CAVE
dataset mainly comprises abundant indoor scenes, including real and fake fruits, textiles,
vegetables, faces and so on. In this paper, abundant experiments were mainly conducted on
the two abovementioned datasets, aiming to comprehensively verify the superiority of our
proposed method. Notably, in the spectral enhancement phase, all the datasets are divided
into training and validation sets according to a proportion of 8:2.

Table 1. Detailed information of dataset.

CAVE ICVL

Camera Cooled CCD camera Specim PS Kappa DX4
Resolution 512 × 512 pixel 1392 × 1300 pixel
Illuminant CIE Standard Illuminant D65 Natural sunlight

Range of wavelength 400–700 nm 400–700 nm
Steps 10 nm 10 nm

Number of bands 31 31
Image format 16 bit 12 bit

Figure 5. ICVL dataset.
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Figure 6. CAVE dataset.

The acquisition of an input RGB image from its corresponding HSI can be divided into
two branches: the first one is to use the RGB data without a known color match function
and another one is with the fixed color match function. In this paper, the CIE_1964 color
match function is adopted as the fixed color match function for generating the RGB images
from the corresponding HSIs within the spectral coverage of 400–700 nm, whose function
curve is demonstrated in Figure 7.

Figure 7. CIE_1964 function.

5.1.2. Dictionary Training

Knowing that the performance of the reconstruction result is highly dependent on
the over-complete dictionary Th, the adopted datasets are all randomly divided into two
parts according to a ratio of 1:1, including the training and test counterparts. In addition,
1000 samples are further selected as the final training set according to our proposed data
preprocessing strategy. Moreover, experiments over the CAVE dataset are carried out to
investigate the influence of different combinations of atoms and sparsities on the final
reconstruction results. It can be observed from Figure 8 that the reconstruction quality does
not vary too much, and the extremum appears around the value with the atoms set to 250
and sparsity set to 15, which is further adopted in our proposed method. It is worth noting
that each combination experiment is repeated 5 times to alleviate the dictionary’s variation
using the same training samples.
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Figure 8. The influence of atoms and sparsity on the reconstruction performance over the CAVE dataset.

5.1.3. Sparse Reconstruction

After obtaining the hyperspectral dictionary Th, the Th is then projected onto the RGB
space through the CIE_1964 color match function. In the process of generating the tensor
RGB input, the neighboring pixels n should be odd. The number is then empirically set to
3 in this paper. As for the image edge, zero padding is adopted.

5.1.4. Experiment Metrics

Three reference quantitative metrics are introduced to evaluate the reconstruction
performance from a spatial perspective, including the peak signal-to-noise ratio (PSNR),
relative mean square error (RMSE) and structural similarity (SSIM) [48]. Note that all the
datasets are linearly rescaled to [0,1] through normalization. Specifically, the PSNR metric
is presented as follows:

PSNR(X, Y) = 10 log10(
Ymax

MSE(X, Y)
) (22)

where X is the reconstructed HSI, Y is the reference HSI and Ymax denotes the maximum
value of all the pixels in one image. The MSE is the mean square error, presented as follows:

MSE(X, Y) =
∑n1

i=1 ∑n2
j=1 ∑n3

z=1(Xijz − Yijz)
2

n1 × n2 × n3
(23)

where n1 and n2 are the spatial dimensions and n3 denotes the number of spectral bands. In
addition, the SSIM metric mainly computes the similarity of structure between two images,
which is defined as follows:

SSIM(X, Y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(24)

where σ and µ are the average and variance of the HSI. σxy is the covariance of X and Y.
c1 = (k1L)2, c2 = (k2L)2, k1 = 0.01, k2 = 0.03, and L describes the dynamic range of the
pixel values.

In addition to the spatial similarity, the spectral similarity is also vital to the reconstructed
HSI. Therefore, the spectral angle mapper (SAM) is adopted to evaluate the similarity between
two spectra through calculating the cosine distance, formulated as follows:

θ = arccos
x(i,j) · y(i,j)√

∑n3
i=1x(i, j)2 ·

√
∑n3

i=1y(i, j)2
(25)

where x(i, j) and y(i, j) represent the spectral bands at the position (i, j).
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5.2. Quantitative and Qualitative Comparison Experiments

In this section, three classical approaches are introduced to make a comparison, in-
cluding the K-SVD [21], RBF interpolation [22] and CNN [49], which are all evaluated
on the ICVL and CAVE datasets under the same experimental settings. Table 2 gives the
quantitative comparison of different methods in terms of the abovementioned terms, where
the mean value of each metric and the standard variation are both tabulated. Moreover,
the worst value of each metric for the different methods is also listed, including the largest
RMSE and SAM and the smallest PSNR and SSIM. Notably, the bold form denotes the
best result of each metric. As shown in Table 2, our proposed method obtains the best
mean results in terms of the RMSE and PSNR over the ICVL dataset. As for the SSIM and
SAM, our method is slightly worse than the CNN-based framework, which is acceptable.
In the CAVE dataset, although our proposed method fails to achieve the best mean value
of every metric, it is able to obtain the smallest standard variation in the PSNR, SSIM
and SAM, which indicates a higher stability compared with the CNN-based method. In
addition, compared with the CNN method, our proposed method has a more reasonable
interpretability and less need of data while still being able to obtain comparable results.

Table 2. Quantitative results on ICVL and CAVE datasets. The bold values denote the best result for
each metric.

Methods
RMSE PSNR SSIM SAM

max mean std min mean std min mean std max mean std

ICVL

K-SVD 0.0404 0.0136 0.0056 27.88 37.90 3.08 0.8804 0.9571 0.0194 0.2038 0.1030 0.0293
RBF 0.0432 0.0097 0.0064 27.29 41.65 4.65 0.9130 0.9858 0.0112 0.1187 0.0485 0.0163

CNN 0.0296 0.0072 0.0047 30.57 44.03 4.42 0.9653 0.9914 0.0063 0.1062 0.0397 0.0137
Ours 0.0321 0.0067 0.0045 29.87 44.66 4.35 0.9679 0.9907 0.0062 0.1168 0.0407 0.0168

CAVE

K-SVD 0.1066 0.0445 0.0268 19.44 28.33 4.81 0.7481 0.9033 0.0630 0.5360 0.4216 0.0702
RBF 0.1137 0.0373 0.0300 18.89 30.61 5.78 0.7536 0.9331 0.0585 0.4410 0.2660 0.0782

CNN 0.0519 0.0226 0.0115 25.69 33.86 4.19 0.8815 0.9556 0.0268 0.3431 0.2017 0.0525
Ours 0.0495 0.0238 0.0120 26.11 33.40 3.99 0.8973 0.9433 0.0191 0.3107 0.2217 0.0492

In addition, the individual results of each scene over two datasets in terms of the
PSNR are also demonstrated in Figure 9. From those quantitative results, the conclusion
can be drawn that the proposed method is able to reconstruct HSIs from RGB images with
a consideriable quality.

In addition, qualitative comparison is further depicted in Figures 10 and 11, where
two scenes named “beads_ms” and “BGU_0403-1439” are selected from the CAVE and
ICVL datasets, respectively. Four bands, 400 nm, 500 nm, 600 nm and 700 nm, are randomly
chosen to demonstrate the reconstruction performance of the three methods and our
proposed method, and the corresponding PSNR values are also listed above each subgraph.
Obviously, our proposed method is capable of generating the target HSI that is the most
visually similar to the ground truth. In addition, Figure 12 describes the spectral curve of
the reconstruction HSIs, where three pixels are randomly selected from scenes “flowers_ms”
and “PLT_04110-1046”. From the spectral curve analysis, our proposed method is able
to recover the most similar curves with ground truth, confirming the applicability of our
proposed framework.
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(a)

(b)

(c)

Figure 9. (a,b) gives the ICVL reconstruction performance in terms of PSNR metric. (c) shows
CAVE reconstruction performance over PSNR metric. The experiment uses 101 images of the ICVL
dataset and 16 images of the CAVE dataset as the training images to construct the hyperspectral
over-complete dictionary. The K-MEANS method is used to extract the training pixels.
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Figure 10. Visual comparison of selected bands on scene “BGU_0403-1439” from ICVL dataset.

Figure 11. Visual comparison of selected bands on scene “beads_ms” from CAVE dataset.
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Figure 12. Spectral curve analysis of random selected points (P1,P2 and P3) on two scenes. From top
to bottom: “PLT_04110-1046” from ICVL dataset; “flowers_ms” from CAVE dataset.

6. Conclusions

In this paper, a novel tensor-based sparse representation for HSI reconstruction from
RGB input is proposed, which exploits and integrates the spatial and spectral relations in
a tensor-wise manner, avoiding breaking the original structure of input data during the
SSR process. Firstly, the proposed framework preprocesses the training data to reduce
the redundancy through introducing the K-MEANS method. On this basis, a more rep-
resentative spectral dictionary can be trained through the preprocessed data. Then, the
CIE_1964 color match function is adopted to project the well-trained spectral dictionary
onto the RGB space, after which the sparse coefficients of HSIs are able to be approximated
through sparse solving in the RGB domain. After obtaining the sparse coefficients, the
nonlinear mapping from RGB to HSI can be easily formulated. To further eliminate the
spectral distortion, a spectral enhancement strategy based on MLP is proposed to promote
the final performance. To this end, abundant experimental results over two public datasets
demonstrate that the proposed framework can reconstruct HSIs with a high quality.

Author Contributions: Y.D.: methodology, writing—original draft; N.W.: validation, writing—review
and editing; Y.Z.: funding acquisition; C.S.: data curation, software. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data will be made available by the authors on request.

Acknowledgments: The authors thank the anonymous reviewers and editors for their suggestions
and insightful comments on this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing; Guilford Press: New York, NY, USA, 2011.
2. Miao, C.; Pages, A.; Xu, Z.; Rodene, E.; Yang, J.; Schnable, J.C. Semantic segmentation of sorghum using hyperspectral data

identifies genetic associations. Plant Phenomics 2020, 2020, 4216373. [CrossRef]
3. Lu, G.; Fei, B. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014, 19, 10901. [CrossRef] [PubMed]
4. Briottet, X.; Boucher, Y.; Dimmeler, A.; Malaplate, A.; Cini, A.; Diani, M.; Bekman, H.; Schwering, P.; Skauli, T.; Kasen, I.; et al.

Military applications of hyperspectral imagery. In Targets and backgrounds XII: Characterization and Representation; SPIE: Bellingham,
WA, USA, 2006; Volume 6239, pp. 82–89.

5. Stuart, M.B.; McGonigle, A.J.; Willmott, J.R. Hyperspectral imaging in environmental monitoring: A review of recent develop-
ments and technological advances in compact field deployable systems. Sensors 2019, 19, 3071. [CrossRef]

http://doi.org/10.34133/2020/4216373
http://dx.doi.org/10.1117/1.JBO.19.1.010901
http://www.ncbi.nlm.nih.gov/pubmed/24441941
http://dx.doi.org/10.3390/s19143071


Mathematics 2024, 12, 708 17 of 18

6. Manolakis, D.; Shaw, G. Detection algorithms for hyperspectral imaging applications. IEEE Signal Process. Mag. 2002, 19, 29–43.
[CrossRef]

7. Treado, P.; Nelson, M.; Gardner, C., Jr. Hyperspectral Imaging Sensor for Tracking Moving Targets. U.S. Patent 13/199,981, 15
March 2012.

8. Nguyen, H.V.; Banerjee, A.; Chellappa, R. Tracking via object reflectance using a hyperspectral video camera. In Proceedings of
the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, San Francisco, CA, USA,
13–18 June 2010; pp. 44–51.

9. Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 2014, 7, 2094–2107. [CrossRef]

10. Chang, C.-I. Hyperspectral Imaging: Techniques for Spectral Detection and Classification; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2003; Volume 1.

11. Mei, S.; Ji, J.; Hou, J.; Li, X.; Du, Q. Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional
neural networks. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4520–4533. [CrossRef]

12. Mei, S.; Song, C.; Ma, M.; Xu, F. Hyperspectral image classification using group-aware hierarchical transformer. IEEE Trans.
Geosci. Remote Sens. 2022, 60, 1–14. [CrossRef]

13. Lian, J.; Mei, S.; Zhang, S.; Ma, M. Benchmarking adversarial patch against aerial detection. IEEE Trans. Geosci. Remote Sens. 2022,
60, 1–16. [CrossRef]

14. Mei, S.; Jiang, R.; Ma, M.; Song, C. Rotation-invariant feature learning via convolutional neural network with cyclic polar
coordinates convolutional layer. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–13. [CrossRef]

15. Liu, Y.; Zhang, Y.; Wang, Y.; Mei, S. Rethinking transformers for semantic segmentation of remote sensing images. IEEE Trans.
Geosci. Remote Sens. 2023, 61, 5617515. [CrossRef]

16. ElMasry, G.; Sun, D.-W. Principles of hyperspectral imaging technology. In Hyperspectral Imaging for Food Quality Analysis and
Control; Elsevier: Amsterdam, The Netherlands, 2010; pp. 3–43.

17. Wei, Q.; Bioucas-Dias, J.; Dobigeon, N.; Tourneret, J.-Y. Hyperspectral and multispectral image fusion based on a sparse
representation. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3658–3668. [CrossRef]

18. Liu, Y.; Wang, Z. Multi-focus image fusion based on sparse representation with adaptive sparse domain selection. In Proceedings
of the 2013 Seventh International Conference on Image and Graphics, Qingdao, China, 26–28 July 2013; pp. 591–596.

19. Ma, X.; Hu, S.; Liu, S.; Fang, J.; Xu, S. Remote sensing image fusion based on sparse representation and guided filtering. Electronics
2019, 8, 303. [CrossRef]

20. Xia, K.-J.; Yin, H.-S.; Wang, J.-Q. A novel improved deep convolutional neural network model for medical image fusion. Clust.
Comput. 2019, 22, 1515–1527. [CrossRef]

21. Arad, B.; Ben-Shahar, O. Sparse recovery of hyperspectral signal from natural rgb images. In Proceedings of the Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part VII 14;
Springer: Berlin/Heidelberg, Germany, 2016; pp. 19–34.

22. Nguyen, R.M.; Prasad, D.K.; Brown, M.S. Training-based spectral reconstruction from a single rgb image. In Proceedings of the
Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part VII 13;
Springer: Berlin/Heidelberg, Germany, 2014; pp. 186–201.

23. Aeschbacher, J.; Wu, J.; Timofte, R. In defense of shallow learned spectral reconstruction from rgb images. In Proceedings of the
IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017; pp. 471–479.

24. Stiebel, T.; Koppers, S.; Seltsam, P.; Merhof, D. Reconstructing spectral images from rgb-images using a convolutional neural
network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT,
USA, 18–23 June 2018; pp. 948–953.

25. Stigell, P.; Miyata, K.; Hauta-Kasari, M. Wiener estimation method in estimating of spectral reflectance from rgb images. Pattern
Recognit. Image Anal. 2007, 17, 233–242. [CrossRef]

26. Yan, Y.; Zhang, L.; Li, J.; Wei, W.; Zhang, Y. Accurate spectral super-resolution from single rgb image using multi-scale cnn. In
Proceedings of the Pattern Recognition and Computer Vision: First Chinese Conference, PRCV 2018, Guangzhou, China, 23–26
November 2018; Proceedings, Part II 1; Springer: Berlin/Heidelberg, Germany, 2018; pp. 206–217.

27. Banerjee, A.; Palrecha, A. Mxr-u-nets for real time hyperspectral reconstruction. arXiv 2020, arXiv:2004.07003.
28. Zhao, Y.; Po, L.-M.; Yan, Q.; Liu, W.; Lin, T. Hierarchical regression network for spectral reconstruction from rgb images. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19
June 2020; pp. 422–423.

29. Xiong, Z.; Shi, Z.; Li, H.; Wang, L.; Liu, D.; Wu, F. Hscnn: Cnn-based hyperspectral image recovery from spectrally undersampled
projections. In Proceedings of the IEEE International Conference on Computer Vision Workshop, Venice, Italy, 22–29 October
2017; pp. 518–525.

30. Koundinya, S.; Sharma, H.; Sharma, M.; Upadhyay, A.; Manekar, R.; Mukhopadhyay, R.; Karmakar, A.; Chaudhury, S. 2d-3d cnn
based architectures for spectral reconstruction from rgb images. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 844–851.

31. Li, J.; Wu, C.; Song, R.; Xie, W.; Ge, C.; Li, B.; Li, Y. Hybrid 2-d–3-d deep residual attentional network with structure tensor
constraints for spectral super-resolution of rgb images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 2321–2335. [CrossRef]

http://dx.doi.org/10.1109/79.974724
http://dx.doi.org/10.1109/JSTARS.2014.2329330
http://dx.doi.org/10.1109/TGRS.2017.2693346
http://dx.doi.org/10.1109/TGRS.2022.3207933
http://dx.doi.org/10.1109/TGRS.2022.3225306
http://dx.doi.org/10.1109/TGRS.2022.3233726
http://dx.doi.org/10.1109/TGRS.2023.3302024
http://dx.doi.org/10.1109/TGRS.2014.2381272
http://dx.doi.org/10.3390/electronics8030303
http://dx.doi.org/10.1007/s10586-018-2026-1
http://dx.doi.org/10.1134/S1054661807020101
http://dx.doi.org/10.1109/TGRS.2020.3004934


Mathematics 2024, 12, 708 18 of 18

32. Peng, H.; Chen, X.; Zhao, J. Residual pixel attention network for spectral reconstruction from rgb images. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 486–487.

33. Yi, C.; Zhao, Y.-Q.; Chan, J.C.-W. Spectral super-resolution for multispectral image based on spectral improvement strategy and
spatial preservation strategy. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9010–9024. [CrossRef]

34. Timofte, R.; Smet, V.D.; Gool, L.V. A+: Adjusted anchored neighborhood regression for fast super-resolution. In Proceedings of
the Computer Vision–ACCV 2014: 12th Asian Conference on Computer Vision, Singapore, 1–5 November 2014; Revised Selected
Papers, Part IV 12; Springer: Berlin/Heidelberg, Germany, 2015; pp. 111–126.

35. Mei, S.; Geng, Y.; Hou, J.; Du, Q. Learning hyperspectral images from rgb images via a coarse-to-fine cnn. Sci. China Inf. Sci. 2022,
65, 1–14. [CrossRef]

36. Mei, S.; Zhang, G.; Wang, N.; Wu, B.; Ma, M.; Zhang, Y.; Feng, Y. Lightweight multiresolution feature fusion network for spectral
super-resolution. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [CrossRef]

37. Chakrabarti, A.; Zickler, T. Statistics of real-world hyperspectral images. In Proceedings of the 2011 IEEE Conference on Computer
Vision and Pattern Recognition, Washington, DC, USA, 20–25 June 2011; pp. 193–200.

38. Peng, J.; Huang, Y.; Sun, W.; Chen, N.; Ning, Y.; Du, Q. Domain adaptation in remote sensing image classification: A survey. IEEE
J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 9842–9859. [CrossRef]

39. Huang, Y.; Peng, J.; Sun, W.; Chen, N.; Du, Q.; Ning, Y.; Su, H. Two-branch attention adversarial domain adaptation network for
hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [CrossRef]

40. Huang, Y.; Peng, J.; Chen, N.; Sun, W.; Du, Q.; Ren, K.; Huang, K. Cross-scene wetland mapping on hyperspectral remote sensing
images using adversarial domain adaptation network. ISPRS J. Photogramm. Remote Sens. 2023, 203, 37–54. [CrossRef]

41. Tominaga, S.; Wandell, B.A. Standard surface-reflectance model and illuminant estimation. JOSA A 1989, 6, 576–584. [CrossRef]
42. Geng, Y.; Mei, S.; Tian, J.; Zhang, Y.; Du, Q. Spatial constrained hyperspectral reconstruction from rgb inputs using dictionary

representation. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium,
Yokohama, Japan, 28 July–2 August 2019; pp. 3169–3172.

43. Kolda, T.G.; Bader, B.W. Tensor decompositions and applications. SIAM Rev. 2009, 51, 455–500. [CrossRef]
44. Bader, B.W.; Kolda, T.G. Algorithm 862: Matlab tensor classes for fast algorithm prototyping. ACM Trans. Math. Softw. (TOMS)

2006, 32, 635–653. [CrossRef]
45. Hartigan, J.A.; Wong, M.A. Algorithm as 136: A k-means clustering algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 100–108.

[CrossRef]
46. Aharon, M.; Elad, M.; Bruckstein, A. K-svd: An algorithm for designing overcomplete dictionaries for sparse representation.

IEEE Trans. Signal Process. 2006, 54, 4311–4322. [CrossRef]
47. Yasuma, F.; Mitsunaga, T.; Iso, D.; Nayar, S.K. Generalized assorted pixel camera: Postcapture control of resolution, dynamic

range, and spectrum. IEEE Trans. Image Process. 2010, 19, 2241–2253. [CrossRef]
48. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE

Trans. Image Process. 2004, 13, 600–612. [CrossRef]
49. Arad, B.; Ben-Shahar, O.; Timofte, R.; Gool, L.V.; Zhang, L.; Yang, M. Ntire 2018 challenge on spectral reconstruction from rgb

images. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
Salt Lake City, UT, USA, 18–22 June 2018; p. 1042.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TGRS.2019.2924096
http://dx.doi.org/10.1007/s11432-020-3102-9
http://dx.doi.org/10.1109/TGRS.2023.3234124
http://dx.doi.org/10.1109/JSTARS.2022.3220875
http://dx.doi.org/10.1109/TGRS.2022.3215677
http://dx.doi.org/10.1016/j.isprsjprs.2023.07.009
http://dx.doi.org/10.1364/JOSAA.6.000576
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1145/1186785.1186794
http://dx.doi.org/10.2307/2346830
http://dx.doi.org/10.1109/TSP.2006.881199
http://dx.doi.org/10.1109/TIP.2010.2046811
http://dx.doi.org/10.1109/TIP.2003.819861

	Introduction
	Related Work
	CNN-Based Reconstruction Methods
	Sparse Coding-Based Methods

	Preliminaries
	Problem Formulation
	Tensor Algebra

	Proposed Method
	Data Preprocessing
	Tensor-Based Dictionary Learning
	Tensor-Based Spectral Reconstruction
	Spectral Enhancement

	Experiment
	Experimental Settings
	Datasets
	Dictionary Training
	Sparse Reconstruction
	Experiment Metrics

	Quantitative and Qualitative Comparison Experiments

	Conclusions
	References

