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Abstract: The susceptible–infected–recovered–vaccinated–deceased (SIRVD) epidemic compartment
model extends the SIR model to include the effects of vaccination campaigns and time-dependent
fatality rates on epidemic outbreaks. It encompasses the SIR, SIRV, SIRD, and SI models as special
cases, with individual time-dependent rates governing transitions between different fractions. We
investigate a special class of exact solutions and accurate analytical approximations for the SIRVD and
SIRD compartment models. While the SIRVD and SIRD equations pose complex integro-differential
equations for the rate of new infections and the fractions as a function of time, a simpler approach
considers determining equations for the sum of ratios for given variations. This approach enables us
to derive fully exact analytical solutions for the SIRVD and SIRD models. For nonlinear models with
a high-dimensional parameter space, such as the SIRVD and SIRD models, analytical solutions, exact
or accurately approximative, are of high importance and interest, not only as suitable benchmarks
for numerical codes, but especially as they allow us to understand the critical behavior of epidemic
outbursts as well as the decisive role of certain parameters. In the second part of our study, we apply
a recently developed analytical approximation for the SIR and SIRV models to the more general
SIRVD model. This approximation offers accurate analytical expressions for epidemic quantities, such
as the rate of new infections and the fraction of infected persons, particularly when the cumulative
fraction of infections is small. The distinction between recovered and deceased individuals in the
SIRVD model affects the calculation of the death rate, which is proportional to the infected fraction in
the SIRVD/SIRD cases but often proportional to the rate of new infections in many SIR models using
an a posteriori approach. We demonstrate that the temporal dependence of the infected fraction and
the rate of new infections differs when considering the effects of vaccinations and when the real-time
dependence of fatality and recovery rates diverge. These differences are highlighted for stationary
ratios and gradually decreasing fatality rates. The case of stationary ratios allows one to construct a
new powerful diagnostics method to extract analytically all SIRVD model parameters from measured
COVID-19 data of a completed pandemic wave.
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1. Introduction

Compartmental mathematical models are very popular and successful to describe the
temporal evolution of pandemic and epidemic outbursts in populations of large size (for
reviews see [1–3]). Their forecasts on hospitalization and death rates help policy makers to
install non-pharmaceutical interventions and/or vaccination campaigns at optimized times.
As suitable compartments one introduces the fractions of susceptible persons (S), infected
persons (I), recovered persons (R), deceased persons (D), and vaccinated persons (V) that
no longer can be infected. Individual time-dependent rates regulate the transition between
the different compartments. The temporal evolution of the epidemic is then determined
by the ratios k(t) = µ(t)/a(t), b(t) = v(t)/a(t) and q(t) = ψ(t)/a(t) between the recovery
(µ(t)), vaccination (v(t)), and fatality (ψ(t)) rates to the infection (a(t)) rate, respectively.
By discriminating, e.g., between different age classes in each compartment, these models
can be generalized to a much larger number of compartments in order to investigate the
effects of pandemic and epidemic outbursts on persons of certain age groups. However,
from the health care point of view, to sufficiently provide enough intensive care beds and
facilities is independent from the age of the infected persons.

Historically, the first reasonable compartment model was the susceptible–infected–
recovered/removed (SIR) epidemic model [4–7]. This has been refined to include the



Mathematics 2024, 12, 941 3 of 45

effect of vaccination campaigns leading to the susceptible–infected–recovered/removed–
vaccinated (SIRV) epidemic model (see references cited in [8]). The purpose of this
manuscript is two-fold. First, we will investigate new classes of exact solutions to the
SIRVD and SIRD equations. Secondly, we will also apply the recently developed analytical
approximation [8] for the SIR and SIRV models to the more general SIRVD model. These
accurate analytical approximations have been derived for all epidemic quantities of interest
such as the rate of new infections J̊(t) and the corresponding cumulative fraction of infec-
tions J(t). The main difference between the SIRVD and the SIRV model is the discrimination
between recovered and deceased persons by introducing two different compartments. This
is necessary as the omicron mutant of COVID-19 has a much smaller (about an order
of magnitude) fatality rate than earlier mutants. This gradually changing fatality rate is
not accompanied by a corresponding change in the time dependence of the recovery rate.
Therefore, a mathematical description with one combined recovery/removed compartment
is not sufficiently accurate anymore.

The organization of the manuscript is as follows. In Section 2, we introduce the
starting dynamical equations for all considered compartment models both in terms of the
real time t with respect to the onset of the pandemic, and the reduced time τ =

∫ t
0 dξ a(ξ).

It is beneficial for the analysis to express the equations in a form directly involving the
observable quantities, such as the cumulative fraction of new infections J(τ) and the
cumulative fraction of vaccinated persons V(τ). It is shown that for given reduced time
variations of the ratios k(τ), q(τ), and b(τ) the SIRVD and SIRD equations represent
complicated integro-differential equations for the rate of new infections j(τ) as well as the
cumulative fraction of infections J(τ), or S(τ) and I(τ). However, the integro-differential
equations can also be regarded as simpler determining equations for the sum of ratios
k(τ) + q(τ) = κ(τ) for given variations of the ratio b(τ) and the fraction S(τ). This new
approach is used in Section 3 to derive fully exact analytical solutions for the SIRVD and
SIRD models. Especially for the SIRD model, it is an effective new method to construct
a special class of exact solutions depending on two parameters which are chosen as the
values of the ratio κ(τ) at the start (κ(τ = 0)) and the end (κ(τ = ∞)) of the epidemic
outburst. The new method for the SIRD case is illustrated in Section 4 for three different
choices of the two parameters including a detailed investigation of the properties of the
constructed solutions.

Sections 5 and 6 are concerned with the second main purpose of this manuscript,
namely the application of the approximate analytical solution in the limit of small cumula-
tive fractions J ≪ 1 to the SIRVD model. For general reduced time dependencies of the
ratios k(τ), q(τ), and b(τ) the time dependence of all quantities of interest is derived in
Section 5, whereas in Sections 6.1 and 6.3 two applications are investigated which were
inaccessible to analytical treatment before. Of special interest is the calculation of the death
rate d(τ) and the corresponding cumulative fraction of deceased persons D(τ). Main dif-
ferences occur between the considered compartment models, which reflect two alternative
points of view. In Section 6.2, we use the analytic solution and its characteristics to obtain
all SIRVD model parameters from reported COVID-19 data.

In the SIRVD and SIRD case with a predescribed fatality rate ψ(t), corresponding to
the ratio q(τ), the death rate is proportional to the fraction I(t). Moreover, any different
reduced time dependencies of the ratios k(τ) and q(τ) correctly enter the dynamical
equations. In contrast, in the SIR models no compartment of deceased persons has been
considered. Instead, the total fraction of recovered and removed (by death) populations
Rtot(t) and the summed recovery/removed rate µtot(t) are used. Then, the solution for
the rate of new infections J̊SIR(t) is employed to calculate an a posteriori death rate as [6]
da−pos = ψ(t) J̊SIR(t) from a specified fatality rate ψ(t). Of course, this fatality rate can be
regarded as part of the summed recovery/removed rate, so that it also enters the dynamical
SIR model equations. However, the main difference remains for the calculation of the death
rate: in the SIRVD/SIRD cases it is proportional to I(t), whereas in many SIR models it is
proportional to J̊(t). And the temporal dependence of I(t) and J̊(t) can be different. As
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we will show, the disparity is most pronounced when the effect of vaccinations is included
and/or when the real-time dependence of the fatality rate ψ(t) and the recovery rate µ(t)
are different from each other. The a posteriori approach is not necessarily incorrect but has
its own justification. It assumes that the probability to die from the virus infection is only
determined by being or having been infected with it, and thus is proportional to the rate of
new infections J̊(t). In contrast, in the SIRD and SIRVD models the probability to die is
the same on every day being infected and thus depends on the duration of the infection.
A summary and conclusion (Section 7) completes the manuscript.

It is appropriate to highlight the important differences to our earlier work [8]—
hereafter referred to as KS24. KS24 dealt exclusively with the analytical approximation of
the SIRV-epidemics model, which has proven the accuracy of the approximate solution by
comparing with the numerical solution of the underlying SIRV equations for a few illus-
trative examples. But no attempt had been made there to practically apply the analytical
solution to monitored data from COVID-19 outbursts in order to extract the key parameters
of the SIRV model, namely the values of the ratios of the recovery to infection rate and the
vaccination to infection rate. Additionally, KS24 does not distinguish between the fraction
of deceased and recovered persons, respectively. The additional D-compartment exists only
in the SIRVD (and SIRD) models treated in the present work. The dynamical equations for
the SIRV and SIRVD models are qualitatively different as the vaccination rate affects the
susceptible S-compartment, whereas the fatality rate affects the infected I-compartment,
while the summed compartments remain preserved. Ignoring the D-compartment is a
significant oversimplification, especially if the effects of vaccinations is taken into account.
As demonstrated in the present work, the time dependence of the rates of deceased persons
and the rates of newly infected persons is significantly different, which exhibits itself in
different values of the respective peak times and ratios of peak intensities. These significant
differences, available in analytic form, are useful to apply a novel and powerful diagnostic
method to extract the important pandemic parameters of the SIRVD-model.

2. Compartment Models
2.1. SIRVD Model

We start with the SIRVD epidemics model described by four transition rates regulating
the transitions between the five compartments: the fractions of susceptible persons (S),
infected persons (I), recovered persons (R), removed by death persons (D), and vaccinated
persons (V) who can no longer be infected. The transition rates in general are time depen-
dent and different from each other. The infection rate a(t) regulates the transition from
S → I, the vaccination rate v(t) the transition S → V, the fatality rate ψ(t) the transition
I → D, and the recovery rate µ(t) the transition I → R, respectively (Figure 1). The SIRVD
equations read:

Ṡ = −a(t)SI − v(t)S, (1a)

İ = a(t)SI − µ(t)I − ψ(t)I, (1b)

Ṙ = µ(t)I, (1c)

V̇ = v(t)S, (1d)

Ḋ = ψ(t)I, (1e)

where the dot stands for a derivative with respect to time t. The five fractions obey the sum
constraint

S(t) + I(t) + R(t) + V(t) + D(t) = 1 (2)

at all times t ≥ 0 after the start of the wave at time t = 0 with the initial conditions of the
so-called semi-time case

I(0) = η, S(0) = 1 − η, R(0) = 0, D(0) = 0, V(0) = 0, (3)
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where η is positive and usually very small, η ≪ 1.

Figure 1. The dynamical SIRVD model captures transitions between five compartments by four
dimensional rates, as shown. Using the dimensionless time τ defined in Equation (9), one is left with
three dimensionless rates k(τ), b(τ), and q(τ), c.f., Equation (10), leading to the dimensionless form
of the SIRVD model, Equations (11a)–(11f).

2.2. SIRV, SIRD, SIR and SI Models

The SIRVD model includes as special cases the SIRV, SIRD, and SIR epidemics models.
For these three simpler models, one introduces the total fraction of recovered and removed
(by death) populations

Rtot(t) = R(t) + D(t), (4)

and the summed recovery/removed rate

µtot(t) = µ(t) + ψ(t); (5)

by this modification, the five individual compartments of the SIRVD models are reduced
to four compartments in the SIRV-description and to three compartments in the SIR-
description, respectively. Consequently, the SIRVD Equations (1a)–(2) become

Ṡ = −a(t)SI − v(t)S, (6a)

İ = a(t)SI − µtot(t)I, (6b)

Ṙtot = µtot(t)I, (6c)

V̇ = v(t)S, (6d)

S(t) + I(t) + Rtot(t) + V(t) = 1, (6e)

which, apart from a slight change in notation (Rtot and µtot instead of R and µ before), agree
exactly with the earlier considered Equations (13)–(17) in [8].

The SIRD and SIR models ignore the effect of vaccinations so that v(t) = V(t) = 0.
The time evolution in the SIRD model is then given by taking the limit v(t) = V(t) = 0 of
the Equations (1) and (2) yielding

Ṡ = −a(t)SI, (7a)

İ = a(t)SI − µ(t)I − ψ(t)I, (7b)

Ṙ = µ(t)I, (7c)

Ḋ = ψ(t)I, (7d)

S(t) + I(t) + R(t) + D(t) = 1. (7e)

Likewise, the limit v(t) = V(t) = 0 of the Equation (6) provides the SIR equations for
the three remaining compartments:

Ṡ = −a(t)SI − v(t)S, (8a)

İ = a(t)SI − µtot(t)I, (8b)

Ṙtot = µtot(t)I, (8c)

S(t) + I(t) + Rtot(t) = 1 (8d)
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For completeness, we discuss the SI model [9] where additionally µtot(t) = 0 in
Appendix A. For µtot = v(t), the model is known as the SIS model [9].

2.3. SIRVD Equations in Terms of the Reduced Time Variable

It is convenient to introduce the reduced time [6]

τ =
∫ t

0
dξ a(ξ), (9)

and the dimensionless ratios

k(τ) =
µ(τ(t))
a(τ(t))

, b(τ) =
v(τ(t))
a(τ(t))

, q(τ) =
ψ(τ(t))
a(τ(t))

; (10)

with this, the SIRVD Equations (1a)–(2) can be written as

dS
dτ

= −SI − b(τ)S, (11a)

dI
dτ

= SI − [k(τ) + q(τ)]I, (11b)

dR
dτ

= k(τ)I, (11c)

dV
dτ

= b(τ)S, (11d)

dD
dτ

= q(τ)I, (11e)

S(τ) + I(τ) + R(τ) + D(τ) + V(τ) = 1. (11f)

subject to initial conditions I(0) = η = 1 − S(0) and R(0) = D(0) = V(0) = 0.
By solving Equations (11) numerically for the case of stationary ratios k(τ) = 0.5,

b(τ) = 0.01, q(τ) = 0.1, one establishes quantitatively different temporal dependencies for
the various fractions of the four different models SIR, SIRD, SIRV, and SIRVD (see Figure 2).
Numerical schemes have been developed especially for the SIR model, see the recent
works [10,11]. We used a variable-step, variable-order (VSVO) Adams–Bashforth–Moulton
PECE solver [12] of orders 1 to 13 to produce Figure 2. The highest order used appears to
be 12; however, a formula of order 13 is used to form the error estimate and the function
does local extrapolation to advance the integration at order 13. This Figure 2 is meant as
a motivation for the following analysis, which has the aim to understand the different
behaviors of the four models on the basis of analytical calculations. Our analytical study will
also be concerned with, in general, time-dependent ratios k(τ), q(τ) and b(τ). Moreover, it
will derive new methods to construct special classes of exact analytical solutions.

To this end, it turns out to be important to introduce the rate of new infections, J̊(t) =
a(t)S(t)I(t), which determines in the absence of vaccination the reduction in the susceptible
compartment according to Equation (1a). Its dimensionless counterpart, appearing in
Equation (11a), is

j(τ) = S(τ)I(τ) =
dJ(τ)

dτ
, (12)

so that J̊(t) = a(t)j(τ) and j(τ = 0) = η(1 − η). In terms of the rate of new infections j(τ),
and the corresponding cumulative fraction of new infections

J(t) = J(τ) = η +
∫ τ

0
dx j(x), (13)

Equations (11a) and (11d)–(11f) readily provide at all times

J(τ) = 1 − S(τ)− V(τ) = R(τ) + D(τ) + I(τ). (14)
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Moreover, Equation (11a) yields

I(τ) = −b(τ)− d ln S(τ)
dτ = − dV(τ)/dτ

1−J(τ)−V(τ)

+ d
dτ ln(1 − J(τ)− V(τ)) = j(τ)

1−J(τ)−V(τ)
,

(15)

where we used Equations (11d), (14), and the first Equation (12). Equation (14) also provides

R(τ) + D(τ) = J(τ)− I(τ) = J(τ)− j(τ)
1 − J(τ)− V(τ)

. (16)

With Equation (15), we obtain for Equations (11c)–(11e)

R(τ) =
∫ τ

0
dx k(x)I(x) =

∫ τ

0
dx

k(x)j(x)
1 − J(x)− V(x)

, (17)

and

D(τ) =
∫ τ

0
dx q(x)I(x) =

∫ τ

0
dx

q(x)j(x)
1 − J(x)− V(x)

, (18)

implying for the rate of new fatalities

d(τ) =
dD(τ)

dτ
= q(τ)I(τ) =

q(τ)j(τ)
1 − J(τ)− V(τ)

. (19)
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Figure 2. Quantitative comparison between the four models SIR, SIRD, SIRV, and SIRVD at identical,
constant rates, k(τ) = 0.5, b(τ) = 0.01, q(τ) = 0.1, and η = 10−5. Shown are numerical solutions
for (a) susceptible fraction S(τ), (b) infected fraction I(τ), (c) recovered fraction R(τ), (d) vaccinated
fraction V(τ), (e) deceased fraction D(τ), (f) newly infected fraction j(τ) = S(τ)I(τ) = dJ(τ)/dτ,
(g) cumulative infected fraction J(τ) = 1 − S(τ) − V(τ), and (h) newly deceased fraction
d(τ) = dD(τ)/dτ. The newly infected fraction j(τ), as opposed the currently infected fraction I(τ), is
the fraction that is usually reported by health agencies.

2.4. Solution of the SIRVD Equations

With the first Equation (14) one finds

S(τ) = 1 − J(τ)− V(τ), (20)

so that Equation (11d) can be written in the form

b(τ) =
dV/dτ

1 − J(τ)− V(τ)
, (21)

yielding

b(τ)[1 − J(τ)] =
dV(τ)

dτ
+ b(τ)V(τ) = e−

∫ τ
0 dx b(x) d

dτ
[V(τ)e

∫ τ
0 dx b(x)]. (22)



Mathematics 2024, 12, 941 8 of 45

With the initial condition V(τ = 0) = 0 Equation (22) integrates to

V(τ) = 1 − J(τ)− e−
∫ τ

0 dx b(x)
[

1 − η −
∫ τ

0
dx j(x)e

∫ x
0 dy b(y)

]
, (23)

providing

S(τ) = 1 − J(τ)− V(τ) = e−
∫ τ

0 dx b(x)[1 − η −
∫ τ

0
dx j(x)e

∫ x
0 dy b(y)]. (24)

Likewise, Equation (11b) can be written as

k(τ) + q(τ) = S(τ)− d ln I(τ)
dτ

= 1 − V(τ)− J(τ)− d
dτ

ln
[

j(τ)
1 − V(τ)− J(τ)

]
, (25)

where we used Equations (15) and (24). With the initial conditions Equation (25) integrates to

j(τ) =
dJ(τ)

dτ
= η[1 − V(τ)− J(τ)] exp

∫ τ

0
dz
(

1 − V(z)− J(z)− k(z)− q(z)
)

; (26)

a further integration with the initial condition J(τ = 0) = η leads to

J(τ) = η
[
1 +

∫ τ

0
dx S(x)e

∫ x
0 dz [S(z)−k(z)−q(z)]

]
(27)

in terms of S(τ). Furthermore, Equation (25) is equivalent to

k(τ) + q(τ) = S(τ)− d
dτ

[ln j(τ)− ln S(τ)], (28)

and also with Equation (11b) integrated to

b(τ) = −d ln S(τ)
dτ

− η exp
(∫ τ

0
dz [S(z)− k(z)− q(z)]

)
. (29)

With S(τ) = (1 − η) exp(−
∫ τ

0 dz [I(z) + b(z)]) obtained from Equation (11a), the first
Equation (25) is equivalent to

d ln I(τ)
dτ

= (1 − η)e−
∫ τ

0 dz [I(z)+b(z)] − k(τ)− q(τ). (30)

The derived Equations (26)–(30) are nonlinear integro-differential equations for the
cumulative fraction of new infections J(τ), and S(τ), respectively. The great advantage of
the SIRVD equation written in the form (26) is the direct involvement of observable and
monitored quantities, such the cumulative fractions of new infections J(t) = J(τ), and of
vaccinated persons V(t) = V(τ). We emphasize that Equations (26)–(29) are exact, and
hold for all, the SIR, SIRV, SIRD, and SIRVD models. The only difference is that in the
SIRDcase JSIRD(τ) = 1 − SSIRD(τ), because here b(τ) = V(τ) = 0, whereas in the SIRVD
case JSIRVD(τ) = 1 − SSIRVD(τ)− VSIRVD(τ). If we succeed in either solving the nonlinear
integro-differential Equations (26)–(29), or deriving an accurate approximation for their
solution, we arrive at a completely analytical solution of all dynamical variables of the
SIRVD model and its special cases in dependence on the reduced time τ.

For completeness, we note that inserting the exact solution (23) for V(τ) in Equation (26)
leads to the equivalent nonlinear integro-differential Equations for the rate of new infections

j(τ) = η
[
1 − η −

∫ τ
0 dx j(x)e

∫ x
0 dy b(y)

]
×

exp
∫ τ

0 dz
(
[1−η−

∫ z
0 dx j(x)e

∫ x
0 dy b(y)]e−

∫ z
0 dy b(y) − k(z)− q(z)− b(z)

)
.

(31)
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Before proceeding to the approximation, we note that in terms of the real time, the
Equations (21)–(26) read, with the help of Equations (9), (10), (12), (14), (15), (17), (18), and (31),

v(t) =
dV/dt

1 − J(t)− V(t)
, (32a)

V(t) = 1 − J(t)− Q(t)
a(t)

e−
∫ t

0 dx v(x), (32b)

I(t) =
J̊(t)

a(t)[1 − J(t)− V(t)]
=

J̊(t)e
∫ t

0 dx v(x)

Q(t′)
, (32c)

R(t) =
∫ t

0
dt′

µ(t′) J̊(t′)
a(t′)[1 − J(t′)− V(t′)]

=
∫ t

0
dt′

µ(t′) J̊(t′)e
∫ t′

0 dx v(x)

Q(t′)
, (32d)

D(t) =
∫ t

0
dt′

ψ(t′) J̊(t′)
a(t′)[1 − J(t′)− V(t′)]

=
∫ t

0
dt′

ψ(t′) J̊(t′)e
∫ t′

0 dx v(x)

Q(t′)
, (32e)

d(t) =
ψ(t) J̊(t)

a(t)[1 − J(t)− V(t)]
=

ψ(t) J̊(t)e
∫ t

0 dx v(x)

Q(t)
, (32f)

J̊(t) = a(t)[1 − J(t)− V(t)] exp
∫ t

0
dt′
(

a(t′)[1 − V(t′)− J(t′)]− µ(t′)− ψ(t′)
)

= Q(t) exp
∫ t

0
dt′
(

Q(t′)e−
∫ t′

0 dy v(y) − µ(t′)− ψ(t′)− v(t′)
)

. (32g)

where we introduced the function

Q(t) = a(t)
[

1 − η −
∫ t

0
dx J̊(x)e

∫ x
0 dy v(y)

]
. (33)

In some aspects for negligible vaccinations, the resulting SIRD model is simpler than
the SIRVD model, e.g., here the simpler relation J(τ) = 1 − S(τ) holds. As a consequence,
the general integro-differential Equations (26)–(30) derived before are eased. In Appendix B,
we explicitly list the corresponding equations for the SIRD model.

In the following sections, we will derive a class of special exact solutions (Sections 3 and 4)
and derive approximate analytical solutions of Equations (21) and (25) in the limit of small
J(τ) ≪ 1 (Section 5) following our earlier approach [8]. This approximation then leads
to analytical approximations of all fractions of the SIRVD epidemics model as a function
of time for given time dependencies of the three ratios (10). We will prove the accuracy
of this approach by comparing it with the exact numerical solutions of these equations
for two illustrative examples (Sections 6.1 and 6.3) of the reduced time dependence of
these ratios. The proposed analytical approximation is self-regulating as the final analytical
expression for the cumulative fraction J∞ = limt→∞ J(t) after infinite time allows us to
check the validity of the original assumption J(t) = J(τ) ≤ J∞ ≪ 1.

Before proceeding, we discuss the differences in calculating the fractions of recovered
and deceased persons in the different models.

2.5. Fraction of Deceased Persons

The main difference between the considered compartment models occurs for the
determination of the fraction of deceased persons D(τ) = D(t) and the corresponding
death rate d(τ) = dD(τ)/dτ and d(t) = (dD(t)/dt)/a(t) as a function of the reduced and
real time. The disparity is most pronounced if the real-time dependence of the fatality rate
ψ(t) and the recovery rate µ(t) are different from each other. In the SIRVD and SIRD cases
with a predescribed fatality rate ψ(t), corresponding to the ratio q(τ), the death rate is
proportional to I(t), as given correctly by Equations (18) and (19) and Equations (32e)–(32f).
Moreover, the different reduced time dependences of the ratios k(τ) and q(τ) correctly
enter the dynamical Equations (26)–(29).
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However, in the SIR models, no compartment of deceased persons is considered.
As mentioned before, see Equations (4) and (5), here the total fraction of recovered and
removed (by death) populations Rtot(t) and the summed recovery/removed rate µtot(t)
are introduced. With the solution for J̊SIR(t) and JSIR(t) the rate of new fatalities and the
fraction of deceased persons are then calculated a posteriori as [6]

dSIR(t) = α J̊SIR(t), DSIR(t) = αJSIR(t), (34)

with α = D∞/J∞. The difference to Equations (32e)–(32f), which involve I(t) = J̊(t)/[1− J(t)]
and not directly J̊(t), is obvious. Only if the temporal dependence of I(t) is not drastically
different from the temporal dependence of J̊(t), the a posteriori approach is justified. As
has been emphasized before [8], for COVID-19 outbursts in many countries the monitored
cumulative fraction of infected persons, J(t) ≪ 1 has been much smaller than unity at all
times, so that then in the SIR model indeed I(t) ≃ j(t).

While Equation (34) refers to past work, we will in the following allow for time-dependent
fatality rates ψ(t) so that the a posteriori death rate is given by da−pos(t) = ψ(t) J̊(t) corre-
sponding to

da−pos(τ) = q(τ)j(τ) (35)

as a function of reduced time. This way, as opposed to the setting (34), the cumulative
Da−pos at infinite time must not coincide with D∞. Moreover, in the a posteriori approach
the influence of the later introduced fatality rate ψ(t) on the dynamical SIR equations is
ignored. This is particularly pronounced if the real-time dependence of ψ(t) differs from
the real-time dependence of the recovery rate µ(t). We will elaborate on this below with an
illustrative example in Section 6.3.

3. Special Exact Solutions

Equations (28)–(31) are complicated integro-differential equations in the SIRVD and
SIRD case, respectively, for given reduced time variations of the ratios k(τ), q(τ) and
b(τ). Hovever, they can also be regarded as simpler determining Equations for the ratios
k(τ) + q(τ) = κ(τ) for given variations of the ratio b(τ) and the fraction S(τ). This can be
used to derive fully exact analytical solutions for the SIRVD and SIRD models.

We know that S(τ) starts from the initial values S(τ = 0) = 1 − η and monotonically
decreases to its final non-negative value S(τ = ∞) ≥ 0 after finite or infinite time. We also
require, in accord with Equation (12) and the initial conditions specified in Section 2.3, that

j(τ = 0) = η(1 − η); (36)

therefore, we adopt the reduced time variation

S(τ) =
1 − η + S∞ tanh τmax

τ0
− (1 − η − S∞) tanh τ−τmax

τ0

1 + tanh τmax
τ0

, (37)

parameterized by S∞, τmax, and τ0. While limτ→∞ S(τ) = S∞ is formally correct, S(τ) may
reach zero after finite time τfin. In that case limτ→∞ S(τ) = S(τfin) = 0, irrespective of the
value of the parameter S∞, that may therefore take positive or negative values in the ex-
pression (37). One has (throughout this work we use the notation tanh−1(x) = artanh (x))

τfin = τmax + τ0 tanh−1
[

1 − η + S∞ tanh(τmax/τ0)

1 − η − S∞

]
(38)

from Equation (37). Only if the argument of the tanh−1 resides in the interval [−1, 1], a
finite τfin exists. We are going to see that the special choice of S∞ = 0 has to be treated with
care; it will allow us to absorb with Equation (37), along with a particular choice for τ0, the
analytic solution of the SI model, for which S(τ) reaches S∞ at τfin = ∞. Moreover, the
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initial condition j(0) = η(1 − η) will be used to establish a relationship between S∞, τmax,
and τ0.

We adopt without loss of generality positive values of τ0 > 0. The choice (37) implies

dS(τ)
dτ

= − 1 − η − S∞

τ0[1 + tanh τmax
τ0

] cosh2 τ−τmax
τ0

, (39a)

d ln S(τ)
dτ

= − 1 − η − S∞

τ0 cosh2 τ−τmax
τ0

(1−η+S∞ tanh τmax
τ0

− [1−η−S∞] tanh τ−τmax
τ0

)
, (39b)

d ln dS(τ)
dτ

dτ
= −

2 tanh( τ−τmax
τ0

)

τ0
. (39c)

With the first Equation (15) we obtain for the dynamical SIRVD Equation (25)

k(τ) + q(τ) = κ(τ) = S(τ)− d
dτ

ln
(
−[b(τ) +

d ln S(τ)
dτ

]
)
; (40)

after inserting Equations (37) and (39b) this Equation becomes

κ(τ) =
1 − η + S∞ tanh τmax

τ0
− (1 − η − S∞) tanh τ−τmax

τ0

1 + tanh τmax
τ0

− d
dτ

ln
(
−b(τ)

+
1 − η − S∞

τ0 cosh2 τ−τmax
τ0

(1 − η + S∞ tanh τmax
τ0

− [1 − η − S∞] tanh τ−τmax
τ0

)

)
. (41)

For given reduced time variations b(τ), the combined rate (41) corresponding to the
fraction S(τ) in Equation (37) can be inferred. In the following, we simplify our analysis to
the SIRD model.

3.1. SIRD Model

The choice (37) implies for the SIRD model J(τ) = 1 − S(τ), J∞ = 1 − S∞ and

j(τ) = −dS(τ)
dτ

=
1 − η − S∞

τ0[1 + tanh τmax
τ0

] cosh2 τ−τmax
τ0

, (42a)

j(τ = 0) =
(1 − η − S∞)(1 − tanh τmax

τ0
)

τ0
. (42b)

The rate (42a) is of generalized SI-type (see Equation (A5)) with a width τ0 different from 2
and a general τmax different from ln(1 − η)/η. We thus investigate for which conditions
generalized SI-type rates exactly solve the SIRD equations.

The requirement (36) demands

S∞ = (1 − η)[1 − ητ0

1 − tanh τmax
τ0

], (43)

J∞ = η+
η(1 − η)τ0

1 − tanh τmax
τ0

= η +
j(τ = 0)τ0

1 − tanh τmax
τ0

. (44)

We emphasize that the ansatz (42a) includes the SI model as a special case. Insert-
ing the SI-values S∞ = 0, κ(0) = 0, τ0 = 2 and τmax = 2 tanh−1(1 − 2η), which follows
from Equation (43) for S∞ = 0, it is straightforward to show that Equation (42a) correctly
reproduces the SI-distribution (A5). The first Equation (42a) then can be written as (Figure 3)

j(τ) =
η(1 − η) cosh2 τmax

τ0

cosh2 τ−τmax
τ0

= j(τ = 0)
cosh2 τmax

τ0

cosh2 τ−τmax
τ0

. (45)
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Only for τmax ≫ τ0 the maximum rate of new infections at τ = τmax is much larger
than the initial value j(τ = 0). In this limit,

J∞ ≃ η(1 − η)τ0e
2τmax

τ0

2
, (46)

while Equation (40) for b(τ) = 0 simplifies to

κ(τ) = S(τ)− d
dτ

ln
(
−d ln S(τ)

dτ

)
. (47)

Within the remainder of this subsection, we use the simplifying abbreviations

T =
τ

τ0
, ρ =

τmax

τ0
, Y(τ) = T − ρ (48)

to derive expressions for κ(0) and κ(∞) for the two qualitatively different cases of S∞ = 0
and S∞ ̸= 0. With the help of Equation (48), the SIRD Equation (37) receives the form

S(τ) =
1 − η + S∞ tanh ρ − (1 − η − S∞) tanh Y

1 + tanh ρ
, (49)

or equivalently, upon replacing S∞ using Equation (43),

S(τ) = (1 − η)
[
1 − ητ0 cosh2 ρ

(
tanh(T − ρ) + tanh ρ

)]
= (1 − η)[1 − ητ0

coth T − tanh ρ
]; (50)

similarly, using Equation (39b) in Equation (47), κ(τ) becomes

κ(τ) =
2 tanh(Y)

τ0
+

1 − η + S∞ tanh ρ − (1 − η − S∞) tanh(Y)
1 + tanh ρ

− 1 − η − S∞

τ0 cosh2(Y)(1 − η + S∞ tanh ρ − [1 − η − S∞] tanh(Y))
. (51)

Using Y(0) = −ρ, the initial value κ(0) can be read off from Equation (51). This yields

κ(0) = 1 − η − 2 tanh ρ

τ0
− (1 − η − S∞)(1 − tanh ρ)

(1 − η)τ0

= 1 − 2η − 2 tanh ρ

τ0
= 1 − 2η −

2 tanh( τmax
τ0

)

τ0
, (52)

where we inserted S∞ from (43) to arrive at the second line in Equation (52). Expression
(52) is valid for any S∞.

(a)
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Figure 3. SIRD model. (a) Analytical solutions j(τ) (45) of the SIRD model for four different κ(τ) shown
in (b), at η = 10−5. All four selected (τ0, τmax) pairs reside within the admissible white region highlighted
in Figure 4. In (a), j(τ) is normalized by jmax = η(1− η) cosh2(τmax/τ0). In all four cases, J∞ ≪ 1, to be
more specific: J∞ = 0.0014 (dotted-dashed), 0.075 (dashed), 0.0028 (solid), and 0.00012 (dotted).
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Figure 4. SIRD model. Region (white) of admissible (τ0, τmax) pairs in the expression (37) for S(τ)
at η = 10−5. The situation is qualitatively identical at different η. The white region is enclosed by
the solutions to κ(0) = 0 and κ∞ = 0. Negative τ0 and τmax are prohibited to ensure S∞ < 1 and
κ0 ≥ 0. The dashed vertical line corresponds to Equation (56), the solid line represents Equation (57),
and the dotted-dashed line follows from Equation (53). (a) Wide range of (τ0, τmax) using a double-
logarithmic scale, (b) zoom into the region close to τ0 = 2/(1 − 2η). The inequality (58), relevant
for the case where j(τ) achieves a pronounced maximum at τ > 0, is met between blue and red
dashed lines.

As long as S∞ ̸= 0, the final value κ∞ = limY→∞ κ(τ) can be also read off immediately
from Equation (51). While the last term in Equation (51) diminishes with increasing Y due to
the leading cosh2(Y), the first terms readily evaluate upon replacing tanh(Y) by unity, so that

κ∞ =
2
τ0

+ S∞ (S∞ ̸= 0)

=
2
τ0

+ (1 − η)

[
1 − ητ0

1 − tanh τmax
τ0

]
, (53)

where we made use again of S∞ from (43). Calculating κ∞ for the remaining case of S∞ = 0
requires more care, as the denominator in the last line of Equation (51) does not anymore
increase with increasing Y. For S∞ = 0, one instead finds

κ∞ =
2
τ0

− 1
τ0

lim
Y→∞

1
cosh2(Y)(1 − tanh(Y))

=
2
τ0

− 1
τ0

lim
Y→∞

(1 + tanh Y) =
2
τ0

− 2
τ0

= 0 (54)

Note the apparent qualitative difference between the two cases. While κ∞ = S∞ for
S∞ = 0, one has κ∞ = S∞ + 2/τ0 for S∞ ̸= 0.

3.2. Constraints on the Function κ(τ)

We recall that values of the function κ(τ) smaller than unity describe the epidemic
phase where the infection rate a(t) is larger than the sum of the recovery and death rate.
Hence, if still enough susceptible persons are available, one expects a rising rate of new
infections J̊(t). In the opposite case of values of the function κ(τ) greater than unity, the
sum of recovery and death rates outnumbers the infection rate so that the rate of new
infections will decrease in such a phase. Therefore, it is appropriate to start with values of
the function κ(τ) smaller than unity at small reduced times. Subsequently, the function
κ(τ) approaches the value κ∞ at infinitely large reduced times, which can be either smaller
or greater than unity depending on the chosen values of τmax and τ0. However, not all
values for τ0 and τmax are allowed.

The requirement of having a positive κ(0) ≥ 0 leads to

1 − 2η

2
τ0 ≥ tanh

τmax

τ0
; (55)
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this is automatically fulfilled for values of

τ0 >
2

1 − 2η
, (56)

as the right-hand-side of Equation (56) is always smaller or equal than unity. For values of
τ0 ≤ 2/(1 − 2η), it is required that

τmax < τ0 tanh−1
[

1 − 2η

2
τ0

]
. (57)

The inequality S∞ ≥ 0, corresponding to J∞ ≤ 1, is met as long as the following
inequalities hold:

tanh
τmax

τ0
≤ 1 − ητ0, (58)

τmax ≤ τ0 tanh−1(1 − ητ0) ≃
τ0

2
ln

2
ητ0

=

√
ln

2
ητ0

τ0, (59)

that follow from Equation (43). This condition (59), the regime between red and blue
dashed lines in Figure 4, is not compatible with condition (57) but holds for certain values
of τ0 > 2/(1 − 2η). The condition (58) further guarantees that also S(τ), and not only S∞,
is non-negative at all times because S ≥ 0 requires, according to Equation (50),

tanh ρ + tanh(T − ρ) ≤ 1
ητ0 cosh2 ρ

=
1 − tanh2 ρ

ητ0
, (60)

or
tanh ρ + tanh(T − ρ)

1 + tanh ρ
≤ 1 − tanh ρ

ητ0
, (61)

which is fulfilled for all times τ because the left-hand side is always smaller than unity
while the right-hand side is larger than unity due to condition (58). In cases S∞ < 0, where
the condition (58) is not fulfilled, S(τfin) = 0 vanishes at the finite time τfin already stated
in Equation (38). In this case, the chosen solution (37) or (50) can only be used in the finite
time interval 0 ≤ τ ≤ τfin.

Equation (51) can also be written as

κ(τ) =
2
τ0

tanh(T − ρ) + (1 − η)[1 − ητ0 cosh2 ρ(tanh(T − ρ) + tanh ρ)]

− η cosh2 ρ

cosh2(T − ρ)[1 − ητ0 cosh2 ρ(tanh(T − ρ) + tanh ρ)]
(62)

=
2
τ0

tanh(T−ρ) + (1−η)[1− ητ0

coth T − tanh ρ
]− η cosh2 ρ

cosh2(T − ρ)[1 − ητ0
coth T−tanh ρ ]

,

where we used the identity

cosh2 ρ[tanh(T − ρ) + tanh ρ] =
1

coth T − tanh ρ
. (63)

The function (62) is positive for S∞ ≥ 0 and non-negative for all times in the admissible
interval 0 ≤ τ ≤ τfin. The ratio κ(τ) is negative and contains singularities if it is used in the
regime τ > τfin.

4. Details of the Construction of the SIRD Solution

From Equation (52) we obtain, for every S∞,
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tanh
(

τmax

τ0

)
=

1 − 2η − κ(0)
2

τ0, (64)

with positive τ0 > 0. We note that this Equation has a solution provided

1 − 2η − 2
τ0

≤ κ(0) ≤ 1 − 2η +
2
τ0

, (65)

because then the right-hand side of Equation (64) lies within the interval [−1, 1]. While
κ∞ = 0 for S∞ = 0, inserting Equation (64) provides for Equation (53),

κ∞ =
2
τ0

+
(1 − η)[ 2

τ0
+ κ(0)− 1]

2
τ0
+ κ(0)− 1 + 2η

(S∞ ̸= 0). (66)

Setting y = 2/τ0, Equation (66) leads to the quadratic equation

y2 + (κ(0)− κ∞ + η)y = κ∞(κ(0)− 1 + 2η)− (1 − η)(κ(0)− 1). (67)

For general and different values of κ(0) und κ∞, one can use Equation (67) to determine
the implied value of τ0 = 2/y and with Equation (64) the resulting value of τmax. The
knowledge of τ0 and τmax then determines for the SIRD model the time variation of the
ratio κ(τ) for any value of S∞ and also of the rate of new infections j(τ) in Equation (45).
We thus have found an effective new method to construct a special class of exact solutions
for the SIRD model which also applies to the SIR model for ψ(t) = 0. We illustrate this new
method for several cases of the ratios κ(0) and κ∞ in the next subsections.

4.1. SIRD Solution for κ∞ = 0

As discussed there are two cases for which κ∞ = 0 is realized. If S∞ = 0, then τinf = ∞
due to Equation (38), and

tanh(ρ) = 1 − ητ0 =
1 − 2η − κ(0)

2
τ0, (68)

according to Equations (43) and (64). This Equation (68) determines τ0 in terms of κ(0), i.e.,

τ0 =
2

1 − κ(0)
. (S∞ = κ∞ = 0) (69)

With τ0 at hand, τmax is then also determined by Equation (68). To be specific,

τmax =
2 tanh−1[1 − (2η/(1 − κ(0))]

1 − κ(0)
. (70)

For the special choice of κ(0) = κ∞ = S∞ = 0, one therefore recovers with τ0 = 2 and
τmax = ln((1− η)/η) the above-mentioned solution of the SI model detailed in Appendix A.

If, on the other hand, S∞ = −2/τ0 is negative, Equation (64), valid for all S∞, yields

τmax = τ0 tanh−1 1 − 2η − κ(0)
2

τ0, (71)

so that τinf from Equation (38) is finite and given by

τfin = τmax + τ0 tanh−1
(

(η + κ(0))τ0

2 + (1 − η)τ0

)
= τ0 tanh−1

(
1 − 2η − κ(0)

2
τ0

)
+ τ0 tanh−1

(
(η + κ(0))τ0

2 + (1 − η)τ0

)
. (72)
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τ0 is also determined by κ(0), as it solves Equation (67) for κ∞ = 0, which then simplifies to

y2 + (κ(0) + η)y = (1 − η)(1 − κ(0)). (73)

The quadratic Equation (73) can be solved for y = 2/τ0 and thus provides

τ0 =
4√

κ2(0)− 2(2 − 3η)κ(0) + (2 − η)2 − [κ(0) + η]
, (74)

because the second solution leads to negative τ0. The τmax is then also determined by κ(0),
c.f., Equation (72). For the special choice of κ(0) = κ∞ = 0, the above simplifies to

τ0 =
2

1 − η
, S∞ = −(1 − η), (75a)

τmax =
2

1 − η
tanh1

[
1 − η

1 − η

]
=

ln 2−3η
η

1 − η
≃ ln(2/η)

1 − η
, (75b)

τfin =
2

1 − η

[
tanh−1 1 − 2η

1 − η
+ tanh−1 η

2(1 − η)

]
=

1
1 − η

[
ln

2 − 3η

η
+ ln

2 − η

η

]
≃

2[ln 2
η − η]

1 − η
. (75c)

The results of the present section for the extremal case of κ(0) = 0 are visualized in
Figure 5.
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Figure 5. The case of κ∞ = κ(0) = 0 and (a) S∞ = 0 (SI model, here τinf = ∞) and (b) negative
S∞ = −2/τ0, according to Equation (75c). In the limit η → 0, the two solutions approach each other,
while they do not coincide in the limit S∞ → 0. For η > 2/3, τmax is complex-valued because the
argument of the logarithm is negative in Equation (75c) for larger η; the solution for negative S∞

therefore requires η ∈ (0, 2/3], while the solution for S∞ = 0 is valid for any η ∈ (0, 1]. The vertical
dashed line in (b) marks η = 2/3.

We have thus presented the analytic solutions of the SIRD model for the case of κ∞ = 0
and arbitrary κ(0). There is one solution for which S approaches zero at infinite time, and
there is another solution for which S reaches zero at finite time τfin (72). In both cases, the
characteristic times τ0 and τmax, as well as S∞ appearing in the analytic expression (37) for
S(τ), are determined by the initial dimensionless rate κ(0) and η = 1 − S(0).

4.2. SIRD Solution for Equal κ(0) = κ∞ ≡ K ̸= 0

For equal values of κ(0) = κ∞ ≡ K ̸= 0 Equation (67) reduces to

y2 + ηy = K2 − (2 − 3η)K + (1 − η), (76)

with the two solutions

y1,2 = −η

2
±
√

f (K), f (K) = K2 − (2 − 3η)K +
(

1 − η

2

)2
; (77)
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here the function f (K) > 0 is positive for all values of K > 0 and has the slope

d f (K)
dK

= 2[K − (1 − 3
2

η)]. (78)

It therefore decreases for 0 < K ≤ K0 with K0 = 1 − (3η/2), where it attains its minimum
fmin = 2η(1 − η). For values K ≥ K0 the function f (K) is monotonically increasing. For
all values of K one obtains

√
f (K) ≥

√
fmin > (η/2) because η ≪ (8/9). Hence, only

the solution

y1(K) =
√

f (K)− η

2
=

√
K2 − (2 − 3η)K + (1 − η

2
)2 − η

2
(79)

is useful as it provides positive values of

τ0(K) =
2

y1(K)
=

2√
K2 − (2 − 3η)K + (1 − η

2 )
2 − η

2

. (80)

We first check the requirement (65) reading

−y1(K) ≤ K − 1 + 2η ≤ y1(K), (81)

or
−[
√

f (K)− η

2
] ≤ K − 1 + 2η ≤

√
f (K)− η

2
. (82)

The left-hand side of the inequality (82) can be written as

−
√
(K − K0)2 + 2η(1 − η) ≤ K − K0, (83)

and is fulfilled for all values of K ≥ 0. This is obvious for K ≥ K0 when the right-hand
side of Equation (83) is non-negative, whereas its left-hand side is negative. For values
0 ≤ K < K0 Equation (83) reads

K0 − K ≤
√
(K0 − K)2 + 2η(1 − η), (84)

which is fulfilled. Likewise, the right-hand-side of the inequality (82) can be written as

K − (K0 − η) ≤
√
(K − K0)2 + 2η(1 − η), (85)

which is fulfilled for values of K ∈ (0, K0 − η], when the left-hand side of Equation (85) is
negative while its right-hand side is positive. Recall that the case K = 0 had been treated in
Section 4.1. For large values K > K0 − η squaring the inequality (85) yields

2(K − K0) ≤ 2 − 3η = 2K0, (86)

or
K ≤ 2K0. (87)

We conclude that the constraint (82) can be fulfilled for all values of K ∈ (0, 2K0]. In
this interval the solution (80) is given by

τ0(0 < K ≤ 2K0) =
2√

K2−(2−3η)K + (1− η
2 )

2 − η
2

=
2√

(K−K0)2 + 2η(1−η)− η
2

, (88)
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and shown in Figure 6. The first derivative of Equation (88) is

dτ0(K)
dK

= − d f /dK√
f (k)(

√
f (K)− η

2 )
2
=

2(K0 − K)√
f (k)(

√
f (K)− η

2 )
2

, (89)

so that τ0(K) attains its maximum value

τ0,E =

√
2
η√

1 − η −
√

η
8

=
4√

8η(1 − η)− η
=

4
8 − 9η

[1 +

√
8(1 − η)

η
] ≃

√
2
η

, (90)

at K = K0. Inserting the solution (88) one obtains for Equation (64)

tanh
τmax

τ0(K)
=

1 − 2η − K
2

τ0(K) =
1 − 2η − K√

(K − K0)2 + 2η(1 − η)− η
2

, (91)

yielding

τmax(0 < K ≤ 2K0) =
2 tanh−1[ 1−2η−K√

(K−K0)2+2η(1−η)− η
2
]√

(K − K0)2 + 2η(1 − η)− η
2

. (92)

The solution (92), also shown in Figure 6, is positive for values of 0 < K ≤ 1 − 2η and
negative for values of 1 − 2η < K ≤ 2K0 due to the property tanh−1(−x) = − tanh−1(x).
Obviously τmax = 0 for K = 1 − 2η. In order to have positive values of K0 and the zero
1 − 2η we should consider only values of η < 0.5.

For completeness we note an alternative τmax(τ0). Equating the right hand sides of
Equations (52) and (53) leads with R ≡ tanh(ρ) = tanh(τmax/τ0) to

1 − 2η − 2R
τ0

=
2
τ0

+ (1 − η)

[
1 − ητ0

1 −R

]
. (93)

Upon multiplying with (1 −R)τ0 one obtains

(1 −R)[(1 − 2η)τ0 − 2R] = 2(1 −R) + (1 − η)(1 − ητ0 −R)τ0, (94)

or the quadratic equation

R2 +
ητ0

2
R = 1 +

ητ0

2
[1 − (1 − η)τ0], (95)

which is solved by

R =
±
√

16 + ητ0[8 − (8 − 9η)τ0]− ητ0

4
, (96)

so that

τmax = τ0 tanh−1

[
±
√

16 + ητ0[8 − (8 − 9η)τ0]− ητ0

4

]
. (97)

The requirement |R| ≤ 1 is fulfilled for all values of η < 1 if the argument of the
square root in Equation (96) is non-negative. The last condition leads to

τ0 ≤ 4
8 − 9η

[
1 +

√
8(1 − η)

η

]
= τ0,E, (98)

which is identical to the maximum value (90) derived before. Proof:

τ0,E =

√
2
η√

1 − η −
√

η
8

=
4

√
η[
√

8(1 − η)−√
η]

=
4[
√

8(1 − η) +
√

η]
√

η[8(1 − η)− η]
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=
4

8 − 9η

√
η +

√
8(1 − η)

√
η

=
4

8 − 9η

(
1 +

√
8(1 − η)

η

)
= τ0,E. (99)
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-200
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200

400

Figure 6. SIRD model at basically constant κ(τ) = K. The analytical solution of the SIRD model at
K = κ(0) = κ∞ for K ∈ [0, 2K0] with K0 = 1 − 3η/2 is given by Equation (37) with S∞, τmax, and τ0

according to Equations (43), (97) and (88). This figure shows τ0 (80), τmax (92), as well as ρ = τmax/τ0

(91) versus K. The dotted-dashed vertical line marks K = 2K0 = 2 − 3η. For K < 1 − 2η, the plus sign
applies in Equation (97), leading to positive τ0 and τmax. In that case j(τ) goes through a maximum
in the course of positive time τ > 0. For K > K0, the minus sign applies in Equation (97). Here,
τmax < 0 and j(τ) monotonically decreases at τ ≥ 0. At K = K0, τ0 goes through a maximum versus
K, the maximum value τ0,E ≈

√
2/η is given by Equation (90). Within the range of K values where τ0

and τmax are shown as solid lines, κ(τ) equals K at all times τ ≥ 0 with a precision of less than 0.1%,
while within the regions using dashed lines the κ(τ) deviates from K by less than 5%. The analytical
solution therefore captures the regime K ∈ [0.8, 2K0] at η = 10−5 and the regime extends to slightly
smaller K for smaller η.

4.3. Reduced Time Dependence of κ(τ), Terminal Time τfin(K) for K = κ(0) = κ∞ ̸= 0

With τ0(K) given by Equation (88) we obtain for Equations (48)

T =
τ

τ0(K)
, ρ(K) =

τmax

τ0(K)
= tanh−1 1 − 2η − K√

(K − K0)2 + 2η(1 − η)− η
2

, (100)

so that Equations (50) and (62) become

S(τ) = (1 − η)

[
1 − ητ0(K)

coth T − tanh ρ(K)

]
, (101)

and

κ(τ) ≃ 2
τ0(K)

tanh[T − ρ(K)] + (1 − η)

[
1 − ητ0(K)

coth T(K)− tanh ρ(K)

]
− η cosh2 ρ(K)

cosh2(T − ρ(K))
[
1 − ητ0(K)

coth T(K)−tanh ρ(K)

] , (102)

which are both shown in Figure 7 for different values of K entering ρ(K) and τ0(K). As
K ̸= 0 the requirement S(τfin) = 0 then provides from Equation (101)
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τfin(K) = τ0(K) coth−1[ητ0(K) + tanh ρ(K)] = τ0(K) coth−1
[

1 − K
2

τ0(K)
]

=
2√

(K − K0)2 + 2η(1 − η)− η
2

tanh−1

√
(K − K0)2 + 2η(1 − η)− η

2
1 − K

, (103)

where we used Equation (68) for κ(0) = K and inserted solution (88) for 0 < K ≤ 2K0.
Obviously, positive values of τfin(K) are only possible for values of K < 1 smaller then unity,
as otherwise the argument of the tanh−1-function is negative. In order for the argument of
the tanh−1-function to be less or equal unity, the condition√

(K − K0)2 + 2η(1 − η) ≤ (1 +
η

2
)− K (104)

is required, which is equivalent to

K ≤ 1
2

. (105)

Hence, finite values of τfin(K) only occur for values of K ∈ (0, 0.5]. In Figure 8, we
show the final time (103) for different values of K below 0.5. The final time is monotonically
decreasing from its infinitely large value above K = 0.5 with decreasing values of K.

(a)

0 1 2 3 4

0

0.5

1

(b)

0 0.2 0.4 0.6 0.8 1
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Figure 7. SIRD model. (a) κ(τ) for S(τ) of the form of Equation (37), subject to the condition
κ(0) = κ∞ ≡ K at η = 10−5. While for K < K0 the κ(τ) varies significantly with reduced time τ, for
K > K0 the form (37) solves the SIRD equations with constant κ(τ) nearly exactly. Lines in (a) are
given by Equation (102), which coincides with the numerical solution. Panel (b) offers a zoom into (a)
for K0 < K < 2K0. Shown is the numerical solution for κ(τ)− K, which departs from the constant by
completely negligible amounts. (c) S(τ) and (d) j(τ). For K < 1/2, S(τ) reaches zero at τfin given by
Equation (110c), the curves for K = 0 (SI model) and K = 1/2 nearly coincide as they have similar
τmax and share S∞ = 0, the curves for K = 1 and K = 1.2 are also indistinguishable by eye and stay
at nearly constant S ≈ 1 − η. The bullets mark S(τfin) (not S∞) in (c), and j(τfin) in (d).
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Of particular interest are the cases in Figure 7 where the combined ratio κ(τ) at the
start and the end of the epidemic outburst have values below K ≤ 0.5, which corresponds
to infection rates being twice as large as the sum of the recovery and fatality rates. In this
case, the epidemic outburst, described by the SI-type cosh−2[(τ − τmax)/τ0]-distribution
for the rate of new infections shown in Figure 7d, is so dominated by the rapid infections
that at the finite reduced time τfin the outburst suddenly terminates as with S(τfin) = 0 (as
seen in Figure 7c) no more persons are available to be infected. The situation is comparable
to a smooth-running car where suddenly the car engine stops as no more fuel is available.
For values greater than K > 0.5, the epidemic outburst lasts infinitely long.

(a)
0 0.1 0.2 0.3 0.4 0.5

0

10

20

30

40

(b)
0 0.002 0.004 0.006 0.008 0.01
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5
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Figure 8. Final time τfin (103) for the case of K = κ(0) = κ∞ ̸= 0 (Section 4.3) for (a) different values
of η versus K, and (b) different values of K < 1/2 versus η.

Next, we consider the limits of Equations (102) and (103) for small values of η ≪ 1.

4.4. Limit for Very Small Values of I(0) = η ≪ 1

We use

tanh ρ(K) =
K0 − K − η

2√
(K − K0)2 + 2η(1 − η)− η

2

, (106a)

τ0(K) =
2√

(K − K0)2 + 2η(1 − η)− η
2

, (106b)

and Equation (103). For small values of η ≪ 1 we have to distinguish between the cases
(i) where |K − |K0| ≤

√
2η and (ii) where |K − K0| >

√
2η. We consider both cases in turn.

4.4.1. Case |K − K0| ≤
√

2η

Here, we approximate for small values of η ≪ 1√
(K − K0)2 + 2η(1 − η)− η

2
≃

√
2η(1 − η)

[
1 +

(K − K0)
2

2η(1 − η)

]
− η

2

≃
√

2η

[
1 +

(K − K0)
2

2η
−
√

η

8

]
. (107)

Consequently, we obtain

tanh ρ(K) ≃
[1 − 2η − K][1 − (K−K0)

2

2η ]√
2η

, (108a)

τ0(K) ≃
√

2
η

[
1 − (K − K0)

2

2η

]
, (108b)

τmax(K) ≃
√

2
η

[
1 − (K − K0)

2

2η

]
tanh−1 1 − 2η − K√

2η

=
1 − (K−K0)

2

2η√
2η

ln

√
2η + (1 − 2η − K)√
2η − (1 − 2η − K)

, (108c)
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whereas τfin = 0 as all K-values in this interval are greater than 0.5.

4.4.2. Case |K − K0| >
√

2η

Here, we approximate√
(K − K0)2 + 2η(1 − η)− η

2
≃ |K0 − K| − η

2
+

η(1 − η)

|K0 − K| , (109)

to obtain for Equations (106) and (103)

tanh ρ(K) ≃
K0 − K − η

2

|K − K0| − η
2 + η(1−η)

|K0−K|

, (110a)

τ0(K) ≃ 2

|K0 − K| − η
2 + η(1−η)

|K0−K|

, (110b)

τfin(K) ≃ 2

|K0 − K| − η
2 + η(1−η)

|K0−K|

tanh−1

 |K − K0| − η
2 + η(1−η)

|K0−K|
1 − K

. (110c)

4.4.3. Finite Time τfin(K)

As shown before, c.f. Equation (105), finite values of the finite time only occur for
values of K ≤ 0.5 < K0. Consequently, for small η ≪ 1 we approximate with K0 =
1 − (3/2)η

τfin(K) ≃ 2

K0 − K − η
2 + η(1−η)

K0−K

tanh−1[
K0 − K − η

2 + η(1−η)
K0−K

1 − K
]

=
2

1 − K − 2η + η(1−η)
K0−K

tanh−1[
1 − K − 2η + η(1−η)

K0−K

1 − K
]

≃ 2

1 − K − η[2(K0−K)−1]
K0−K

tanh−1[1 − η[2(K0 − K)− 1]
(K0 − K)(1 − K)

]

=
1

1 − K − η[2(K0−K)−1]
K0−K

ln[
2(K0 − K)(1 − K)− η[2(K0 − K)− 1]

η[2(K0 − K)− 1]
]

≃ 1
1 − K

ln
2(K0 − K)(1 − K)
η[2(K0 − K)− 1]

. (111)

Equation (111) only provides real values if the denominator of the ln-function is
positive, leading to the requirement

K < K0 −
1
2
=

1 − 3η

2
, (112)

which is consistent with the earlier limit (105) and the time (111) can be further approxi-
mated as

τfin(K) ≃
1

1 − K
ln

2(1 − K)2

η(1 − 2K)
; (113)

the function (113) monotonically decreases from its infinite large values above (1 − η)/2
with decreasing values of K in agreement with Figure 8.
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4.4.4. Values K < K0 −
√

2η

For values of K < K0 −
√

2η one obtains

tanh ρ(K) =
1

1 + η(1−η)

(K0−K)(K0−K− η
2 )

≃ 1 − η(1 − η)

(K0 − K)2 , (114a)

τ0(K) ≃ 2
K0 − K

[1 − η(2 + K − K0

2(K0 − K)2 ], (114b)

τmax(K) ≃ 1
K0 − K

ln
2(K0 − K)2

η
. (114c)

With

cosh2 ρ =
1

1 − tanh2 ρ
=

1

1 − [1 − η(1−η)
(K0−K)2 ]2

≃ (K0 − K)2

2η(1 − η)
(115)

Equation (102) becomes

κ(τ) ≃ 1 − η + (K0 − K) tanh(T − ρ)− 2η(1 − η)

(K0 − K)(coth T − tanh ρ)

− (K0 − K)2

2(1 − η) cosh2(T − ρ)[1 − 2η(1−η)
(K0−K)(coth T−tanh ρ)

]
, (116)

which correctly approaches

κ(τ = 0) = 1 − η − (K0 − K) tanh ρ − (K0 − K)2

2(1 − η) cosh2 ρ
≃ 1 − (K0 − K) = K. (117)

For values of (1 − 3η)/2 < K < K0 −
√

2η we find

κ(τ = ∞) = 1 − η + K0 − K − 2η(1 − η)

(K0 − K)[1 − tanh ρ]

≃ 1 + K0 − K − 2(K0 − K) = 1 − K0 + K = K, (118)

because for small η ≪ 1 one has K0 ≃ 1. The solution (118) holds for all times τ in the
range (1 − 3η)/2 ≤ K ≤ K0 = 1 − (3/2)η −

√
2η. For smaller values of K < (1 − 3η)/2

the solution (118) holds only at finite times τ < τfin(K) given in Equation (113).

4.4.5. Values K0 +
√

2η < K ≤ 2K0

For values of K0 +
√

2η < K ≤ 2K0 we obtain

τ0(K) ≃ 2
K − K0

, (119a)

tanh ρ(K) ≃ − 1

1 + η

K−K0+
η
2

1+K0−K−η
K−K0

≃ −
[

1 − η(1 + K0 − K)
(K − K0)2

]
, (119b)

τmax(K) ≃ − 1
K − K0

ln
2(K − K0)

2

η(1 + K0 − K)
(119c)

where the last step in Equation (119b) holds for values of K < 2 − (5η/2), which is justified
for all values of K > K0 as the maximum value 2K0 = 2 − 3η is smaller than 2 − (5η/2).
Consequently, one obtains in this case for

cosh2 ρ =
1

1 − tanh2 ρ
≃ (K − K0)

2

2η(1 + K0 − K − η)
, (120)
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so that

η(1 − η)τ0 cosh2 ρ ≃ (1 − η)(K − K0)

1 + K0 − K
. (121)

We note that for K > 1 − 2η the function ρ(K) = −r(K) in Equation (119b) is negative
with

r(K) = tanh−1 1

1 + η

K−K0+
η
2

1+K0−K−η
K−K0

≃ tanh−1
[

1 − η(1 + K0 − K)
(K − K0)2

]
, (122)

so that Equations (102) or (62) become

κ(τ) ≃ 2
τ0

tanh(T + r) + (1 − η)
[
1 − ητ0 cosh2 r(tanh(T + r)− tanh r)

]
− η cosh2 r

cosh2(T + r)[1 − ητ0 cosh2 r(tanh(T + r)− tanh r)]

≃ (K − K0) tanh(T + r) + (1 − η)

[
1 − K − K0

1 + K0 − K
(tanh(T + r)− tanh r)

]
− (K − K0)

2

2 cosh2(T + r)[1 + K0 − K − (K − K0)(tanh(T + r)− tanh r)]
. (123)

One notices from Figure 6 that r(K) ≫ 1 is very large compared to unity, so that Equation (123)
with tanh(T + r) ≃ tanh r ≃ 1 and cosh−2(T + r) ≃ 0 simplifies to the constant

κ(τ) ≃ K − K0 + 1 = K. (124)

4.5. SIRD Solution for κ(0) = 0

For κ(0) = 0 Equation (67) for y = 2/τ0 reduces to

y2 − (κ∞ − η)y = 1 − η − (1 − 2η)κ∞, (125)

with the two solutions

y1 =
1
2
[κ∞ − η +

√
(κ∞ − 2 + 3η)2 + 8η(1 − η)], (126a)

y2 =
1
2
[κ∞ − η −

√
(κ∞ − 2 + 3η)2 + 8η(1 − η)]. (126b)

We restrict our analysis to the interesting range of values of 0 < κ∞ < 2 − 3η (κ∞ = 0
was treated in Section 4.1 already) and investigate the limit of small η ≪ 1. We then
approximate √

(2 − 3η − κ∞)2 + 8η(1 − η) ≃ 2 − 3η − κ∞ +
4η(1 − η)

2 − κ∞ − 3η
, (127)

implying

y1 ≃ 1 − 2η
1 − κ∞

2 − κ∞
, (128a)

y2 = κ∞ − 1 − ηκ∞

2 − κ∞
. (128b)

Accordingly,

τ0,1 ≃ 2
1 − 2η 1−κ∞

2−κ∞

≃ 2[1 + 2η
1 − κ∞

2 − κ∞
], (129a)

τ0,2 ≃ 2
κ∞ − 1

[1 +
ηκ∞

(2 − κ∞)(κ∞ − 1)
]. (129b)
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As τ0 has to be positive, the solution (129b) can only be used for values of 1 < κ∞ < 2 − 3η.
For κ(0) = 0, Equation (64) reads τmax = τ0 tanh−1[(1 − 2η)τ0/2]. The two solutions

(129) then provide

τmax,1 ≃ 2[1 + 2η
1 − κ∞

2 − κ∞
] tanh−1[1 − 2η

2 − κ∞
]

≃ [1 + 2η
1 − κ∞

2 − κ∞
] ln

2 − κ∞ − η

η
≃ ln

2 − κ∞

η
, (130a)

τmax,2 =
2

κ∞ − 1
[1 +

ηκ∞

(2 − κ∞)(κ∞ − 1)
] tanh−1[

1 − 2η

κ∞ − 1
(1 +

ηκ∞

(2 − κ∞)(κ∞ − 1)
)]

≃ 2
κ∞ − 1

tanh−1 1
κ∞ − 1

. (130b)

The argument of the tanh−1 has to be in the interval (−1, 1). The requirement (κ∞ − 1)−1 > −1
is fulfilled for every positive κ∞ > 1. However, the requirement (κ∞ − 1)−1 < 1 is only
possible for values of κ∞ > 2 in contradiction to the earlier assumption κ∞ ≤ 2 − 3η.
Therefore, the second solution τmax,2 and τ0,2 cannot be used. The only possible solution in
this range of 0 < κ∞ ≤ 2 − 3η is

τ0(κ∞) = τ0,1(κ∞) ≃ 2[1 + 2η
1 − κ∞

2 − κ∞
], (131a)

τmax(κ∞) = τmax,1 = τ0(κ∞) tanh−1
[

1 − 2η

2
τ0(κ∞)

]
≃ ln

2 − κ∞

η
, (131b)

ρ(κ∞) = tanh−1
[

1 − 2η

2
τ0(κ∞)

]
= tanh−1

[
(1 − 2η)

(
1 + 2η

1 − κ∞

2 − κ∞

)]
. (131c)

Consequently, we obtain

tanh ρ(κ∞) = 1 − 2η

2 − κ∞
− 4η2 1 − κ∞

2 − κ∞
≃ 1 − 2η

2 − κ∞
, (132)

1 − tanh ρ(κ∞) ≃ 2η

2 − κ∞
, (133)

cosh2 ρ(κ∞) ≃ 1

1 − [1 − 2η
2−κ∞

]2
≃ 2 − κ∞

4η
. (134)

One then obtains for Equation (62) in this case

κ(τ) ≃ 2 tanh(T − ρ(κ∞))

τ0(κ∞)

+(1 − η)[1 − ητ0(κ∞) cosh2 ρ(κ∞)[tanh(T − ρ(κ∞)) + tanh ρ(κ∞)]]

− η cosh2 ρ(κ∞)

cosh2(T − ρ(κ∞))[1 − ητ0(κ∞)(tanh(T − ρ(κ∞)) + tanh ρ(κ∞))]
. (135)

Here, and in the following two equations, T and ρ stand for τ/τ0(κ∞) and ρ(κ∞) =
τmax(κ∞)/τ0(κ∞) with τ0(κ∞), τmax(κ∞), and ρ(κ∞) given by Equations (131). The tempo-
ral evolution of κ(τ) is shown in Figure 9 for various values of κ∞ ∈ [0, 2]. Equation (135)
correctly reproduces

κ(τ = 0) = 1 − 2η − 2 tanh ρ

τ0
= 1 − 2η − 2

1 − 2η

2
= 0, (136)

κ(τ = ∞) =
2

τ0(κ∞)
+ (1 − η)

[
1 − ητ0

1 − tanh ρ(κ∞)
)

]
≃ 2

τ0(κ∞)
+ (1 − η)[1 − 2 − κ∞

2
τ0(κ∞)] ≃ κ∞ (137)
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with τ0(κ∞) ≃ 2.

(a)
0 5 10 15 20

-1

0

1

2

3

(b)
0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

(c)
0 5 10 15 20

0

0.1

0.2

0.3

0.4

Figure 9. Analytic solution of the SIRD model for κ(0) = 0 and time-dependent κ(τ), parameterized
by κ∞. (a) κ(τ) according to Equation (135), (b) S(τ) given by Equation (37), and (c) j(τ) from
Equation (45), using τ0 and τmax from Equations (131a) and (131b). The curves in (b,c) are confirmed
by the numerical solution of the SIRD model. For κ∞ < K0 ≈ 1 and κ∞ > 2K0 ≈ 2, the analytic
solution is still correct, but only useful until the pandemic has terminated, as S(τ) becomes negative
(dashed lines within this regime) for τ > τfin (38). For the plot η = 10−5.

5. Approximate Analytical Solutions of the SIRVD Model

Recently, it has been demonstrated that an accurate analytical approximation to the
SIR and SIRV equations [8] exists if the cumulative fraction of new infections J(t) = J(τ) at
all times is much smaller than unity. For the COVID-19 outbreaks in many countries this
assumption is well fulfilled.

According to Equation (19) in [8] the approximation 1− J(τ) ≃ 1− J∞ in Equation (21)
provides the solution

V(τ) ≃ (1 − J∞)[1 − e−
∫ τ

0 dx b(x)], (138)

which approaches V∞ = V(∞) = 1 − J∞ after infinite time. With this result in the same
limit J ≤ J∞ ≪ 1 Equation (25) with the initial condition j(0) = η(1 − η) integrates

j(τ) ≃ η(1 − η) exp
∫ τ

0
dx
[
(1 − J∞)e−

∫ x
0 dy b(y) − k(x)− q(x)− b(x)

]
≃ η(1 − η) exp

∫ τ

0
dx
[
e−
∫ x

0 dy b(y) − k(x)− q(x)− b(x)
]
, (139)

where the last approximation holds due to the adopted smallness J∞ ≪ 1. But we keep the
J∞ in the solution (138) in order not to violate the restriction J(τ) + V(τ) ≤ J∞ + V∞ ≤ 1.
By integrating Equation (139), the corresponding cumulative fraction is given by

J(τ) ≃ η + η(1 − η)
∫ τ

0
dz exp

[∫ z

0
dx (e−

∫ x
0 dy b(y) − k(x)− q(x)− b(x))

]
. (140)

Likewise, Equations (15) and (17)–(19) provide the approximations

I(τ) ≃ j(τ)
1 − J∞ − V(τ)

=
η(1 − η)

1 − J∞
exp

∫ τ

0
dx
[
e−
∫ x

0 dy b(y) − k(x)− q(x)
]
= j(τ)e

∫ τ
0 dx b(x), (141)

R(τ) ≃
∫ τ

0
dx

k(x)j(x)
1 − J∞ − V(x)

=
η(1 − η)

1 − J∞

∫ τ

0
dz k(z) exp

∫ z

0
dx
[
e−
∫ x

0 dy b(y) − k(x)− q(x)
]
, (142)

D(τ) ≃
∫ τ

0
dx

q(x)j(x)
1 − J∞ − V(x)

=
η(1 − η)

1 − J∞

∫ τ

0
dz q(z) exp

∫ z

0
dx
[
e−
∫ x

0 dy b(y) − k(x)− q(x)
]
, (143)

and

d(τ) =
dD(τ)

dτ
= q(τ)I(τ) =

q(τ)j(τ)
1 − J∞ − V(τ)

≃ η(1 − η)

1 − J∞
q(τ) exp

∫ τ

0
dx
[
e−
∫ x

0 dy b(y) − k(x)− q(x)
]
. (144)
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5.1. Difference between the SIRVD Death Rate and the a Posteriori Death Rate

As it marks the difference of the death rate (144) in the SIRVD model to the a posteriori
death rate da−pos(τ) = q(t)j(τ) (35), we consider first the ratio

da−pos(τ)

d(τ)
=

j(τ)
I(τ)

= S(τ) ≃ 1 − J∞ − V(τ) = (1 − J∞)e−
∫ τ

0 dxb(x). (145)

For the SIRD model with negligible vaccinations (b(τ) = 0), the ratio (145) is inde-
pendent of reduced time and practically equals unity as J∞ ≪ 1. However, for the SIRVD
model including vaccinations the ratio (145) depends on time. The SIRVD death rate has a
flatter τ-dependence than the a posteriori death rate.

5.2. Conditions for Extrema

As before [8], it is straightforward to calculate the first and second time derivatives of
the approximative solution (139) as

dj
dτ

= η(1−η)
[
e−
∫ τ

0 dyb(y)−k(τ)−b(τ)−q(τ)
]
×

exp
∫ τ

0
dx
[
e−
∫ x

0 dy b(y)−k(x)−b(x)−q(x)
]
, (146a)

d2 j
dτ2 = η(1−η)

(
[e−

∫ τ
0 dyb(y)−k(τ)−b(τ)−q(τ)]2 − dk

dτ
− db

dτ
− dq

dτ
− b(τ)e−

∫ τ
0 dyb(y)

)
×

exp
∫ τ

0
dx
[
e−
∫ x

0 dy b(y) −k(x)−b(x)−q(x)
]
. (146b)

Consequently, extrema of the rate of new infections occur at reduced times τE determined by

k(τE) + b(τE) + q(τE) = e−
∫ τE

0 dy b(y) ≤ 1, (147)

where we indicate that the right-hand side of this Equation is smaller than or equal to unity.
Hence, no extrema of infections occur for a sum of variations

k(τ) + b(τ) + q(τE) > 1. (148)

In the alternative case of reduced time intervals, where

k(τ) + b(τ) + q(τE) < 1, (149)

extrema are possible. From Equation (146b) one obtains

[
d2 j
dτ2 ]τE = −η(1 − η)

(
[
dk
dτ

]τE + [
db
dτ

]τE +
dq
dτ

]τE + b2(τE) + b(τE)k(τE) + b(τE)q(τE)
)
×

exp
[∫ τE

0
dx
(

e−
∫ x

0 dy b(y) − k(x)− b(x)− q(x)
)]

, (150)

Hence, the extrema are maxima if

[
dk
dτ

]τE + [
db
dτ

]τE +
dq
dτ

]τE + b2(τE) + b(τE)k(τE) + b(τE)q(τE) > 0 (151)

is positive. They are minima if

[
dk
dτ

]τE + [
db
dτ

]τE +
dq
dτ

]τE + b2(τE) + b(τE)k(τE) + b(τE)q(τE) < 0 (152)
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is negative. There can be multiple minima and maxima depending on the reduced time
variation of the ratios k(τ) and b(τ). The extreme values of the rate of new infections are
given by

jE(τE) = η(1 − η)e
∫ τE

0 dx
[
e−
∫ x

0 dy b(y)− k(x)− b(x)−q(x)
]
. (153)

All results given in this Section for the SIRVD model include as special cases the
corresponding quantities in the SIRD model for b(τ) = 0 and the SIR model for b(τ) =
q(τ) = 0, respectively. The excellent agreement with the respective numerical solutions of
the SIR and SIRV models [8] has proven the validity of the analytical approximation using
the smallness of J(τ) ≪ 1.

6. SIRVD Model Applications

Next, we illustrate our results from the preceding section with two examples. While
Section 6.1 is concerned with the case of stationary ratios, in Section 6.3 we work out the
case of a gradually decreasing fatality rate.

6.1. Stationary Ratios

We first consider the approximative solutions (138) and (139) in the special case of
stationary ratios

k(τ) = k0,

b(τ) = b0,

q(τ) = q0 (154)

This case corresponds to the numerical solutions of the SIRVD model shown before in
Figure 2. If we introduce κ0 = k0 + b0 we may use the earlier results of [8] to obtain

V(τ) = (1 − J∞)[1 − e−b0τ ], (155)

and

j(τ) = η(1 − η) exp

[
1 − e−b0τ

b0
− (κ0 + b0)τ

]
. (156)

Provided κ0 + b0 = k0 + q0 + b0 < 1, the rate of new infections (156) attains its maximum
value

jmax = j(τm) = η(1 − η)(κ0 + b0)
κ0+b0

b0 e
1−(κ0+b0)

b0

= η(1 − η)(k0 + q0 + b0)
k0+q0+b0

b0 e
1−(k0+q0+b0)

b0 . (157)

at the reduced time

τm = − ln(k0 + q0 + b0)

b0
. (158)

For the cumulative fraction one finds

J(τ) = η + η(1 − η)b
κ0
b0
0 e

1
b0

[
γ

(
1 +

κ0

b0
,

1
b0

)
− γ

(
1 +

κ0

b0
,

e−b0τ

b0

)]

= η + η(1 − η)b
k0+q0

b0
0 e

1
b0

[
γ

(
1+

k0 + q0

b0
,

1
b0

)
− γ

(
1+

k0 + q0

b0
,

e−b0τ

b0

)]
(159)
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in terms of the lower incomplete gamma function γ. For infinitely large times, the fraction
(159) approaches the final value

J∞ = J(τ = ∞) = η + η(1 − η)b
k0+q0

b0
0 e

1
b0 γ

(
1 +

k0 + q0

b0
,

1
b0

)
. (160)

Likewise, the SIRVD death rate (144) in this case becomes

d(τ) =
dD(τ)

dτ
≃ η(1 − η)q0 exp

[
1 − e−b0τ

b0
− (k0 + q0)τ

]
= q0eb0τ j(τ)

= eb0τda−pos(τ). (161)

It differs from the a posteriori death rate by the factor eb0τ reflecting the ratio between I(τ)
and j(τ). The rate (161) peaks at the time

τd = − ln(k0 + q0)

b0
, (162)

which is greater than the peak time τm of the rate of new infections, since ln(x) is monoton-
ically increasing with increasing x. The maximum SIRVD death rate

dmax = q0η(1 − η)(k0 + q0)
k0+q0

b0 e
1−k0−q0

b0 =
e1

k0 + q0
[1 +

b0

k0 + q0
]
−[1+ k0+q0

b0
]da−pos

max (163)

is smaller than the maximum a posteriori death rate. The corresponding cumulative fraction
of fatalities is given by

D(τ) = q0η(1 − η)b
k0+q0−b0

b0
0 e

1
b0

[
γ

(
k0 + q0

b0
,

1
b0

)
− γ

(
k0 + q0

b0
,

e−b0τ

b0

)]
, (164)

with the final value

D∞ = D(τ = ∞) = q0η(1 − η)b
k0+q0−b0

b0
0 e

1
b0 γ

(
k0 + q0

b0
,

1
b0

)

=
q0η(1 − η)

k0 + q0

[
b

k0+q0
b0

0 e
1

b0 γ

(
1 +

k0 + q0

b0
,

1
b0

)
+ 1

]
. (165)

It has been shown before in Equation (57) of [8] that for small values of b0 ≪ 1 and
b0 < κ0 = k0 + q0 < 1 the cumulative fractions as well as their final values have to be
calculated with the leading order approximation for large values of z ≫ 1:

z−κ0zγ(1 + κ0z, z) ≃
√

2πκ0zκκ0z
0 e−κ0z − e−z. (166)

Applying this approximation to Equations (160) and (165) with z = b−1
0 provides

J∞ ≃ η(1 − η)

√2π(k0 + q0)

b0
e

1−(k0+q0)
b0 (k0 + q0)

k0+q0
b0 − 1

, (167a)

D∞ ≃ q0η(1 − η)

k0 + q0

√
2π(k0 + q0)

b0
e

1−(k0+q0)
b0 (k0 + q0)

k0+q0
b0 ≃ 1

k0 + q0
Da−pos

∞ . (167b)

We note that the ratio D∞/Da−pos
∞ does not depend on the value of b0.
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These differences are clearly seen in the panels of Figure 10. The SIR, SIRV and
SIRD curves, representing a posteriori death rates, have a significant different reduced
time dependence compared to the SIRVD curve. For b0 ≪ k0 + q0 < 1 one infers from
Equations (159) and (162),

τm

τd
= 1 +

ln(1 + b0
k0+q0

)

ln(k0 + q0)
≃ 1 +

b0

(k0 + q0) ln(k0 + q0)
< 1. (168)

For the values of k0 = 0.5, b0 = 0.1 and q0 = 0.1 shown in Figure 10a,b, the maximum
death rate is a factor 1.54 smaller than the maximum a posteriori death rate, the final
cumulative fraction of fatalities is a factor 1.67 larger than its a posteriori value, and the
death rate peaks at the later time τd = 5.1 as compared to the peak time τm = 3.6 of the
a posteriori death rate. For this example, the exact numerical ratio is τm/τd ≈ 0.69, to
be compared with ≈0.67 from the analytical expression (168). The performance of the
analytical solution j(τ) (156) of the SIRVD model over a wide range of its determining
parameters κ0 and b0 is analyzed in Figure 11.
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Figure 10. Analytical (solid colored) and numerical solutions (solid and dashed black) of the SIRVD
model at η = 10−5 and (a,b) k0 = 0.5, q0 = 0.1, b0 = 0.1, (c,d) k0 = 0.5, q0 = 0.2, b0 = 0.6,
(e,f) k0 = 0.5, q0 = 0.6, b0 = 0.01. (a,c,e) d(τ) as as well as da−pos(τ) according to Equation (161). The
bullets are located at (τd, dmax) (blue) and (τm, q0 jmax) (green), given by Equations (162), (163), (157)
and (158). (b,d,f) D(τ) as well as Da−pos(τ) = q0 J(τ), using Equations (159) and (164). The bullets
mark the final values D∞ (blue) and Da−pos

∞ (green) according to Equation (165); open bullets for the
approximant (167b).
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Figure 11. Performance of the analytic solution of the SIRVD model for η = 10−5 and constant
rates in κ0–b0 space. Shown is the mean percentage of deviation between the analytic j(τ) from
Equation (156), and the numerical solution. The plot looks nearly identical for all remaining differ-
ential and cumulative quantities, including d(τ) and D(τ) from Equations (161) and (164), for any
k0 (or q0). (a) shows the range κ0, b0 ∈ [0, 2], while (b) offers a zoom into the bottom left region
κ0 ∈ [0, 0.5] and b0 ∈ [0, 0.2] of pronounced relative deviations, while the absolute deviation is still
small, as visible from Figure 10e,f, where we show a case that resides in the yellow region.

6.2. Application to Measured COVID-19 Data

Here, we exemplify how to obtain all SIRVD model parameters from measured COVID-
19 data of a completed pandemic wave if all rates are considered time independent. Using
results from the foregoing section, we are going to demonstrate how to extract all parame-
ters analytically from a few characteristics contained in the reported data.

To this end, we collected data capturing the first pandemic COVID-19 wave for several
countries. Usually, only the cumulative number of newly infected persons, NJ(t), and the
cumulative number of deceased persons, ND(t), are reported, while the population size N
can be considered known. Sometimes, R(t) is reported as well, but is typically useless, as
not all recovered persons report their recovery, and R(t) is then simply estimated based
on J(t) and D(t). Note that the current fraction of infected population, I(t), as well as the
susceptible population fraction, S(t), are usually not measurable.

We thus rely on the reported J(t) and D(t) time series as a function of time t, as well
as their derivatives J̊ = dJ/dt and D̊ = dD/dt, starting at the time t = 0 of the outbreak,
which we define here to coincide with the day at which 10 persons have been infected so
far, NJ(0) = 10. The most robust quantities that can be obtained from such time series
are the final plateau values J∞ and D∞, when J̊ and D̊ approached zero or a value that is
very small compared with the peak values J̊max and D̊max of the measured rates. As proven
in Appendix D, the following procedure can be followed: (i) calculate the ratio G ∈ (0, 1)
defined in Equation (A41), i.e.,

G =
D̊max J∞

J̊maxD∞e
, (169)

(ii) If G > e−1, there is no set of positive rates b0 and κ0 that allow one to capture the data
subject to the inequality b0 + κ0 < 1, as explained in Appendix D. If, however, G ≤ e−1,
calculates a real-valued positive U > 1 with the help of the principal branch W0 of Lambert’s
W function,

U =
ln G

W0(G ln G)
(G ≤ e−1), (170)

where the choice of principal versus non-principal branch depends on the magnitude of G.
While Lambert’s W function is routinely available in engineering software, Figure 12 can
alternatively be used to look up U for given G, (iii) with U and the three measured ratios
td/tm, D∞/J∞, D̊max/ J̊max at hand, calculate

κ0 = U−td/(td−tm) (171)
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according to Equation (A41); note that U > 1 implies κ0 < 1, (iv) obtain the three dimen-
sionless SIRVD rates via Equation (A37), i.e.,

q0 = κ0
D∞

J∞
, k0 = κ0 − q0, b0 = κ

tm/td
0 − κ0. (172)

Finally, the dimensional rates, if needed, are given by Equations (10) and (158),

a0 = − ln(κ0 + b0)

tmb0
, µ0 = a0k0, v = a0b0, ψ = a0q0, (173)

since a0 = τm/tm. This procedure has been followed to create Table 1 for a few selected
countries, for which the assumptions b0 > 0, κ0 > 0, and κ0 + b0 < 1 underlying the
present treatment apply, using public available data [13]. With the parameters at hand, the
time-evolution not only of the reported, but also of the remaining compartments S, R, and
V is predicted by the SIRVD model.
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Figure 12. The nontrivial solution U(G) ̸= 1 solving U ln(UG) = ln G for G ∈ (0, 1) can be expressed
in terms of Lambert’s W function, c.f., Equation (170). Depending on the value for G, the principal
branch W0 (black) or non-principle branch W−1 (red) applies, as shown. The black-red crossover is at
G = e−1 ≈ 0.3679 and U = 1. The function U(G) is used to map characteristics of the measured data
to the SIRVD model parameters k0, q0, b0, and a0, or also its dimensional counterparts µ0, v0, and ψ0,
as described in Section 6.2. (a) linear-linear and (b) double-logarithmic show the same function U(G).

The outlined simple recipe must not produce the best possible fit to the measured
data by any measure, but it ensures that the three characteristic values are exactly re-
produced. Moreover, in an analogous fashion it is possible to use the analytic solution
to efficiently extract the SIRVD parameters from measured data well before peak times
have been reached, for example, using polynomial coefficients of the time series, ratios
between cumulative fractions at different times, etc. This allows to forecast the evolution of
all compartments.

6.3. Gradually Decreasing Fatality Rate

Here, we investigate the approximative solutions (138) and (139) in the special case of
stationary ratios k(τ) = k0, b(τ) = b0 but the gradually decreasing fatality rate

q(τ) = q0 − q1(1 − e−Gτ) (174)

with constants q0, q1 and G. The fatality rate (174) starts from the constant value q0 and
decreases with the typical time scale G−1 to its final constant value q1. Such a behavior
accounts well for the COVID-19 omicron which had a much smaller (about an order of
magnitude) fatality rate than the earlier mutants occurring about a year earlier. Such a slow
gradual decrease is well captured by the adopted fatality rate (174) in the case G ≪ b0 < 1,
allowing us the linear approximation
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q(τ ≤ G−1) ≃ q0 − q1Gτ, (175)

if necessary.

Table 1. Upper part of the table: Quantities extracted from reported COVID-19 data for various
countries (population size N). Time of outbreak defining t = 0 (day in 2020), cumulative infected
persons Nη at outbreak, peak times tm (infected) and td (deceased), corresponding peak amplitudes
J̊max and D̊max as well as final fractions J∞ and D∞ obtained from reported time series J(t) and
D(t) of the cumulative fraction of infected and deceased population. The differential counterparts,
dimensional rates J̊(t) = dJ(t)/dt = a0 j(τ) and D̊(t) = dD(t)/dt = a0d(τ) with τ = a0t can
be extracted directly from the data that is usually provided daily (dt equals one day). The lower
part of the table displays dimensionless ratios extracted from the upper part, the resulting three
dimensionless rates k0, q0, b0 along with the dimensional rate a0 of the SIRVD model. Results are
quite insensitive to the precise choice of the outbreak time. Additional COVID-19 data available
from [13].

Country N [106]
t = 0
[day] Nη tm [day] td [day] NJ̊max

[1/day]
ND̊max
[1/day]

J∞ [%] D∞ [%]

Austria 8.8 63 12 23 35 792 25.7 0.189 0.008
Switzerland 8.4 60 18 25 33 1020 58.2 0.368 0.021
Israel 8.6 62 12 29 39 683 7.2 0.195 0.003
Italy 60.6 52 20 35 39 5849 783.6 0.396 0.057

Country τd/τm dmax/jmax D∞/J∞ G U k0 q0 b0 a0 [1/day]

Austria 1.522 0.032 0.045 0.268 1.786 0.176 0.008 0.145 0.334
Switzerland 1.320 0.057 0.058 0.360 1.044 0.787 0.049 0.037 0.146
Israel 1.345 0.011 0.017 0.228 2.322 0.037 0.001 0.049 1.702
Italy 1.114 0.134 0.145 0.341 1.160 0.201 0.034 0.038 0.987

The vaccination rate (155) is independent from the fatality rate q(τ) and also applies
here, whereas with the rate (174) the rate of new infections (139) becomes

j(τ) ≃ η(1 − η)e−b0τ P(τ), (176)

where we made use of the abbreviation

P(τ) = exp

[
1 − e−b0τ

b0
− (k0 + q0 − q1)τ − q1

1 − e−Gτ

G

]
. (177)

Consequently, one finds for Equations (141)–(144)

I(τ) = j(τ)eb0τ ≃ η(1 − η)P(τ), (178a)

R(τ) ≃ k0 I(τ) = η(1 − η)k0P(τ), (178b)

d(τ) = [q0 − q1(1 − e−Gτ)]η(1 − η)P(τ), (178c)

and
D(τ) ≃ η(1 − η)

∫ τ

0
dz [q0 − q1(1 − e−Gz)]P(z), (179)

respectively, whereas the cumulative fraction of infections is given by

J(τ) ≃ η + η(1 − η)
∫ τ

0
dz e−b0zP(z). (180)

The analytical expressions are in excellent agreement with the numerical solutions of
the SIRVD model in the presence of time-dependent q(τ). In Figure 13, we show selected
results for j(τ) and d(τ), while all other quantities are equally well captured.
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6.3.1. Peak Times

For values of k0 + b0 + q0 < 1 the rate of new infections (176) peaks at the time given by

e−b0τm − q1e−Gτm = k0 + b0 + q0 − q1, (181)

whereas the death rate (178c) attains its maximum at τd determined by

[q0−q1(1 − e−Gτd)][e−b0τd − k0]− q1(G+2q0−2q1)e−Gτd − (q0−q1)
2 − q2

1e−2Gτd = 0. (182)
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Figure 13. SIRVD model at time-dependent q(τ) = q0 − q1(1− e−Gτ). Analytic d(τ) and j(τ) coincide
basically exactly with the numerical solution. Highlighted are the analytic position and height of the
maxima, (τm, jmax), Equations (185) and (192) and (τd, dmax), Equations (191) and (193). Parameters:
(a) k0 = 0.5, q0 = 0.1, b0 = 0.1, η = 10−5 and (b) k0 = 0.5, q0 = 0.2, b0 = 0.2, η = 10−5. In (a,b) the
three colors represent G = 0.5b0, q1 = 0.1q0 (blue), G = b0, q1 = 0.2q0 (red), G = 1.5b0, q1 = 0.5q0

(yellow).

Both Equations (181)–(182) are nonlinear and cannot be solved in closed form (this
is known from the works of Évariste Galois who died during a duel at the age of 20 in
1832. His important contribution, known as Galois theory, was recognized and published
14 years later by Joseph Liouville [14]). However, if we use, as in Equation (175), the
approximation e−Gτm.d ≃ 1 − Gτm,d Equations (181)–(182) can be approximated as

e−b0τm ≃ −q1Gτm + C0, C0 = k0 + b0 + q0, (183)

and
(q0 − q1Gτd)e−b0τd = q0(k0 + q0) + q1G − q1G(k0 + 2q0 + G)τd. (184)

This latter Equation (184), treated below, is of the form of Wright’s transcendental
equation. It is easy to see that Equations (176)–(184) in the limit q1 = 0 correctly reduce
to the earlier results in Section 6.1. The applicability of Equations (183) and (184) requires
G ≪ b0. Introducing the positive zm = b0τm and the positive combination am = b0C0/q1G
of parameters, the first Equation (183) reads e−zm = C0[1 − (zm/am)] and thus determines
zm in terms of am and C0. This latter equation is solved in terms of the non-principal
Lambert function W−1 (see Appendix G in [15]) as

zm = am + W−1

(
− e−1/am

amC0

)
, τm =

C0

q1G
+

1
b0

W−1

(
− b0e−b0C0/q1G

q1G

)
, (185)
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where we have just re-inserted zm and am in the second part of Equation (185).
As detailed in Appendix C, the solution of Equation (184) is more involved. As for the

calculation of τm, it is helpful to introduce a dimensionless time zd = b0τd, and to simplify
Equation (184) using an appropriate combination of the five semipositive parameters k0,
b0, q0, q1, G, and zd. As shown in Appendix C, it is possible to write Equation (184) in the
form of Wright’s transcendental equation,

e−X = 1 − 2b
b − a − X

, (186)

or equivalently
a = −X − b coth(X/2) (187)

upon introducing X, a, and b via

X = zd + ln C1, C1 = k0 + 2q0 + G,

a = b − b0q0

q1G
− ln C1,

b =
q0 + (1 − q1/q0)G

2C1

b0q0

q1G
, (188)

Since q1 < q0, to ensure positive q(τ), one has b > 0. Further, a < 0 since G ≪ b0.
For positive values of b and negative values of a, no solutions to Equation (187) with
negative X are possible. This is most easily seen by rewriting this equation as a + X =
b coth(X/2). For negative X, the right-hand side is negative, while the left-hand side is
positive. Equation (187) hence implies X > 0, and zd > 0 implies X > ln C1. Equation (186)
is equivalent to Wright’s transcendental equation and known [16] to exhibit real-valued
solutions X only for a limited range of a and b values. Using the x-parametric form of the
envelope a = −x − sinh(x) and b = −1 + cosh(x) [16] we derive the condition

a ≤ −
√

b
√

2 + b − cosh−1(1 + b) ≡ amax ≤ 0 (189)

for the existence of a τd value. The amax monotonically decreases with increasing b, starting
from amax = 0 and b = 0.

In Appendix C, we obtain the following approximations for the exact solution of
Equation (187):

X0 ≃ b − a
2

[
1 −

√
1 − 8b

(b − a)2

]
≃ 2b

b − a
, (X ∈ [0, 1]) (190a)

X1 ≃ −3a +
√

9a2 − 12b(6 + b)
6 + b

(X ∈ [0, 2], a < −2
√

b(6 + b)√
3

, (190b)

X2 ≃ a2 − b2

2b
+ W−1

(
− (a − b)2e−(a2−b2)/2b

2b

)
, (X < b − a) (190c)

Note that X0 approaches unity for a = amax and b → ∞, while X2 → ∞ behaves
correctly in this limit. As detailed in Appendix C, X0 ist most precise for sufficiently small
a well below amax, X1 performs extremely well (Figure 14) over the whole a-b range except
very close to a = amax and large b, while X2 has advantages only in the regime where X1
fails. To summarize, τd exists as long as a < amax, and is then well approximated by

τd ≃ X1 − ln(k0 + 2q0 + G)

b0
(191)

with a and b expressed in terms of k0, b0, q0, q1, and G via Equation (188). In Figure 13, we
mark the analytical τm and τd for a few cases. As visible, they capture the peak times of the
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analytical solutions for j(τ) (176) and d(τ) (178c), which moreover are indistinguishable
from the numerical solution. Since it is impossible to visualize the performance of the
numerical versus analytical results for the case of time-dependent q(τ), characterized by 6
parameters k0, b0, q0, q1, G, and η, we have randomly chosen sets of parameters with k0, q0,
b0 ∈ [0, 1], q0 ∈ [0, q1], G ∈ [0, b0], and η ∈ [10−7, 10−3]. The comparison is undertaken in
Figure 15.
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Figure 14. (a) The exact solution X to Equation (186) or (187) versus amax/a and b/(b + 1) with
the negative amax defined by Equation (189). (b) Approximant X1 given by Equation (190b). It is
undefined in the small white region in the top right corner, characterized by a < −2

√
b(6 + b)/3.

Two contourlines are highlighted in each panel: X = 1 (dashed black) and X = 2 (solid black). For
the remaining approximants X0 and X2 see Figure A1 in Appendix C.
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Figure 15. Since it is impossible to visualize the performance of the numerical versus analytical results
for the case of time-dependent q(τ), characterized by 6 parameters k0, b0, q0, q1, G, and η, we have
randomly chosen sets of parameters with k0, q0, b0 ∈ [0, 1], q0 ∈ [0, q1], G ∈ [0, b0], and η ∈ [10−7, 10−3].
The number of sets is (a) 100 and (b) 5000. In (a) we visualize the performance of analytical versus
numerical results for τm (185) and τd (191), while (b) shows τd versus τm, both numerical valus (red
circles) and analytical expressions (black squares). The numerical results suggest τd ≥ τm, while this is
not reflected by 1.5% of the analytical results.

6.3.2. Maximum Rate of New Infections and Death Rate

With the peak times (185) and (191) inserted in Equations (176) and (178c), respectively,
the maximum rates of the new infections and the maximum death rates are given by
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jmax = η(1 − η)e
1−k0−b0−q0+q1

b0
− q1

G exp
[

q1(b0 − G)

b0G
e−Gτm − (k0 + b0 + q0 − q1)τm

]
≃ η(1 − η)e

1−k0−b0−q0+q1
b0

− q1
G exp

[ q1(b0 − G)

b0G
e−

k0+b0+q0
q1

− G
b0

W−1(−
b0e−b0(k0+b0+q0)/q1G

q1G )

−(k0 + b0 + q0 − q1)[
k0 + b0 + q0

q1
+

1
b0

W−1(−
b0e−b0(k0+b0+q0)/q1G

q1G
)]
]
, (192)

where we made use of the determining Equation (181), and

dmax = [q0 − q1(1 − e−Gτd)]η(1 − η)e
1

b0
− q1

G exp
[
− e−b0τd

b0
− (k0 + q0 − q1)τd +

q1e−Gτd

G

]
= [q0 − q1(1 − (k0 + 2q0 + G)

G
b0 e−

GX1
b0 )]η(1 − η)e

1
b0
− q1

G exp
[
− (k0 + 2q0 + G)e−X1

b0

− k0 + q0 − q1

b0
(X1 − ln(k0 + 2q0 + G) +

q1

G
(k0 + 2q0 + G)

G
b0 e−

GX1
b0

]
. (193)

6.3.3. Death Rates

In Figure 16, we compare the death rate (178c) and the a posteriori death rate (35)

da−pos(τ) = [q0 − q1(1 − e−Gτ)]j(τ), (194)

with j(τ) from Equation (176) for six different choices of parameters. In each case, the
analytical death rates agree very well with the corresponding numerical solutions of the
SIRVD model proving the accuracy of the analytical approximation.
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Figure 16. Comparison between death rate d(τ) (solid line), Equation (178c), and a posteriori death
rate da−pos(τ) (dotted-dashed), Equation (194), for the SIRVD model with gradually decreasing q(τ).
In (a,b) the following six cases are shown: (A) q0 = 0.1, b0 = 0.1, q1 = 0.1q0, G = 0.1b0, (B) q0 = 0.2,
b0 = 0.6, q1 = 0.5q0, G = 0.1b0, (C) q0 = 0.6, b0 = 0.01, q1 = 0.5q0, G = 0.1b0, (D,E,F) same q0 and b0

as in (A) but different q1 and G: (D) q1 = 0.1q0, G = 0.1b0, (E) q1 = 0.5q0, G = 0.1b0, (F) q1 = 0.5q0,
G = 0.5b0. In each case, k0 = 0.5 and η = 10−5. The analytic results coincide with the numerical
results within < 1% relative deviation.

We observe earlier peak times for the a posteriori death rates, following the rate j(τ)
of newly infected individuals, compared with the SIRVD death rate d(τ), following I(τ).
Additionally, the SIRVD death rates are significantly larger compared with those obtained
through the a posteriori treatment, with direct implications for the corresponding D∞
values. Our predictions for these differences are suitable for being corroborated with past
monitored pandemic data on the rate of new infections and the death rates of sufficient
quality with negligible underestimation, i.e., negligible dark numbers.

7. Summary and Conclusions

We have investigated a special class of exact solutions as well as accurate analytical
approximations of the SIRVD and SIRD compartment models. For nonlinear models with a
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high-dimensional parameter, space analytical solutions, exact or accurately approximative,
are of high importance and interest: not only as suitable benchmarks for numerical codes,
but especially as they allow us to understand the critical behavior of epidemic outbursts as
well as the decisive role of certain parameters [17]. For given reduced time variations of the
ratios k(τ), q(τ), and b(τ), the SIRVD and SIRD equations represent complicated integro-
differential equations for the rate of new infections j(τ) as well as the cumulative fraction
of infections J(τ), or S(τ) and I(τ). However, the integro-differential equations can also
be regarded as simpler determining equations for the sum of ratios k(τ) + q(τ) = κ(τ) for
given variations of the ratio b(τ) and the fraction S(τ). This new approach has been used
to derive fully exact analytical solutions for the SIRVD and SIRD models. Especially for
the SIRD model it is an effective new method to construct a special class of exact solutions
depending on two parameters which are chosen as the values of the ratio κ(τ) at the start
(κ(τ = 0)) and the end (κ(τ = ∞) of the epidemic outburst. The new method for the SIRD
case is illustrated in Section 4 for three different choices of the two parameters including a
detailed investigation of the properties of the constructed solutions. Of particular interest
are the cases where the combined ratio κ(τ) at the start and the end of the epidemic outburst
have the same value below K ≤ 0.5 which corresponds to infection rates being twice as
large as the sum of the recovery and fatality rate. In this case, the epidemic outburst,
described by the SI-type cosh−2[(τ − τmax)/τ0]-distribution for the rate of new infections,
is so dominated by the rapid infections that at the finite reduced time τfin the outburst
suddenly terminates, as with S(τfin) = 0 no more persons are available to be infected. The
situation is comparable to a smooth-running car where suddenly the car engine stops as no
more fuel is available. For values greater than K > 0.5, the epidemic outburst lasts until
infinitely large times.

In the second part of the manuscript, the recently developed analytical approximation [8]
for the SIR and SIRV models are applied to the more general SIRVD model. In the limit of
small cumulative fractions J ≪ 1, which very often is fulfilled, this approximation provides
accurate analytical expressions for all epidemic quantities of interest such as the rate of
new infections J̊(t) and the fraction I(t) of infected persons. One of the referees has kindly
informed us that our analytical approach is related to the Perov’s fixed point theorem [18].
As an aside, when determining τd in Appendix C we provided accurate approximative
solutions to Wright’s transcendental Equation (A16), or equivalently, Equation (186). The
main difference of the SIRVD to the SIRV model is the discrimination between recovered and
deceased persons by introducing two different compartments which affects the calculation
of the death rate. In the SIRVD/SIRD cases it is proportional to I(t), whereas in many SIR
models in an a posteriori approach it is proportional to J̊(t). It is shown that the temporal
dependence of I(t) and J̊(t) are different when the effect of vaccinations is included and/or
when the real-time dependence of the fatality rate ψ(t) and the recovery rate µ(t) are
different from each other. We illustrate these pronounced differences with two applications:
one for stationary ratios k0, b0 and q0, and one for stationary ratios k0, b0 but a gradually
decreasing fatality rate. In our analysis, we observe earlier peak-times for the rate of
newly infected individuals compared with death rates. Additionally, our findings indicate
significantly smaller death rates compared with those obtained through the a posteriori
treatment. We are hopeful that these differences can be corroborated with past monitored
pandemic data on the rate of new infections and the death rates of sufficient quality, with
negligible underestimation. We did not account for the widely acknowledged 7-day delay
between the onset of infection and the resulting death. This delay impacts both the death
rate in our SIRVD model and the subsequent a posteriori death rate analysis in a consistent
manner. As a result, the derived difference in peak times remains unchanged. The case
of stationary ratios allows one to construct a new powerful diagnostics method to extract
analytically all SIRVD model parameters from measured COVID-19 data of a completed
pandemic wave. The new diagnostics method is applied to the monitored COVID-19 data
in four countries. Potential future work on this subject should include (1) incorporating
in the SIRVD model spatially heterogeneous situations by adding spatial diffusion, (2) a



Mathematics 2024, 12, 941 39 of 45

detailed testing of the predictions with suitable data from past COVID-19 waves also for
time-dependent ratios k(τ), q(τ), and b(τ), and (3) the derivations of accurate mathematical
approximation for more complicated time variations of the ratios k(τ), q(τ) and b(τ).

Author Contributions: Conceptualization, R.S.; methodology, R.S. and M.K.; formal analysis, M.K.
and R.S.; writing—original draft, R.S.; writing—review and editing, M.K.; visualization, M.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All data are enclosed with this publication.

Acknowledgments: We acknowledge support by chatgpt in rephrasing the abstract, and removing
all mathematical symbols from our version.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. SI Model

In the case of vanishing k(τ) = q(τ) = b(τ) = 0 the SIRVD Equations (11a)–(11f)
reduce to

dS
dτ

= −SI, (A1a)

dI
dτ

= SI, (A1b)

1 = S(τ) + I(τ), (A1c)

subject to initial conditions I(0) = η = 1 − S(0). Equation (A1b) provides S = d ln I/dτ,
so that the sum constraint (A1c) reads

dI(τ)
dτ

= I(τ)− I2(τ); (A2)

Equation (A2) leads to the integral

τ =
∫ I

η

dz
z − z2 =

∫ 1
η

1
I

dy
y − 1

= ln
1
η − 1
1
I − 1

, (A3)

where we substituted z = 1/y. Equation (A3) provides

I(τ) =
1

1 + 1−η
η e−τ

(A4a)

S(τ) = 1 − I(τ) =
1

1 + η
1−η eτ

. (A4b)

The rate of new infections is then given by

j(τ) = S(τ)I(τ) =
1

2 + η
1−η eτ + 1−η

η e−τ

=
1

2[1 + cosh(τ − ln 1−η
η )]

=
1

4 cosh2[
τ−ln 1−η

η

2 ]

, (A5)

to which we refer as the SI-type new infection rate in the main text.

Appendix B. Integro-Differential Equation for the SIRD Model

Here, we consider the case of no vaccinations, i.e., v = b = 0 and V(τ) = 0. In
some aspects, the resulting SIRD-model is simpler than the SIRVD-model, e.g., here the
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simpler relation J(τ) = 1 − S(τ) holds. This facilitates the general integro-differential
Equations (26)–(30) derived for the more general SIRVD model. Here, Equation (25)
reduces to

κ(τ) = 1 − J(τ)− d
dτ

ln
[

j(τ)
1 − J(τ)

]
, (A6)

where
κ(τ) = k(τ) + q(τ). (A7)

With the initial conditions Equation (A6) integrates to

j(τ)
1 − J(τ)

= − d
dτ

ln(1 − J(τ)) = η exp
∫ τ

0
dz [1 − J(z)− κ(z)], (A8)

or alternatively

j(τ) = ηe−
∫ τ

0 dz κ(z) d
dτ

eτ−
∫ τ

0 dz J(z) = η[1 − J(τ)]e
∫ τ

0 dz [1−κ(z)−J(z)]. (A9)

In terms of S(τ) = 1 − J(τ), in this case Equation (A8) reads

d ln S(τ)
dτ

=
dS(τ)/dτ

S(τ)
= −η exp

∫ τ

0
dz [S(z)− κ(z)], (A10)

which with the initial condition S(τ = 0) = 1 − η integrates to

S(τ) = (1 − η) exp
[
−η

∫ τ

0
dx exp

(∫ x

0
dz [S(z)− κ(z)]

)]
. (A11)

By writing S = eln S the last equation provides

ln
S

1 − η
= −

∫ τ

0
dx H(x)e

∫ x
0 dz S(z), (A12)

with the function H(x) = eln η−
∫ x

0 dzκ(z). Equation (A11) is equivalent to

J(τ) = 1 − (1 − η) exp
[
−η

∫ τ

0
dx exp

(∫ x

0
dz [1 − J(z)− κ(z)]

)]
, (A13)

whereas Equation (A10) can be written as

e
∫ τ

0 dzκ(z) dS
dτ

= −η
d

dτ
e
∫ τ

0 dzS(z). (A14)

Equation (A9) yields for Equations (15) and (17)–(19) in the SIRD case

I(τ) =
j(τ)

1 − J(τ)
= ηe

∫ τ
0 dz [1−κ(z)−J(z)], (A15a)

R(τ) = η
∫ τ

0
dx k(x)e

∫ x
0 dz [1−κ(z)−J(z)], (A15b)

D(τ) = η
∫ τ

0
dx q(x)e

∫ x
0 dz [1−κ(z)−J(z)], (A15c)

d(τ) =
dD(τ)

dτ
= q(τ)I(τ) = ηq(τ)e

∫ τ
0 dz [1−κ(z)−J(z)], (A15d)

respectively. Equations (A8)–(A10) represent the exact solutions for the SIRD and SIR
equations for κ = k(τ) + q(τ) = ktot. The only difference between these two occurs for the
calculation of the fractions of recovered and removed persons. The integral Equation (A12)
cannot be solved analytically for S(τ) in general, but for η ≪ 1 we show in Section 4 that
an analytic solution exists within a range of ktot values.
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Appendix C. Solution of Wright’s Transcendental Equation

With z = −b0τd Equation (184) is equivalent with Wright’s [16] transcendental equation

(q + pz)ez = rz + s, (A16)

with q = q0 > 0, p = q1G/b0 > 0, r = q1G[k0 + 2q0 + G]/b0 > 0 and s = q0(k0 +
q0) + q1G > 0 and we follow Wright’s arguments, while he focused on the roots of
Equation (A16). Because pr ̸= 0 we substitute

z = Z − ln(p/r) = Z + ln(k0 + 2q0 + G), (A17)

providing for Equation (A16)

(Z − a + b)eZ = Z − a − b (A18)

with the real-valued constants

a = −1
2

(
s
r
+

q
p

)
+ ln

( p
r

)
= − ln(k0 + 2q0 + G)− b0q0

q1G
+ b, (A19a)

b = −1
2

(
s
r
− q

p

)
=

b0q0

q1G
q0 + (1 − q1/q0)G

2(k0 + 2q0 + G)
. (A19b)

This confirms Equation (188). Note that for a = b = 0 the Equation (A18) is solved by
Z = 0. To arrive at Equations (A16) and (A19a) we assumed Gτd ≪ 1. While b > 0, for
sufficiently small G/b0 the a is negative, more precisely, as soon as

G
b0

< − q0

q1

1 − q0/[2(k0 + 2q0 + G)]

ln(k0 + 2q0 + G)
. (A20)

Because a can be assumed negative, we introduce the positively valued

A = b − a =
q
p
− ln

( p
r

)
= ln(k0 + 2q0 + G) +

b0q0

q1G
, (A21)

so that a = −(A − b). Equation (A18) then becomes

eZ = 1 − 2b
Z + A

. (A22)

It is evident that Equation (A22) has no solutions for positive values of Z > 0, as its
left-hand side is always larger than unity in that case while the right-hand side is smaller
than unity. For negative values of Z = −X with X > 0 Equation (A22) reads

e−X = 1 − 2b
A − X

, (A23)

and the substitution X = Ay in Equation (A23) yields

e−Ay = 1 − 2b
A(1 − y)

, (A24)

which only has solutions for y < 1 because b is positive. Equation (A24) will be used below
to derive approximants X0 and X1, while approximant X2 considers Equation (A18) as the
starting point. In deriving the approximants it will turn out important to recall that a fulfills
the inequality a < amax ≤ 0 with amax given by Equation (189). An important limiting
feature is limb→0 amax = 0. Next, we present the derivations for X0, X1, and X2 used in the
main text.
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X0: Expanding e−Ay ≃ 1 − Ay, which requires y ≤ A−1 (or X ≤ 1) we obtain from
Equation (A24)

y(y − 1) ≃ − 2b
A2 , (A25)

with the two solutions

y1 =
1 −

√
1 − 8b/A2

2
≃ 2b

A2 , (A26a)

y2 =
1 +

√
1 − 8b/A2

2
≃ 1 − 2b

A2 . (A26b)

Because 2b/A2 ≪ 1, since

2b
A2 ≤ 2b

(b − amax)2 ≤ lim
b→0

2b
(b − amax)2 = lim

b→0

(
1
4
−

√
b

4
√

2

)
=

1
4

, (A27)

only the solution y1 fulfils the requirement y1 ≤ A−1, corresponding to (2b/A) ≤ 1
which is a valid inequality, as

2b
A

=
2b

b − a
≤ 2b

b − amax
=

2b

b +
√

b(2 + b) + cosh−1(1 + b)
≤ 1. (A28)

The inequality (A27) therefore also implies that the argument under the square root
is positive, 1 − 8b/A2 > 0. With X0 = Ay1 < 1 and A = b − a, this completes the
derivation of X0 in Equation (190a).

X2: Because y < 1, here we assume y ≪ 1 and use the approximation (1 − y)−1 ≃ 1 + y
in Equation (A24) to obtain

e−Ay ≃ −2b
A

(
y + 1 − A

2b

)
, (A29)

with the solution

y =
A
2b

− 1 +
1
A

W−1

(
− A2

2beA( A
2b −1)

)
, (A30)

where W−1 is the non-principal branch of Lambert’s W function. For a < amax
stated in Equation (189), the argument of the Lambert function is negative, de-
creases with increasing b, and resides within the interval [−1/e, 0] so that W−1 is
real-valued and W−1 < −1 holds. The principal branch W0 of Lambert’s function
solves Equation (A29) as well, but can be ruled out by considering the limit b → 0
and a → amax. In this limit the argument of Lambert’s function evaluates, with
A = b − a, to

lim
b→0

− (b − amax)2

2be(b−amax)(
(b−amax)

2b −1)
= − 4

e4 . (A31)

On the other hand,

lim
b→0

(b − amax)2

2b
− b + amax = 4. (A32)

For the argument stated in Equation (A31), Lambert’s functions evaluate to W0(−4/e4) ≈
−0.079 and W−1(−4/e4) = −4, respectively. Since we know that X = Ay = 0 solves
Equation (A23) in the same limit, the principal branch W0 can be ruled out. With X2 =
Ay ≪ A this completes the derivation of X2 in Equation (190c).

X1: Equation (A18), technically divided by eZ − 1, can also be written as

a = Z + b coth
(

Z
2

)
. (A33)
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Here, we depart from Wright’s arguments and solve Equation (A33) with asymptotic
expansions of the coth-function. For values of |Z| ≤ 2 we approximate coth(Z/2) ≃
2/Z[1+ (Z2/12)], so that in this range Equation (A33) reduces to the quadratic(

1 +
b
6

)
Z2 − aZ + 2b = 0, (A34)

with the two solutions

Z± =
3a ±

√
9a2 − 12b(6 + b)

6 + b
. (A35)

The term under the square root is not strictly semipositive for any a < amax, but Z±
is real-valued for a < −2

√
b(6 + b)/3, which is only slightly below amax; for b < 10

it is only 3% below amax, giving rise to the tiny white region in top right corner of
Figure A1. For this reason the question about the suitable sign in Equation (A35)
cannot be answered by considering the limit b → 0 and a → amax, as before. Instead,
consider the following: Inserting a = Z + χ sinh(Z) and b = χ[cosh(Z)− 1] solves
Equation (A33) for any choice of χ , i.e., one can write

a = Z −
√

b(b + 2χ), Z = − cosh−1
(

b + χ

χ

)
, (A36)

for positive χ. Using χ = 1 we had derived amax. Using χ = 0 in Equation (A36)
yields b = 0 and a = Z, while the second relation in Equation (A36) in this limit is just
the identity Z = Z. Inserting this special case of a = Z and b = 0 into Equation (A35)
yields Z± = (Z ± Z)/2. As we expect to find Z± = Z, the suitable solution is Z+.
With X1 = −Z+ < 2 this completes the derivation of X1 in Equation (190b).
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Figure A1. Top row from left to right: The exact solution X to Equation (186) or (187) versus amax/a
and b/(b + 1) with the negative amax defined by Equation (189), approximants X0,a, X0,b, X1, and X2

given by Equation (190). For any X and b, the exact solution corresponds to a = −X − b coth(X/2)
according to Equation (187). Two contourlines are highlighted in each panel, if they exist: X = 1
(dashed black) and X = 2 (solid black). In the X1 panel, the X1 is undefined in the small white region
in the top right corner, defined by a < −2

√
b(6 + b)/3. In the X2 panel, the X2 cannot be evaluated

numerically in the yellow region which is characterized by X > 1 and a > amax/2. Bottom row from
left to right: The relative deviation ∆X between approximants X0,a, X0,b, X1 and X2 and the exact
numerical solution X, again versus amax/a and b/(b + 1). The color scale ranges from blue (relative
deviation below 1%, to yellow (relative deviation above 10%). Approximant X1 performs very well
except in the tiny top right corner (large b, a close to amax), where X2 has some advantage.

Appendix D. Recipe for Stationary Rates

In Section 6.2, we showed how to extract all SIRVD model parameters from reported
data. Here, we derive the required relationships. For stationary infection rates a(t) = a0
the reduced time is defined by τ = a0t as we have adopted without loss of generality t = 0



Mathematics 2024, 12, 941 44 of 45

as the start of the pandemic wave; in other words, tm and td are peak times with respect to
the day of the outbreak. Equation (168) then provides

b0 = κ
tm/td
0 − κ0 (A37)

which is positive for td > tm. We also use the approximation J∞/D∞ ≃ κ0/q0 (167b) so that

q0 ≃ κ0
D∞

J∞
. (A38)

So far we have expressed b0 and q0 in terms of measurable ratios and κ0. Equations
(157) and (163) provide for a third measurable ratio

J̊max

D̊max
=

κ0

q0e

(
1 +

b0

κ0

)1+ κ0
b0

=
J∞

D∞e

(
1 +

b0

κ0

)1+ κ0
b0

, (A39)

where we inserted Equation (A38). Inserting Equation (A37) then converts Equation (A39)
into a closed nonlinear equation determining κ0,

GU
U

U−1 = 1, (A40)

where we introduced the quantities

U = κ
tm
td
−1

0 , G =
D̊max J∞

J̊maxD∞e
. (A41)

Taking the logarithm of Equation (A40) leads to

ln G +
U

U − 1
ln U = 0; (A42)

for U ̸= 1 we multiply (A42) with U − 1 to obtain

(U − 1) ln G + U ln U = 0, (A43)

or
U[ln U + ln G] = ln G. (A44)

Setting

F = UG =
D̊max J∞

J̊maxD∞e
κ

tm
td
−1

0 (A45)

one can cast Equation (A44) into the form

F ln F = G ln G. (A46)

The trivial solution F = G, corresponding to U = 1, is excluded as we adopted U ̸= 1
above. The remaining useful solution of Equation (A46) is

F =
G ln G

W(G ln G)
(A47)

in terms of the Lambert’s W function. In light of the following basic features of the principal
(W0) and non-principal (W−1) branches of the W function [19],

W0(G ln G) = ln G, G ≥ e−1,

W−1(G ln G) = ln G, G ≤ e−1, (A48)
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that absorb the mentioned trivial solution, the relevant nontrivial solution is given by the
remaining (opposite) regimes: W0 for large, and W−1 for small G. Recalling F = UG, the
solution of Equation (A40) is therefore given by Equation (170) stated in the main text.
There, we only mention the solution for U involving W0, because U = 1 + b0/κ0 > 1 for
positive rates b0 and κ0, which in turn implies G ≥ e−1, as shown by Figure 12.
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