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Abstract: In the present study, we consider continuous-time modeling of dynamics using observed
data and formulate the modeling error caused by the discretization method used in the process. In the
formulation, a class of linearized dynamics called Dahlquist’s test equations is used as representative
of the target dynamics, and the characteristics of each discretization method for various dynamics are
taken into account. The family of explicit Runge–Kutta methods is analyzed as a specific discretization
method using the proposed framework. As a result, equations for predicting the modeling error
are derived, and it is found that there can be multiple possible models obtained when using these
methods. Several learning experiments using a simple neural network exhibited consistent results
with theoretical predictions, including the nonuniqueness of the resulting model.

Keywords: Runge–Kutta method; ODE modeling; dynamics learning; modeling error analysis;
stability analysis; Dahlquist’s test equation
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1. Introduction

In the present study, we propose an analytical framework for modeling errors in
modeling dynamics using discretization methods based on a linearization of the target
dynamics. We also analyze the explicit Runge–Kutta methods in particular as the discretiza-
tion method and show that the modeling results may not be uniquely determined when
using these methods. (This paper is a revision of the preprint titled “An Error Analysis
Framework for Neural Network Modeling of Dynamical Systems”, first available on 8
December 2021 at arXiv).

Assuming that the dynamics to be modeled are represented by a system of unknown
ordinary differential equations (ODEs) of the form

ẋ(t) = f (x), (1)

we consider the modeling errors that arise in the modeling. In fact, dynamics in various
fields are represented in this form, such as equations of motion in mechanics, state variable
models in control, and models of chemical reactions of materials [1,2]. An important
problem in modeling such dynamics is to obtain a continuous-time model:

ẋ(t) = f̂ (x), (2)

where f̂ is constructed by some function approximation method such as neural network,
Gaussian process, etc., from a sequence of observed data for a variable vector x of the
system [3,4]. (The class to which f̂ belongs varies depending on each specific target
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dynamics and approximation method, but here, we assume that the method has the
universal approximation property [5] for the class of f̂ ). If the time derivative ẋ of the
variables of the system at each time in addition to x can be observed, then the determination
of f̂ can be attributed to a regression problem [6], but there are situations in which such
data are not available.

Therefore, as a method to construct the continuous model shown in Equation (2)
without using the derivative values of the system variable, the numerical solution of the
continuous model ẋ(t) = f̂ is computed, and then the model is indirectly optimized so that
the numerical solution is as close as possible to the observed data [3,7–24]. The modeling
procedure is briefly shown in Figure 1.

Figure 1. An overview diagram of the modeling procedure. Model parameters are denoted by θ. The
inputs of the loss function L are simplified for illustration.

Such a modeling approach can be said to use the discretization method in the opposite
direction from the way it is normally used. Usually, when using and evaluating discretiza-
tion methods, we consider the problem of finding an unknown discrete solution from a
given ODE (we call this forward computation). On the other hand, when the discretization
method is used in the modeling approach where the numerical solutions are compared with
the observed data, the relationship between the ODE and the solution is reversed because
the solution of the target system is given as observed data, and the ODE that defines the
original unknown system is then approximated. Such an inverse relationship has not been
considered in the usual numerical analysis [25–27]. In the present study, we propose a new
evaluation framework of discretization methods for such inverse applications.

One of the early studies that proposed this type of continuous-time modeling approach
was that of Rico-Martinez et al. in 1993 [12]. The possibility of combining the learning
model with known continuous models is mentioned in some studies [16,20], which is
difficult when using discrete-time models. An application for PDE is also studied [10].
In recent years, modeling methods focusing on the Hamiltonian structure of dynamics,
which is characterized in continuous time, have been proposed [3,9,21]. (The loss function
of Hamiltonian Neural Networks using finite difference can be considered the same as
using the explicit Euler method.) In the existing studies on dynamics modeling, the key
contribution to the performance of dynamics modeling is sought in the structure of the
neural network [3,22] or the optimization method [15,16,19], and little attention is paid to
the effect of the discretization method [9].

As shown in Figure 2, one of the advantages of the continuous models is that one can
use a different discretization method and time step for the forward calculation to make
predictions, and even couple the resulting model to other models modeled with different
modeling methods, regardless of the methods used in the modeling process [12,15,19]. It
is therefore desirable that the discretization process not be considered to be part of the
resulting model and should affect the results as little as possible. In practice, however, there
will be a modeling error that arises from the discretization process, i.e., the error between
the original unknown dynamics f and f̂ in the continuous model shown in Equation (2).
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(a) (b)
Figure 2. How continuous-time models are utilized. The model is used independently of the modeling
method and can be integrated with different discretization methods and time steps, or coupled with
other continuous models: (a) The independence of the methods used in modeling and simulation.
(b) Coupling with other continuous-time models.

Several studies focus on the different discretization methods used for modeling. It
is known that certain types of methods, such as implicit or linearly implicit methods, are
suitable for the forward integration of stiff systems [26]. Rico-Martinez and Kevrekidis [12]
and Oussar and Dreyfus [23] focused on the effectiveness of implicit methods for the inte-
gration of a stiff system [26], and they proposed to use implicit methods for the modeling
of stiff target systems. Raissi et al. [17] and Chen et al. [24] compared the effectiveness of
multiple discretization methods in the modeling task. However, these studies evaluate the
difference in discretization methods mainly in terms of the prediction error (i.e., how close
the model’s trajectory is to the target dynamics) or noise robustness.

An important study that directly addresses the error between the target and the model
is presented by Zhu et al. [9] In the study, the error between the two is distinguished as
the “target error” from the other errors introduced in the optimization, generalization, and
approximation processes. The concept is extended to more general target dynamics and
discretization methods in later studies [7,8], allowing an order evaluation of the target error
using the formally defined equation named inverse modified differential equations (IMDE),
which is identified with the modeled dynamics.

The IMDE-based analysis method by Zhu et al. is general and rigid. However, if
one can directly know how the nature of the specific target dynamics (i.e., oscillatory,
dissipative, divergent) affects the error, it becomes easier to appropriately choose or design
the discretization method to be used for the modeling of the target dynamics. A successful
example of analyzing discretization methods with a focus on the nature of dynamics is
the stability analysis of discretization methods [26–28]. In this study, we propose an error
analysis framework of discretization methods used in the modeling purpose following the
concept of the stability analysis.

A more detailed description of the problem setup and the definition of the modeling
error in the present study is given below. To represent the nature of the target dynamics,
we formulate the modeling error using Dahlquist’s test equation, referring to the stability
analysis of the discretization method [26–28]. Dahlquist’s test equation is an approximation
of the target dynamics for estimating the result of the modeling process, in the sense
that it is obtained by linearizing the equation of dynamics and considering the Jordan
canonical form. If a rough distribution of modes of the target dynamics is known, e.g.,
using DMD [29], the results for the test equations corresponding to such modes can be
used to estimate the modeling error for the target dynamics. In addition, Dahlquist’s test
equation is characterized by a single complex parameter, allowing the properties of the
discretization method to be examined graphically in the complex plane, as is carried out in
the stability analysis.

As a main result, we derived an equation that is satisfied by the learned model when
the model perfectly reproduces the sampled solution of the test equation using an explicit
Runge–Kutta method. The solution of the equation predicts the resulting model, and we
used it to define the modeling error.
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One important result is that the above equations for more than two-stage explicit
Runge–Kutta methods have multiple solutions. (A similar result is addressed in an analysis
example for a composite method of the explicit Euler method in the work by Zhu et al. [7].)
This means that the modeling results may not be uniquely determined. This is not only
a potential problem in practical modeling, but it also makes the design of explicit Runge–
Kutta methods for modeling purposes difficult.

In order to confirm the validity of the theoretical considerations, learning experiments
are conducted using the explicit midpoint method, a two-stage Runge–Kutta method, for
test equations with various parameters. A multilayer perceptron, a simple neural network,
is used as the learning model. The results confirm that any of the expected results are
reproduced and that the nonuniqueness described above occurs in some cases.

Remark 1. The family of Runge–Kutta methods, especially the four-stage, fourth-order explicit
Runge–Kutta method (the classic Runge–Kutta method; RK4), is a very widely used discretization
method in forward computation and is also implemented in various ODE solvers. With this
background, the Runge–Kutta method is considered a natural candidate for modeling. In fact, a
learning model composed of neural networks is discretized and trained using the classic Runge–
Kutta method in many studies [12,15,18,19], and related research explicitly uses Runge–Kutta
in the name of modeling architectures, e.g., Runge–Kutta Neural Networks (RKNNs) [13,15,22].
However, when a Runge–Kutta method is used for modeling as described above, it is shown in the
present study that there are multiple possible models that reproduce the same observed data. Among
such models, some may approximate the dynamics of the target well, while others may not. This
may not be a problem when the model is used as a discretized model that assumes the same time step
as the observed data, but this can lead to undesirable results when used as a continuous model.

2. Modeling Error Analysis
2.1. The Test Equation

Dynamics expressed in the form of Equation (2) range so widely that it is not easy to
define the modeling error for all of them. Therefore, as a representative of these various
dynamics, we use one-dimensional dynamics called Dahlquist’s test equation [26,28]:

ẋ(t) = λx (λ ∈ C). (3)

The test equation can be thought of as a linearized and diagonalized form of general dynamics.
The test equation is characterized by a complex parameter λ. The dynamics x(t) = eλtx0

expressed by the test equation are more damped the more Re(λ) is negative, and the
oscillation becomes more intense for larger values of Im(λ).

Instead of examining modeling errors for various f , we examine modeling errors for
the test equations at various λ. That is, we define the modeling error parameterized by
the complex number λ. By examining the modeling errors for various λ, we can see what
dynamics the method is suitable for modeling. Conversely, by studying the modeling errors
for various λ for various discretization methods in advance, it is possible to determine
which discretization method is suitable for modeling based on prior knowledge of the
rough mode distribution of the dynamics to be modeled. Moreover, it can be applied not
only to evaluate existing discretization methods but also to design discretization methods
that minimize modeling error for λ within a specified region [30].

The test equation has been used to analyze the stability of discretization methods.
Figure 3 shows the results of the stability analysis for some methods. It shows that the
dynamics by λs in the region inside the plotted line can be integrated stably by the method
and the time step h. The idea of the present study is analogous to the stability analysis in
that the test equation is used as a sort of benchmark for the analysis, and the properties of
the discretization method are represented on the complex plane.
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Figure 3. An example of the stability analysis. The stability regions for the explicit Euler method
(Euler), the explicit midpoint method (midpoint), and the classic fourth-order Runge–Kutta method
(RK4) are shown. The parameter λ of the test equation ẋ = λx is normalized by the time step h as
z = hλ.

2.2. Continuous Modeling of Dynamics with Observed Data

In the present study, we investigate modeling errors when modeling the target dy-
namics with ordinary differential equation models. Modeling here refers to the assuming
that the dynamics to be modeled is an ordinary differential equation:

ẋ(t) = f (x), (4)

and approximating the function f on the right-hand side using observed data of the
dynamics. That is, we consider the problem of optimizing the model f̂ so that the solution
of the ordinary differential equation model:

ẋ(t) = f̂ (x) (5)

reproduces the observed data considering the data to be a sampling of trajectories of
Equation (4).

Since it is generally difficult to directly observe the derivative of a variable in a system,
we assume that ẋ is not included in the observed data. Under such an assumption, we
cannot directly optimize f̂ as a regression problem in the space of maps mapping x to
ẋ . Therefore, we discretize f̂ using a discretization method (in particular, an explicit
Runge–Kutta method) and introduce a map F(x; f̂ ) from the space X of variables x to X
that depends on f̂ , thereby optimizing f̂ using only observed data on X.

Let the set of observed data consisting of m trajectories be denoted as follows:

D : = {τi}m
i=0

τi : = (x(nh; x(i)), x((n − 1)h; x(i)), . . . , x(0; x(i)))

= (x(jh; x(i)))n
j=0,

(6)

where x(t; x(i)) is the exact solution of (4) for the initial value x(i) and each of those trajec-
tories is denoted by τi. The observed data are assumed to be sampled at equally spaced
intervals with step size h, and the effect of noise is ignored. Here, n is the number of sample
points in a trajectory, which is equal to the number of steps in the discretization method
used for modeling.
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Remark 2. If the observed data consist of trajectories with more steps than the discretization
method, they can be split into smaller subtrajectories to apply this modeling method. Since this
study considers the ideal case where n-step trajectories from any initial value can be completely
modeled, considering n-step trajectories for n-step methods by patching n-step results taking the
points in the middle of the trajectory as initial values is sufficient.

Using such observed data, we optimize the model shown in Equation (5). Optimization
is performed so that the observed data in each trajectory match the numerical solution of
the model. Let

F((xn, . . . , x0); g(·), h) = 0 (7)

denote an equation that defines a discretization method (n-step method) for an ODE
ẋ = g(x). g in the definition of the method is a vector field, which is given and integrated
into the traditional forward application of the method. In the modeling process, substitute
g with f̂ , the model to be optimized, and consider the following optimization problem:

min
f̂

∑
τ∈D

∥F(τ; f̂ , h)∥. (8)

Note that ∥ · ∥ is an appropriate norm on X. We call

L(·, D) := ∑
τ∈D

∥F(τ; ·, h)∥ (9)

the objective function or loss function.

Example 1. Since F for the explicit midpoint method (see Section 3.1)

x1 = x0 + hg(x0 +
h
2

g(x0)) (10)

can be written as

F((x1, x0); g, h) = x1 − (x0 + hg(x0 +
h
2

g(x0))), (11)

the optimization problem (8) becomes

min
f̂

∑
(x(h),x(0))∈D

∥F((x(h), x(0)); f̂ , h)∥, (12)

F((x(h), x(0)); f̂ , h) = x(h)− (x(0) + h f̂ (x(0) +
h
2

f̂ (x(0)))) (13)

Example 2. For the implicit Euler method, F is represented as

F((x1, x0); g, h) = x1 − (x0 + hg(x1)). (14)

2.3. Modeling Error

Suppose that the modeling process described in the previous section yields f̂ that per-
fectly reproduces the observed data. Even in such an ideal case, f and f̂ do not necessarily
coincide due to the effect of discretization, and the error depends on both the discretization
method and the nature of the target dynamics f . In this section, we formulate such an error
as a modeling error and propose a new evaluation criterion for discretization methods.

In defining the modeling error, as is performed in the stability analysis of numerical
methods, we consider the results of modeling when using the test Equation (3) as a rep-
resentative of target dynamics f . We also make two idealized assumptions to investigate
certain limits of the optimization problem (8). First, assume that a sufficient amount of data
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are available and that f̂ can be learned such that the objective function (9) is zero for any τ,
a sampling of the exact solution with a step size h. That is, for any initial value of x(i), the
following holds:

F(τi; f̂ , h) = 0. (15)

Furthermore, we assume the universal approximation property [5] for the construction
of f̂ . Thus, there exists an f̂ that reduces the objective function to as close to 0 as desired.
Among such f̂ s, when there exists a linear f̂ in particular, the modeling error is defined
as follows:

f̂ (x) = λ̂x (λ̂ ∈ C). (16)

Although there may be other models that reduce the loss function to 0, we assume in
particular a result of the form (16) because this is an ideal case in the sense that it belongs
to the same class as the test equations, i.e., the modeling target.

Remark 3. As discussed in Theorem 1, if using explicit Runge–Kutta methods, there exists a linear
f̂ such that the objective function becomes 0.

Definition 1 (Modeling Error). For f̂ (x) = λ̂x such that the objective function (9) reduces to 0,
define the learnability coefficient ℓ as follows:

ℓ :=

∣∣∣∣∣ λ̂ − λ

λ

∣∣∣∣∣. (17)

Errors for the real and imaginary parts are also defined in the same way as the
modeling error.

Definition 2. For f̂ (x) = λ̂x such that the objective function (9) reduces to 0, define the modeling
error ℓR with respect to the real part and the modeling error ℓI with respect to the imaginary part
as follows:

ℓR :=

∣∣∣∣∣Re λ̂ − Re λ

Re λ

∣∣∣∣∣ , ℓI :=

∣∣∣∣∣ Im λ̂ − Im λ

Im λ

∣∣∣∣∣. (18)

Remark 4. These two types of modeling errors (ℓ and, ℓR or ℓI ) are intended for different uses.
The overall error ℓ is useful for designing discretization methods, whereas the component errors are
useful for analyzing the effectiveness of existing discretization methods for given dynamics.

The characteristics of various discretization methods can be compared by illustrating
on the complex plane the dynamics that result in a small modeling error for each given
discretization method.

Definition 3. If the modeling error ℓ can be written as a function of z = hλ, define the learnability
region Ωℓ,ϵ for a given discretization method with an acceptable error ϵ > 0 by the following:

Ωℓ,ϵ := {z ∈ C : ℓ(z) ≤ ϵ}. (19)

In addition, the learnable region for the modeling error of real and imaginary parts is defined in the
same way.

Remark 5. Note that although the constant 1 that appears in the inequality in the definition of
the stability region in the stability analysis has meaning as a limit with respect to divergence, the
tolerance ϵ = 1 in the learnable region has no special meaning. Basically, a smaller modeling error
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is better, and it is important to investigate the learnability regions by changing ϵ to 0.1, 0.01 (10%,
1% error allowed), and so on, depending on the error allowed for each application.

3. Analysis of Explicit Runge–Kutta Methods
3.1. Explicit Runge–Kutta Methods

The explicit s-stage Runge–Kutta methods for an initial value problem

ẋ = g(x), x(0) = x0 (20)

are given by

k1 = g(x0)

k2 = g(x0 + ha21k1)

k3 = g(x0 + h(a31k1 + a32k2))

...

ks = g(x0 + h(as1k1 + · · ·+ as,s−1ks−1))

x1 = x0 + h(b1k1 + · · ·+ bsks)

(21)

where aij and bi are real coefficients that determine the method.

Lemma 1. The explicit Runge–Kutta methods for the test equation can be expressed as

k = (I − hλA)−1
1λx0 (22)

x1 = x0 + hbk (23)

= (1 + hλb(I − hλA)−1
1)x0 (24)

where

A =


0 · · ·

a21 0 · · ·
a31 a32 0 · · ·
...

...
. . . . . .

as1 as2 · · · as,s−1 0

, b =
(
b1 . . . bs

)
, k =

k1
...

ks

, 1 =

1
...
1

. (25)

Proof. By definition, the following holds for k:

k = 1λx0 + hλAk.

This can be transformed as (I − hλA)k = 1λx0. Since the Runge–Kutta method is explicit,
the matrix I − hλA becomes a lower triangular matrix with nonzero diagonal elements.
Therefore, (I − hλA)−1 exists for any h and λ, and k and x1 can be expressed as

k = (I − hλA)−1
1λx0

x1 = (1 + hλb(I − hλA)−1
1)x0.

Example 3. The explicit midpoint method, Kutta’s third-order method, and the classic fourth-
order method are expressed as in Figure 4 using the table-like notation of A, b, and c (the Butcher
Tableau [25,31]):

c A
b

. (26)
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Since we assume the target dynamics to be time-independent, the c vector in the standard Butcher
tableau can be ignored.

Figure 4. Examples of explicit Runge–Kutta methods.

3.2. Idealized Prediction Equation

For a given explicit Runge–Kutta method (21), an equation satisfied by the linear
model λ̂ that makes the objective function 0 is derived, leading to the existence of such
a model.

Theorem 1. Let a discretization method for Dahlquist’s test equation ẋ = λx (λ ∈ C) be an
explicit s-stage Runge–Kutta method (A, b, c). Let D a set of 1-step trajectories of the test equation
starting from initial points x(i) (i = 0, . . . , m) as:

D := {τi}m
i=0, τi := (ehλx(i), x(i)) (27)

where m is a positive integer. Denote the learning model as

ẋ = f̂ (x). (28)

When learning the test equation by considering an optimization problem

min
f̂

L( f̂ , D), (29)

where the loss is

L( f̂ , D) := ∑
τi∈D

∥F(τi; f̂ , h)∥, (30)

and

F((x1, x0); f̂ , h) = x1 − (x0 + h(b1k1 + · · ·+ bsks)) (31)

is the equation of the Runge–Kutta method for the model, there exists a model

f̂ (x) = λ̂x (λ̂ ∈ C)

such that L(λ̂x, D) = 0 for any trajectories D, satisfying the following:

1 + hλ̂b(I − hλ̂A)−1
1− ehλ = 0. (32)

Proof. Assume that we have a model f̂ (x) = λ̂x (λ̂ ∈ C). With Lemma 1, the equation of
the method is as follows:

F((x1, x0); λ̂x, h) = x1 − (1 + hλ̂b(I − hλ̂A)−1
1)x0 = 0. (33)

Therefore, the optimization problem becomes
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min
λ̂

∑
τi∈D

∥ehλx(i) − (1 + hλ̂b(I − hλ̂A)−1
1)x(i)∥. (34)

Factoring out x(i), we obtain

min
λ̂

∑
τi∈D

|1 + hλ̂b(I − hλ̂A)−1
1− ehλ|∥x(i)∥. (35)

If there exists λ̂ satisfying (32), then Equation (35) is zero for any sampled trajectories D of
the test equation with a step size h. Since (32) is a polynomial of λ̂, such a λ̂ exists by the
fundamental theorem of algebra.

Definition 4. We call Equation (32) the learnability equation of the Runge–Kutta method (A, b, c)
and the left-hand side of the equation is referred to as the learnability polynomial.

The learnability equation describes the ideal result λ̂ of modeling for the target λ and
the Runge–Kutta method A, B used, in the sense of the optimization problem (8).

Remark 6. The parameter λ, which represents the target dynamics, appears as the term ehλ in the
learnability equation. Note that the solution of the learnability equation is periodic with respect to λ
in the direction of the imaginary axis by 2π.

Corollary 1. In general, the learnability polynomial of an s-stage Runge–Kutta method is an
s-order polynomial of λ̂, and thus the learnability equation has s solutions. Therefore, the resulting
model may not be uniquely determined by the optimization problem (8). See Section 3.3 for details.

Example 4. The learnability equation for the explicit midpoint method is

1 + hλ̂ +
1
2
(hλ̂)2 − ehλ̂ = 0,

and it has two solutions

λ̂+ :=
−1 +

√
ehλ − 1

h
, λ̂− :=

−1 −
√

ehλ − 1
h

. (36)

For the modeling error ℓ of the explicit Runge–Kutta methods, the scaling law with
respect to step size h holds, as in the stability analysis. This is an important property for
the modeling error to serve as an evaluation metric for discretization methods.

Theorem 2. The modeling error of the explicit Runge–Kutta methods

ℓRK =

∣∣∣∣∣ λ̂ − λ

λ

∣∣∣∣∣ =
∣∣∣∣∣ λ̂

λ
− 1

∣∣∣∣∣
is a function of z = hλ.

Proof. From the learnability equation, we have

1 +
λ̂

λ
hλb(I − λ̂

λ
hλA)−1

1− ehλ = 0 (37)

and substituting z = hλ yields

1 +
λ̂

λ
zb(I − λ̂

λ
zA)−1

1− ez = 0. (38)

This shows that the solution λ̂/λ, and also λ̂/λ − 1, is a function of z.
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The same holds for the component-wise modeling error.

Theorem 3. The component-wise modeling errors for the explicit Runge–Kutta methods ℓRRK, ℓIRK
are functions of z = hλ and z̄ = hλ̄.

Proof. We prove this for ℓRRK. The same goes for ℓIRK.
If λ̂ is a solution of the learnability equation for λ, then ¯̂λ is also a solution of the

equation for λ̄. Thus, as in the proof of Theorem 2, ¯̂λ/λ̄ is a function of z̄ = hλ̄. Since
Re λ̂/Re λ in the definition of ℓRRK can be transformed as

Re λ̂

Re λ
=

λ̂ + λ̂

λ + λ
=

λ̂

λ
+

z
z

λ̂

λ

1 +
z
z

, (39)

it follows that ℓRRK = |Re λ̂/Re λ − 1| is a function of z and z̄.

3.3. Nonuniqueness of Modeling Results

As mentioned in Theorem 1, the learnability polynomial for the explicit s-stage
Runge–Kutta methods is a polynomial in λ̂ and thus has s roots. Each of these roots
is a parameter that characterizes the linear model obtained as a result of modeling, meaning
that there can be more than one candidate among the linear models. In modeling in the
sense of the optimization problem (8), even if a model can be learned such that the loss is
zero, the result is not expected to be uniquely determined. On the other hand, this is not
considered to be a critical issue in learning a discrete model, since the same result can be
obtained as a one-step flow map regardless of which solution is chosen.

This nonuniqueness is caused by the fact that in modeling with the Runge–Kutta
method, multiple compositions of the unknown function f̂ are optimized with only one step
of the discrete solution. The point is that, whereas the performance of forward calculation
is improved by applying a known function multiple times, in modeling, the composition
of an unknown function f̂ increases a certain degree of freedom, making it impossible to
determine f̂ with only one step of observation data.

Remark 7. In actual learning, some selectivity may occur in the learning results depending on the
structure of the specific learning model and the optimization method used in the learning process. The
selectivity here refers to the difference in learnability among multiple λ for a target λ. For example,
the following are possible criteria for selectivity, but it is not clear that selectivity necessarily arises
based on such easily interpretable criteria:

• Degree of approximation (some distance to the target λ).
• Closeness to the origin.

It is necessary to examine and analyze the models and algorithms used for each individual case.

3.4. Minimum Modeling Error

In this section, we consider the most desirable result to be that which is closest to λ
among the candidate λ̂s. Specifically, we examine the modeling error for the solution λ̂
of the learnability equation that has the smallest value of |λ̂ − λ|. This is the λ̂ with the
smallest modeling error, and, in this sense, it is the most desirable result. At the same time,
it also provides a lower bound on the modeling error as a limitation of optimization in the
sense of (8).

The results for several Runge–Kutta methods are shown in Figures 5–8. The λ̂ and
modeling error based on the above criterion were calculated for λ on a grid with 0.2 ticks
in a rectangular region −10 ≤ Re λ ≤ 10,−10 ≤ Im λ ≤ 10 on the complex plane and are
plotted in contour plots. For visibility, only portions with a modeling error of 1 or less are
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colored. In order to find such λ̂s, all solutions of the learnability equation were calculated
numerically for each λ, and then the smallest of |λ̂ − λ| was chosen.

Figure 5. Minimum learnability coefficients for the explicit Euler method.

Figure 6. Minimum learnability coefficients for the explicit midpoint method.

Figure 7. Minimum learnability coefficients for Kutta’s third-order method.

Figure 8. Minimum learnability coefficients for the classical fourth-order method.

These results show that the higher the order of the Runge–Kutta method, the wider
the region of small modeling error near the origin. On the other hand, looking locally,
there are regions where the relationship between the order of the Runge–Kutta method
and the modeling error is inverted. For example, comparing the explicit Euler method
with the explicit midpoint method, for purely decaying dynamics in the negative region on
the real axis, even if a λ̂ is obtained that minimizes the modeling error, the explicit Euler
method could yield a model with less error than the explicit midpoint method. Although,
intuitively, it would seem that a higher-order method would be more appropriate for
modeling, it turns out that there are cases in which a lower-order method should be used,
depending on the dynamics of the modeling target.
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4. Learning Experiment
4.1. Targets

In Sections 2 and 3, we proposed a modeling error analysis for discretization methods
and predicted the results when using the explicit Runge–Kutta methods. In this section,
we verify whether any of the predicted results can actually be obtained, and whether
nonuniqueness appears, by conducting learning experiments using simple neural networks.
Specifically, the explicit midpoint method, which is a two-stage explicit Runge–Kutta
method, is used as one of the simplest of the Runge–Kutta methods that could yield
multiple modeling results, and the test equations by λ in a specific region of the complex
plane are learned. The resulting model is then approximated as linear and is compared
with the original λ. The dynamics to be trained was λ on 81 × 81 grid points satisfying
Re λ = −5,−4.9, . . . , 2.9, 3, Im λ = −5,−4.9, . . . , 4.9, 5. The time step size h was set to 1.
For each of these z = hλ, f̂ was learned independently.

4.2. Model and Method

In this learning experiment, a neural-network-based learning model, f̂ , the multilayer
perceptron (MLP), was used. This is a simple and basic neural network, and there is no
elaboration on learning the test equations.

The learning model consists of three layers: an input layer, a hidden layer, and
an output layer. In order to learn a mapping from complex to complex, the input and
output layers both have two real elements corresponding to the real and imaginary parts,
respectively. The hidden layer is a fully connected layer with a width of 200 nodes. ReLU
is used as the activation function inserted between each layer. The overall structure can be
summarized as follows: a linear layer with 200 outputs from two inputs, ReLU, a linear
layer with 200 outputs from 200 inputs, ReLU, and a linear layer with two outputs from
200 inputs.

The training data consist of pairs of initial points x0 and one-step solution exp(hλ)x0.
The real and imaginary parts of the initial point x0 are independently produced by uniform
random numbers with values in −10 ≤ Re x0 ≤ 10, −10 ≤ Im x0 ≤ 10, and x0 is regarded
as sampled from a rectangular region in the complex plane. The training data set D is a set
of 5000 pairs of x0 and exp(hλ)x0 with h = 1. The test data are generated in the same way,
using 5000 pairs of data.

The seed of the random numbers is increased by 1 each time the λ is changed. Random
numbers are used to initialize the parameters of the learning model. Therefore, when a
common phenomenon is obtained for each λ as a result of the experiment by fixing the
seed, it is difficult to distinguish whether the results are similar because of the same initial
values or whether the results are really independent of λ (such as selectivity of λ̂ caused by
the structure of the neural network).

For an optimizer, we used the Adam method with a learning rate of 0.001. We trained
a total of 10,000 epochs, with one epoch being a batch training using all of the training data
at once. The loss is saved every 100 epochs.

4.3. Estimation of λ̂

The definition of the modeling error assumed that a linear model f̂ (x) = λ̂x is obtained
as a result of learning. However, general learning models, including the MLP described
in the previous section, are nonlinear, and the quantity corresponding to λ̂ may not be
obtained directly.

Therefore, in this experiment, the input–output ratio of the training model is averaged
over the range of the initial point x0 used for training, and the subsequent analysis is
performed by considering it as λ̂. That is, the average λ̃, defined as

λ̃ :=
1
M ∑

x0∈E

f̂ (x0)

x0
, (40)
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is used as an estimation of λ̂, where E is the set of x0 for evaluating the input–output ratio,
and M is the number of its elements (evaluation points). As E, we used x0 on a grid of
20 points each in the real- and imaginary-axis directions from the range −10 ≤ Re x0 ≤ 10,
−10 ≤ Im x0 ≤ 10, for a total of M = 400 points.

The experimental results confirm that the learned model was close to linear functions
for most of the λ. For each λ, the standard deviation of the input-output ratio f̂ (x0)/x0 with
respect to x0 ∈ E was calculated, and its common logarithm plotted in the z plane is shown
in Figure 9 (the first case in Section 4.4.1, where the seed is incremented from 0). The smaller
the standard deviation, the closer the input–output ratio is to a constant independent of x0,
indicating that the model is almost linear. However, the standard deviation is relatively
large for λ on the semicircle in the third quadrant. This is located at the boundary of the
nonuniqueness region (see Section 4.4.2) and is considered to be a difficult region to learn
for some reason.

Figure 9. Heatmap of the standard deviations of the input-output ratios for x0 ∈ E for each z plotted
with the common logarithm scale, using the results for the case of “Seed from 0”, as described in
Section 4.4.1. Smaller values indicate that the model can be considered to be linear.

4.4. Results
4.4.1. Comparison with Theoretical Prediction

Figure 10 shows the modeling errors ℓlearn := |λ̃/λ − 1| computed from the learning
results λ̃ for the two cases with different seeds. The modeling error ℓλ̂ calculated with λ̃

estimated by the learned f̂ for each λ is plotted on the z-plane. In both cases, the seeds are
incremented by 1 for each different λ. In the first case, the seed is set to 0 for λ = −5 − 5i
and 812 − 1 for λ = 5 + 5i, and, in the second case, the seed is set from 1 to 812 .

This plot shows that the learning results near the origin are in good agreement with the
minimum modeling error expected in Figure 6. A discontinuous surface appears around
Im z = ±3, which is considered to be a result of the periodicity of 2π due to the learnability
equation having z in the form ez. Note that there are regions in which different λ̃ are learned
when the seed of the random number is changed. This nonuniqueness is considered to
correspond to the existence of two solutions to the learnability equation for the explicit
midpoint method (see Section 3.3).

Next, we verified that the results were those predicted by either of the two solutions of
the learnability equation. For this purpose, the minimum absolute value of the difference
between the modeling error of the training result ℓlearn and the modeling error expected
from the two solutions ℓ+,− := |λ̂+,−/λ − 1| (see Equation (36)) was calculated for the
training results of both cases as

ελ̃ := min(|ℓlearn − ℓ+|, |ℓlearn − ℓ−|, ). (41)

Figure 11 shows the error ελ̃, which was confirmed to be small.
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(a) (b)
Figure 10. Learnability coefficients of the learned MLP model using the explicit midpoint method.
Different random seeds are used for the two experiments: (a) Random seed incremented from 0 (for
lower-left z) to 812 − 1 (for upper-right z). (b) Random seed incremented from 1 (for lower-left z) to
812 (for upper-right z).

(a) (b)

Figure 11. Heatmap of the prediction error of the modeling error for the explicit midpoint method.
The logarithms of the error log10 ελ̃ (see Equation (41)) are plotted: (a) Seed incremented from 0 (for
lower-left z) to 812 − 1 (for upper-right z). (b) Seed incremented from 1 (for lower-left z) to 812 (for
upper-right z).

4.4.2. Variation in Nonunique Results

In order to further examine the variation of the results, we conducted the same
experiment with 28 different sets of seeds following the previous two cases (30 in total) as
2 to 812 + 1, 3 to 812 + 2, ..., and 29 to 812 + 28. Then, for each case, we examined which
of the two solutions of the learnability equation was learned. The distance between the
expected results λ̂+ and λ̂− and the actual result λ̃ was calculated for each λ in each case
and was labeled +1 if λ̃ was close to λ̂+ and −1 if λ̃ was close to λ̂−. Figure 12 shows the
results of calculating the standard deviation of the 30 labels for each λ. If the standard
deviation is 0, then the result is unique, and if the standard deviation is large, then different
results are trained for different seeds.

This analysis reveals that the learning results are nonunique with a large standard
deviation, especially in the boundary region of the 2π periodicity and in the region in which
the real part of z is negative to some extent. This shows that the actual learning outcome
may not be uniquely determined, as theoretically expected. The standard deviation was
close to 0.5, indicating that λ̂+ and λ̂− were learned randomly without bias. The cause of
this phenomenon could be the structure of the model used for training or the optimization
method used, but further discussion is left for future study.
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Figure 12. Variation in the results with different seeds. Results for which λ̃ is closer to λ̂+ are labeled
1, and results for which λ̃ is closer to λ̂− are labeled −1. Then, the standard deviations of the labels
are plotted.

5. Conclusions

In the present study, a framework for investigating modeling errors caused by the
discretization method used for the continuous-time modeling of dynamics is proposed. As
a specific result of the analysis using the proposed framework, an equation that predicts
the results when an explicit Runge–Kutta method is used for modeling is obtained. It was
shown that even if a model that perfectly reproduces the observed data is obtained, then
there is a nonzero lower bound on the modeling error and that more than one model can
be obtained. Furthermore, training experiments using a multilayer perceptron confirmed
that nonuniqueness of results does in fact occur. Future study will include clarification of
the cause of the nonuniqueness observed in the learning experiments and analysis of the
modeling error for a system with inputs.
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