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Abstract: In the study of Simultaneous Localization and Mapping (SLAM), the existence of dynamic
obstacles will have a great impact on it, and when there are many dynamic obstacles, it will lead
to great challenges in mapping. Therefore, segmenting dynamic objects in the environment is
particularly important. The common data format in the field of autonomous robots is point clouds.
How to use point clouds to segment dynamic objects is the focus of this study. The existing point
clouds instance segmentation methods are mostly based on dense point clouds. In our application
scenario, we use 16-line LiDAR (sparse point clouds) and propose a sparse point clouds instance
segmentation method based on spatio-temporal encoding and decoding for autonomous robots in
dynamic environments. Compared with other point clouds instance segmentation methods, the
proposed algorithm has significantly improved average percision and average recall on instance
segmentation of our point clouds dataset. In addition, the annotation of point clouds is time-
consuming and laborious, and the existing dataset for point clouds instance segmentation is also
very limited. Thus, we propose an autonomous point clouds annotation algorithm that integrates
object tracking, segmentation, and point clouds to 2D mapping methods, the resulting data can then
be used for training robust model.

Keywords: point clouds; dynamic targets; instance segmentation; spatio-temporal; autonomous robot

MSC: 93-10

1. Introduction

SLAM [1] is an important module of autonomous robots [2]. The tasks of robots
include mapping, localization, and path planning. Building an environment map is the
foundation of robot tasks, and the map can be used for subsequent tasks. The construction
of map often relies on point clouds, and the dynamic targets in point clouds pose challenges
to map construction [3]. A point clouds map containing dynamic objects is shown in
the following Figure 1. The current solution to address challenges is to start with point
clouds. The processing of point clouds includes semantic segmentation and instance
segmentation [4]. Instance segmentation not only needs to distinguish which class each
point belongs to, but also needs to distinguish different individuals in the same class [5].

There are several ways to deal with object extraction in different stages. At the
registration stage [6,7], for objects with rapid changes in motion state, traditional or neural
networks can usually be used to filter them out. At the stage of mapping [3,8–10], high-
dynamic objects are filtered synchronously during the SLAM process, in order to use the
information of all frames. Post-processing is performed on the map after the SLAM process
is completed to filter out objects with slow changes in motion status. This method is more
effective for temporarily stationary objects. In addition, the construction level includes
lifelong processing [11,12] for dynamic object filtering and semi static object updates. The
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post-processing method can combine more information to more accurately filter out the
target object, which is a better way.

Figure 1. Point cloud map containing dynamic targets. The red rectangle in the map shows a
moving person. Due to this person’s movement, the point cloud in the red rectangle looks like a
“ghost shadow”.

The final foothold of all methods is in the processing of point clouds. The environmen-
tal perception of autonomous driving also needs to process the data from LiDAR, perceive
the specific target in the point clouds scanned by the LiDAR, and provide corresponding
strategies. Directly processing the dynamic objects in the point clouds can avoid the in-
fluence of the dynamic environment on the construction of the map. Currently, for the
acquisition of data to study specific targets in autonomous robots, most applications use
64-line [13] or above LiDAR. According to the number of lines, LiDAR can be divided into
single-line, 4-line, 16-line, 64-line, 128-line, etc. As the number of lines increases, the num-
ber of points in the point clouds obtained by the LiDAR continues to increase. The difficulty
in the instance segmentation of the point clouds decreases, but the cost also increases. The
price of 64-line LiDAR is about three times than that of 16-line LiDAR. Autonomous robots
typically use 16-line LiDAR for development and research. The number of points obtained
by 16-line LiDAR is one fourth of 64-line LiDAR. A comparison between sparse point
clouds and dense point clouds is shown in Figure 2. For data with sparse point clouds,
there are also fewer features of the target in Figure 2. Currently, there is relatively little
research on instance segmentation for sparse point clouds. In reality, the use of 16-line
LiDAR is much more common than that of 64 and 128-line LiDAR.

Thus, we propose a solution for instance segmentation of sparse point clouds. In
general, sparser point clouds have fewer features and it is difficult to recognize target
objects with the naked eye, making manual annotation more difficult. To address this issue,
we propose a scheme for the instance segmentation and annotation of sparse point clouds
using integrated spatio-temporal information. Overall, the contributions of this paper are as
follows. First, a new point clouds annotation method is proposed to provide a large amount
of data for point clouds instance segmentation model training. Secondly, we propose a
novel spatio-temporal encoding and decoding, and incorporate spatio-temporal semantic
loss into the instance segmentation model. The segmentation results have significantly
improved compared to when they were not introduced. Finally, we propose spatio-temporal
information splitting to generate instance segmentation results for sparse point clouds.

The remainder of this paper is organized as follows. After presenting the related work,
we present methods for the creation of datasets and object-specific instance segmentation
in the point clouds of dynamic environments, followed by the experimental description,
discussion and conclusions in this section.
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Figure 2. Sparse (top) and dense (bottom) point clouds. The top is sparse point clouds and the bottom
is dense point clouds.

2. Related Work
2.1. Point Clouds Instance Segmentation

The top-down proposal based approach is done based on zones, and then the objects
are segmented within each zone. Because the point clouds has the characteristic of data
irregularity, Yi et al. [14] propose a top-down method, the resulting proposals are highly
characteristic, and the overall network is based on PointNet. In addition to this, some
studies also consider RGB information. Hou et al. [15] present 3D semantic instance
segmentation network (3DSIS). The network fuses the RGB information of the view, and
works with the geometry information to predict the bounding box and predict the instance.
Yang et al. [16] propose a new network which breaks away from the traditional anchor
points, the method does not use non-maximum suppression, and a classifier to classify each
point is selected to achieve object segmentation. Liu et al. [17] present a network which can
extract the approximate instance center of each object, and then sample the results to get
the desired instance. Proposal based methods process each target proposal independently
without interference from other instances. However, proposal based methods struggle
to generate high-quality proposals, because the acquired point exists on the surface of
the object.

2.2. Autonomous Robot Dynamic Environment Target Filtering

The existence of dynamic problems has attracted widespread attention and there
are many studies either from camera data [18,19] or from laser scans [20–22]. To extract
dynamic objects from camera data, Chabot et al. [19] as well as Reddy et al. [23] use neural
networks to process images as input, while outputting classification and motion status.
Similarly, Vertens et al. [24] propose fuse detection of vehicle status, the neural network
takes into account the camera’s image flow and optical flow information as inputs to the
network. Chen et al. [25] select image information from different 3D views to predict
bounding boxes of different categories. The task of processing and detecting objects by
Xu et al. [26] combines the information of images and 3D scans, and assigns 3D scans to
each detection. Li et al. [22] use neural networks to detect objects, prior to which distance
images were obtained through 3D scanning. Engelcke et al. [21] achieved object detection
in 3D point clouds by utilizing feature centered voting schemes. Wang et al. [27] were
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able to directly detect target objects in 3D scanning. They select a fast network based on
sliding windows for directly detecting objects in 3D scanning. Dewan et al. [20] detect
moving points in 3D scanning by calculating the motion information between two frames of
scanning. Hahnel et al. [28] propose a probability based method that can estimate the beam
reflected by moving objects throughout 3D scanning, and establish a mapping of stationary
objects. Meyer-Delius et al. [29] propose a grid occupying method using a hidden Markov
model, which can detect potential changes in each element.

Most of the current methods are based on traditional machine learning methods and
tracking of specific objects in point clouds of dynamic environments. In order to perform
environment perception and dynamic target confirmation more accurately, we use the
instance segmentation of the dynamic environment point clouds to complete. Sparse point
cloudssets are few and difficult to label, while deep learning methods for 2D images are
relatively mature. We combine the tracking and segmentation methods of 2D images to
complete the labeling of sparse point clouds.

3. Methods
3.1. Automatic Data Annotation

Most methods for point clouds annotation are manual annotation, mainly by using
existing annotation software to manually identify point clouds instances and perform
annotation. Therefore, manual annotation is time-consuming and laborious, and due to
the sparse point clouds obtained by 16-line LiDAR used in our study, the target objects
in the point clouds are not obvious, making manual annotation more difficult. Therefore,
we also studied an annotation scheme for sparse point clouds. While using the LiDAR
of autonomous robots to collect point clouds, the Intel RealSense Depth Camera D435
(Intel-D435 camera) is also used to collect image data, Intel-D435 camera is produced
by Intel corporation in the United States. Intel is headquartered in the United States,
specifically in Santa Clara, California. We know that based on external parameters of
LiDAR and camera, we can project point clouds to 2D mapping. Compared with instance
segmentation of point clouds, there are more studies on instance segmentation of 2D
images, and the segmentation model is also relatively mature. And in order to preserve
the spatio-temporal information of adjacent frames. We integrate target tracking of images
with instance segmentation methods to autonomously annotate point clouds. In this study,
we independently annotated the person and car in the point clouds.

The process of autonomous annotation of point clouds is shown in the Figure 3. The
leftmost column in the Figure 3 is the original data obtained by the LiDAR and camera.
Firstly, the image data obtains the mask of person and car through the instance segmentation
network and target tracking process of the 2D image. Secondly, based on the coordinate
system relationship between the camera and the LiDAR, the point clouds is mapped to
2D, and the annotation results of the corresponding point clouds instances are obtained
based on the results of the mask, namely the rightmost columns Figure 3. We choose yolov5
as the model for image instance segmentation, and Fastmot as the target tracking model.
The details of these two models will no longer be described. The following is a detailed
description of how to use image segmentation results to generate point clouds annotations.

The key to this process lies in the coordinate transformation from the LiDAR to the
camera. The 3D coordinates in space are (Xw, Yw, Zw)T, The homogeneous coordinates is
expressed as (Xw, Yw, Zw, 1)T. The coordinates of the projection point are (uc, vc)T. The
homogeneous coordinates is expressed as (uc, vc, 1)T. The internal parameter matrix of
the camera is K. The perspective projection model of R and t is specifically described as
Equations (1) and (2) :

zc

 uc
vc
1

 =

 f11 f12 f13 f14
f21 f22 f23 f24
f31 f32 f33 f34




Xw
Yw
Zw
1

 (1)
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where  f11 f12 f13 f14
f21 f22 f23 f24
f31 f32 f33 f34

 = K
[

R t
0T 1

]
(2)

write Equation (1) in the form of a system of equations and eliminate zc to obtain Equation (3):

f11Xw + f12Yw + f13Zw + f14 − f31Xwuc − f32Ywuc−
f33Zwuc − f34uc + f21Xw + f22Yw + f23Zw + f24−
f31Xwvc − f32Ywvc − f33Zwvc − f34vc = 0

(3)

Each set of 3D-2D matching points corresponds to two equations, with a total of
12 unknowns, requiring at least 6 sets of matching points. The above Equation (3) is written
in matrix form, and the values of f11- f34 of system of linear equations are solved. Therefore,
the rotation matrix and translation matrix can be obtained as Equations (4) and (5) :

R = K−1

 f11 f12 f13
f21 f22 f23
f31 f32 f33

 (4)

t = K−1

 f14
f24
f34

 (5)

Figure 3. The flowchart of the proposed annotation for point clouds.

After obtaining the external parameter matrix of the camera and LiDAR, we map the
point clouds onto a 2D mapping. Based on the results obtained from image segmentation,
we extract the corresponding 3D point clouds and save it as a point clouds instance.
Complete the autonomous annotation of the point clouds.

3.2. Proposed Instance Segmentation

The overall architecture of the proposed model is depicted in Figure 4, the overall
model consists of two stages. The first stage is the semantic segmentation, the input
point clouds generates point-level semantic labels and offset vectors, and the second stage
generates instance proposals for these output groupings. Using proposal method, utilize
a backbone network to extract features from the data that can be used for classification,
generation of instance masks, and scoring of generated masks. During the movement of
the autonomous robot, the point clouds information obtained by the LiDAR has continuity
in time and space. Therefore, we add spatio-temporal coding to make full use of spatio-
temporal information.



Mathematics 2024, 12, 1200 6 of 16

Figure 4. The framework of the proposed instance segmentation for point clouds.

Using a point by point prediction method, the input of the prediction network is
a set of N points that each point contains coordinate and color information, and then
the point clouds is voxelated into an ordered voxel grid. These voxel grids are used as
inputs for U-Net-style backbone [30] to obtain features. The backbone of U-Net-style is
shown in the Figure 5. The term ’cat’ in the network refers to the connection of feature
vectors and the term ’identity’ in the network refers to the feature. where the structures
of ’conv’ and ’deconv’ are shown in the following Figure 6. The Spconv (Spatially Sparse
Convolution) in the figure is a spatially sparse convolutional library used in this study to
replace conventional convolutions. The conv and deconv operations are represented by
Equations (6) and (7), where µ is the mean of x, σ is the variance of x, ϵ is a very small
positive number (used for numerical stability), γ and β are learnable scaling factor and
offset parameters. The ReLU function turns each negative value in the input vector to
zero, mathematically represented as max of 0 and f. Our 3D point clouds feature extraction
is achieved using Submanifold Sparse Convolution [31], and the model outputs features
through two branches to obtain pointwise semantic scores and offset vectors.

Fconv = spconv.SparseConv3d
(

max
(

0,
F − µ√
σ2 − ϵ

γ + β

))
(6)

Fdeconv = spconv.SparseInverseConv3d
(

max
(

0,
F − µ√
σ2 − ϵ

γ + β

))
(7)

Cross-entropy loss (CE) is used in the semantic training branch, and l1 regression loss is
used in the offset branch. The semantic loss and offset loss are as follow Equations (8) and (9):

Lsemantic =
1
N

N

∑
i=1

CE(si, s∗i ) (8)

Lo f f set =
1

∑N
i=1 I{pi}

N

∑
i=1

I{pi}∥oi − o∗i ∥1 (9)

where the semantic score of the output is represented by s, the output offset vectors is o, s∗

is the semantic label, o∗ is offset label representing the vector from a point to the geometric
center of the instance that the point belongs to (analogous to [32–34]), N is the number
of points, and I{pi} is the indicator function indicating whether the point pi belongs to
any instance. In addition, in order to preserve the spatio-temporal information, we add
spatio-temporal encoding and decoding in the training process, the loss between point
clouds in the loss function, and extract the results of N − 1 frames that are exactly the same
from two adjacent point clouds, and solve the cross entropy loss function. The semantic
loss is shown in Equation (10).

Lsemantic local =
1
N

N

∑
i=1

CE(sl1i, sl2i) (10)
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wherein, if the frame of two overlapping point clouds is i-j, then the sl1 is the semantic
score of frame i-j of the first point clouds, sl2 is the semantic score of frame i-j of the second
point clouds.

Figure 5. The U-Net-style backbone and the detailed structure descriptions. The structures of the
blocks and blocks_tail are shown in the following Figures 7 and 8.

Figure 6. The conv and deconv modules.

For the generated instances, it is recommended to refine them from top to bottom,
obtain classification and refinement results, extract features from each proposal through a
feature extractor, and then input the features into a U-Net network with fewer layers. The
tiny U-Net network is shown in Figure 9. The structural details in the network, such as
’conv’,’deconv’,’blocks’..., are consistent with the previous ones. The training loss [35,36]
of these branches is the combination of cross-entropy, binary cross-entropy (BCE), and l2
regression losses. The losses of class, mask, and mask score are Equation (11), Equation (12),
and Equation (13), respectively.

Lclass =
1
K

K

∑
k=1

CE(ck, c∗k ) (11)

Lmask =
1

∑K
k=1 I{mk}

K

∑
k=1

I{mk}BCE(mk, m∗
k ) (12)

Lmask score =
1

∑K
k=1 I{rk}

K

∑
k=1

I{rk}∥rk − r∗k∥2 (13)
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where c∗, m∗, r∗ are the classification, segmentation, and mask scoring targets, respec-
tively. K is the total number of proposals and I{.} indicates whether the proposal is a
positive sample.

Figure 7. The structure of the blocks.

Figure 8. The structure of blocks_tail.
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Figure 9. The tiny U-Net network.

Similarly, in the classification stage, we also add the idea of spatio-temporal encoding
and decoding to solve the loss function for the overlapping parts of the two point clouds.
The classification loss is represented by Equation (14). The cl1 is the semantic score of frame
i-j of the first point clouds, cl2 is the semantic score of frame i-j of the second point clouds.

Lclass local =
1
K

K

∑
k=1

CE(cl1k, cl2k) (14)

3.3. Spatio-Temporal Encoding and Decoding

Due to the continuity of point clouds obtained by LiDAR in space and time, in order
to preserve spatio-temporal information, we overlay adjacent frame point clouds, starting
from the first frame, and overlay adjacent point clouds as network inputs. The first point
clouds is the superposition of frames 1 to N, the second point clouds is the superposition of
frames 2 to N+1, and so on. N-1 frame point clouds are the same between adjacent point
clouds. Therefore, during model training, the segmentation results of N-1 frames between
adjacent point clouds should be the same. After obtaining the segmentation results, there
are still N-1 frames with similar results before the point clouds segmentation results. We
perform intersection processing on the results of the same frames to obtain more accurate
point clouds segmentation results.

4. Experiments
4.1. Autonomous Robot Hardware Settings

We build a hardware platform for point clouds and image data collection. The hard-
ware platform includes two-wheel differential chassis, a LiDAR for point clouds collection,
four Intel-D435 cameras for image data collection,Jetson AGX Xavier (AGX) for computing.
AGX is manufactured by NVIDIA company which is located in Santa Clara, CA, USA. The
hardware platform is shown in Figure 10. There is a 16-line LiDAR on the top of the car,
and four Intel-D435 cameras are distributed below the LiDAR (front, rear, left and right).

4.2. Dataset

We started the 16-line LiDAR and four Intel-D435 cameras to collect the data required
for the experiment in nine scenes, with a total of 8321 point clouds and 33284 images. In
addition to the two specific targets of person and car required for our experimental scenes,
there are also trees and buildings on both sides of the road. In these point clouds, the point
clouds of the target object is very sparse, and thus it is a huge challenge for labeling and
instance segmentation.

4.3. Experiments and Discussions

The point clouds obtained by the 16-line LiDAR is sparse, and the frequency of
obtaining point clouds is relatively high, with 15 frames of point clouds obtained in one
second. The difference between the point clouds of adjacent frames is relatively small,
and the problem of sparse point clouds can be solved by overlaying the point clouds of
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adjacent frames, while also obtaining more features. We will set the experimental settings
to 5, 9, 13, and 15 frames to stack the point clouds to find the optimal number of stacked
frames, respectively.

Figure 10. The hardware platform used in this study.

The evaluation indicators are standard average precision (AP) and average recall rate
(AR). Here, AP 50, AP_25, RC_50, and RC_25 represent scores with IoU (Intersection over
Union) thresholds of 0.5 and 0.25, respectively. Similarly, AP and AR represent an average
score with an IoU threshold of 0.5 to 0.95, with a step size of 0.05.

We trained and tested these five sets of data separately. The model was implemented
using the PyTorch v1.11 (https://pytorch.org/get-started/previous-versions/) deep learn-
ing framework and trained using the Adam optimizer. This batch size is set to 2. The
learning rate is initialized to 0.001 and scheduled through cosine annealing. The voxel size
grouping bandwidth is set to 0.02m and 0.04m, respectively. The score threshold for soft
grouping is set to 0.2.

The results of four sets of data training and testing are shown in Tables 1–3. From these
tables, as the number of adjacent frames increases, the point clouds gradually becomes
dense, and the trained model can gradually segment specific targets in the point clouds. It
can be seen that when the number of point clouds reaches 15, the AP of the specific target
segmentation result is three times higher than when the number of point clouds is 5. We
divided the AP and AR of person and car in the five sets of data instances and drew a
Figure 11.

Table 1. Comparisons of segmentation results for cars with different framerate.

Framerate 5 9 13 15

type car car car car
AP_25 0.608 0.701 0.733 0.783
AP_50 0.477 0.487 0.656 0.704

AP 0.178 0.381 0.492 0.602
RC_25 0.644 0.783 0.849 0.879
RC_50 0.525 0.655 0.797 0.807

AR 0.247 0.512 0.566 0.658

https://pytorch.org/get-started/previous-versions/
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Table 2. Comparisons of segmentation results for person with different framerate.

Framerate 5 9 13 15

type person person person person
AP_25 0.577 0.814 0.821 0.905
AP_50 0.528 0.759 0.816 0.871

AP 0.365 0.757 0.773 0.828
RC_25 0.635 0.898 0.898 0.910
RC_50 0.584 0.810 0.876 0.881

AR 0.339 0.809 0.805 0.842

Table 3. Comparisons of segmentation results for cars and person with different framerate.

Framerate 5 9 13 15

type car + person car + person car + person car + person
AP_25 0.592 0.757 0.777 0.844
AP_50 0.502 0.623 0.736 0.787

AP 0.272 0.569 0.633 0.715
RC_25 0.639 0.840 0.873 0.894
RC_50 0.554 0.732 0.837 0.844

AR 0.339 0.660 0.685 0.750

According to the Tables 1–3, and Figure 11, we can observe that the idea of overlaying
point clouds of adjacent frames to obtain dense information has a significant impact on the
instance segmentation of person. When the point clouds frames are 5, the model can already
segment the person in the point clouds. However, due to the fact that the characteristics of
the car are not obvious, it is only when the point clouds frames are stacked to 15 that the
model achieves good results in car segmentation. Therefore, we adopted the point clouds
overlay of 15 adjacent frames as the input of the model. Moreover, the frequency of the
16-line LiDAR we used is exactly 15, and the data we used is the point clouds information
obtained by the LiDAR within one second.

According to the control experiment, we choose to stack adjacent 15 frames as the final
parameter of the experiment. Then, experiments are set up to verify the effectiveness of the
spatio-temporal coding. For the same point clouds, we set up a control experiment, a set of
original point clouds instance segmentation models, and a second set of spatio-temporal
coding for training. We will quantitatively compare the segmentation performance of our
model and softgroup, and compare the segmentation results of car and person in the point
clouds. The comparison results are shown in the Tables 4–6. The table compares the results
of the point clouds instance segmentation of softgroup and our method, which is a model
based on the softgroup network structure with spatio-temporal encoding and decoding.
Both models are based on the Pytorch framework, and the learning rate, threshold, and
other parameter configurations and the training point clouds were the same. From Table 4,
it can be seen that after adding the spatio-temporal encoding and decoding part, the model
achieved the better segmentation of car, with varying degrees of improvement in the AP
and AR. Due to the fact that the car does not have many feature points compared to person,
the addition of some new information is helpful for instance segmentation. From Table 5,
correspondingly, for the person in the point clouds, the segmentation performance of
the model is already relatively good without the addition of spatio-temporal encoding
and decoding. However, when spatio-temporal encoding and decoding are added, the
segmentation performance on person is slightly improved. Overall, adding spatio-temporal
information has a certain promoting effect on the instance segmentation of the model.
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Figure 11. Comparisons of person (top) and cars (bottom) for instance segmentation of point clouds
with different framerate.

Table 4. Comparisons of instance segmentation for cars.

Method Softgroup Ours

type car car
AP_25 0.783 0.810
AP_50 0.704 0.767

AP 0.602 0.765
RC_25 0.879 0.832
RC_50 0.807 0.802

AR 0.658 0.796

The test results of the model include the point clouds results of fifteen adjacent frames.
We extract the point clouds segmentation results of a single frame and perform post-
processing. The same point clouds frames are intersected to obtain more accurate segmen-
tation results. The schematic diagram of the point clouds from a single frame, overlaying
adjacent fifteen frames, and the model outputting the results of adjacent fifteen frames, as
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well as the segmentation results of the final split single frame, is shown in the following
Figure 12. The different colors in the figure represent different instances, and the back-
ground is displayed in black. We compared the three images (c), (d), and (e), the specific
comparison of segmentation results is shown in the Figure 13. It can be seen from the
figure that our method can segment all instances as much as possible, and the segmentation
results without incorporating spatio-temporal encoding and decoding not only have unrec-
ognized car instances, but also have cases of misidentification. Compared with visual and
quantitative results, the proposed method for sparse point clouds instance segmentation
is feasible.

Table 5. Comparisons of instance segmentation for person.

Method Softgroup Ours

type person person
AP_25 0.905 0.924
AP_50 0.871 0.897

AP 0.828 0.887
RC_25 0.910 0.933
RC_50 0.881 0.913

AR 0.842 0.907

Table 6. Comparisons of instance segmentation for cars and person.

Method Softgroup Ours

type car + person car + person
AP_25 0.844 0.867
AP_50 0.787 0.832

AP 0.715 0.826
RC_25 0.894 0.883
RC_50 0.844 0.857

AR 0.750 0.851

(a) Single point clouds (b) Fifteen frames of point clouds

(c) Label of point clouds (d) Segmentation of softgroup

Figure 12. Cont.



Mathematics 2024, 12, 1200 14 of 16

(e) Proposed Segmentation (f) Single frame

Figure 12. Point cloud processing and comparison. (a) Original single frame of point clouds.
(b) Point clouds obtained by overlaying fifteen adjacent frames. (c) The annotation of the point clouds.
(d) The instance segmentation of point clouds obtained by the softgroup model. (e) The instance
segmentation of point clouds obtained by the proposed model. (f) Extract a single frame point clouds
from (e).

Figure 13. Comparisons of instance segmentation between softgroup and the proposed method on
point clouds.

5. Conclusions

This study mainly focuses on instance segmentation of sparse point clouds. Firstly, in
practical applications, most of them are sparse point clouds, but datasets related to sparse
point clouds are relatively rare. We built a hardware platform, selected different scenarios,
and collected sparse point clouds.

Secondly, due to the sparsity of point clouds, the characteristics of specific targets in
point clouds are not obvious, making annotation of sparse point clouds relatively difficult.
Therefore, we propose an autonomous annotation scheme for sparse point clouds, utilizing
target tracking and segmentation methods of 2D images combined with the relationship
between 3D point clouds and 2D mappings. Moreover, we perform autonomous annotation
on point clouds. Then, because in practical applications, the point clouds collected by
LiDAR has continuity in both space and time, we incorporate spatio-temporal encoding
and decoding into the model for point clouds instance segmentation. In order to solve the
problem of sparse point clouds, we also overlay adjacent frame point clouds to generate
training data and propose a point clouds instance segmentation model that integrates
spatio-temporal information.

Finally, we extract the segmentation results of a single frame instance from the model
output and process them to obtain the segmentation results of a single frame point clouds.
The entire process we propose can be applied to the segmentation, extraction, and filtering
of specific targets in dynamic environments, which will help autonomous robots construct
map in dynamic environments and avoid the impact of dynamic targets on the construction
of map. Because this study introduces spatio-temporal encoding and decoding, it is more
effective for segmenting point clouds instances with temporal information, but there is not
much improvement in segmenting point clouds without spatio-temporal information. In
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the future, we will strive to use the point clouds instance segmentation model to perceive
specific objects in the environment for autonomous driving, which will help generate
strategies during the autonomous driving process.
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